09-6 Spatial variation of Bakken or Lodgepole oils in the Canadian Williston Basin

09-6 Spatial variation of Bakken or Lodgepole oils in the Canadian Williston Basin
09-6 Spatial variation of Bakken or Lodgepole oils in the Canadian Williston Basin

Spatial variation of Bakken

or Lodgepole oils in the Canadian Williston Basin Zhuoheng Chen,Kirk G.Osadetz,Chunqing Jiang, and Maowen Li

ABSTRACT

There are two opposing schools of thought that infer either the Bakken Formation or the Lodgepole Formation as the primary source rock for the Madison-reservoired oils in the Canadian Williston Basin.A recent geochemical study revealed evidence indicating the existence of significant mixing of Bakken and Lod-gepole oils in the Madison reservoirs.To investigate the geo-graphic distribution of the oil compositions,we employed a multivariate statistical method to extract source and maturity-specific geochemical signatures from a geochemical data set for spatial analysis.Oil mixing appears to be geographically depen-dent and restricted by a northeast-southwest–striking zone (Torquay-Rocanville trend)in southeast Saskatchewan.Thus, fracture or fault systems are inferred to have provided high-permeability zones allowing Bakken-derived oil to migrate upward across the Lodgepole Formation.The areas without significant fault or fracture systems favor lateral oil migration along porous beds,restricting Bakken-derived oil accumula-tion to pools in Bakken reservoirs and Lodgepole-derived oils to occur primarily in overlying reservoir beds of the Madison Group.

INTRODUCTION

The Mississippian Madison Group is the most important oil-producing interval in the Canadian Williston Basin.With1.54×109m3(54.3×109ft3)in-place oil reserves(National Energy Board,2001),the Madison Group accounts for about62%of AUTHORS

Zhuoheng Chen Geological Survey of Canada,3303-33rd Street,Northwest,Calgary Alberta,T2L2A7,Canada;

Zhuoheng.Chen@nrcan-rncan.gc.ca Zhuoheng Chen obtained his Ph.D.from the Norwegian University of Science and Technology in1993and held a position as an associate professor at China University of Petroleum(Beijing) before joining the Geological Survey of Canada in1998.His research interests include petroleum resource assessment(methods and applica-tions),petroleum systems,and basin analysis. Kirk G.Osadetz Geological Survey of Canada,3303-33rd Street,Northwest,Calgary Alberta,T2L2A7,Canada;kosadetz@nrcan.gc.ca Kirk Osadetz graduated from the University of Toronto(B.Sc.,1978;M.Sc.,1983).He manages the Earth Science Sector Gas Hydrates Fuel of the Future Program and is the head of the Laboratory Services Subdivision at the Geolo-gical Survey of Canada in Calgary.He is active regarding petroleum resource evaluation and has research interests in gas hydrates,tectonics, and thermochronology.He worked previously at Gulf Canada Resources Inc.and PetroCanada Resources Inc.in Calgary.

Chunqing Jiang Geological Survey of Can-ada,3303-33rd Street,Northwest,Calgary Al-berta,T2L2A7,Canada;cjiang@ucalgary.ca Chunqing Jiang holds a Ph.D.in organic geo-chemistry.He has more than15years of expe-rience in analytical and interpretive petroleum geochemistry related to petroleum exploration and production in China,Australia,and Canada. He is a senior lab scientist at Gushor Inc.and the Petroleum Reservoir Group of the University

of Calgary.He has worked with Humble Geo-chemical Services,the Geological Survey of Can-ada,and PetroChina.

Maowen Li Geological Survey of Canada, 3303-33rd Street,Northwest,Calgary Alberta, T2L2A7,Canada;mali@nrcan.gc.ca Maowen Li has been a research scientist with the Geological Survey of Canada since1995.Since he received his Ph.D.in organic geochemistry from the University of Melbourne in1991,he has conducted petroleum system studies in China,

Copyright?2009.The American Association of Petroleum Geologists.All rights reserved. Manuscript received September5,2008;provisional acceptance November13,2008;revised manuscript received February23,2009;final acceptance March16,2009.

DOI:10.1306/0316*******

AAPG Bulletin,v.93,no.6(June2009),pp.829–851829

the total oil reserves in the Canadian part of the Williston Basin (Figures 1,2).Two different opinions exist with respect to whether the Bakken Formation or Lodgepole Formation is the primary source rock for the Madison oils of the Canadian Williston Basin.Early geochemical studies,particularly in the United States part of the Williston Basin,suggested that the organic-rich black shales of the upper and lower Bakken mem-bers are the most important source rock in the basin (Dow,1974;Meissner,1978;Dembicki and Pirkle,1985;Gerhard et al.,1990)and are considered to be the major contributor to the oils in the Madison Group https://www.360docs.net/doc/a86762385.html,ter studies iden-tified significant petroleum source rock potential in the Lodge-pole Formation (Osadetz et al.,1992;Osadetz and Snowdon,1995;Jiang et al.,2001).In general,cross-formational migra-tion of oil from Bakken shale to the Madison Group was con-sidered insignificant,implying that the Lodgepole Formation is the principal source rock for the oils in Madison reservoirs (Lefever et al.,1991;Price and Lefever,1994;Jarvie,2001).An exception to this view was the work of Burrus et al.(1996a,b),in which the basin modeling results showed that most oil generated in Bakken shales was expelled where an overpressure still exists.Why the prolific Bakken shales have contributed so little to the known oil reserves and where the Bakken-derived oil has gone have been a mystery.Osadetz et al.(1992)in their geochemical study in Canadian Williston Basin recognized two distinctive oil families in the uppermost Devo-nian and Madison Group reservoirs.The family B oils in the sandstone reservoirs of the middle member of the Bakken For-mation are characterized by high ratios of pristane/phytane (>1.40),C 23/C 30terpane (>0.80),rearranged sterane/regular sterane (>2.40)and sterane/hopane (>1.40),and a lack of C 35-homohopane predominance.These oils correlate well with type II marine source rocks in the Bakken Formation shale members.In contrast,the family C oils in the Madison Group reservoirs also display relatively high C 23/C 30terpane ratios,but they are distinguished from Bakken-sourced oils by consistently lower pristane/phytane ratios (<1.00)and the presence of clear n-alkane even-over-odd carbon number preference and C 35-homohopane predominance.These char-acteristics make the type II marine carbonates in the Mississip-pian Lodgepole Formation the primary candidate for their ef-fective source rocks.More recent geochemical studies (Jiang et al.,2001;Li and Jiang,2001;Jiang and Li,2002a,b)con-firmed this early finding and at the same time revealed a com-positional continuum between the two oil families.The latter was considered as a strong evidence for the mixing of petro-leum fluids and for a significant contribution from the Bakken

North Sea,Southeast Asia,North America,and Central Africa.His interest is in the study of petroleum system models and petroleum ex-ploration strategies.

ACKNOWLEDGEMENTS

We thank Mark Obermajer,Geological Survey of Canada (GSC)Calgary,for providing the U.S.well coordinates for the study.We thank AAPG editor Gretchen M.Gillis,reviewers Barry J.Katz and Prasanta K.Mukhopadhyay,and GSC internal reviewers Lloyd R.Snowdon and Mark Obermajer for their suggestions and comments that improved the quality of this article significantly.

The Elected Editor thanks the following re-viewers for their work on this paper:Barry J.Katz and Prasanta “Muki ”K.Mukhopadhyay.

830Spatial Variation of Bakken or Lodgepole Oils in the Canadian Williston Basin

Figure1.Cross section of Williston Basin showing the Phanerozoic stratigraphic succession and the stratigraphic position of the ef-fective Paleozoic petroleum source rocks(from Burrus et al.,1996a;used with permission from AAPG).The inserted stratigraphic chart in the lower-left showing the stratigraphic relationships of reservoir intervals in the Madison Group,Canadian Williston Basin(based on Podruski et al.,1988).See Figure2for the location of the cross section.

Chen et al.831

shales to the oil accumulations in Madison reser-voirs in southeast Saskatchewan.

It has been long postulated that there is a pre-ferred orientation of large fracture systems in the Williston Basin related to the original left lateral shear zones (e.g.,Fromberg fault zone and Colorado-Wyoming lineament of Gerhard et al.,1990,their figures 29–34).The productive part of southeast-ern Saskatchewan is related to the Brockton-Froid or associated fault systems that may have con-ducted petroleum into the oil field area (Gerhard et al.,1990).Lefever et al.(1991)suggested that migration has not occurred as a simple radial disper-sion from the generation area in the central basin.Instead,oil migration from generation kitchens ap-pears to follow preferential routes,which are con-trolled by tectonic and depositional elements.In an attempt to understand the geographic significance of the oil mixing indicated by geochemical signa-tures and their spatial variation,and its geological implications,we reprocessed the geochemical data set of 122oil samples in Jiang and Li ’s (2002a)study and examined the spatial characteristics of specific geochemical signatures in the oils.Because this study dealt with a large number of geochemical parameters and their spatial variations,mapping and visualizing the spatial variation of more than two variables at a time using a conventional mapping method are difficult.Therefore,principal com-ponent analysis (PCA)was employed to

reduce

Figure 2.Location map showing the main geological and geophysical elements in the Williston Basin and location of the data wells.The contour lines (thin brown)are the depth to base of Carboniferous (meters).NACPCA (pink shaded)=North American Central Plains conductivity anomaly (modified from Burrus et al.,1996b).

832

Spatial Variation of Bakken or Lodgepole Oils in the Canadian Williston Basin

the variable dimension and extract information associated directly with source rock character and oil maturity from the original data set.The analysis of the spatial variation of these geochemical signa-tures from PCA in a regional geological framework was then performed.

METHODS AND DATA

For a geochemical data set of m samples and n vari-ables,although each of the variables carries some specific information with respect to the genetic character of the source rock and source rock ma-turity,many of the variables are mutually corre-lated and contain redundant information.To study the spatial characteristics of the desired geochem-ical signatures,extracting relevant information from the data and combining all relevant informa-tion into a new variable are necessary,thus the de-sired geochemical signatures can be displayed ac-cording to their geographic locations.This can be accomplished by applying PCA.

Principal component analysis is a technique that transforms a set of original variables into a new set of mutually independent variables(Mardia et al.,1989).In general,PCA looks for a few linear combinations,which can be used to extract relevant information from a data matrix.After the transfor-mation,the first principal component(PC1),a lin-ear combination of the original data set,explains the largest amount of variance in the data set, and the second principal component(PC2),an-other linear combination of the data,describes the next largest variation remaining in the data set.As the first few principal components account for a large part of the variance in the original data, we can use these first few PCs to represent the data without losing significant information,thus reduc-ing the data dimension.Because the newly derived variables are independent of each other,each new variable contains independent information about the data.A specific principal component may then be identified to represent the relevant geochemical signature.From PCA,the projection of each sam-ple onto the axis defined by principal components is termed“score”,whereas the coefficient for each variable in the linear combination is called“load-ing”of the variable.The PC loading is commonly used to study the relationship between principal components and original variables,whereas the score is used to examine the characteristics of the samples.Principal component analysis has been widely used in geological interpretation of geo-chemical data(e.g.,Snowdon and Osadetz,1988), discrimination between source rock types(e.g., Odden and Kvalheim,2000),characterization of petroleum compositional families(e.g.,Pasadakis et al.,2004),and geochemical anomaly identifica-tion(Pereia et al.,2003).Chen et al.(2000)used PCA to integrate geological information controlling petroleum accumulation.In this study,we treated each geochemical parameter(molecular markers, compounds,and their ratios)as a random variable and use PCA as an exploratory tool for specific in-formation extraction.The sample scores(PC score) from PCA were employed to represent a summary of the extracted information for spatial data analy-sis.The mathematical details of PCA and its appli-cations to geological data analysis are available from Mardia et al.(1989)and Davis(1986).

Jiang and Li’s(2002a)data set was used in this study.The oil samples are grouped by the hosting reservoirs and geographic locations:(1)oils in the Bakken reservoirs in Canada,(2)oils in the Bakken reservoirs in the United States,(3)oil in reservoirs of the Madison Group located in Canada,and(4)oils reservoired in the Madison Group in the United States.Two super-Mississippian oil samples are also included in this study.Details of the oil samples and other associated information are listed in Table1. The well data in the Canadian part of the basin used here are from the Geological Survey of Canada (GSC)in-house well database.A detailed discussion of the PCA results based on aliphatic biomarker data was presented elsewhere(Pasadakis et al., 2004),and this article focuses on observations made from the gasoline range and aromatic hydrocarbons. GEOLOGICAL SETTING

The Williston Basin is a cratonic basin with its center in North Dakota(Kent and Christopher,1994)

Chen et al.833

Table1.Oil Sample Details?

https://www.360docs.net/doc/a86762385.html,b.No.Field Name Depth(m)Reservoir Location Easting Northing Canadian Bakken

1515Rocanville654.3Bakken02-11-16-31W1604849.1148610.9 2553Hummingbird2226Bakken05-26-02-19W2395185.117118.3 3554Roncott1823-1825Bakken09-34-05-25W2337824.148464.8 41279Daly879.5Bakken A13-21-10-29W1619881.794466.9 51355Torquay2001-2004.1Bakken7A-29-03-11W2467182.926888.6 61384Lake Alma N/A Bakken05-29-01-17W2409426.47347.9 71443Ceylon N/A Bakken10-15-06-19W2393998.353350.0 82121Rocanville N/A Bakken04-02-16-31W1604058.0146982.5 92122Rocanville N/A Bakken16-26-15-31W1605244.7144947.0 U.S.Bakken

101014Stoneview N/A Bakken NW31161N094W505102.8?80746.8 111166Temple N/A Bakken(?)NENW25159N096W N/A N/A 121391Antelope3154.5–3172Sanish sand8N/2E/2-1-152N N/A N/A 131392Antelope4205.5Sanish sand NWNE32153N094W N/A N/A 141393Bicentennial3381.45–4006.60Bakken(horizontal)NWNW26146N104W432406.8?173493.7 151394Charlson3076.04–3097.99Bakken-Three Forks SESE03153N095W508859.4?99811.7 161395Bicentennial3413.76–3874.26Bakken(Sanish sand)NWSE19145N103W435530.5?181598.1 171396Antelope3232.71–3235.45Sanish sand SENE33152N094W521223.9?117607.4 181397Pierre Creek3421.68–4367.78Bakken(horizontal)SESE07146N102W445300.9?168793.4 191398Elkhorn Ranch3249.17–4008.12Bakken(horizontal)SESE25143N102W458338.9?202553.2 201399Buckhorn3268.07–3902.05Bakken(horizontal)NENE17144N102W452040.2?189669.1 211400Bicentennial3312.57–3774.95Bakken(horizontal)NENE19144N103W440833.9?191167.7 221401Pierre Creek3345.79–3808.17Bakken(horizontal)NWSW01146N103W443711.6?167166.7 231402Squaw Gap North3303.73–4029.76Bakken(horizontal)SWSE21146N104W429221.5?171844.5 241403Elkhorn Ranch3165.65–3869.74Bakken(horizontal)SESW26143N102W456740.0?202541.7 251404Antelope3246.12–3249.17Bakken(Sanish sand)NWSE34152N094W542037.1?117493.1 Canadian Madison

30539Alida West1136–1334.2Alida06-06-06-33W1579135.649686.1 31573Handsworth1180.5–1182.5Alida09-21-10-09W2488149.394059.8 32585Handsworth1178.4Alida A9-36-10-08W2502390.797316.6 33516Nottingham1134.6Alida04-14-05-33W1585069.542765.4 34610Queensdale1198.7–1201Alida13-24-06-02W2558169.255385.5 35507Queensdale1185–1185.75Alida09-29-06-01W2560938.456199.7 36524Rosebank1086–1094Alida04-14-05-32W1594563.742765.4 37583Rosebank3516–3529Alida13-25-04-32W1596146.137473.2 38565Storthoaks3412–3422Alida-Tilston09-17-05-31W1600497.643579.6 40509Cantal South1143–1145Frobisher08-12-05-34W1578344.441544.1 41530Carnduff1255–1257Frobisher09-15-03-34W1575179.724038.9 42607Creelman1197–1207.3Frobisher11-07-10-09W2484193.490803.0 43521Elmore1211–1214Frobisher09-04-01-31W1602080.01241.4 44602Glen Ewen1334.7–1336.2Frobisher03-32-02-01W2561729.518339.6 45534Hastings1235.65–1236.57Frobisher14-27-03-34W1574388.527702.8 46541Hastings1144.5–1145.5Frobisher06-24-04-33W1587047.535030.6 47497Huntoon1349–1350.5Frobisher13-33-06-09W2486962.558642.3 834Spatial Variation of Bakken or Lodgepole Oils in the Canadian Williston Basin

Table1.Continued

https://www.360docs.net/doc/a86762385.html,b.No.Field Name Depth(m)Reservoir Location Easting Northing 48494Innes West1335.4Frobisher13-31-07-11W2464809.468412.6 49593Midale Central1395–1398Frobisher03-05-07-10W2476281.659049.4 50587Pinto1684.3–1686.2Frobisher16-14-01-05W2529291.04905.3 51502Steelman1444–1446Frobisher15-20-04-05W2524148.335844.8 52493Weyburn1350.5–1368.9Frobisher05-18-07-12W2455315.162713.2 53508Weyburn1368–1373.3Frobisher14-04-07-13W2449381.360270.7 54520Workman1207–1218Frobisher03-03-02-32W1593377.010197.6 55492Huntoon1343–1344Frobisher03-04-07-09W2487358.159049.4 56555Clairlaw1231.5Frobisher-Alida05-29-07-05W2523357.165970.0 57533Star Valley1161.5Frobisher-Alida13-11-09-06W2518610.080218.5 58510Arcola1179.5–1185Frobisher-Alida11-21-08-03W2544323.574519.1 59518Cantal South1120–1123Frobisher-Alida16-25-05-34W1578344.447243.5 60548Fletwode1160–1161Frobisher-Alida14-07-11-03W2541158.7100980.4 61531Queensdale1165–1168Frobisher-Alida11-22-06-01W2565685.554164.2 62491Willmar1230–1232.6Frobisher-Alida02-02-06-03W2547883.849279.0 63503Innes1320.75–1330.4Frobisher15-28-07-10W2478259.564341.6 681386Weyburn N/A Madison10-30-05-13W2446612.146836.4 691387Weyburn N/A Madison07-02-06-12W2462435.848871.9 701388Weyburn N/A Madison08-20-06-13W2448590.154571.3 711389Weyburn N/A Madison15-30-06-14W2437117.957013.9 721390Weyburn N/A Madison14-06-07-13W2446216.560270.7 74604Alameda1351.5–1357Midale13-09-04-03W2543927.932588.0 75490Alameda(Oxbow)1279.2–1291.7Midale13-14-03-02W2556586.824446.0 76500Benson1335.3Midale05-26-06-08W2499621.556199.7 77575Bryant1412–1413Midale07-30-05-07W2503577.446429.3 78527Florence1265.2–1276.2Midale01-23-02-34W1576762.115082.8 79506Glen Ewen1282.6–1289Midale05-21-03-01W2562916.325260.2 80498Huntoon(Wellore)1345–1350Midale07-32-06-09W2486171.457828.1 81574Lougheed1382–1387Midale12-30-05-14W2436326.746836.4 82586Macoun1522.8–1526.1Midale04-26-07-31W1604058.065562.9 83562Macoun West1562–1564Midale05-18-04-09W2484589.033402.2 841465Midale Central N/A Midale05-02-06-11W2471138.849686.1 851466Midale Central N/A Midale15-02-06-11W2471930.050500.3 861468Midale Central N/A Midale05-10-06-10W2479050.751314.5 871470Midale Central N/A Midale01-23-06-10W2481819.854164.2 881472Midale Central N/A Midale15-31-06-10W2475094.858642.3 89582Minard1337–1339Midale01-16-06-07W2507137.852535.8 90578Pinto1606–1608.1Midale02-02-02-05W2528895.410197.6 91514Ralph1306.7–1314.3Midale01-32-07-13W2448590.167191.3 92499Steelman1394.1Midale13-27-04-05W2526521.837473.2 93563Tagawa1429.5–1432.5Midale A13-24-06-16W2425250.155385.5 94501Weyburn1367–1388Midale09-08-07-12W2458084.361491.9 951464Weyburn N/A Midale14-31-05-12W2455710.748871.9 961467Weyburn N/A Midale14-08-06-12W2457293.152128.7 971469Weyburn N/A Midale10-10-06-13W2451359.251721.6 981471Weyburn N/A Midale12-26-06-14W2442656.256606.8 991473Weyburn N/A Midale12-33-06-13W2448985.758235.2

Chen et al.835

(Figure2).Two major sedimentary successions constitute the major fill of the basin.The Paleo-zoic succession is mostly carbonate and evaporite, whereas the Mesozoic and Cenozoic succession is mostly siliciclastic(Gerhard et al.,1990)(Figure1). The Mississippian in the Canadian Williston Basin consists of the Lodgepole,Mission Canyon,Charles, and Kibbey formations and the uppermost part of the Bakken Formation.The stratigraphic relation-ships of the Madison Group in Canadian Williston Basin are shown in Figure1.The Madison Group directly underlies the middle Jurassic unconformity

Table1.Continued

https://www.360docs.net/doc/a86762385.html,b.No.Field Name Depth(m)Reservoir Location Easting Northing 100528Workman1177–1181Midale15-18-07-31W1598519.763527.4 101535Weyburn1451–1458Midale-Frobisher B12-28-05-13W2448985.746836.4 103711Waskada921Mission Canyon16-13-01-26W1654298.24905.3 104714Waskada928–932Mission Canyon05-03-02-26W1649946.710604.7 105577Flat Lake1975Ratcliffe06-05-01-16W2419316.2834.3 106558Hoffer1940Ratcliffe05-30-01-15W2426832.56940.8 107568Hoffer1943–1946Ratcliffe09-27-01-15W2432766.47755.0 108556Hummingbird1890Ratcliffe11-26-02-19W2395580.717525.4 109559Lake Alma1984Ratcliffe04-29-01-17W2409426.46940.8 110557Neptune1752Ratcliffe04-06-04-16W2417338.329738.3 111540Oungre1823.3Ratcliffe03-29-02-14W2438304.716711.2 112584Edenvale1130–1132.3Tilston10-12-06-33W1587443.151721.6 113532Hazelwood1135–1140Tilston16-22-11-04W2537202.8104237.2 114529Moose Mountain1198–1200Tilston08-09-10-2W2554608.990395.9 115495South Parkman1090.8Tilston-Souris Valley16-09-08-33W1583091.571669.4 116526Parkman1030.5–1038.5Tilston-Souris Valley01-15-09-33W1584673.981846.8 117543Parkman1149.9–1151.5Tilston-Souris Valley10-12-10-02W2558960.490803.0 118596Moose Valley1183.5Tilston12-14-12-06W2518610.0111972.1 119511Kenosee1196.5Tilston12-26-10-03W2547092.695688.2 120721Daly725.7Lodgepole A10-13-10-28W1634914.292431.4 121722Virden620.3Lodgepole B09-26-10-26W1652715.895688.2 122725Virden607.5Lodgepole A04-27-11-26W1649946.7104644.3 U.S.Madison

641010Beaverlodge N/A Madison NW31-156N-095W504020.3?78865.4 671015Stoneview N/A Madison NW11-160N-095W506048.7?33678.9 661016Kuroki N/A Madison NW12-163N-081W638196.2?2862.5 651020Gleenburn N/A Madison NE36-159N-082W632808.2?48225.3 391442N/A N/A Charles SE32-30N-50E333452.1?74349.9 1021705Provost N/A Mission Canyon NWNW2323N56E426830.8?112357.5 731715N/A Madison T152N-R14W N/A N/A 281873State74N/A Lodgepole N/A N/A N/A 291874A-83N/A Lodgepole N/A N/A N/A Canadian Super-Mississippian

26512Red Jacket664.5Jurassic10-04-14-32W1591399.0128256.0 27523Wapella668.43–672.08Wapella sand13-34-14-01W2564498.7136805.1?Comp.=computation index number;Lab.No.=Lab sample number.

836Spatial Variation of Bakken or Lodgepole Oils in the Canadian Williston Basin

and overlies the Bakken Formation.The Bakken Formation,consisting of three members,the lower and upper black shale members and the middle sandstone-siltstone member,unconformably over-lies the Upper Devonian Big Valley or Torquay Formation.The upper and lower members are transgressive sequences,and the middle member is deposited in a low-stand setting(Smith and Bustin, 2000).

Two salt intervals,one in the Mississippian Charles Formation and another in the Middle Devo-nian Prairie Formation,are particularly important for the Mississippian petroleum systems(Figure1). The Prairie salt has threefold importance.First,the salt forms an effective regional migration barrier against any vertical migration from underlying source rocks into Mississippian reservoirs.Second, dissolution of halite has formed numerous struc-tures that comprise petroleum traps(e.g.,Hum-mingbird field in Saskatchewan).Third,most salt dissolution is controlled by an underlying struc-ture,specifically by faults that cut the Precambrian basement(Gerhard et al.,1990).Salt dissolution in the Prairie Formation caused collapse in the overlying Mississippian strata and generated frac-ture networks promoting cross-formational oil mi-gration.The Charles salt forms the top seal pre-venting oil from migrating from the Mississippian system into the overlying rocks.

Several potential source rocks in the Williston Basin exist(Osadetz and Snowdon,1995)but only the uppermost Devonian–lower Mississip-pian Bakken Formation and the overlying lower Mississippian Lodgepole Formation are significant contributors to oils accumulated in the Bakken and Madison Group reservoirs.Other potential oil source rocks in the Middle and Lower Devo-nian succession are unlikely to be the source rocks because the widespread salt in the Prairie Formation prevents oil generated by those source rocks from accumulating in the overlying reser-voirs(Osadetz and Snowdon,1995;Burrus et al., 1996a;Jiang and Li,2002a).The upper and lower black shales of the Bakken Formation are the rich-est and most widespread source rocks in the basin (Dow,1974;Dembicki and Pirkle,1985;Osadetz and Snowdon,1995).Organic carbon content and shale thickness are greatest near the Bakken depo-center east of the Nesson anticline(maximum Bak-ken shale thickness,20m[66ft],Dembicki and Pirkle,1985,their figure3).In the Canadian Will-iston Basin,the total organic carbon(TOC)con-tent of the Bakken shales can be more than30%. The average TOC value for the lower shale is 11.77%and17.63%for the upper shale.The aver-age Lodgepole TOC value is5.49%(Osadetz and Snowdon,1995).However,in the Canadian Will-iston Basin,because of shallow burial depth,neither the Bakken black shales nor the organic-rich Lodge-pole carbonate is sufficiently thermally mature to be responsible for a large volume of oil generation (Osadetz and Snowdon,1995).The oils in the Mississippian reservoirs of the Canadian Williston Basin have migrated from major oil-generation centers in the south of the basin.

The reservoir rocks in the Madison Group are shelf carbonates,and the seal is provided either by overlying evaporites or the Mesozoic erosional surface(Kent,1984;Podruski et al.,1988,their figure54).The salt in the Charles Formation forms a natural barrier for oil migrating through the Mis-sissippian system.Vertical migration through frac-ture systems was stopped by Charles salts(Kent, 1984).Most oil pools in the Madison Group of southeastern Saskatchewan occur in unconformity-related traps.The sub-Mesozoic erosional surface combined with the primary facies changes provides the traps(Kent,1984;Podruski et al.,1988).Other trap types include stratigraphic and structural traps. The common types of structural trap are basement folds,salt dissolution,and impact-related struc-tures(Kent and Christopher,1994).

A crustal geophysical anomaly lying along longitude103°W is present,which is coincident with the North American Central Plains conduc-tivity anomaly(NACPCA)(Figure2).The ther-mal maturity of source rocks may be strongly af-fected by elevated heat flows associated with this feature(Osadetz and Snowdon,1995).Enhanced maturation resulted in oil windows occurring at much shallower depths(Osadetz and Snowdon, 1995;Jarvie,2001).As shown by the data from Sta-siuk(1994),the measured vitrinite reflectance (R o)values of the Bakken Formation shales in the

Chen et al.837

Canadian Williston Basin range from0.34to 0.68%.When the vitrinite log%R o is plotted against the burial depth for the Bakken Formation, data from samples with depth greater than1400m (4593ft)(or>0.50%R o)form several different clusters,with each data subset indicating a differ-ent maturation gradient.Although the Bakken Formation shales at the vicinity of the Nesson trend reach0.7%R o at the current burial depth of about2000m(6562ft),200–400m(656–1312 ft)of additional burial is needed for stratigraphic equivalent shales to reach the same maturity level at structural locations to the west,north,and east of the Nesson trend(Li et al.,1998).Several fault or fracture systems and trends in this region are observed,which are believed to be related to base-ment tectonic elements(Gerhard et al.,1990). RESULTS AND DISCUSSION

The results of geochemical analysis in Table2form a data matrix for PCA in this study.This data matrix has46parameters and122oil samples. The PC1,accounting for37%of the total variance (inset of Figure3),is the largest variance ex-plained by a single new variable in the data matrix and contains information useful for distinguishing the Bakken and Lodgepole oils.The PC2accounts for21%of the total variance and is the second largest variance explained in the data matrix.As we dis-cussed in the previous sections,the PCs are mu-tually independent and linear combinations of the original geochemical attributes.The PC loadings indicate the relative contributions of the original geochemical attributes to the new PC variables. To reveal the genetic relationship between the new variables and the original geochemical attri-butes,Figure4a and b are bar plots of PC1and PC2loadings,respectively,showing the relative contributions of the original46geochemical attri-butes to PC1and PC2scores.The larger the abso-lute loading(the longer the bar in Figure4),the greater the contribution to the new linear combi-nation.The bars around the zero axes contribute little to the new variables.For example,the attri-butes coded4,9,38,39,40,41,44,45,and46(see Table2for the corresponding geochemical at-tributes)are good indicators for Bakken oils and1, 2,3,5,6,7,11,13,19,20,21,31,and42are good indicators for Lodgepole oils,which dominate the new variable PC1.

Source Type Indicator

A PC score plot shows the characteristics of obser-vations in terms of the linear combination of the original attributes.On a bar plot of PC1score (Figure3),the first25oils are from Bakken reser-voirs(9in the Canadian and16in the United States parts of the Williston Basin).For the next four oil samples,either the Bakken Formation made a ma-jor contribution(Red Jacket and Wapella fields in Canada,Lab.512and523in Table1)or the Bak-ken is clearly the source rock(Lodgepole Mound [Lodgepole M.]oils from State74and A-83, Lab.1873and1874in the United States,Table1). All these29oils have PC1scores smaller than?2, although the PC1scores span a wide range.The re-maining samples are from Madison reservoirs.Al-though a variable PC1score,most of the Madison-reservoired oils have PC1scores greater than?2. Within an oil family,the variation in the PC1 scores could reflect the compositional changes caused by oil maturity,migration,and even facies difference.Early studies confirmed the existence of both Bakken oil and Lodgepole oil families with distinctive geochemical characteristics and found a compositional continuum between these two oil families(Jiang and Li,2002a).The first29oils have clear geochemical characteristics of Bakken-derived oils and belong to the Bakken oil family (see PC1loading of Figure4;Table2for the cor-responding geochemical features).Jiang and Li’s (2002a)study indicated that typical Lodgepole oils have a low value of the ratio of C18trimethyl-arylisoprenoids to C18alkylbenzene(C18:TMAI/ AB<1.0)and a relatively high ratio of dibenzo-thiophene to tetramethylnaphthalenes(DBT/ TeMN>1.0).The Madison-reservoired oils exhib-it a compositional continuum between the Bakken-and Lodgepole-derived end-member oils.How-ever,the classification using PC1alone results in two oil families without distinguishing the mixed

838Spatial Variation of Bakken or Lodgepole Oils in the Canadian Williston Basin

Table2.List of Geochemical Attributes used for this Study

Variable Parameter Explanation

1DPM/MBPs Ratio of diphenylmethane to the sum of methylbiphenyls

2BCH/AB Ratio of benzylcyclohexane to alkylbenzene

3BCH/MBPs Ratio of benzylcyclohexane to methylbiphenyls

4C18:TMAI/AB Ratio of C18trimethylarylisoprenoids to C18alkylbenzene

5DBT/TeMNs Ratio of dibenzothiophene to tetramethylnaphthalenes

6DBT/Ph Ratio of dibenzothiophene to phenanthrene

7AB(%)%of C18(alkylbenzene)

8MAB(%)%of C18(methylalkylbenzene)

9TMAI(%)%of C18(trimethylarylisoprenoids)

10Bhop/Ph Ratio of benzohopanes to phenanthrene

11DBT ppm of dibenzothiophene in oil

12TeMNs ppm of tetramethylnaphthalenes in oil

13DPM ppm of diphenylmethane in oil

14MBPs ppm of methylbiphenyls in oil

15C18_TMAI ppm of C18trimethylarylisoprenoids in oil

16C18_AB ppm of C18alkylbenzene in oil

17Bhops ppm of benzohopanes in oil

18TAS ppm of triaromatic steroids in oil

194_MDBT ppm of4-methyldibenzothiophenes in oil

20(3pls2)_MDBT ppm of(3-+2-)methyldibenzothiophenes in oil

211_MDBT ppm of1-methyldibenzothiophenes in oil

22Phenanthrene ppm of phenanthrene in oil

233_MP ppm of3-methylphenanthrene in oil

242_MP ppm of2-methylphenanthrene in oil

259_MP ppm of3-,2-,9-,and1-methylphenanthrene in oil

261_MP ppm of1-methylphenanthrene in oil

27TASC26(S)ppm of C26(S)triaromatic steroids in oil

28TASC28(S)ppm of C28(S)triaromatic steroids in oil

29TAS(C20plsC21)ppm of C20+C21triaromatic steroids in oil

30TAS(C26plsC27plsC28)ppm of(C26+C27+C28)triaromatic steroids in oil

31nc7%of C7n-alkane

32Bc7%of C7branched alkanes

33n_Hexane/Methylcyclopentane Ratio of n-hexane to methylcyclopentane

34n_Heptane/Methylcyclohexane Ratio of n-heptane to methylcyclohexane

35K1Mango’s K1parameter

36%(3_MHpls2,4_DMP)%of(3-methylhexane+2,4-dimethylpentane)

37%(2_MHpls2,3_DMP)%of(2-methylhexane+2,3-dimethylpentane)

381t2c3TMCYC5/MCYC6Ratio of1-trans-2-cis-3-trimethylcyclopentane over methylcyclohexane

391t2DMCYC5/CYC6Ratio of1-trans-2-dimethylpentane over cyclohexane

401t3DMCYC5/CYC6Ratio of1-trans-3-diemthylcyclopentane over cyclohexane

411c3DMCYC5/CYC61-cis-3-dimethylcyclopentane over cyclohexane

42TolueneplsMCYC6%toluene plus methylcyclohexane in the sum of C7alkanes

43n_Heptane%of C7n-alkane in the sum of C7alkanes

44C7(branchedplscyclo)%of iso-and branched C7alkanes in the sum of C7alkanes

451367-TeMN/TeMNs Ratio of1,3,6,7-tetramethylnaphthalene to the sum of tetramethylnaphthalenes 464-MDBT/(1-MDBTplus4-MDBT)methyldibenzothiophene ratio4-/(4-+1-)

Chen et al.839

oils because the PC1score varies with oil thermal maturity.

Figure 5is a crossplot of PC1and PC2scores,on which oils in the study area can be divided into three clusters.In cluster A,the oils are the Bakken sourced and reservoired.The oils in cluster C show C18:TMAI/AB <1.0and DBT/TeMN >1.0,typi-cal characteristics of the Lodgepole oil family.The Bakken oils appear to follow a linear trend (A),in which oils located near the oil kitchen are in the lower right of the cluster.The oils in Canada are in the upper left of the trend.The Lodgepole-derived oils also follow a linear trend (cluster C),in which locally derived low-maturity oils are located in the upper right (marked C I )and the remainder are oils migrated from the south with higher thermal ma-turity.The mixed Bakken-and Lodgepole-derived

oils (in cluster B)are in between clusters A and C.The oils from Red Jacket,Wapella,Hummingbird,and Ceylon fields are Bakken mixed with Lodge-pole oils from geochemical analysis (Jiang and Li,2002a)and are in a subcluster B I .Maturity Indicator

In general,the Bakken oils in the U.S.Williston Ba-sin (computation 10to 27)show high thermal ma-turity.In a geochemical study conducted by Price and Lefever (1994),15U.S.Bakken oils were ana-lyzed for maturity using the Rock-Eval hydrogen index of the associated shale as maturity index (Price and Lefever,1994,their table 3).The re-sults suggested that the Bakken-reservoired oils around the Antelope field on the

southeastern

Figure 3.Bar diagram for the first principal component (PC1)scores derived from parameters in Table 2.The first 29samples are oils from the Bakken source rock.The others are Lodgepole oils or oils primarily from the Lodgepole source rock.The diagram (lower right)within the figure shows the variances of the data explained by each principal component.See the sample index number in Table 1.

840

Spatial Variation of Bakken or Lodgepole Oils in the Canadian Williston Basin

Figure4.Bar plots of

the first principal compo-nent(PC1)loading(a) and the second principal component(PC2)loading (b),showing the relative contributions of original geochemical attributes to the PC loading(linear combination of original geochemical attributes). See Table2for the attri-bute index number. Chen et al.841

flank of the Nesson anticline (Figure 2)have the highest maturity,whereas oils in the Squaw Gap and Bicentennial fields (Figure 2)have the lowest maturity in the United States part,which is consis-tent with our PC2scores.A large negative PC2score indicates high maturation,and a large positive score suggests low maturation.Samples from Ante-pole field (12,13,17,and 25in Figure 5)with low-est PC2scores suggest the highest maturation level,and samples from Squaw Gap and Bicentennial fields (23and 16in Figure 5)with moderate PC2scores indicate moderate maturity in this basin but the lowest in the United States part.In the Cana-dian part,samples from Rocanvile field (1,8,and 9

in Figure 5)have the highest PC2scores,indicating the lowest maturity in the Williston Basin.

The study using the ratio of 1,3,6,7-tetramethyl-naphthalene to the sum of tetramethylnaphtha-lenes (1,3,6,7-TeMN/TeMNs)and the methyldi-benzothiophene ratio 4-/(4-+1-)(4-MDBT/(1-+4-MDBT))as thermal maturity indicators (Jiang and Li,2002a)confirms Price and Lefever ’s conclu-sion and at the same time suggests that the maturity level of Bakken oils in the Canadian part of the basin is generally low.The highest oil maturity was found in the Torquay field with maturity level equivalent to the oils from the Bicentennial field.The oils with the lowest thermal maturity are found in the

Red

Figure 5.Crossplot of the first (PC1)versus the second principal component (PC2)scores showing the Bakken-reservoired oils (squares),known Lodgepole oils (C18:TMAI/AB <1.0and DBT/TeMN >1.0)(triangles),and undetermined oils (dots).The high-maturity oils in the United States are in the lower right of cluster A;low-maturity oils in the Canadian side are in the upper left of cluster A.The Bakken oils mixed with Lodgepole contribution are in subcluster B I .Cluster C is interpreted as the distribution range of Lodgepole-derived oils;cluster B:distribution range of the mixed Bakken and Lodgepole oils and C I distribution range of low-maturity Lodgepole oils.The sample index number is in Table 1.The boundaries of clusters are defined by three equations beside the boundaries.

842

Spatial Variation of Bakken or Lodgepole Oils in the Canadian Williston Basin

Jacket and Rocanville fields (Figure 2)in the north-east of the study area.

As comparing the relative thermal maturity ranks of the Bakken oils derived from geochemical analysis to the principal component scores,we found that the PC2score indicates a similar rank-ing order.We,therefore,infer that the PC2score contains information on oil thermal maturity and can be used to indicate relative oil maturity.A comparison of the PC2score and 1,3,6,7-TeMN/TeMNs is illustrated in Figure 6.Based on these thermal maturity indicators,the oils in the Madison Group show a great variation in maturity,with the highest values being comparable to those with the highest maturity of the Canadian Bakken oils.The Madison oils with the highest maturity are lo-cated in the southeastern part of Saskatchewan along the border of the United States and show a

general decreasing trend in maturity from the center to the basin margin.

Spatial Characteristics of the Geochemical Signatures

To study the spatial characteristics of specific geo-chemical signatures in the oils,the PC1and PC2are employed to represent the geochemical signa-tures of oils in relation to the source rocks.Figure 7illustrates the spatial characteristics of the PC1score.From this map,several interesting features can be observed.First,the discovered Bakken and Madison oils show certain spatial alignments,which are coincident or associated with regional tectonic lineaments (Figure 7).Second,the oils in the south-east corner of the Canadian Williston Basin (cluster ML in Figure 7)are oils in cluster C in Figure 5

,

Figure 6.Crossplot of the second principal component (PC2)scores and 1367TeMN/TeMNs (ratio of 1,3,6,7-tetramethylpaphthalene to the sum of tetramethylnaphthalenes)of oils listed in Table 1.See the text for discussions.Oil thermal maturity increases with an increase in 1367TeMN/TeMNs and a decrease in PC2.

Chen et al.

843

Figure7.Spatial variation of oil mixing based on source type indicator PC1.Bakken-reservoired oils are labeled B;and L,J,and W indicate oils in Lodgepole,Jurassic,and Cretaceous reservoirs.The circles without labels represent oils in Madison reservoirs.On the map,the Bakken-derived oils are represented by open circles,and the Lodgepole-sourced oils are indicated by solid black circles.The solid gray circles represent oils with mixed sources,and the relative contributions from the Bakken and Lodgepole are indicated by their gray level,which are calculated by the three linear equations in Figure5.The circle size represents the relative contributions from the Bakken and Lodgepole sources.The larger the circle,the higher the oil thermal maturity.Oil in the Bakken reservoir(B A=Antepole;B C= Charles;B S=Squaw Gap North;B P=Pierre Creek;B B1=Buckhorn;B B2=Bicentennial;B E=Elkhorn Ranch;B LA=Lake Alma;B D=Daly;

B R=Roncott;B H=Hummingbird;B C2=Ceylon;B RV=Rocanville;B T=Torqunay);oil in the Lodgepole reservoir(L D=Daly;L V=Virden); oil in the Jurassic reservoir(J=Red Jacket field);oil in the Cretaceous reservoir(W=Wappela field);unlabeled are oils in Madison Group.TRT=the Torqunay-Rocanville trend(Lefever et al.,1991);BFL=Brockton-Froid lineament;MFS=Mondak Fracture System (Gerhard et al.,1990);ML=Lodgepole oil family in the Madison Group.The coordinates on this map are based on a UTM project with a central meridian of103°W,a base latitude of49°N,NAD83.

844Spatial Variation of Bakken or Lodgepole Oils in the Canadian Williston Basin

reservoired in the Madison Group with geochem-ical characteristics similar to the Lodgepole oil fam-ily.This suggests that these oils have a similar source,primarily from the Lodgepole.Third,the oils in the Torquay-Rocanville trend (Lefever et al.,1991)have variable gray level,indicative of the mixing of Bakken and Lodgepole sourced oils.A lighter gray level indicates a higher contribution from Bakken source rocks.Fourth,oils with PC1score values significantly greater than that of the end-member Lodgepole oil in the central-eastern part of the Torquay-Rocanville trend are

observed.

Figure 8.Spatial variation of oil maturity based on maturity-specific indicator PC2.B:oil in the Bakken reservoir,L:oil in the Lodgepole reservoir,J:oil in the Jurassic reservoir (Red Jacket field),W:oil in the Wapella reservoir (Wapella field);unlabeled are oils in Madison Group.Bakken oils in the oil generation center have the highest maturity.Madison oils with local Lodgepole source contribution show the lowest maturity.The smaller and darker the circle is,the less mature the oil is.The coordinates are in UTM projection.B A =Antepole;B C =Charles;B P =Pierre Creek;B B1=Buckhorn;B B2=Bicentennial;B E =Elkhorn Ranch;B LA =Lake Alma;B D =Daly;B R =Roncott;B H =Hummingbird;B C2=Ceylon;B RV =Rocanville;B T =Torqunay;L D =Daly;L V =Virden.

Chen et al.

845

The PC2score indicates that the maturity level of these oils is the lowest among the samples (Figure 8).A detailed study in the Weyburn and Midale central fields revealed that these oils are generally sulfur rich,with low API gravities (Figures 9,10),geo-chemical characteristics of Lodgepole-sourced oils (Jiang and Li,2002b).As the locations of these oils coincide with the North American Central Plains conductivity anomaly (Majorowicz et al.,1986),these oils may represent oils that were generated from local Lodgepole source rocks with relatively short lateral migration distances.Finally,oil mixing appears to be structurally,instead of stratigraph-ically,controlled.Figure 11shows the locations of oil production wells in relation to their hosting reservoirs.The Mississippian strata have a general strike of northwest –southeast,but oil mixing ap-pears to be in the northeast –southwest Torquay-Rocanville trend (Figure 7),suggesting that oil mixing occurs where faults and fractures connect the Bakken and Lodgepole source rocks.

The spatial characteristics of oil maturity are represented by the PC2.The Bakken oils show a high maturity,particularly in Antepole and Charl-son fields (Lab.1404,1396,1394)around the Nesson anticline near the Bakken generation

center

Figure 9.Diagram showing the oil gravity (API)in the Weyburn and Midale central fields,Saskatchewan,Canada.The radius of the circle is proportional to API gravity.The larger the circle is,the lighter the oil is.The map location is in Figure 8.The coordinates are in UTM projection.

846

Spatial Variation of Bakken or Lodgepole Oils in the Canadian Williston Basin

(Figure 12).The Bakken oils on the Canadian side of the basin have moderate to low maturity.In con-trast,the Lodgepole oils have a variable maturity.Outside of the Torquay-Rocanville trend,Madison oils have a moderate maturity,decreasing system-atically to the north.In the Torquay-Rocanville trend,most Madison Group oils show a low ther-mal maturity.

Implication to Regional Oil Migration The geochemical characteristics of Madison-reservoired oils show a strong geographic depen-dency in the Canadian part of the Williston Basin.The oils within the Torquay-Rocanville trend have variable,source-specific signatures and low thermal maturities.The compositional continuum of these oils in between the Bakken and Lodgepole end members suggests mixing from both sources.In contrast,the Madison-reservoired oils outside of the trend (ML in Figure7)have source-specific geochemical signatures similar to the Lodgepole-derived oil,suggesting that the Lodgepole Forma-tion is the principal source rock in that region.

The occurrence of mixed oils in Madison res-ervoirs requires that the Bakken-derived oil mi-grates across the Lodgepole Formation.The fact that oil mixing appears to be primarily

restricted

Figure 10.Diagram showing the relative abundance of sulfur content in oils from the Weyburn and Midale central fields,Saskatch-ewan,Canada.The radius of the circle is proportional to the sulfur content.The larger the circle,the more sulfur content in the oil.The map location is in Figure 8.The coordinates are in UTM projection.

Chen et al.

847

to the Torquay-Rocanville trend indicates that cross-formational oil migration is geographically re-stricted and that regional oil migration may follow preferential routes.We postulated that cross-formational oil migration occurs because of the pre-sence of tectonically controlled fracture or fault systems in the Torquay-Rocanville trend in the Ca-nadian part of the basin.

Natural fractures are observed in the Weyburn oil field (Wegelin,1987).Fractures caused by Prairie salt solution were reported in the Humming-bird field and other locations (Gerhard et al.,1990).A northeast –southwest production trend in the Weyburn field suggests a preferential northeast –southwest fluid-flow orientation (Wegelin,1987),parallel to that of the Torquay-Rocanville trend.This suggests that natural fractures with a domi-nant northeast –southwest orientation are present in the Torquay-Rocanville trend.Presumably,this fracture system represents an old zone of basement weakness and reactivation during subsequent tec-tonic events.Vertical migration through the frac-ture systems was retarded by Charles salts.On reaching continuous porosity zones below the Charles evaporates,mixed-source oil migrated up-dip until trapped by porosity pinch-outs within the Madison reservoirs or at the Madison-Jurassic un-conformity.Bakken and Lodgepole oils in super-Madison reservoirs are present only beyond the depositional edge of the Charles salts (e.g.,Red Jacket and Wapella fields,Lab.512and 523,Table 1).A small group of oils (seven samples in cluster C I ,Figures 5,7)in the Torquay-Rocanville trend shows abnormal geochemical composition (high sulfur content and high PC1scores)and both very low thermal maturity and API gravity.The occurrence of these oils is geographically co-incident with the NACPCA.We infer that a less mature Lodgepole source rock may exist in west-ern parts of the Williston Basin with a connection to the Torquay-Rocanville trend.Although other Devonian source rocks (e.g.,in the Winnipegosis Formation)are also oil prone and thermally ma-ture,no geochemical evidence indicates that such source rocks have contributed significantly to the discovered Madison Group oils.

Clearly,the general geographic distribution of compositional characteristics of oil field areas ap-pears to indicate different migration routes.Early geochemical studies (Dembicki and Pirkle,

1985,

Figure 11.Map illustrating the locations of the Canadian oil wells in Table 1and their associated production formation or beds.B =Bakken Formation;L =Lodgepole Formation and Souris beds;T =Tilston beds;F =Frobisher and Alida beds;M =Midale beds;and R =Ratcliffe beds.The solid lines represent the formation-bed boundaries under super Carboniferous unconformity.The coordinates are in UTM projection.See Figure 2for the location of the map.

848

Spatial Variation of Bakken or Lodgepole Oils in the Canadian Williston Basin

五线谱入门基础教程

五线谱入门基础教程 五线谱是记录音乐的一种语言,是一种记谱方法。五线谱,顾名思义是由五条平行线组成 的,当然还包括每相邻两条平行线之间的“间”。五条线的顺序是由下往上数的。最下面第一 条线叫做“第一线”,往上数第二条线叫“第二线”,再往上数是“第三线”、“第四线”, 最上面一条线是“第五线”。“间”也是自下往上数的。最下面的一间叫做“第一间”。往上 数是第二间、第三间、第四间。 方法/步骤 1. 如果五线四间不够用,还可以添加平行线,如“上加一间”、“上加一线”、“上加二间”、 “上加二线”、“下加一间”、“下加一线”、“下加二间”、“下加二线”等等。 2. 在钢琴上,为便于称呼,把每12个键(包括黑白两种键)分成一组,如大字组(倍低音

组)、小字组(低音组)、小字一组(中音组)、小字二组(高音组)等等。每组的白键从左 到右依次用C、D、E、F、G、A、B七个字母表示,不过有的大写,有的小写,有的还有上标 或下标(详见下图),方便称呼不同的键。在钢琴上,琴键发出的声音从左到右是由低到高 的,即相邻的两个键(无论黑白)发出的声音总是左低右高,右比左高半音。五线谱与钢琴 有着密不可分的关系(见下图)。五线谱上的“线”和“间”表示的音高与钢琴的白键是一 一对应的,即五线谱上所标音符的音高,只要弹一下对应的琴键就听到了。 那么,钢琴上的黑键与五线谱上的什么对应呢?是与五线谱上标记了升(或降)音记号的线 或间对应。例如,小字一组左起第一个黑键对应于标记了升音记号#的下加一线(升高半音), 或对应于标记了降音记号b的下加一间(降低半音),也就是说,五线谱上标记了升(或降) 音记号的线或间表示的音高等于用黑键弹出来的声音。用类似的方法同样可知其余黑键弹出的 声音分别等于五线谱上标记了升(或降)音记号的线或间所表示的音高。 3. 五线谱是由音符、谱号、谱表三个主要的部分组成的。 谱表

五分钟教你学会五线谱

五分钟教你学会五线谱 一、以下图示五条线,就是五线谱.分一、二、三、四、五条线 二、五条线中间的空白处为间,共有四间 三、放在五线谱开头分别为高音谱号和低音谱号。 四、五线谱、简谱音阶对照示意图 五、简谱唱法与五线谱的音名唱法对照表 六、简谱与钢琴(电子琴)键盘位置对照图 七、你先在下面钢琴上试一下 八、你现在可以享受学会五线谱的喜悦了,练好下面的乐曲,你就学会了弹钢琴了。 用鼠标先点键盘,再按下问号键,就会出现钢琴上的黑白键提示。 O(∩_∩)O哈哈~~感觉如何?记得下次来弹琴可不要忘了带朋友一起来享受啊 附:乐谱 《月亮代表我的心》:LOQSONQS STUVTS QPOOO QPOOO PQPOMPQP LOQSONQS STUVTSQPOOO QPOOO PQPMNOPO QSQPOSN MNMNMLQ SQPOSN MNOOOPQP LOQSONQSSTUVTS QPOOO QPOOO PQPMNOPO 《心语心愿》:TVUTSTQ TSTVUVUTUV VWXXXXW VUTUS TVUTST QSTXWVUV VUTTTTSSTQ SSTXWVUVV VUTTSUT

《童话》:LONOL LONOL LONO OOMMLLONOL LQPPO LONOM MMOTS PPRRQQ QQNPOONOONOR LSRQPPPRRQQ QQVUTUV VPOT TTSSSLSRQQRQ QRQ RQPOOQST TTSPPRQOQST TTSPPRQRQPO PQMMOONO 《安静》:QQQQPONPPPO LQPOOOLQPOOPQQQQPONPPPO LQPOOOLQPOOPPQRRRRRQPOOOPPLSSSRQPPPQQMRQRQPOONOL QRQRQPOPSLQRSRQSLQRSRQSLQRSRQOPPPQOSSOONOOSSOONOO RRQQPPORRQQPPOLQRSRQSLQRSRQSLQRSRQOPPPQOSSOONOOSSOONOO RRQQPPOORQPOMOO 《好好恋爱》:JKLLLLLKJIIL NNONOOOPQNNLHMMMJMOLLLLJHKKKJKLMMMOMLJKJJKLLLLJIHHO NMLMLJHHMMLLLKJ OOOONOPPLRQLLRPLRQRQRQPO ONMMQMQMLLQLQLRQRQOP LRQLLRSPLRQQQRQPQONMMQMQMLLQLQPOMOPNMNMNQPOO 《痴心绝对》:OPQQQRQPPOPPSP ONOOOQQOOMNNQNMLMMMRRQSO MLMMMRROOMPOOPQQQRQPPOPPSP ONOOOQQOOMNNQNMLMMRRQSOMLMMMRROOONO 《会呼吸的痛》:STVTXXTW WWVUVWXWSV VUTUVRRRVVWVSSS SYXWXX STVTXXTWWWVUVWXWSVV VUTUVRRRVVWVSSS STUVVUVV 《欢乐颂》:J J K L L K J I H H I J J I IJ J K L L K J I H H I J I H H II J H I J K J H I J K J I H I E J J K L L K J I H H I J I H H 《小星星》OOSSTTS RRQQPPO SSRRQQP SSRRQQPOOSSTTS RRQQPPO 《千千阙歌》:HHIJ LMONNNLJ IIIJK MOQPPNLHHIJ LMONNNLJ IIIJKMOQPPNLMLMLMNNMN PPPPNOPQQQPPPOQ NLMLMOPQQPQ QPOP OMM LMOP QQPQQSTSQQQQPPOPOM QQRQPOP QQ Q PPOP OMOO 《婚礼进行曲》:HKKK HLJK HKNNMLKJKL HKKK HLJK HKMOMKILMKNMLII JKLL NMLIIJKLL HKKK HLJK HKMOMKILMKILMKK 《樱花》MMN- MMN- (-延长音的意思) MNON MNMK- ( 下划线是连音的意思)J HJ K JJHG- MMN-MMN-JKNMK J--- 想唱就唱onopol jkkklj onopol lmmmon onopqolj opolj onopqolo rqpoq qrstoopqp pqrs srqpq qrstss uuvuspq rqrs qrst oopqp pqs quuqv vuvtsootsrqrs ts qrst oopqp pqrs srqpq qrstss uuvuspq rqrs qrst oopqp pqsquuqv vuvtsoo tsrqrs 梦里qqqqqqpo lmoooomq qqqqstsqp lpppppsq qqrs oopq llmoqpsq qqrsoopq llmoqpoo opqrsssrqrss ssssvtsq qqpo opm moppppqp opqrsssrqrssssssvtsq qqpo opm mopqqqqpom

五分钟教你认识简谱和五线谱

和语言一样,不同民族都有过自己创立并传承下来的记录音乐的方式---记谱法。各民族的记谱方式各有千秋,但是目前被更广泛使用的是五线谱和简谱(据说简谱是由法国思想家卢梭于1742年发明的)。 简谱应该说是一种比较简单易学的音乐记谱法。它的最大好处是仅用7个阿拉伯数字 ----1234567,就能将万千变化的音乐曲子记录并表示出来,并能使人很快记住而终身不忘;同时涉及其他的音乐元素也基本可以正确显示。简谱虽然不是出现在中国,但是好象只有在中国得到非常广泛的传播。 一般来说,所有音乐的构成有四个基本要素,而其中最重要的是“音的高低”和“音的长短”: 1 音的高低:任何一首曲子都是高低相间的音组成的,从钢琴上直观看就是越往左面的键盘音越低,越往右面的键盘音越高。 2 音的长短:除了音的高低外,还有一个重要的因素就是音的长短。音的高低和长短的标住决定了该首曲子有别于另外的曲子,因此成为构成音乐的最重要的基础元素。 3 音的力度:音乐的力度很容易理解,也叫强度。一首音乐作品总会有一些音符的力度比教强一些,有些地方弱一些。而力度的变化是音乐作品中表达情感的因素之一。 4 音质:也可以称音色。也就是发出音乐的乐器或人声。同样的旋律音高男生和女声唱就不一样的音色;小提琴和钢琴的音色就不一样。 上述四项构成了任一首乐曲的基础元素。应该说简谱基本可以将这些基础性元素正确标住。 音符 在简谱中,记录音的高低和长短的符号,叫做音符。而用来表示这些音的高低的符号,是用七个阿拉伯数字作为标记,它们的写法是: 1 2 3 4 5 6 7读法为:do re mi fa so la si(多来米发梭拉西)。这些唱出来的声音符号叫唱名。这七个音还有与之相对应的英文字母的名称:1--C;2--D;3--E;4--F;5--G;6--A;7--B。这些字母叫做音名。它们是固定不变的。 音符是和音高紧密相连的,没有一个不带音高的音符。 音高 音符的数字符号如1 2 3 4 5 6 7就表示不同的音高。在钢琴键盘上可以很直观地理解音符和音高。广义上说音乐里总共就有7个音符。在音符上边出现有圆点的,则表示要将该音升高一个音组,行话说“高8度”。如出现加两个圆点就表示将该音升高两个音组,余类推。在音符下边出现有圆点的,则表示要将该音降低一个音组,即“低8度”。如出现加两个圆点就表示将该音降低两个音组,余类推。音高与钢琴键盘的对应关系如下: 现在重点看黄线框里面的音符上下都不带圆点的一般叫中音区音符。如果您记忆的话先将中央1(C)牢记在心---这可以说是所有88个键盘位置的基础。至于说为什么还叫C您可以参考有关调式的解释。这7个白键的就是如我们通常唱的1 2 3 4 5 6 7 这七个音符。那么5个黑键呢?请看下面有关半音/全音的解释。 黄线右面的音符上边出现有圆点的,则表示要将该音升高一个音组,行话说“高8度”。如出现加两个圆点就表示将该音升高两个音组,余类推。在音符下边出现有圆点的,则表示要将该音

人教版初级中学语文九年级上册:《星星变奏曲》教案.doc

人教版初中语文九年级上册:《星星变奏曲》 教案- 回忆著名诗人郭沫若写的《天上的街市》。这首诗以丰富的想象,写了自由自在的天上街市,通过写牛郎织女的自由来往来表达作者对美好生活的向往。 今天我们来学习《星星变奏曲》这一首诗,体会作者所要表达的思想感情。 二、朦胧诗 朦胧派诗人无疑是一群对光明世界有着强烈渴求的使者,他们善于通过一系列琐碎的意象来含蓄地表达出对社会阴暗面的不满与鄙弃,开拓了现代意象诗的新天地,新空间。 是新时期的一个非常重要的文学流派,文革后期以舒婷、顾城、北岛等为先驱者的一群青年诗人,从一九七九年起,先后大量发表了一种新风格的诗。这种诗,有三四十年没有出现在中国的文学报刊上了。最初,他们的诗还仿佛是在继承现代派或后现代派的传统,但很快地他们开拓了新的疆域,走得更远,自成一

个王国。 这首诗体现了朦胧诗的一些典型特征。 三、读诗歌,整体感知、讨论 1、诗中的星星象征什么?诗人反复咏叹星星表达了怎样的渴望? (象征着光明,象征着美好的事物,表达了他对光明的渴望) 2、两小节诗在结构上及语言上有什么异同点? (都用如果-----谁还需要---还会--- 开头;从第五行看,有变化,用谁不愿意和谁愿意) 四、问题研究

(一) 1、这首诗为什么题为《星星变奏曲》? 这是借用音乐术语来说的,它提示这首诗是围绕一个主题与主要意象变换情境,委婉抒情。 诗的上下两节结构相称,基本手法和用语相同或相近,有同样的韵律。但上下两节的情境,意味发生了变化,如用谁不愿意和谁愿意就不同了。(句式、词语)这种情形如同音乐,两段录音曲在保持基本轮廓的基础上出现一点变化。 2、诗中多用比喻,理解一些句的寓意:如:每一首诗都是一群颤抖的星星 风吹落一颗又一颗瘦小的星星 3、怎样理解风吹落一颗又一颗瘦小的星星?

2019-2020年六年级下册第4课《查尔达斯舞曲》(小提琴独奏)教案

2019-2020年六年级下册第4课《查尔达斯舞曲》(小提琴独 奏)教案 教学目标: 1、了解意大利的风土人情,以及意大利音乐风格特点和意大利舞蹈特点。 2、能够对意大利音乐感兴趣,能积极参与相关音乐实践活动并认真探索其文化内涵。 教学重点: 感受意大利乐曲的音乐情绪,体验其丰富的音乐文化内涵。 教学难点: 能积极参与相关音乐实践活动并认真探索其文化内涵。提高对外国音乐文化多样性的认识。教学过程: 一、谈话导入课题。 1、同学们喜欢跳舞吗?能说说你知道的舞蹈吗? 2、今天老师带同学们去感受一曲意大利舞曲——查尔达斯舞曲。 二、新授。 1、完整欣赏小提琴独奏《查尔达斯舞曲》,感受意大利音乐风格与特点。 2、请学生说说听后的感受。 3、再次欣赏《查尔达斯舞曲》,引导学生感受整体音乐速度的变化并从作品中体会意大利舞曲“查尔达斯舞曲”由慢而快的速度特点。深入体会意大利音乐元素。 4、分主题聆听,体验各主题情绪之间的不同。 三、总结。 众多的国家都有灿烂的文化与艺术,体会到了意大利人民热情的舞曲与舞蹈,希望在今后的学习中,能够更多的了解体验各国家的音乐作品。 附送: 2019-2020年六年级下册第4课《龙腾虎跃》教案 教学内容: 《龙腾虎跃》。 教学目标: 1、过程与方法:通过聆听《龙腾虎跃》,让学生在综合感受中国民族乐器及打击乐器鼓的丰富表现力的同时,体会不同的节奏、节拍、速度在乐曲中表现的不同作用。

2、知识与技能:通过聆听,帮助学生理解乐曲的音乐形象,整体体会音乐情绪;指导学生能够利用打击乐器或手、脚为主旋律伴奏。 3、情感态度与价值观:通过乐曲题目中的“龙”进行爱国主义教育,让学生在音乐课堂中学到更多方面的知识,体会更深层面的意义。 教学重点: 让学生在音乐中展开想象的翅膀,并体会乐曲欢快、热烈的节奏。 教学难点: 让学生模仿鼓乐演奏的节奏,为主题旋律伴奏。 教学过程: 一、导入: 1、出示实物(小堂鼓),指导学生认识乐器的名称及结构构成。设问:这些是什么?我们能用它们做什么?请你来演示一下。 2、引导学生感受鼓的使用方法并回答问题鼓能带给大家什么感受?什么场合会用到鼓?他有什么作用?并邀请学生学打一个鼓点节奏: 3、人们的生活中离不开鼓,鼓能给我们增添欢乐。出示图片(在2003年9月,香港举办了鼓乐节群英会,中外鼓王云集,这是演出时的盛况)。最引人注目的是李民雄创作并亲自演奏的一首民间器乐曲──鼓乐《龙腾虎跃》,这首乐曲荣获二十一世纪最受乐迷欢迎的中国音乐作品,今天老师就和大家一起来欣赏这首鼓乐曲《龙腾虎跃》。 二、讲授新课: 1、简介作曲家、作品: 作曲家:李民雄,浙江嵊州人。民族音乐理论家、鼓演奏家、作曲家、音乐教育家、硕士生导师、上海音乐学院教授等。 作品简介: 《龙腾虎跃》是以山西民间器乐曲牌《撩单子》的音调为主要素材进行改编创作的。是一首鼓乐曲,表现的是欢庆节日的场面,分为三大部分。 2、欣赏引子部分、第一部分,小组合作探讨,边聆听边思考问题:分段欣赏、思考并讲解。 3、学唱主题旋律: (1)通过多媒体展示乐谱、教师范唱。 (2)让学生自己轻声随琴演唱乐谱主题,让学生找出乐谱中不易演唱的地方,单独挑出演

快速让孩子认识五线谱的几种办法

快速让孩子认识五线谱的几种办法 第一种:教条式 楼房识谱法 将高音谱号和低音谱号分管的不同音区形象地比喻为高音楼和低音楼,将其中的五根线与线之间的四个间比喻成不同的楼层,然后让小小音符们来爬楼房。爬到一个楼层或者是房间小小音符们来爬楼房,爬到一个楼层的时候就唱歌:“do,do,do”、“re,re,re,”。幼儿一边做游戏,一边唱歌,就将一个音阶内的音都学会了。 身体音高对应法 高音谱号与低音谱号所对应的音阶,有上行和下行。孩子在音与音高的关系及音高的概念上很容易混淆和不理解。为此,我设计了一个利用身体位置的高低,让幼儿掌握音阶上行和下行的方法。即在学习上行音阶时,将“do”的位置放在脚上,并随着一个八度音阶的上行逐渐上移,让孩子利用对身体高度的认知,感知音在五线谱上的高度。下行时则从头顶开始,逐渐下移,来感知音高逐渐降低。这样做可以让幼儿将音符与钢琴上的键盘位置对应,学习起来比较容易。 音阶推移法 在掌握了音阶的高低位置后,我将认识音符和整个八度音阶联系起来。让幼儿学习唱的时候,进行自我推算和学习,对于一些空间知觉特别差、认谱能力弱的幼儿,这是一个补救的好办法。 行动学习法

学习的最大兴趣与成功的关键莫过于自身的参与。因此,我将五线谱制成一个大的地图,贴在运动场地上,利用户外活动时带领幼儿去跳、走。通过边唱边跳,让幼儿参与到认识音符的活动中来,起到良好的作用。幼儿参与的积极性很高,认识的主动性也明显提高。 反复运用巩固法 在新认识一个音符之后,需要一个反复巩固、加深印像的过程。我们需要选择几首含有该音符的乐曲,让幼儿来弹奏,在弹奏曲子的同时认知该音符在五线谱中的位置。一般在几首曲子弹熟练以后,该音符就能被幼儿牢牢地掌握了。 第二种:儿歌 孩子的小手就是认识五线谱的最好工具——轻便并且随身携带:开始学时可以边念儿歌边在自己手指上比划,要不了多久就熟了! 下加一线敲敲门do do do (哆哆哆) 下加一间打招呼re re re (来来来) 第一线上小猫叫mi mi mi (咪咪咪) 第一间里放沙发fa fa fa (发发发) 第二线上把话说sol sol sol (说说说) 第二间里把手拉la la la (拉拉拉) 第三线呀笑嘻嘻si si sI (嘻嘻嘻) 第三间里歌儿多do do do (哆哆哆) 让孩子伸出左手张开〔将手心对着自己横摆〕,把五根手指当成五条线,手指间的缝当成间,用右手不断变换地指着“线”、“间”,口唱

学习五线谱(初学者专用)

首先,五线谱是由三个主要的部分组成的:音符、谱号、谱表。 第一节谱表 现在我们首先来介绍一下谱表: 用来记写音符高低的表格,就叫做“谱表”。 五线谱,顾名思义是由五条线组成的。的确,是由五条平行的“横线”和四条平行的“间”组成的。这就是五线谱的谱表。它们的顺序是由下往上数的。 最下面第一条线叫做“第一线”,往上数第二条线叫“第二线”,再往上数是“第三线”、“第四线”,最上面一条线是“第五线”。 由于音符非常多,所以“线”与线之间的缝隙也绝对不能浪费的,也就是“线”与“线”之间的地方叫做“间”。这些间也是自下往上数的。同“线”一样。最下面的一间叫做“第一间”。往上数是第二间、第三间、第四间。下面请看谱例: 每一条线和每一个间都代表着一个音的高度。 然而这五条“线”和四个“间”还不够表达我们的情感心声,如果还有更高的音或者更低的音出现怎么办呢?于是就产生了更多的“线”和“间”。 这些临时多出来的“线”和“间”叫做“上加线”和“下加线”。上面多出来的线叫做“上加线”,上面多出来的“间”叫做“上加间”。下面多出来的“线”和“间”叫做“下加线”和“下加间”。这些“线”和“间”向上下两边呈放射形。“上加线”和“上加间”是自下而上,往上数的,分别叫做“上加一间”、“上加一线”、“上加二间”、“上加二线”、“上加三间”、“上加三线”…………以此类推。 在五条线下面加出的线是从上面向下数的(与上加线相反)。分别称作“下加第一间”、“下加第一线”、“下加第二间”、“下加第二线”……也是以此类推。(如下图) 这里面有一个需要注意的有两点: 1、“上加线”和“下加线”根据音符只需要画一条短线,不需要很长。够表示音符就可以了。(如下图) 2、在表示“上加间”和“下加间”的时候,不需要再把这个音符上面或下面的线画出来了。(如下图)

《查尔达什》小提琴与二胡版本的比较

《查尔达什》小提琴与二胡版本的比较 又 《查尔达什》小提琴与二胡版本的比较 宋婉忻(福建师范大学音乐学院福建福g,l1350000) 摘要:本文对《查尔达什》的乐曲进行了简要的分析,然后通 过对小提琴与二胡在调式与音域,音色以及演奏枝珐这三个方面进行的对比,指出=胡作为中国传统弓弦乐器与西方弓弦乐器小提琴十分类似的乐器,由于乐器的构造与拉奏方法的不同,在演奏同一首曲子上的异同点,以及两个乐器之间的联系与区别. 关键词:《查尔达什》;小提琴;二胡;对比;调式与音域; 音色;演奏枝法 《查尔达什》(Cs6rd6s)是意人利小捉琴家,作曲家蒙蒂 (Vittorio,Monti)的小提琴代表作,已被改编成了其他乐器 演奏的作品,比较出名的有二胡,手风琴,大捉琴,簧管,长 笛,小号等,与小提琴的版本相比都各有自己的特色,其中二胡 作为rrl国传统弓弦乐器_卜西方弓弦乐器小提琴十分类似的乐器, 存演奏同~首曲子上,有许多相同点和异同点. 一 ,《查尔达什》小提琴与二胡版本的共同点 1.曲式结构不变

都采用的是复三部曲式. 小捉琴与二胡的作品《垒尔达什》一开始部是山略微深沉的 引子引入.引子部分节奏十分自由,并采用大量滑音,使乐曲听 起来富有味道.然后引子之后,由这一主题组成查尔达什舞曲 特有的”拉绍”段落.在这一小调色彩的抒情旋律发展之后,又 出现另一支流畅而华丽的小调旋律.这两支旋律都具有鲜明的匈牙利及吉普赛音乐的特点.接着延续之前引子部分滑音的应用, 使乐曲有种粘稠,深沉的特点.使这酋曲’了具有很浓烈的民族风文化教自水平十’分落后.郑珍善于甄别拔人才,因材施教.存他 所教的这批学生中,邡珍最喜欢的足胡长新.胡家贫好学,才思 敏捷,且学业根底深厚.郑认为”此了如不废学,必作黔尔冠呜”.当然,得意门生胡长新也没有辜负老帅的期望,十1845 年中举,中了进士.他先后担任过贵阳府学教授,思南府学教 授,黎阳书院Il1长等职,并有许多诗文传世. 另外,郑珍秉承”有教无类”的教学思想,不论地位,不讲贫 贵,都予以~视同仁.如有位姓刘的生员,家里特别穷,连贽金都 交不起,很久之后,才把四丁文铜元交给老师,然郑珍没有丝毫责备之意;还有一个叫刘之砺的学生,是个扎灯笼的匠人,特别爱写诗.郑珍便悉心指点,对其关爱有加,师生相处的_:常融洽. 然而,好景不长.在i845年十月份,郑珍接到檄文:他的职 位彼人取代,即行作交代准备.可这又有什么办法呢?郑珍存等 待交割之期,仍不忘教诲学牛,鼓励他仃J:

教你一分钟快速认识五线谱十二个调

教你一分钟快速认识五线谱十二个调 1、只要你知道C大调A小的调号没有升降号的,如果加上三个bbb号 这就成C小调了,从它的关系大小调来认的话,那就是 bE大调、C小调。 02、 此调号为#C大调,bB小调,如果你不知道是什么调,你 减掉三个#号,剩下的四个#号就成了,这就是#C小调了,它的关系大小调就是 E大调 ,#C小调。 3、此调为D大调,B小调,如果是#号开头的调我们就往下减去三个#号,不足三个的我们加上一个b号来取代,最后只留一下了一个b号, 就得到了这个,这个就是由原来的D大调变成了D小调,它的关系大小调就是F大调,D小调。 4、此调为bE大调、C小调,如果是降号开头的调的话我们 就往上加,我们加上三个b号就得到,就由原来的bE大调变成bE小调了,它的关系大小调就是 bG大调,bE小调,一般通常我们最好叫做#F大调、#D小调。 5、此调号为E大调 #C小调,如果是#号开头的调我们就 往下减去三个#号,最后只剩下了一个#号,这就由E大调变成了E小调,它的关系大小调最终我们就认定它就是G大调 E小调。

6、此调为F大调 D小调,我们加上三个b号就得到了 ,由原来的F大调变成了F小调,它的关系大小调就是bA大调 F小调。 7、此调为#F大调,减去三个#号只剩下三个#号就得到 ,由原来的#F大调变成#F小调,它的关系大小调就是 A大 调 #F小调。8、此调为G大调,因为不足三个#号,我们先 加上两个b号,我们去把#号去掉只剩下两个b号就得到了,由原来的G大调变成G小调,最后得到的关系大小调就是 bB大调 G小调。9、 此调为bA大调,我们在它的基础上加上三个b号就得到了 ,此调为bA小调,它的关系大小调是bC大调,一般我们不说bC大调,都是B大调,它跟B大调是等音调关系。以上是7个降号,我们去掉5个b号剩下的两个b号再加上三个#号,把那两b号变成#号就得到 五个#号就民B大调,#G小调。 10、此调为A大调 #F小调的话,正好三个#号,我们都去 掉了,由原来的A大调变成了A小调,它的关系大小调就是 C大调 A小调。 11、此调为bB大调,我们加上三个b号就得到了

五分钟教你认识简谱及五线谱

从零学音乐----教你认识简谱 和语言一样,不同民族都有过自己创立并传承下来的记录音乐的方式---记谱法。各民族的记谱方式各有千秋,但是目前被更广泛使用的是五线谱和简谱(据说简谱是由法国思想家卢梭于1742年发明的)。 简谱应该说是一种比较简单易学的音乐记谱法。它的最大好处是仅用7个阿拉伯数字 ----1234567,就能将万千变化的音乐曲子记录并表示出来,并能使人很快记住而终身不忘;同时涉及其他的音乐元素也基本可以正确显示。简谱虽然不是出现在中国,但是好象只有在中国得到非常广泛的传播。 一般来说,所有音乐的构成有四个基本要素,而其中最重要的是“音的高低”和“音的长短”: 1 音的高低:任何一首曲子都是高低相间的音组成的,从钢琴上直观看就是越往左面的键盘音越低,越往右面的键盘音越高。 2 音的长短:除了音的高低外,还有一个重要的因素就是音的长短。音的高低和长短的标住决定了该首曲子有别于另外的曲子,因此成为构成音乐的最重要的基础元素。 3 音的力度:音乐的力度很容易理解,也叫强度。一首音乐作品总会有一些音符的力度比教强一些,有些地方弱一些。而力度的变化是音乐作品中表达情感的因素之一。 4 音质:也可以称音色。也就是发出音乐的乐器或人声。同样的旋律音高男生和女声唱就不一样的音色;小提琴和钢琴的音色就不一样。 上述四项构成了任一首乐曲的基础元素。应该说简谱基本可以将这些基础性元素正确标住。 音符 在简谱中,记录音的高低和长短的符号,叫做音符。而用来表示这些音的高低的符号,是用七个阿拉伯数字作为标记,它们的写法是: 1 2 3 4 5 6 7读法为:do re mi fa so la si(多来米发梭拉西)。这些唱出来的声音符号叫唱名。这七个音还有与之相对应的英文字母的名称:1--C;2--D;3--E;4--F;5--G;6--A;7--B。这些字母叫做音名。它们是固定不变的。 音符是和音高紧密相连的,没有一个不带音高的音符。 音高

五线谱入门教学

一、五线谱入门 五线谱的构成 用来记载音符的五条平行横线叫做五线谱。五线谱的五条线和由五条线所形成的间,都自下而上计算的。假使音乐作品是写在数行五线谱上,那么,这数行五线谱还要用连谱号连结起来。连谱号:包括起线(连结数行五线谱的垂直线)和括线(连结数行五线谱的括弧)两个组成部分。 括线分花的和直的两种。 音符和休止符

用以记录不同长短的音的进行的符号叫做音符。 用以记录不同长短的音的间断的符号叫做休止符。 音值的基本相互关系是:每个较大的音值和它最近的较小的音值的比例是2与1之比。例如:全音符等于两个二分音符,一个二分音符等于两个四分音符;全休止符等于两个二分休止符等。 拍号 ~ 在一段音乐进行过程中,乐音通常会以一定的力度強弱來反复进行,如一般常见的华尔兹舞曲就是以"澎-恰-恰"(強-弱-弱)的三拍子形式來进行,这就是拍号。(1):二拍子系统:二拍子系统是以強-弱、強-弱的力度形态进行的拍子系统,常见的二拍子拍号如下:

在上方的数字代表一个小节有几拍,下方的数字则代表用几分音符当一拍,例如2/4代表一个小节有2拍,用4分音符当一拍;4/4代表一个小节有4拍,用4分音符当一拍。 (2)三拍子系统:三拍子系统是以強-弱-弱的力度形态进行的拍子系统,常见的三拍子拍号如下: 例:3/4代表一个小节有3拍,用4分音符当一拍;3/8代表一个小节有3拍,用8分音符当一拍;6/8代表一个小节有6拍,用8分音符当一拍;9/8代表一个小节有9拍,用8分音符当一拍。 (3)后拍子系统:后拍子系统是前二者的综合运用,常见的有5拍和7拍两种。 谱号 前面已经讲过,在五线谱上音的位置愈高,音也愈高,反之音的位置愈低,音也愈低,但到底高多少低多少却无法确定。在五线谱上要确定音的高低,必须

欣赏 乐曲《查尔达斯舞曲》片段 教学设计

欣赏乐曲《查尔达斯舞曲》片段教学设计 1教学目标 《查尔达斯舞曲》原是意大利作曲家维里奥?蒙蒂的一首带有吉普赛风格的小提琴曲,包括“慢—快—慢—快”4个主题,乐曲慢板主题悠扬而舒缓,快板主题急促欢快,从而形成鲜明的对比,后来该曲被改编成多种乐器的独奏曲目并广为流传。通过对这首歌曲的欣赏,学生进一步加深对大号、小号、长号、圆号这4种乐器的认识,提高聆听不同乐器音色、辨认乐器名称的能力。 2学情分析 孩子们对欣赏教材上的古典音乐不感兴趣,这是许多教中、高年级的音乐教师头疼的问题。如何让孩子乐于参与敢于表现是我们要思考的问题。本课教学设计以管弦乐队演奏为切入点,用激动人心的演奏会吸引孩子的眼球,从而知道乐曲的结构,四个主题段落分别用四种乐器演奏,引导学生用不同的方式去表现音乐,将他们不喜欢的古典音乐变成这么动感有魅力的。 本课通过聆听乐段找出演奏乐器、用舞蹈表现音乐来调动学生的主动学习性,让孩子在舞蹈中感受音乐旋律与节奏,从而熟悉音乐主题,进一步感受音乐与动作之间的联系,对音乐主题有更深层的理解。 通过本课学习,让学生能够关注古典音乐,辨认乐器,为进一步认识更多乐器打好基础。 3重点难点 辨认乐器,感受不同乐器演奏出不同的情绪、速度,能够主动参与律动,熟悉音乐主题,并能感受音乐与动作之间的联系。 4教学过程 活动1【导入】一、热情导入 师用西洋乐器—萨克斯演奏所学歌曲《土风舞》,带领学生一起唱起来、跳起来,激起课堂气氛。 活动2【讲授】二、听赏视频 1、邀请学生欣赏管弦乐演奏会,提出疑问,引出课题《查尔达斯舞曲》。 (播放管弦乐队演奏视频《查尔达斯舞曲》(完整版)。) 2、提问:这段乐曲的速度有没有变化?根据速度的变化,你觉得乐曲可以分为几个部分?(学生自由回答后请几个学生来贴一贴速度术语) 3、师介绍曲名:这首乐曲是意大利作曲家蒙蒂所创作的——查尔达斯舞曲。 设计意图: 大部分学生对古典音乐不感兴趣,以学生感兴趣的音乐会版本《查尔达什舞曲》吸引住学生的眼球,让学生古感受古典+流行完美结合的新音乐模式带给人们的震撼,并让学生初步感受乐曲慢-快-慢-快的结构特点,为下面的欣赏学习做铺垫。 活动3【活动】三、走进乐曲 (一)1、听A部分主题,听辨乐器音色特点 ①提问:四位演奏家藏在了乐曲当中,聆听第一段,看是谁演奏的? (第一段音乐是大号演奏,大号的音色是低沉的,乐段速度慢,旋律有忧郁感。) ②提问:乐曲速度有什么变化? (慢—快—慢—快) 2、低沉的音乐可以用什么方式来表现? (学生聆听完自由发言:唱歌、跳舞的方式去表现乐曲。) A第一遍:老师用自己的方式表现乐段,引导学生从速度、情绪、节奏等方面来比较 B第二遍教师在聆听过程中用手势引导学生感受旋律的高低起伏,师生用双手握球的感觉向前拉伸体验吹长泡泡,提示学生感受乐句。

五分钟教你认识简谱和五线谱

五分钟教你认识简谱和五线谱

三十二 八分之一拍 分音符 上例可以看出:横线有标注在音符后面的,也有记在音符下面的,横线标记的位置不同,被标记的音符的时值也不同。从表中可以发现一个规律,就是:要使音符时值延长,在四分音符右边加横线“—”,这时的横线叫延时线、延时线越多,音持续的时间(时值)越长。相反,音符下面的横线越多,则该音符时间越短。 休止符 音乐中除了有音的高低,长短之外,也有音的休止。表示声音休止的符号叫休止符,用“0”标记。通俗点说就是没有声音,不出声的符号。 休止符与音符基本相同,也有六种。但一般直接用0代替增加的横线,每增加一个0,就增加一个四分休止符时的时值。 半音与全音 音符与音符之间是有“距离”的,这个距离是一个相对可计算的数值。在音乐中,相邻的两个音之间最小的距离叫半音,两个半音距离构成一个全音。表现在钢琴上就是钢琴键盘上紧密相连的两个键盘就构成半音,而隔一个键盘的两个键盘就是全音。 白键位置上的3和4音、7和音之间构成半音;而1和2之间,2和3之间,以及4和5、6和7之间构成是全音。而1和2之间隔着一个黑键,1和2与这个黑键都构成半音。 变化音 将标准的音符升高或降低得来的音,就是变化音。将音符升高半音,叫升音。用“#”(升号)表示,一般写在音符的左上部分,如下所示: 标准的音降低半音,用“ b "(降号)表示,同样写在音符的左上部分: 基本音升高一个全音叫重升音,用“x"(重升)表示,这和调式有关。 基本音降低全音叫重降音。用“ bb”(重降)表示。 将已经升高(包括重升)或降低(包括重降)的音,要变成原始的音,则用还原记号“”表示 附点音符附点就是记在音符右边的小圆点,表示增加前面音符时值的一半, 带附点的

湘艺版音乐六年级下册第4课《查尔达斯舞曲》(小提琴独奏)教案

《查尔达斯舞曲》(小提琴独奏)教案 教学目标: 1、了解意大利的风土人情,以及意大利音乐风格特点和意大利舞蹈特点。 2、能够对意大利音乐感兴趣,能积极参与相关音乐实践活动并认真探索其文化内涵。 教学重点: 感受意大利乐曲的音乐情绪,体验其丰富的音乐文化内涵。 教学难点: 能积极参与相关音乐实践活动并认真探索其文化内涵。提高对外国音乐文化多样性的认识。教学过程: 一、谈话导入课题。 1、同学们喜欢跳舞吗?能说说你知道的舞蹈吗? 2、今天老师带同学们去感受一曲意大利舞曲——查尔达斯舞曲。 二、新授。 1、完整欣赏小提琴独奏《查尔达斯舞曲》,感受意大利音乐风格与特点。 2、请学生说说听后的感受。 3、再次欣赏《查尔达斯舞曲》,引导学生感受整体音乐速度的变化并从作品中体会意大利舞曲“查尔达斯舞曲”由慢而快的速度特点。深入体会意大利音乐元素。 4、分主题聆听,体验各主题情绪之间的不同。 三、总结。 众多的国家都有灿烂的文化与艺术,体会到了意大利人民热情的舞曲与舞蹈,希望在今后的学习中,能够更多的了解体验各国家的音乐作品。

1、我流泪并不是因为我想你,而是我恨我自己。我不哭并不是因为我不爱你,而是爱你胜过爱自己。 2、纵然我有千万般好,你也不会看到,因为你没有一双爱我的眼睛。 3、任何时候都可以开始做自己想做的事,希望你不要用年龄和其他东西去束缚自己。 4、思念一个人,不必天天见,不必互相拥有或相互毁灭,不是朝思暮想,而是一天总想起他几次。听不到他的声音时,会担心他;一个人在外地时,会想念和他一起的时光。 5、想像中的一切,往往比现实稍微美好一点。想念中的那个人,也比现实稍微温暖一点。思念好像是很遥远的一回事,有时却偏偏比现实亲近一点。 6、不幸是一种秘密。一说就会扩散,人人尽知,从而将不幸扩大。因此,要绷住,不要泄露,不要倾诉,不要告诉任何人。

如何快速学习五线谱

五条线,四个间; 高音谱号站一边; 一线上小猫,mi mi; 二线上小老鼠,sol sol ; 三线上小西瓜,si si ; 门前招手,re re ,来来; 一间里小红花,fa fa ; 二间里小提琴,la la; do re mi fa sol la si ; si la sol fa mi re d 。 五线谱速读方法 在练习新的钢琴曲时一定会经常遇到这样的问题: 1、错音不断; 2、双手的配合不协调,对位有问题; 3、无法连贯的弹奏下来,总是断断续续,结结巴巴; 4、视奏一个新曲子很困难,弹奏几遍都无法顺下来。 这些都是因为对于钢琴五线谱的读法不正确而造成的!下面我来介绍一种新而巧的方法,使您可以做到对五线谱的速读和100%的准确。 钢琴的五线谱速读方法包括四个原则和三个要求: 一、原则 1、背口诀 在五线谱中,高音谱表的5条线是自下而上的排列的,最下面的是第一线,一次类推往上是第二、第三、第四、和第五线,我们要背的就是这些线上的音,请跟我说:高音谱表一线mi 二线sol三弦si 四线re 五线fa。低音谱表中五条线的顺

序是自上而下的排列,请跟我说:低音谱表一线la 二线fa 三弦re 四线si五线sol 。一定要根据键盘来背这些线上的音,高音谱表上的一线mi是在中央C右侧的那个MI,低音谱表上的一线la 是在中央C左侧的那个la,然后按照线的顺序高音谱表上线上的音依次向右侧排列,低音谱表上线上的音依次向左侧排列。 2、看音的进行方向和音之间的距离 在五线谱上,音越来越往高走,在琴键上就会越来越往右侧走,反之,则往左侧走。这就是五线谱上音的走向和键盘上音的走向的关系,五线谱上音与音之间的距离,我们只要知道几个基本距离就好了。 在五线谱中,相邻的两个线上音之间的关系是隔一个音的关系;相邻的两个间(就是线与线之间的空格)上的音之间的关系是隔一个音的关系;相邻的线与间之间的音的关系是挨着的关系。 五线谱上音与音之间的基本关系就是这三种,那么,其它的距离关系都可以通过音与音之间所隔的线和间来间接推算出来。比如,高音谱表上三线si,那么有一个音在在五线上方的间里,那么这个音我可以用几种方法可以找到,第一种就是背线上的音,高音谱表五线fa,那这个音比fa又高一个,则这个音就是sol;第二中方法,就是通过三线si来计算,这两个音之间隔了两条线。那么线和线之间的音是隔一个音的关系,那么最上面的线就和si 是隔一个音再隔一个音的关系,则比最高的线再高一个音就应该是sal。 练习时要注意看到五线谱上音向上走,手就向右侧移动,五线谱上音向下走,手就向左侧移动;音和音之间的距离是挨着,手指就挨着用;音与音之间是隔着的关系,手指也就隔着用,除非是琶音,要按照琶音的指法来安排。 3、要上下两行对着一起看 要两行一起,上下对着看五线谱,比如上面一行有一个单音,下面一行有一个和弦,那么就将这几个音一起看,同时反应手指在键盘上的位置/。然后,再横向的

查尔达什舞曲

教学过程: 一、组织教学 师生问好 二、听辨音色,导入课题 1、问题:你能介绍一下西洋管弦乐队中的弦乐器组吗? [设计思路:本单元的重点之一是使学生了解西洋乐器及西洋管弦乐队,这一问题既是对前一课时内容的检查与回顾,又能通过师生间的简单交流,融洽课堂气氛,提高师生之间的凝聚力。] 2、播放《查尔达什舞曲》第一部分的主题 问题:1、这段音乐是用什么乐器演奏的? 2、它给你带来什么样的感受? [设计思路:1、学生根据已有的知识进行交流,了解小提琴的音色及其表现力。2、从作品某一段落的欣赏开始,为后面的学习做好铺垫。] 三、作品赏析 1、整体感受 * 要求:感受乐曲情绪,为乐曲分段。 播放《查尔达什舞曲》录音 * 学生思考并讨论,感受速度与情绪的变化,从而把作品的结构分为“慢——快——慢——快”四个部分。 [设计思路:抓住速度这一主线,对作品的结构与情绪进行分析,让学生对作品有整体的感知。]

* 作曲家蒙蒂简介 维托里奥·蒙蒂(1868-1922),意大利作曲家,小提琴家。蒙蒂从小热爱音乐,在那不勒斯音乐学院学习小提琴和作曲。曾在拉姆努管弦乐团任小提琴演奏员,在音乐厅管弦乐团任指挥。后从事小提琴和曼多林的教学,并继续作曲。作有舞剧,轻歌剧和器乐小品等,其中小提琴曲《查尔达什》和《爱之晨曲》最为著名,《查尔达什》还被改编成小号、单簧管等多种乐器的独奏曲,流传十分广泛。 2、分段赏析 (1)第一部分 * 播放音乐,感受抒情性与歌唱性。 * 出示第一部分主题曲谱 A 用小提琴演奏主旋律 B 学生随琴哼唱第一部分主题 (2)第二部分 * 播放音乐,谈感受。 * 出示第二部分主题曲谱。比一比,找一找,第二部分与第一部分在写作手法上的异同。 (3)第三部分 播放音乐,按表格要求引导学生感知: * 在速度、拍子和调式上与第二部分形成对比,音乐宽广,富有

三分钟学会看键盘,教你看懂钢琴五线谱

钢琴五线谱 钢琴的学习包括认识键盘,将手放到合适的位置,如何控制运用你的手指,如何用双手而不是单单右手来共同弹奏,当然还有如何看懂五线谱钢琴曲谱。 1、你用的键盘乐器 2、白键盘黑键盘从哪里开始呢? 看到键盘可能一开始会迷惑:这么多的键盘---88个键我如何能记住呢? 不过你很快就可以总结出黑键的分布规律:即三个黑键和两个黑键规律性的排列,而且间隔是完全一样的。 你还会发现上图的白键上有规律的标出绿色的字母C,这个C是出现在两个黑键左面的白键上的。至于这个为何叫C以后会详细介绍。

另一个你要注意记忆的是键盘中央的C位置,既所谓的中央C。这是一个需要牢记的位置,你以后会发现这个标志性的C的很多意义。而下面的中央C位置是真实钢琴的键盘位置。 3、钢琴键盘的分组五线谱基本要素 上图最上面的就是你经常看到的钢琴的五线谱,中间那个空心圆在短横线的位置---线间就是中央C。这个中央C位置是你弹奏任何一个钢琴曲子都要参考的键盘。 五线谱是记录音乐的一种语言,就象英语、汉语一样,它同样有自己的规则,告诉你弹什么和如何弹奏。最明显的特征就是左端的谱号形式-----高音谱号和低音谱号一起成联合谱表,这是一个标准的钢琴五线谱形式。音符(后面还要讲)在线间或线上。 将中央C的一组白色键盘灰颜色填充,你会发现以C为一个组,七个白色琴键加上五个黑色键盘(两个黑色和三个黑色的)构成一12个键

盘组,而且这个C组不断重复。随便用左手或右手弹奏这些不同的组会发现越往右侧的声音越高,越往左声音越低。 4、C 和八度 上面的图示显示出在中央C右面和左面的其他的C在五线谱上面的 位置。从中可以看出,在键盘上有规律的C的位置排列到了五线谱上面就没有什么规律可循。换句话说,不同C组的键盘位置在五线谱位置上没有什么联系,你只能通过大量的练习和不断的记忆来逐渐掌握。线上音符 五线谱的音符要么在线上,要么在线间,我们先从线上认识其他的音符。上面的五线谱从中央C上出现的线上的另外三个音符是E G B ,下图是键盘上对应的E G B位置。

精选2019-2020年人教版语文九年级上册3星星变奏曲巩固辅导二

精选2019-2020年人教版语文九年级上册3星星变奏曲巩固辅导二 第1题【单选题】 下列诗句朗读节奏划分错误的一项是( ) A、谁/不喜欢春天,/鸟/落满枝头 B、像/星星落/满天空 C、闪闪烁烁的声音/从远方/飘来 D、一团团/白丁香/朦朦胧胧 【答案】: 【解析】: 第2题【单选题】 选出下列句子中表意明确的一项( ) A、美国参议院通过削减财政预算案,由于两党议员支持总统无法否决。 B、记得当年我们认识他的时候,还只是七八岁的小孩子,天真烂漫,无拘无束。 C、校领导对他的批评是有充分准备的。 D、大约在西汉时代,我们的祖先就已经开始使用仪器进行气象观测了,但那时的仪器比较简单。【答案】: 【解析】: 第3题【单选题】

下列句子中修辞手法判断错误的一项是( ) A、北国风光,千里冰封,万里雪飘(对偶、夸张) B、当鱼塘寒浅留滞着游鱼/小溪渐渐喑哑歌不成调子(拟人) C、总写苦难的诗/每一首都是一群颤抖的星星(比喻) D、我是在白云的襁褓中笑着长大的(借代) 【答案】: 【解析】: 第4题【填空题】 指出下列句子所运用的修辞手法。 ①山舞银蛇,原驰蜡象。______ ②雨说:我来了,我来了就不再回去。______ ③有一个柔软的晚上,柔软得像一片湖。______ ④闪闪烁烁的声音从远方飘来,一团团白丁香朦朦胧胧______ ⑤“谁愿意……谁愿意……”______ 【答案】: 【解析】:

第5题【填空题】 解释下列词语。 ①静谧:______ ②憧憬:______ ③朦朦胧胧:______ 【答案】: 【解析】: 第6题【填空题】 判断下列句子运用的修辞方法。 ①如果大地的每个角落都充满了光明/谁还需要星星,谁还会/在夜里凝望……如果大地的每个角落都充满了光明/谁还需要星星,谁还会/在寒冷中寂寞地燃烧…… ______ ② 每天/都是一首诗/每个字都是一颗星______ ③闪闪烁烁的声音从远方飘来______ 【答案】: 【解析】: 第7题【填空题】

相关文档
最新文档