电动势的测定及其应用

电动势的测定及其应用
电动势的测定及其应用

实验八电动势的测定及其应用

电动势的测量在物理化学研究中具有重要意义。通过电池电动势的测量可以获得氧化还原体系的许多热力学函数。

电池电动势的测量必须在可逆条件下进行。首先要求电池反应本身是可逆的,同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。因此,需用对消法来测定电动势。其测量原理是在待测电池上并联

一个大小相等、方向相反的外加电势差,这样待测电池中没有电流通过,外加电势差的大小即等于待测电池电动势。原理见下图。

有关电位差计的工作原理及使用方法请仔细阅读“基础知识与技术部分”中第四章的有关内容。本

工作电源

电位计检流计

标准电池

待测电池

ex

E E dE

.

AC S C

AH x

IR E

IR E

=

=

.

AH

S C

AC

R

Ex E

R

=

实验包括以下几部分:(1)电极电势的测定;(2)溶度积的测定;(3)溶液pH 值的测定;(4)求

电池反应的Δr G m 、Δr S m 、Δr H m 、Δr G ?

m 。

(一) 电极电势的测定

【目的要求】

1. 学会几种金属电极的制备方法。

2. 掌握几种金属电极的电极电势的测定方法。

【实验原理】

可逆电池的电动势可看作正、负两个电极的电势之差。设正极电势为φ+,负极电势为φ-,则:

E =φ+-φ-

电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极(其电极电势规定为零)作为标准,与待测电极组成一电池,所测电池电动势就是待测电极的电极电势。由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极,如:甘汞电极、银-氯化银电极等。

本实验是测定几种金属电极的电极势。将待测电极与饱和甘汞电极组成如下电池:

Hg(l)-Hg 2Cl 2(S)|KCl(饱和溶液)‖M n +(a ±)|M(S)

金属电极的反应为: M n + + n e → M

甘汞电极的反应为: 2Hg +2Cl -→Hg 2Cl 2+2e

电池电动势为: 饱和甘汞)--+()M (ln M ,Mn ????-+==++n a nF

RT E n (1) 式中,φ(饱和甘汞)=0.24240-7.6×10-4(t -25) (t 为℃),a =γ±m

【仪器试剂】

原电池测量装置1套;银电极1支;铜电极1支;锌电极1支;饱和甘汞电极1支。 AgNO 3(0.1000mol ·kg -1);CuSO 4(0.1000mol ·kg -1);ZnSO 4(0.1000mol ·kg -1);KNO 3饱和溶液;KCl 饱和溶液。

【实验步骤】

1. 铜、锌等金属电极的制备见本实验的讨论部分。

2. 测定以下三个原电池的电动势。

(1) Hg(l)-Hg 2Cl 2(S)|饱和KCl 溶液‖CuSO 4(0.1000mol ·kg -1)|Cu(S)

(2) Zn(S)|Zn SO 4 (0.1000mol ·kg -1)‖CuSO 4(0.1000mol ·kg -1)|Cu(S)

(3) Zn(S)|Zn SO 4 (0.1000mol ·kg -1)‖KCl(饱和)|Hg 2Cl 2(S) -Hg(l)

3. 测量步骤

(1) 连接线路,依次将工作电源、检流计、标准电池以及被测电池接在电位差计相应端钮上。

(2) 调节工作电压(标准化)。将室温时标准电池电动势算出,调节温度补偿旋钮至计算值。20℃时 0 1.0186E V =,()()2

570 4.0610209.51020t E E t t --=-?--?-。将转化开关打到N 上,调节粗、中、细、微四个旋钮,依次按下电计旋钮“粗”、“细”,直至检流计指零, 在测量过程中,经常检查是否发生偏离,加以调正。

(3) 测量未知电池电动势。将转换开关打在X 1或X 2上,从大到小调节6个测量旋钮,依次按下电计旋钮“粗”、“细”,直至检流计指零, 6个小窗口读书即为E x 。

【数据处理】

由测定的电池电动势数据,利用公式(1)计算铜、锌的标准电极电势。

其中离子平均活度系数γ± (25℃)见附录二十九。 (三) 测定溶液的pH 值

【目的要求】

1. 掌握通过测定可逆电池电动势测定溶液的pH 值

2. 了解氢离子指示电极的构成

【实验原理】

利用各种氢离子指示电极与参比电极组成电池,即可从电池电动势算出溶液的pH 值,常用指示电极有:氢电极、醌氢醌电极和玻璃电极。今讨论醌氢醌(Q ·QH 2)电极。Q ·QH 2为醌(Q)与氢醌(QH 2)等摩尔混合物,在水溶液中部分分解。 OH O O OH O OH

OH

(Q ·QH 2) (Q) (QH 2)

它在水中溶解度很小。将待测pH 溶液用Q ·QH 2饱和后,再插入一只光亮Pt 电极就构成了Q ·QH 2电极,可用它构成如下电池:

Hg(l)-Hg 2Cl 2(S)|饱和KCl 溶液‖由Q ·QH 2饱和的待测pH 溶液(H +)|Pt(S)

Q ·QH 2电极反应为:

电池电动势的测定及其应用

电池电动势的测定及其应用 摘要:本实验中我们通过对消法测量原电池Cu│CuCl2(m1)║AgNO3(m2)│Ag 和不同温度下原电池Ag-AgCl│KCl(m3)║AgNO3(m2)│Ag 的电动势。通过能斯特方程以及吉布斯-亥姆霍兹方程,我们计算了不同温度下氯化银的溶度积和电池反应的热力学常数。 关键词:电池电动势; 对消法; 热力学函数 Measurement and Application of the Potential of Reversible Batter Abstract:In this experiment, we measure the electromotive force of two primary cells, Cu│CuCl2(m1)║AgNO3(m2)│Ag and Ag-AgCl│KCl(m3)║AgNO3(m2)│Ag by using compensation method. At the same time, the electromotive force of the latter one is measured under different temperatures. By means of Nernst equation and Gibbs-Helmholtz equation, we calculate the solubility product of AgCl and thermodynamic functions of the cell reaction under different temperatures. Keywords:Reversible Battery,Electrode Potential,Thermodynamic Functions the

原电池电动势的测定与应用物化实验报告

原电池电动势的测定及热力学函数的测定 一、实验目的 1) 掌握电位差计的测量原理和测量电池电动势的方法; 2) 掌握电动势法测定化学反应热力学函数变化值的有关原理和方法; 3) 加深对可逆电池,可逆电极、盐桥等概念的理解; 4) 了解可逆电池电动势测定的应用; 5) 根据可逆热力学体系的要求设计可逆电池,测定其在不同温度下的电动势值,计算电池 反应的热力学函数△G 、△S 、△H 。 二、实验原理 1.用对消法测定原电池电动势: 原电池电动势不能能用伏特计直接测量,因为电池与伏特计连接后有电流通过,就会在电极上发生生极化,结果使电极偏离平衡状态。另外,电池本身有阻,所以伏特计测得的只是不可逆电池的端电压。而测量可逆电池的电动势,只能在无电流通过电池的情况下进行,因此,采用对消法。对消法是在待测电池上并联一个大小相等、方向相反的外加电源,这样待测电池中没有电流通过,外加电源的大小即等于待测电池的电动势。 2.电池电动势测定原理: Hg | Hg 2Cl 2(s) | KCl( 饱和 ) | | AgNO 3 (0.02 mol/L) | Ag 根据电极电位的能斯特公式,正极银电极的电极电位: 其中)25(00097.0799.0Ag /Ag --=+ t ?;而+ ++-=Ag Ag /Ag Ag /Ag 1 ln a F RT ?? 负极饱和甘汞电极电位因其氯离子浓度在一定温度下是个定值,故其电极电位只与温度有关,其关系式: φ饱和甘汞 = 0.2415 - 0.00065(t – 25) 而电池电动势 饱和甘汞理论—??+=Ag /Ag E ;可以算出该电池电动势的理论值。与测定值 比较即可。 3.电动势法测定化学反应的△G 、△H 和△S : 如果原电池进行的化学反应是可逆的,且电池在可逆条件下工作,则此电池反应在定温定压

电动势的测定及其应用(实验报告)

实验报告 电动势的测定及其应用 一.实验目的 1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。 2.学会制备银电极,银~氯化银电极,盐桥的方法。 3.了解可逆电池电动势的应用。 二.实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。 电池除可用作电源外,还可用它来研究构成此电池的化学反应的热力学性质,从化学热力学得知,在恒温、恒压、可逆条件下,电池反应有以下关系: △r G m =-nFE 式中△r G m 是电池反应的吉布斯自由能增量;n 为电极反应中电子得失数;F 为法拉第常数;E 为电池的电动势。从式中可知,测得电池的电动势E 后,便可求得△r G m ,进而又可求得其他热力学参数。但须注意,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液接界。同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。 为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。 附【实验装置】(阅读了解) UJ25型电位差计 UJ25型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或 mV V 17110-μ(1K 置10?档) 。使用V V 4.6~7.5外接工作电源,标准电池和 灵敏电流计均外接,其面板图如图5.8.2 所示。调节工作电流(即校准)时分别调节1p R (粗调)、2p R (中调)和3p R (细 调)三个电阻转盘,以保证迅速准确地调 节工作电流。n R 是为了适应温度不同时标准电池电动势的变化而设置的,当温 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

电动势的测定与应用

姓名: 肖池池序号: 31 周次: 第三周指导老师: 张老师 电动势的测定与应用 一、实验目的 (1)掌握补偿法测定电池电动势。 (2)了解实验室常用电极使用和处理方法以及盐桥制备方法。 二、实验原理 本实验采用补偿法(又称对消法) 测定池电动势。如图所示,AB为均 匀电阻,Ew为工作电源,它在AB 上产生均匀点位降,用来对消电池 电动势。Ex为待测电池电动势,En 为标准电池电动势(校准用)。测定 时把开关K拨向En档,调节滑线 电阻AC’使检流计中无电流通过, 得 (1) 然后把K拨向Ex档,调节AC’,使检流计中无电流通过,有 (2) 将两式相除得 (3) 本实验采用标准的Westen电池标准电池,因为其电动势稳定且随温度变化小。在20℃时En=1.0183V,其他温度时En=1.0183-0.0000406(t-20)V。t为摄氏温度。 三、仪器与试剂 UJ-25型点位计(包括检流计)SDC-Ⅱ数字点位差综合 测定仪,甘汞电极,锌电极,铜电极,电极管,烧杯。 0.1MZnS04溶液;0.1M CuSO4溶液;0.01M CuSO4溶液; 饱和KCl溶液。

四、实验步骤 1.制作电极 用砂子打磨打磨铜锌电极,去掉其表面的氧化膜,用水冲洗,然后用蒸馏水冲洗。按如图所示,将下列四个电池制成原电池。 (1)电池(A):(-)Zn| ZnS04(0.1molL-1)|| CuSO4(0.1molL-1)| Cu(+) (2)电池(B):(-)HgCl2|Hg| KCl(饱和)|| CuSO4(0.1molL-1)| Cu(+) (3)电池(C):(-)Zn| ZnS04(0.1molL-1)|| KCl(饱和)| HgCl2| Hg(+) (4)电池(D):(-)CuSO4(0.01molL-1)| Cu || CuSO4(0.1mol-1)| Cu(+) 2.电动势的测定 a.使用UJ-25型电位差计 (1)将检流计电流零点调节在量程的一半。 (2)按下式计算室温下标准(Westen)电池的电动势: En=1.0183-0.0000406(t-20)V。t为摄氏温度。 连接电路图,将D1和D2调节到标准电池电动势计算值。再将换向开关拨到N档,按下左边的粗键,依次调节旋流粗调、中调、细调和微调,使检流计读数为零。 (3)将待测的上述电池按“+”和“-”与电位差计“待测一”的“+”和“-”相连,将换向开关打到×1的位置,将电位差计中伏特读数旋钮[A1~A6]读数调到理论计算值附近,从A1到A6依次调节,直到电流为零,重复测量三次。 b.SDC型数字电位差综合测定仪 (1)将被测电动势按正负极性与测量端子连接好,不接标准电池,将测量置“内标”位置,调节100~10-5六个旋钮。使×100旋钮为1,其余旋到底,电位指示显示“1.00000”V,按下“采零”键。 (2)将标准电池与“外标”端子接好,调节旋钮使电位器指示数与标准电池值相同,按下“采零”键。 (3)将待测电池按正负与测量端子连接好,将测量旋钮置于“测量”,补偿旋钮逆时针旋到底。调节旋钮使“检零指示”数值为负,且绝对值最小。在调节补偿电位器使“检零指示”数值为零。记录电位值。 bb五、数据处理 (1)电池(A):(-)Zn| ZnS04(0.1molL-1)|| CuSO4(0.1molL-1)| Cu(+) 理论计算电动势得: E理论= EΘ- = EΘ(Cu2+|Cu) - EΘ(Zn2+|Zn) - =1.1037+1.0015×10-3 = 1.1047V 实际测量电动势为:E实际=1.0885V 相对误差E R=|×100﹪=1.47﹪ 2)电池(B):(-)HgCl2|Hg| KCl(饱和)|| CuSO4(0.1molL-1)| Cu(+) 理论计算电动势得:

电池电动势的测定及其应用实验报告

电池电动势的测定及其应用实验报告

电池电动势的测定及其应用 、实验目的: 1?了解对消法测定电池电动势的原理; 2 ?掌握电动势测定难溶物溶度积(K sp )的方法; 3 ?掌握常用参比电极银一氯化银电极的制备方法。 实验原理: 电池由两个半电池组成(半电池包括一个电极和相应的电解质溶液),当电池放电时,进行氧化反应的是负极,进行还原反应的是正极<电池的电动势就 是通过电池的电流趋近于零时两极之间的电位差。它可表示成: 式中E、E分别表示正、负电极的电位。当温度、压力恒定时,电池的电动势E (或电极电位E、E )的大小取决于电极的性质和溶液中有关离子的活度。电极电位与有关离子活度之间的关系可以由 Nernst方程表示: RT E E ——ln a B B (16-1) zF B 式中:z为电池反应的转移电子数,B为参加电极反应的物质 B的化学计 量数,产物B为正,反应物B为负。 本实验涉及的两个电池为: (1)(—)Ag(s),AgCI(s) | KCl (0.0200 mol L-1) || AgN0 3(0.0100 molL?-1) I Ag (s) (+) (2) (一) Hg (l),Hg2Cl2 (s)| KCl (饱和)|| AgNO3 (0.0100 mol L-1) I Ag (s) (+) 在上述电池中用到的三个电极是: 2Hg(l) 2Cl (a Cl ) (16-3)

(1) 银电极: 电极反应: Ag (0.01mol L 1) e Ag (16-2) RT E Ag /Ag E Ag /Ag 卩ln a Ag 其中: E Ag /Ag 0.7991 0.00097(t 25) V 式中:t为摄氏温度(下同), (2) 甘汞电极: 电极反应:HgCl2(s) 2e

电动势的测定及应用

宁波工程学院 物理化学实验报告 专业班级化工112 姓名姚志杰序号 11402010235 同组姓名田飞成金鹏指导老师付志强姚利辉 实验日期 2013、5、20 实验名称实验六电动势的测定及其应用 一、实验目的 1.通过实验加深对可逆电池、可逆电极、盐桥等概念的理解; 2.掌握对消法测定电池电动势的原理及电位差计的使用方法; 3.通过电池Ag|AgNO 3(b 1 )‖KCl(b 2 )|Ag-AgCl|Ag的电动势求AgCl的容积 度K sp 。 4.了解标准电池的使用和不同盐桥的使用条件。 二、实验原理 1、可逆电池的电动势:E=φ +-φ - 2、对消法测定原电池电动势原理: 在待测电阻上并联一个大小相等,方向相反的外加电势差,这样待测电池中没有电流通过,外加电势差的大小即等于待测电池的电动势。 3、电极: (1)标准氢电极:电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准电极作为标准(标准氢电极是氢气压力为101325Pa,溶液中α(H+)为1,其电极的电极电势规定为零)。将标准氢电极与待测电极组成电池,所测电池电动势就是待测电极的电动势。 (2)参比电极:由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极。常用的参比电极有甘汞电极、银-氯化银电极等。这些电极与标准氢电极比较而得的电极电势已精确测出。 E 甘汞 =0.2415-0.00076(t/℃-25) 4、电池:

电池(1):(-)Hg(s)|Hg 2Cl 2 (s)|KCl(饱和)‖AgNO 3 (c)|Ag(s)(+) 电池(2):(-)Hg(s)|Hg 2Cl 2 (s)|KCl(饱和)‖KCl(c)|AgCl(s),Ag(s)(+) 三、实验仪器、试剂 仪器:EM-3C数字式电子电位差计;检流计;标准电池;银电极一支; 银-氯化银电极一支;饱和甘汞电极一支;50mL烧杯若干个;导线、滤纸若干。 试剂:0.01,0.03,0.05,0.07,0.09(mol·dm-3)KCl溶液; 0.01,0.03,0.05,0.07,0.09(mol·dm-3)AgNO 3 溶液;饱和KCl溶液。 四、实验步骤 1、打开EM-3C数字式电子电位差计总电源预热15分钟。 2、读室温,利用韦斯顿标准电池电动势温度校正公式,计算标准电池在室温时的电动势Es。 Es=1.01845-4.05×10-5 (T/K-293.15)9.5×10-7(T/K-293.15)2 3、将电位差计面板右侧的拨位开关拨到“外标”位置,调节左侧拨位开关至标准电池的实际Es值。用导线把标准电极正负极和电位差计面板右侧的“外标”测量孔的正负极相连接。按一下校准按钮,观察右边平衡指示LED显示值是否为零,为零时校准完毕。 4、测量待测电池(1)的电动势: 取1个干燥、洁净的50ml烧杯,倒入约25ml 0.01mol*dm-3AgNO3溶液,将银电极用细砂纸打磨光亮,再用蒸馏水冲洗干净并擦干后插入该AgNO3溶液中;另取饱和甘汞电极1支并将其插入装有饱和KCl溶液的容器内;将KNO3盐桥的两个支脚插入上述两个容器中;如此构成了电池(1)。 将电位差计面板右侧的拨位开关拨到“外标”位置。用导线把待测电池的甘汞电极和电位差计面板右侧的“测量”测量孔的负极相连接;银电极和正极相连接。在测量前粗略估计一下所测电池的电动势的数值,将左侧拨位开关调节至粗估值附近。然后将拨位开关拨到“测量”位置,再仔细调节左侧旋钮,观察右边平衡指示LED显示值,当平衡指示值在正负20以内时,测量完毕,记下测量数据。将拨位开关拨回“外标”位置。 重复前面实验步骤,依次测量0.03,0.05,0.07,0.09(mol*dm-3)AgNO3溶液至全部待测溶液测量完毕。 5、测量待测电池(2)的电动势 取1个干燥、洁净的50ml烧杯,倒入约25ml 0.01mol.dm-3KCl溶液,将银—氯化银电极从避光容器中取出,用蒸馏水淋洗并用滤纸轻轻吸干,插入该KCl

原电池电动势的测定及应用

原电池电动势的测定及应用 姓名: 学号: 班级:2012级化工班 指导老师: 日期:2014-09-24 成绩: 一、实验目的: 1.掌握对消法测定电池电动势的原理及电位差计的使用。 2.了解可逆电池电动势的应用。 3.学会银电极、银—氯化银电极的制备和盐桥的制备。 二、实验原理: 1.原电池是由正,负两个电极和相应电解质溶液组成,电池反应中正极起还原作用,负极起氧化作用,电池反应是电池中两个电极反应的总和。电池电动势不能直接用伏特计来测量,因为当伏特计与待测电池接通后,整个线路中便有电流通过,电池内部由于存在内电阻而产生某一电位降,并在电池两极发生化学反应,溶液浓度发生变化,电动势数值不稳定,所以只有在无电流通过的情况下进行测定,即采用对消法。 测量电动势只能在无电流通过电池的情况下进行,因此需要用对消法(补偿法)来测定电动势。对消法测定电动势就是在所研究的电池的外电路上加一个方向相反的电压。当两者相等时,电路的电流为零(通过检流计指示)。对消法测电动势常用的仪器为电位差计,其简单原理如图所示: 1 2R R E E S X = 电极电势的测定原理:原电池是化学能转变为电能的装置,在电池放电反应中,正极(右边)起还原反应,负极起氧化反应。电池的电动势等于组成的电池的两个电极电位的差值。即: 氧化还原左 右αα??????θln _ZF RT E -=-=-=+

三、仪器与药品: 1. 仪器:电位差计 直流辐射式检流计 铂电极 银电极 饱和甘汞电极 稳压直流电源 导线 标准电池 盐桥 小烧杯若干 2. 药品:HCl (0.100m ) AgNO3(0.100m )KCl 饱和溶液 醌氢醌 未知PH 溶液 四、实验步骤 : 本实验测定如下两个电池的电动势: 1.①Hg -Hg 2Cl 2|饱和KCl 溶液||AgNO 3(0.100m)|Ag ②Hg -Hg 2Cl 2|饱和KCl 溶液||饱和有醌氢醌的未知PH 溶液|Pt 2.电极的制备 (1)铂电极、银—氯化银参比电极和饱和甘汞电极采用现成的商品,在使用前用蒸馏水洗净。若铂电极有油污,应在丙酮中浸泡,然后用蒸馏水冲洗。 (2)醌氢醌电极:将少量醌氢醌固体加入待测的未知PH 溶液中使成为饱和溶液,然后插入干净的铂电极即可。 3.(1)矫正电位计:先将功能选择开关扳到“外标”档。再将电位计的正负极短接,按“校准”归零。最后将外标正极与基准正极,外标负极与基准负极接,调数字至基准数(每台仪器都不同),按校准键归零。 (2)组成两个电池。 (3)将标准电池和待测电池分别接入电位差计上。在测标准电池是电位差计的正极连接Ag 电极,在测待测电极时电位计的正极连接Pt 电极。 (4)将功能选择开关扳到“测量”档。把标准电池正确接入电位差计上,从大到小从左到右旋转六个电势测量旋钮,直到调至检流计示数为零为止。按同样的方法测定未知电池电动势。 (5)根据Nernst 公式计算实验温度下电池①②的电动势理论值。 五、数据处理 : 室温:21℃ 测量值/V E 测量平均值/V V Ag Ag //+? V Ag Ag //θ?+ 相对 误差 一次 两次 三次 0.495453 0.7393 0.8031 7.944% 0.495880 0.495195 0.495283 0.327874 0.326129 0.324568 0.326190 1、已知饱和甘汞电极和银电极的电极电位与温度的关系如下 当t=21℃ 甘汞?=0.2412-6.61×10-4(t-25℃)-1.75×10-6(t-25℃)2-9.16×10-10(t-25℃)2 =0.2438V =+θ ?Ag Ag /0.7991-9.88×10-4(t-25℃)+7×10-7(t-25℃)2 =0.8031V 由于电池的电动势为甘汞??-=+Ag Ag E /,所以

实验6-电动势的测定及应用

一、实验目的 1、通过实验加深对可逆电池、可逆电极、盐桥等概念的理解。 2、掌握对消法测定电池电动势的原理及电位差计的使用方法。 3、通过电池Ag | AgNO3(b1) || KCl(b2) | Ag-AgCl |Ag的电动势求AgCl的 溶度积Ksp。 4、了解标准电池的使用和不同盐桥的使用条件。 二、实验原理 1、可逆电池的电动势: 电池的书写习惯是左方为负极,右方为正极。负极进行氧化反应,正极进行还原反应。如果电池反应是自发的,则电池电动势为正。符 号“|”表示两相界面,“||”表示盐桥。在电池中,电极都具有一定的电极电势。当电池处于平衡态时,两个电极的电极电势之差就等于该可逆电极电势。规定电池的电动势等于正负电极的电极电势之差,即: E=ψ+-ψ- 可逆电池必须具备的条件为:(1)电极上的化学反应可向正反两个方向进行,即反应可逆。(2)电池在工作(充放电)时,所通过的电流必须无限小,此时电池可在接近平衡状态下工作,即能量可逆。(3)电池中所进行的其它过程可逆。如溶液间无扩散、无液体接界电势。因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量时,常用正负离子迁移数比较接近的盐类构成“盐桥”来减小液体接界电势。要达到工作电流零的条件,必须使电池在接近热力学平衡条件下工作。测量可逆电池的电动势不能直接用伏特计来测量。因为电池与伏特计相接后,整个线路便有电流通过,此时电池内部由于存在内电阻而产生某一电位降,并在电池两极发生化学反应,溶液浓度发生变化,电动势数据不稳定。所以要准确测定电池的电动势,只有在电流无限小的情况下进行,所采用的对消法就是根据这个要求设计的。 2、对消法测定原电池电动势原理 在待测电池上并联一个大小相等,方向相反的外加电势差,这样待测电池中没有电流通过,外加电动势的大小即等于待测电池的电动势。

原电池电动势的测定及其应用实验报告

原电池电动势的测定及其应用实验报告 林传信 高分子101 12 一、实验目的 1、理解电极、电极电势、电池电动势、可逆电池电动势的意义 2、掌握用对消法测定电池电动势的基本原理和数字式电子电位差计的使用方法 3、学会几种电极和盐桥的制备方法 二、对消法侧电动势的基本原理: 测量电动势只能在无电流通过电池的情况下进行,因此需要用对消法(补偿法)来测定电 动势。对消法测定电动势就是在所研究的电池的外电路上加一个方向相反的电压。当两者 相等时,电路的电流为零(通过检流计指示)。对消法测电动势常用的仪器为电位差计, 其简单原理如图所示 A C A C E E X S 12= 电极电势的测定原理: 原电池是化学能转变为电能的装置,在电池放电反应中,正极(右边)起还原反应,负极起 氧化反应。电池的电动势等于组成的电池的两个电极电位的差值。即: E= +?—-?=右?—左? 氧化还原αα??θ ln ZF RT -=-+ 氧化 还原αα??θ ln _ZF RT -=- R=?11--?K mol F=96500C α 为参与电极反应的物质的活度。纯固体物质的活度为1。 浓差电池: 一种物质从高浓度(或高压力)状态向低浓度(或低压力)状态转移,从而产生电动势,而 这种电池的标准电动势为零。 三、电池组合: ⑴Hg Cl g KCl L mol ZnSO Zn 224H )()1.0(饱和 ⑵Cu L mol KCl Cl Hg Hg )(饱和0.1CuSO )(422 ⑶Cu L mol SO Cu L mol ZnSO Zn )1.0()1.0(44

⑷Cu L mol CuSO Cu L mol CuSO )1.0()01.0(44 四、数据处理 实验室温度T= 标准电动势Es= 电池电极电动势: 五、误差分析 在较长的电极电势测量过程中,工作回路中电流发生变化,导致测量误差 部分电解质溶液在测量过程中发生电解,浓度变化影响测量的结果

原电池电动势的测定及其应用

原电池电动势的测定及其应用 1. 简述对消法测原电池电动势的测量原理。 答:电位差计是根据补偿法(或称对消法)测量原理设计的一种平衡式电压测量仪器。其工作原理是在待测电池上并联一个大小相等,方向相反的外加电势,这样待测电池中就没有电流通过,外加电势差的大小就等于待测电池的电动势。如图所示,电位差计有工作、标准、测量三条回路。 1)校准工作电流I W 开关K 打向1,预先调好标准回路中的标准电阻Rn ,调节工作回路的电阻r 至检流计无电流通过,工作 电流I W 就已被确定。 2)测量未知电池电动势E W 开关K 打向2,调节测量回路的电阻 R X 至检流计无电流通过,此时I R X 与被测电池电动势对消。 2. 简述铜电极电位测定的基本原理。 答:实验只能测得两个电极构成的电池的电动势E ,而无法测得单个电极的电极电势φ。若选定一个电极作为标准,使其与任意其它电极组成电池,测其电动势,就可得出各电极的相对电极电势φ 。通常将氢电极在氢气压力为100KPa ,溶液中氢离子活度为1时的电极电势规定为零伏,称为标准氢电极,然后与其它被测电极进行比较。以标准氢电极作阳极即负极;而将待测电极作阴极即正极,组成原电池,然后用电位差计测量该电池的电动势,这个数值n n W R E I =X W X R I E =N X N X R R E E =

和符号就是待测电极的氢标还原电极电势的数值和符号。由于使用标准氢电极不方便,在实际测定时往往采用第二级的标准电极,甘汞电极是其中最常用的一种。这些电极与标准氢电极比较而得到的电势已精确测出。 3. 在原电池电动势的测定过程中应尽可能的做到在可逆条件下进行,为此在实验过程中应注意什么? 答:电动势的测量方法属于平衡测量,在测量过程中尽可能地做到在可逆条件下进行。为此应注意以下几点: (1)测量前可根据电化学基本知识,初步估算一下被测电池的电动势大小,以便在测量时能迅速找到平衡点,这样可避免电极极化。 (2)要选择最佳实验条件使电极处于平衡状态。制备锌电极要锌汞齐化,成为Zn(Hg),而不直接用锌棒。因为锌棒中不可避免地会含有其它金属杂质,在溶液中本身会成为微电池,锌电极电势较低(-0.7627V),在溶液中,氢离子会在锌的杂质(金属)上放电,锌是较活泼的金属,易被氧化。如果直接用锌棒做电极,将严重影响测量结果的准确度。锌汞齐化,能使锌溶解于汞中,或者说锌原子扩散在惰性金属汞中,处于饱和的平衡状态,此时锌的活度仍等于1,氢在汞上的超电势较大,在该实验条件下,不会释放出氢气。所以汞齐化后,锌电极易建立平衡。制备铜电极也应注意:电镀前,铜电极基材表面要求平整清洁,电镀时,电流密度不宜过大,一般控制在20mA·cm-2左右,以保证镀层紧密。电镀后,电极不宜在空气中暴露时间过长,否则会使镀层氧化,应尽快洗净,置于电极管中,用溶液浸没,并超出1cm左右,同时应尽快进行测量。 (3)为判断所测量的电动势是否为平衡电势,一般应在15min 左右时间内,等间隔地测量7-8个数据。若这些数据是在平均值附近摆动,偏差小于±0.5mV,则可认为已达平衡,可取其平均值作为该电池的电动势。 (4)前面已讲到必须要求电池反应可逆,而且要求电池在可逆情况下工作。但严格说来,本实验测定的并不是可逆电池。因为当

电动势的测定及其应用(实验报告)

实验报告电动势的测定及其应用 一.实验目的 1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。 2.学会制备银电极,银~氯化银电极,盐桥的方法。 3.了解可逆电池电动势的应用。 二.实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。 电池除可用作电源外,还可用它来研究构成此电池的化学反应的热力学性质,从化学热力学得知,在恒温、恒压、可逆条件下,电池反应有以下关系: △r G m=-nFE 式中△r G m是电池反应的吉布斯自由能增量;n为电极反应中电子得失数;F为法拉第常数;E为电池的电动势。从式中可知,测得电池的电动势E后,便可求得△r G m,进而又可求得其他热力学参数。但须注意,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液接界。同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。 为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。 附【实验装置】(阅读了解) UJ25型电位差计

UJ25型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或 mV V 17110-μ(1K 置10?档) 。使用V V 4.6~7.5外接工作电源,标准电池和 灵敏电流计均外接,其面板图如图5.8.2所示。调节工作电流(即校准)时分别调节1p R (粗调)、2p R (中调)和3p R (细 调)三个电阻转盘,以保证迅速准确地调节工作电流。n R 是为了适应温度不同时标准电池电动势的变化而设置的,当温度不同引起标准电池电动势变化时,通过调节n R ,使工作电流保持不变。x R 被分成Ⅰ(1?)、Ⅱ(1.0?)和Ⅲ(001.0?)三个电阻转盘,并在转盘上标出对应x R 的电压值,电位差计处于补偿状态时可以从这三个转盘上直接读出未知电动势或未知电压。左下方的“粗”和“细”两个按钮,其作用是:按下“粗”铵钮,保护电阻和灵敏电流计串联,此时电流计的灵敏度降低;按下“细”按钮,保护电阻被短路,此时电流计的灵敏度提高。2K 为标准电池和未知电动势的转换开关。标准电池、灵敏电流计、工作电源和未知电动势x E 由相应的接线柱外接。 UJ25型电位差计的使用方法: (1)将2K 置到“断”,1K 置于“1?”档或“10?”档(视被测量值而定),分别接上标准电池、灵敏电流计、工作电源。被测电动势(或电压)接于“未知1”(或“未知2”)。 (2)根据温度修正公式计算标准电池的电动势)(t E n 的值,调节n R 的示值与其相等。将2K 置“标准”档,按下 “粗”按钮,调节1p R 、2p R 和3p R ,使灵敏电流计指针指零,再按下 “细”按钮,用2p R 和3p R 精确调节至灵敏电流计指针指零。此操作过程称为“校准”。 (3) 将2K 置“未知1”(或“未知2”)位置,按下“粗”按钮,调节读数转盘Ⅰ、 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

实验十二原电池电动势的测定及应用

实验十二原电池电动势的测定及应用 Ⅰ、实验目的 1.掌握可逆电池电动势的测量原理和电位差计的操作技术。 2.学会几种电极和盐桥的制备方法。 3.通过原电池电动势的测定求算有关热力学函数。 Ⅱ、实验原理 凡是能使化学能转变为电能的装置都称之为电池(或原电池)。对定温定压下的可逆电池而言: 式中,F为法拉弟(Farady)常数;n为电极反应式中电子的计量系数;E为电池的电动势。可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆。 (2)电池中不允许存在任何不可逆的液接界。 (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。用电位差计测量电动势也可满足通过电池电流为无限小的条件。

可逆电池的电动势可看作正、负两个电极的电势之差。设正极电势为φ+,负极电势为φ—,则:E=φ+-φ- 电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准(标准氢电极是氢气压力为101325Pa,溶液中a H+为1),其电极电势规定为零。将标准氢电极与待测电极组成一电池,所测电池电动势就是待测电极的电极电势。由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极。常用的参比电极有甘汞电极、银-氯化银电极等,这些电极与标准氢电极比较而得的电势已精确测出。 1.求难溶盐AgCl的溶度积K SP 设计电池如下: Ag(s)-AgCl(s)|HCl(0.1000mol·kg-1)‖AgNO3(0.1000mol·kg-1)|Ag(s) 银电极反应: Ag++e→Ag 银-氯化银电极反应: Ag + Cl-→AgCl+e 总的电池反应为: Ag++Cl-→AgCl 又 式(5)中n=1,在纯水中AgCl溶解度极小,所以活度积就等于溶度积。所以: (6)代入(4)化简之有:

原电池电动势的测定及其应用

原电池电动势的测定及其应用 一、实验目的 (1)测定Cu—Zn电池的电动势和Cu、Zn电极的电极电势; (2)学会一些电极的制备和处理方法; (3)掌握SDC-Ⅲ数字电位差计的测量原理和正确使用方法。 二、实验原理 原电池由正、负两极组成。电池在放电过程中,正极发生还原反应,负极发生氧化反应,电池部还可以发生其他反应,电池反应是电池中所有反应的总和。 电池除可用来提供电源外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: (2-69) 式中是电池反应的吉布斯自由能增加;为电极反应中得失电子的数目; 为法拉第常数(其数值为96500C/mol);为电池的电动势。所以测出该电池的电动势后,进而又可求出其他热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成盐桥来消除液接电位。在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位差计测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就可计算得到由它们组成的电池电动势。由(2-69)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表达式为 符号“”代表固相(或)和液相(或)两相界面;“”代表连通两个液相的“盐桥”;和分别为和的质量摩尔浓度。 当电池放电时,

原电池电动势的测定和应用

实验11 原电池电动势的测定和应用 一、实验目的 1. 掌握对消法测定原电池电动势的原理和方法。 2. 了解电动势测定的应用。 3. 熟悉精密电位差计和标准电池的使用。 二、实验原理 可设计成原电池的化学反应,发生失去电子进行氧化反应的部分可作为阳极,发生获得电子进行还原反应的部分可作为阴极,两个半点池组成一个原电池。电池的书写习惯是左方为负极,即阳极,右方为正极,即阴极。符号“|”表示两相界面,液相与液相之间一般加上盐桥,以符号“ ”表示,。如电池反应是自发的,则其电动势为正,等于阴极电极电势+E 与阳极电极电势-E 之差,即 -+-=E E E 以铜-锌电池为例。铜-锌电池又称丹尼尔电池(Daniell cell ),是一种典型的原电池。此电池可用图示表示如下: )1(114-?=-kg mol a ZnSO Zn +?=-Cu kg mol a CuSO )1(124 左边为阳极,起氧化反应 Zn e a Zn 2)(12++ 其电极电势为 ) () (ln 22+--- ==Zn a Zn a F RT E E E θ 阳 右边为阴极,起还原反应 e a Cu 2)(22++ Cu 其电极电势 ) () (ln 22+++- ==Cu a Cu a F RT E E E θ 阴 总的电池反应 )(22a Cu Zn ++ Cu a Zn ++)(12 原电池电动势 )()(ln 2)(22+ +-+--=Cu a Zn a F RT E E E θ θ =) ()(ln 222++-Cu a Zn a F RT E θ θ-E 、θ +E 分别为锌电极和铜电极的标准还原电极电势,)(2+Zn a 和)(2+Cu a 分别为 +2Zn 和+2Cu 的离子活度。 本实验所测定的三个电池为:

电池电动势的测定及应用实验报告

电池电动势的测定及其应用 一、实验目的: 1.了解对消法测定电池电动势的原理; 2.掌握电动势测定难溶物溶度积(SP K )的方法; 3.掌握常用参比电极银一氯化银电极的制备方法。 二、实验原理: 电池由两个半电池组成(半电池包括一个电极和相应的电解质溶液), 当电池放电时,进行氧化反应的是负极,进行还原反应的是正极。电池的电动势就是通过电池的电流趋近于零时两极之间的电位差。它可表示成: -+-=E E E 式中+E 、-E 分别表示正、负电极的电位。当温度、压力恒定时,电池的电动势E (或电极电位+E 、-E )的大小取决于电极的性质和溶液中有关离子的活度。电极电位与有关离子活度之间的关系可以由Nernst 方程表示: B B B a zF RT E E υ θ∏-=ln (16-1) 式中:z 为电池反应的转移电子数,B υ为参加电极反应的物质B 的化学计量数,产物B υ为正,反应物B υ为负。 本实验涉及的两个电池为: (1)(一)Ag (s ),AgCl (s )│KCl (0.0200 mol·L -1)││AgNO 3(0.0100 mol·L -1)│Ag (s )(+) (2)(一)Hg (l ),Hg 2Cl 2(s )│KCl (饱和)││AgNO 3(0.0100 mol·L -1)│Ag (s )(+) 在上述电池中用到的三个电极是: (1) 银电极: 电极反应:Ag e L mol Ag →+?-+)01.0(1 (16-2) }{}{ ++=++Ag a F RT Ag Ag E Ag Ag E ln //θ 其中: }{)25(00097.07991.0/--=+t Ag Ag E θV 式中:t 为摄氏温度(下同), (2) 甘汞电极: 电极反应:)(2)(22)(2--+→+Cl a Cl l Hg e s HgCl (16-3)

电动势的测定与应用

华南师范大学实验报告 学生姓名甘汉麟学号20112401028 专业化学(师范) 年级、班级11化5 课程名称物理化学实验实验项目原电池电动势的测定与应用实验指导老师林晓明实验时间2014年4月9日 【实验目的】 ①掌握电位差计的测量原理和原电池电动势的测定方法; ②加深对可逆电极、可逆电池、盐桥等概念的理解; ③测定电池(I)的电动势; ④了解可逆电池电动势测定的应用; ⑤掌握电动势法测定化学反应热力学函数变化值的有关原理和方法; ⑥根据可逆热力学体系的要求设计可逆电池,测定其在不同温度下的电动势 值,计算电池反应的热力学函数△G、△S、△H。 【实验原理】 ⑴用对消法测定原电池电动势原电池电动势不能能用伏特计直接测量,因为电池与伏特计连接后有电流通过,就会在电极上发生生极化,结果使电极偏离平衡状态。另外,电池本身有内阻,所以伏特计测得的只是不可逆电池的端电压。采用对消法(又叫补偿法)可在无电流(或极小电流)通过电池的情况下准确测定电池的电动势。 对消法原理是在待测电池上并联一个大小相等、方向相反的外加电势差,这样待测电池中没有电流通过,外加电势差的大小即等于待测电池的电动势。

⑵ 原电池电动势的测定 电池(I ) Hg | Hg 2Cl 2 | KCl( 饱和 ) | | AgNO3 (0.02 mol/L) | Ag 根据电极电位的能斯特公式,银电极的电极电位: + + + - =Ag a F RT 1 ln Ag/Ag Ag/Ag θ?? 其中 φ?Ag/Ag+ =0.799-0.00097(t-25) 又因AgNO3浓度很稀 a Ag+≈[ Ag + ]=0.02 饱和甘汞电极的电极电位:- l a 1 ln C F RT - =θ ??饱和甘汞饱和甘汞 对饱和甘汞电极来说,其氯离子浓度在一定温度下是个定值,故其电极电位只与温度有关,其关系可直接写为 φ饱和甘汞 = 0.2415 - 0.00065(t – 25) 从上述电池的两个电极电位可算出电池的理论电动势,将测定值与之比较。 ⑶ 电动势法测定化学反应的△G 、△S 、△H 。 利用对消法测定电池的电动势,即可获得相应的电池反应的自由能改变值。 nFE G -=? 根据吉布斯-亥姆霍兹公式,有 p T E nF S ??? ????-=? p T E nFT nFE H ??? ????+-=? 因此,按照化学反应设计一个电池,测量各个温度T 下电池的电动势E ,作E-T 图,即可求得该反应的热力学函数△G 、△S 及△H 等。

电动势的测定及应用

电动势的测定及应用 一.实验目的 1.通过实验加深对可逆电池、可逆电极、盐桥等概念的理解。 2. 掌握对消法测定电池电动势的原理及电位差计的使用方法。 3.通过电池Ag|AgNO3(b1)||KCl(b2)|Ag-AgCl|Ag的电动势求 AgCl的溶度积Ksp。4.了解标准电池的使用和不同盐桥的使用条件。 二.实验原理 1.可逆电池的电动势: 电池的书写习惯是左方为负极,右方为正极。负极进行氧化反应,正极进行还原反应。如果电池反应是自发的,则电池电动势为正。符号―|‖表示两相界面,―||‖表示盐桥。在电池中,电极都具有一 定的电极电势。当电池处于平衡态时,两个电极的电极电势之差就等于该可逆电极电势。规定电池的电动势等于正负电极的电极电势之差,即: E=ψ+-ψ- 可逆电池必须具备的条件为:(1)电极上的化学反应可向正反两个方向进行,即反应可逆。(2)电池在工作(充放电)时,所通过 的电流必须无限小,此时电池可在接近平衡状态下工作,即能量可逆。(3)电池中所进行的其它过程可逆。如溶液间无扩散、无液体接界 电势。因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量时,常用正负离子迁移数比较接近的盐类构成―盐桥‖来减小液体接界电势。要达到工作电流零的条件,必须使

电池在接近热力学平衡条件下工作。测量可逆电池的电动势不能直接用伏特计来测量。因为电池与伏特计相接后,整个线路便有电流通过,此时电池内部由于存在内电阻而产生某一电位降,并在电池两极发生化学反应,溶液浓度发生变化,电动势数据不稳定。所以要准确测定电池的电动势,只有在电流无限小的情况下进行,所采用的对消法就是根据这个要求设计的。 2.对消法测定原电池电动势原理: 在待测电池上并联一个大小相等,方向相反的外加电势差,这样待测电池中没有电流通过,外加电动势的大小即等于待测电池的电动势。 Ew-工作电源;EN-标准电池;Ex-待测电池;R-调节电阻;Rx-待测电池电动势补偿电阻; RN-标准电池电动势补偿电阻;K-转换电键;G-检流计3.电极:(1)标准氢电极:电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准(标准氢电极是氢气压力为101325Pa,溶液中H+为1,其电极电动势规定为零)。将标准氢电极与待测氢电极与待测电极组成电池,所测电池电动势就是待测电极的电极电势。 (2)参比电极:由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极。常用的参比电极有甘汞电极、银-氯化银电极等。这些电极与标准氢电极比较而得的电极电动势已精确测出。4.电池:

相关文档
最新文档