ABB卓越的机器人控制器IRC5 介绍

ABB卓越的机器人控制器IRC5 介绍
ABB卓越的机器人控制器IRC5 介绍

机器人控制器的现状及展望概要

第21卷第1期1999年1月 机器人ROBO T V o l.21,N o.1 Jan.,1999机器人控制器的现状及展望α 范永谭民 (中国科学院自动化研究所北京100080 摘要机器人控制器是影响机器人性能的关键部分之一,它从一定程度上影响着机器人的发展.本文介绍了目前机器人控制器的现状,分析了它们各自的优点和不足,探讨了机器人控制器的发展方向和要着重解决的问题. 关键词机器人控制器,开放式结构,模块化 1引言 从世界上第一台遥控机械手的诞生至今已有50年了,在这短短的几年里,伴随着计算机、自动控制理论的发展和工业生产的需要及相关技术的进步,机器人的发展已经历了3代[1]: (1可编程的示教再现型机器人;(2基于传感器控制具有一定自主能力的机器人;(3智能机器人.作为机器人的核心部分,机器人控制器是影响机器人性能的关键部分之一.它从一定程度上影响着机器人的发展.目前,由于人工智能、计算机科学、传感器技术及其它相关学科的长足进步,使得机器人的研究在高水平上进行,同时也为机器人控制器的性能提出更高的要求. 对于不同类型的机器人,如有腿的步行机器人与关节型工业机器人,控制系统的综合方法有较大差别,控制器的设计方案也不一样.本文仅讨论工业机器人控制器问题. 2机器人控制器类型

机器人控制器是根据指令以及传感信息控制机器人完成一定的动作或作业任务的装置,它是机器人的心脏,决定了机器人性能的优劣. 从机器人控制算法的处理方式来看,可分为串行、并行两种结构类型. 211串行处理结构 所谓的串行处理结构是指机器人的控制算法是由串行机来处理.对于这种类型的控制器,从计算机结构、控制方式来划分,又可分为以下几种[2]. (1单CPU结构、集中控制方式 用一台功能较强的计算机实现全部控制功能.在早期的机器人中,如H ero2I,Robo t2I等,就采用这种结构,但控制过程中需要许多计算(如坐标变换,因此这种控制结构速度较慢. (2二级CPU结构、主从式控制方式 一级CPU为主机,担当系统管理、机器人语言编译和人机接口功能,同时也利用它的运算能力完成坐标变换、轨迹插补,并定时地把运算结果作为关节运动的增量送到公用内存,供二级CPU读取;二级CPU完成全部关节位置数字控制.这类系统的两个CPU总线之间基本没有联系,仅通过公用内存交换数据,是一个松耦合的关系.对采用更多的CPU进一步分散 α1998-09-03收稿 67机器人1999年1月 功能是很困难的.日本于70年代生产的M o tom an机器人(5关节,直流电机驱动的计算机系统就属于这种主从式结构. (3多CPU结构、分布式控制方式

机器人控制器的现状及展望概要

机器人控制器的现状及展望 摘要机器人控制器是影响机器人性能的关键部分之一, 它从一定程度上影响着机器人的发展。本文介绍了目前机器人控制器的现状, 分析了它们各自的优点和不足, 探讨了机器人控制器的发展方向和要着重解决的问题。 1引言 从世界上第一台遥控机械手的诞生至今已有 50年了,在这短短的几年里,伴随着计算机、自动控制理论的发展和工业生产的需要及相关技术的进步,机器人的发展已经历了 3代:(1 可编程的示教再现型机器人; (2 基于传感器控制具有一定自主能力的机器人; (3 智能机器人。作为机器人的核心部分, 机器人控制器是影响机器人性能的关键部分之一。它从一定程度上影响着机器人的发展。目前,由于人工智能、计算机科学、传感器技术及其它相关学科的长足进步, 使得机器人的研究在高水平上进行, 同时也为机器人控制器的性能提出更高的要求。 对于不同类型的机器人, 如有腿的步行机器人与关节型工业机器人, 控制系统的综合方法有较大差别,控制器的设计方案也不一样。本文仅讨论工业机器人控制器问题。 2机器人控制器类型 机器人控制器是根据指令以及传感信息控制机器人完成一定的动作或作业任务的装置, 它是机器人的心脏,决定了机器人性能的优劣。 从机器人控制算法的处理方式来看,可分为串行、并行两种结构类型。 2.1串行处理结构 所谓的串行处理结构是指机器人的控制算法是由串行机来处理。对于这种类型的控制器, 从计算机结构、控制方式来划分,又可分为以下几种。 (1单 CPU 结构、集中控制方式

用一台功能较强的计算机实现全部控制功能。在早期的机器人中, 如 Hero-I, Robot-I等, 就采用这种结构, 但控制过程中需要许多计算 (如坐标变换 , 因此这种控制结构速度较慢。 (2二级 CPU 结构、主从式控制方式 一级 CPU 为主机,担当系统管理、机器人语言编译和人机接口功能,同时也利用它的运算能力完成坐标变换、轨迹插补, 并定时地把运算结果作为关节运动的增量送到公用内存, 供二级 CPU 读取;二级 CPU 完成全部关节位置数字控制。 这类系统的两个 CPU 总线之间基本没有联系,仅通过公用内存交换数据,是一个松耦合的关系。对采用更多的 CPU 进一步分散功能是很困难的。日本于 70年代生产的 Motoman 机器人(5关节,直流电机驱动的计算机系统就属于这种主从式结构。 (3多 CPU 结构、分布式控制方式 目前, 普遍采用这种上、下位机二级分布式结构, 上位机负责整个系统管理以及运动学计算、轨迹规划等。下位机由多 CPU 组成,每个 CPU 控制一个关节运动,这些 CPU 和主控机联系是通过总线形式的紧耦合。这种结构的控制器工作速度和控制性能明显提高。但这些多 CPU 系统共有的特征都是针对具体问题而采用的功能分布式结构,即每个处理器承担固定任务。目前世界上大多数商品化机器人控制器都是这种结构。 控制器计算机控制系统中的位置控制部分,几乎无例外地采用数字式位置控制。 以上几种类型的控制器都是采用串行机来计算机器人控制算法。它们存在一个共同的弱点:计算负担重、实时性差。所以大多采用离线规划和前馈补偿解耦等方法来减轻实时控制 中的计算负担。当机器人在运行中受到干扰时其性能将受到影响, 更难以保证高速运动中所要求的精度指标。

KUKA机器人介绍KR16

1、库卡机器人本体、控制柜、机器人编程控制器性能参数具体说明1.1 KR16机器人本体 KR16的外形尺寸及工作范围

KR16性能参数 负载(指第6轴最前端P点负载)16公斤 手臂/第1轴转盘负载10/20 公斤 总负载46公斤 运动轴数 6 法兰盘(第6轴上)DIN ISO 9409-1-A50 安装位置地面/墙壁/天花板 重复精度+/-0.05mm 控制器KRC2 自重235公斤 作业空间范围14.5立方米 每个轴的运动参数运动范围运动速度 轴1+/-185°156°/s 轴2+35°/-155°156°/s 轴3+154°/ -130°156°/s 轴4+/-350°330°/s 轴5+/-130°330°/s 轴6+/-350°615°/s 1.2机器人控制器KRC2 (1)机器人控制器KRC2外形尺寸 控制柜采用高强材料作为结构框架,内部器件布置简洁明了,全部采用总线形式,维护方便、可靠;控制柜内的冷却按欧洲标准设计制造,元器件与冷却回路隔开,冷却可靠,外部灰层不会进入控制柜内部。

(2)KRC2性能参数

1.4 库卡机器人特点 库卡机器人由肘节式结构的机器人本体,KRC2控制柜、示教控制器KCP组成;铝合金机器人本体、高速运动曲线的动态模型优化,使得库卡机器人的加速性能比其它普通机器人高出25%,有利于提高系统寿命、优化工作节拍; KRC2控制柜采用熟悉的个人电脑WINDOWS操作界面,中英文多种语言菜单;标准的工业计算机,硬盘、光驱、软驱、打印接口、I/O信号、多种总线接口,远程诊断; KCP具有示教、编程、安全保护功能; 控制系统具有绝对位置记忆、软PLC(选项)功能; 事故间隔时间长达7万小时---这是其它机器人所无法比拟的。 库卡工业机器人优点描述: (1)标准六轴工业机器人本体: ?合理的机械结构和紧凑化设计 ?6个自由度AC伺服马达 ?绝对位置编码器 ?所有轴都带有抱闸 ?特定的负载和运动惯量的设计,使得速度和运动特性达到最优化 ?臂部的附加负载对额定负载没有运动限制 ?本体和控制器之间7m长电缆, 并可根据需要进行扩展 ?特点描述: ●模块化的机械结构设计,任何部分都可迅速更换 ●高精度电子零点标定,任何人在任何时间所作的零点标定都 是相同的,标定后,程序无需重新校正即可进入生产状态。 ●可调机械手臂,更大的活动空间和柔韧性 ●高速运动曲线中动态模型的优化,加速性能高于普通机器人25%,更利于 提高系统寿命、优化工作节拍。

机器人控制器的现状及展望

第21卷第1期1999年1月 机器人 ROBOT V ol.21,No.1  J a n.,1999机器人控制器的现状及展望⒇ 范 永 谭 民 (中国科学院自动化研究所 北京 100080) 摘 要 机器人控制器是影响机器人性能的关键部分之一,它从一定程度上影响着机器人的发展.本文介绍了目前机器人控制器的现状,分析了它们各自的优点和不足,探讨了机器人控制器的发展方向和要着重解决的问题. 关键词 机器人控制器,开放式结构,模块化 1 引言 从世界上第一台遥控机械手的诞生至今已有50年了,在这短短的几年里,伴随着计算机、自动控制理论的发展和工业生产的需要及相关技术的进步,机器人的发展已经历了3代[1]: (1)可编程的示教再现型机器人;(2)基于传感器控制具有一定自主能力的机器人;(3)智能机器人.作为机器人的核心部分,机器人控制器是影响机器人性能的关键部分之一.它从一定程度上影响着机器人的发展.目前,由于人工智能、计算机科学、传感器技术及其它相关学科的长足进步,使得机器人的研究在高水平上进行,同时也为机器人控制器的性能提出更高的要求. 对于不同类型的机器人,如有腿的步行机器人与关节型工业机器人,控制系统的综合方法有较大差别,控制器的设计方案也不一样.本文仅讨论工业机器人控制器问题. 2 机器人控制器类型 机器人控制器是根据指令以及传感信息控制机器人完成一定的动作或作业任务的装置,它是机器人的心脏,决定了机器人性能的优劣. 从机器人控制算法的处理方式来看,可分为串行、并行两种结构类型. 2.1 串行处理结构 所谓的串行处理结构是指机器人的控制算法是由串行机来处理.对于这种类型的控制器,从计算机结构、控制方式来划分,又可分为以下几种[2]. (1)单CPU结构、集中控制方式 用一台功能较强的计算机实现全部控制功能.在早期的机器人中,如Hero-I,Robo t-I等,就采用这种结构,但控制过程中需要许多计算(如坐标变换),因此这种控制结构速度较慢. (2)二级CPU结构、主从式控制方式 一级CPU为主机,担当系统管理、机器人语言编译和人机接口功能,同时也利用它的运算能力完成坐标变换、轨迹插补,并定时地把运算结果作为关节运动的增量送到公用内存,供二级CPU读取;二级CPU完成全部关节位置数字控制.这类系统的两个C PU总线之间基本没有联系,仅通过公用内存交换数据,是一个松耦合的关系.对采用更多的CPU进一步分散 ⒇1998-09-03收稿 DOI:10.13973/https://www.360docs.net/doc/a78931584.html, k i.rob ot.1999.01.014

机器人控制器(CM-6)说明书

机器人控制器(CM-6)说明书 注意:本控制器除了采用适配器电源供电方式外,还可以采用电池供电,采用的是SANYO 的12V可充电镍氢电池。而且这种电路设计有个特点:接上适配器时,电池就跟电路断开了,所以就算电池插上了也不会接入电路,有效的保护了电池。D1为电源指示灯。在用电池供电时,注意电池的极性,防止反接。 一、程序的编写和编译 采用WINAVR软件进行编译。安装完之后,打开“Programmers Notepad(WinAVR)”,开始程序的编写。 1. 新建一个工程 2..新建一个c语言源文件并另存为“XX.c”文件,例如main.c

3接下来要把main.c添加到main这个项目中, 4.在main.c中写程序,并保存。

5.makefile的制作。由于WinA VR没有像Keil uVision那样的集成IDE,所以我们需要写一个叫做makefile的文件来管理程序的编译链接。Makefile是脚本文件,一个标准的可执行文件makefile.exe负责解析它并根据脚本内容来调用编译器、连接器或其他的工具。 WinA VR的编译需要一个makefile文件,并需要把这个文件放到当前工程的目录下,这样才能正确编译。Makefile可以直接拷贝本目录下的makefile文件到项目文件夹下,然后用“Programmers Notepad(WinAVR)”打开makefile文件。 修改过程中,只需要修改“TARGET”和“SRC”这两项,把TARGET修改为刚才的源文件(.C文件)的文件名,本例中为“main“,相应地把SRC改为“main.c”即可。修改完之后保存即可。

机器人控制器存在的问题概要

机器人控制器存在的问题 随着现代科学技术的飞速发展和社会的进步,对机器人的性能提出更高的耍求。智能机器人技术的研究已成为机器人领域的主要发展方向,如各种精密装配机器人,力/位置混合控制机器人,多肢体协调控制系统以及先进制造系统中的机器人的研究等。相应的,对机器人控制器的性能也提出了更高的要求。但是,机器人自诞生以来,特别是工业机器人所采用的控制器基本上都是开发者基于自己的独立结构进行开发的,采用专用计箅机、专用机器人语言、专用操作系统、专用微处理器。这样的机器人控制器已不能满足现代工业发展的要求。 串行处理结构控制器的结构封闭,功能单一,且计箅能力差,难以保证实时控制的要求,所以目前绝人多数商用机器人都是釆用单轴PID控制,难以满足机器人控制的高速、高精度的要求。虽然分布式结构在一定层次上是开放的,可以根据需要增加更多的处理器,以满足传感器处理和通讯的需要,但它只是在有限范围内开放。 并行处理结构控制器虽然能从计箅速度上有了很大突破,能保证实时控制的需要,但还存在许多问题。目前的并行处理控制器研究一般集中于机器人运动学、动力学模型的并行处理方面,基于并行算法和多处理器结构的映射特征来设计,即通过分解给定任务,得到若干子任务,列出数据相关流图,实现各子任务在对应处理器上的并行处理。由于并行算法中通讯、同步等内在特点,如程序设计不当则易出现锁死与通讯堵塞等现象。

综合起来,现有机器人控制器存在很多问题,如: (1)开放性差 局限于“专用计算机、专用机器人语言、专用微处理器”的封闭式结构。封闭的控制器结构使其具有特定的功能、适应于特定的环境,不便于对系统进行扩展和改进。 (2)软件独立性差 软件结构及其逻辑结构依赖于处理器硬件,难以在不同的系统间移植。 (3)容错性差 由于并行计算中的数据相关性、通讯及同步等内在特点,控制器的容错性能变差,其中一个处理器出故障可能导致整个系统的瘫痪。 (4)扩展性差 目前,机器人控制器的研究着重于从关节这一级来改善和提高系统的性能。由于结构的封闭性,难以根据需要对系统进行扩展,如增加传感器控制等功能模块。 (5)缺少网络功能 现在几乎所有的机器人控制器都没有网络功能。

KUKA机器人介绍KR16

1C1D 1、库卡机器人本体、控制柜、机器人编程控制器性能参数具体说明 1、1 KR16机器人本体 KR16的外形尺寸及工作范围 1Q27 530 1OB1 ------------ P i

KR16 性能参数 负载(指第6轴最前端P 点负载) 16公斤 手臂/第 1轴转盘负载 10/20 公斤 总负载 46公斤 运动轴数 6 法兰盘(第6轴上) DIN ISO 9409-1-A50 安装位置 地面/墙壁/天花板 重复精度 +/-0、05mm 控制器 KRC2 自重 235公斤 作业空间范围 14、5立方米 每个轴的运动参数 运动范围 运动速度 轴1 +/-185 ° 156°/s 轴2 +35°/-155 ° 156°/s 轴3 + 154° -130 / 156°/s 轴4 +/-350 / 330°/s 轴5 +/-130 / 330°/s 轴6 +/-350 / 615°/s 1、2机器人控制器KRC2 控制柜采用高强材料作为结构框架,内部器件布置简洁明了 ,全部采用总线形式,维护 方便、可靠;控制柜内的冷却按欧洲标准设计制造,元器件与冷却回路隔开,冷却可靠,外部 灰层不会进入控制柜内部。 (1)机器人控制器KRC2外形尺 寸

(2) KRC2性能参数 处理器 库卡(工业)计算机 操作系统 微软 WINDOWS XP 编程及控制 库卡KCP 设计生产标准 DIN EN 292, DIN EN 418, DIN EN 614-1, DIN EN 775, DIN EN 954, DIN EN 50081-2, DIN EN 50082-2, DIN EN 60204-1 保护等级 IP54 工作环境温度 0°45 ° (如果工作环境温度超过 45°需加冷却设备) 控制轴数 6-8个 自重 178公斤 输入电源 3x400V-10% s 3X415V+10% , 49-61 赫兹 负载功率 最大8KVA 保护熔断器 32A, 3只(慢熔型) 与外围设备通讯接口 Ether Net, DevicNet (Interbus, profibus 作为可选项) 至机器人电缆总成 7米(可加长到 15米,或25、35、50米) 噪音等级 (根据 DIN 45635-1) 67dB 性能参数 尺寸(长 x 高 x 厚):330x260x35mm 保护等级:IP54 显示屏:640x480,256 色LCD 彩显,VGA 模式 6D 空间鼠标,使示教动作容易操作 4种工作模式切换旋钮,方便操作与安全 3位人体学始能开关 中/英 /德/法多种语言菜单切换容易 10米控制电缆 开始/停止/紧急停止按钮 G ? ■ 1、3机器人编程控制器

机器人控制系统详解

机器人控制系统详解 如果仅仅有感官和肌肉,人的四肢并不能动作。一方面是因为来自感官的信号没有器官去接收和处理,另一方面也是因为没有器官发出神经信号,驱使肌肉发生收缩或舒张。同样,如果机器人只有传感器和驱动器,机械臂也不能正常工作。原因是传感器输出的信号没有起作用,驱动电动机也得不到驱动电压和电流,所以机器人需要有一个控制系统,用硬件和软件组成一个的控制系统。 机器人控制系统概念 机器人控制系统是指由控制主体、控制客体和控制媒体组成的具有自身目标和功能的管理系统。控制系统意味着通过它可以按照所希望的方式保持和改变机器、机构或其他设备内任何感兴趣或可变化的量。控制系统同时是为了使被控制对象达到预定的理想状态而实施的。控制系统使被控制对象趋于某种需要的稳定状态。 机器人控制系统的功能要求 1、记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。 2、示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教两种。 3、与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。 4、坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。 5、人机接口:示教盒、操作面板、显示屏。 6、传感器接口:位置检测、视觉、触觉、力觉等。 7、位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。 8、故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。机器人控制系统的主要种类 控制系统的任务,是根据机器人的作业指令程序、以及从传感器反馈回来的信号,支配机器人的执行机构去完成的运动和功能。假如机器人不具备信息反馈特征,则为开环控制系统;若具备信息反馈特征,则为闭环控制系统。

KEBA机器人控制器简介

KEBA机器人控制器简介 KEBA (中文名:科控)是一家提供自动控制产品和服务的公司,总部在奥地利(和贝加莱是老乡)。KEBA 成立于1968年,在中国设有分公司,其员工总数不到1000人,2015年营业收入达到1.89亿欧元。公司不大,产品却不俗,在工业、银行、能源等很多行业都有应用。 看到工业机器人市场这块蛋糕,KEBA 也推出了面向机器人自动化应用的产品—— KeMotion[ 1 ] ^{[1]}[1],号称是机器人与机械设备自动化的全套解决方案。其实,KeMotion 就是一个机器人控制系统。KeMotion在中国应用非常广泛,很多机器人厂商均有使用KEBA的控制器,例如埃夫特、埃斯顿等,其它不太知名的小厂家就更多了。即便如此有名,笔者想在公网上找一些KEBA控制器的资料却几乎找不到,看来工业机器人控制这个小圈子太封闭了,笔者试图搅动这潭死水。让人意外的一点是,KEBA 虽然研发机器人控制器,但自己却并不制造机器人,这是否说明本体的利润远远比不上控制器呢?而且像控制器这样的核心被抓在别人手里,机器人厂家想必也是不甘心吧。 本文我们就来看看KEBA的控制器有什么特色。KeMotion 既然是一个系 统,它就包含一系列的软件、硬件、标准、语言等等,我总结了一下,如下表 看着一大堆没见过的英文,不知道国内英语不好的同志怎么想,反正我是 是想死的心都有了。KEBA 的工程师为了把用户搞晕也是做出了不懈的努力, 下面我逐个介绍。首先是看得见摸得着的硬件部分:

控制器KeControl KeControl 是控制器,更准确的说是控制器的CPU 模块,有CP、DU等几种型号。下图中我手里拿着的型号是CP263/X(左图),它比A4 纸瘦长一点,从正面看外表由一段段塑料片组成。你可以把KeControl 看成是一个功能齐全的小电脑(PC —— Personal Computer),它内部有中央处理器、内存和硬盘(由CF卡充当),而且运行着VxWorks 操作系统。KeControl 虽然是一个PC,但是却采用了PLC 的术语,把(我手中的)整个盒子称为“ CPU 模块”。

机器人控制器类型概要

机器人控制器类型 机器人控制器是根据指令以及传感信息控制机器人完成一定的动作或作业任务的装置,它是机器人的心脏,决定了机器人性能的优劣。 从机器人控制算法的处理方式来看,可分为串行、并行两种结构类型。 1、串行处理结构 所谓的串行处理结构是指机器人的控制算法是由串行机来处理。对于这种类型的控制器,从计算机结构、控制方式来划分,又可分为以下几种。 (1)单CPU结构、集中控制方式 用一台功能较强的计算机实现全部控制功能。在早期的机器人中,如Hero-I,Robot-I等,就釆用这种结构,但控制过程中需要许多计算(如坐标变换),而此种控制结构速度较慢。 (2)二级CPU结构、主从式控制方式 一级CPU为主机,担任系统管理、机器人语言编译和人机接口功能,同时也利用它的运算能力完成坐标变换、轨迹插补,并定时地把运算结果作为关节运动的增量送到公用内存,供二级CPU读取;二级CPU完成全部关节位置数字控制。这类系统的两个CPU总线之间基本没有联系,仅通过公用内存交换数据,是一个松耦合的关系。对釆用更多的CPU进一步分散功能是很困难的。比如本世纪70年代生产的

MoLomari机器人(5关节,直流电机驱动)的计箅机系统就属于这种主从式结构。 (3)多CPU结构、分布式控制方式 目前,普遍采用这种上、下位机二级分布式结构,上位机负责整个系统管理以及运动学计算、轨迹规划等。下位机由多CPU组成,每个CPU控制一个关节运动,这些CPU和主控机联系是通过总线形式的紧耦合。这种结构的控制器工作速度和控制性能明显提高。但这些多CPU系统共有的特征都是针对具体问题而采用的功能分布式结构,即每个处理器承担固定任务。目前世界上大多数商品化机器人控制器都是这种结构。 控制器计算机控制系统中的位置控制部分,几乎无例外地采用数字式位置控制。 以上几种类型的控制器都是采用串行机來计算机器人控制算法。它们存在一个共同的弱点:计算负担重、实时性差。所以大多采用离线规划和前馈补偿解耦等方法來减轻实时控制中的计算负担。当机器

《国产灵动机器人控制器》简介

灵动机器人控制器开发者姓名华磊 系统功能串联六轴机器人控制开发日期2011.10~2013.9 Q Q 0 E m a i l 介绍视频/_6

目录 第一章绪论............................................................................................ 错误!未定义书签。 1.1简介............................................................................................ 错误!未定义书签。 1.2开发历史回顾............................................................................ 错误!未定义书签。 1.3机器人测试视频查看网址........................................................ 错误!未定义书签。 1.4灵动机器人控制器主要参数.................................................... 错误!未定义书签。第二章灵动机器人控制器.................................................................... 错误!未定义书签。 2.1控制器概述................................................................................ 错误!未定义书签。 2.2 多轴联动控制器的控制扩展卡硬件....................................... 错误!未定义书签。 2.3 多轴联动控制器的用户软件................................................... 错误!未定义书签。 .................................................................................................. 错误!未定义书签。 .................................................................................................. 错误!未定义书签。 .................................................................................................. 错误!未定义书签。 2.4 多轴联动控制器的驱动程序................................................... 错误!未定义书签。 2.5 多轴联动控制器的FPGA程序............................................... 错误!未定义书签。第三章控制系统测试............................................................................ 错误!未定义书签。 3.1响应实时性和计算耗时分析.................................................... 错误!未定义书签。 3.2 直线运动MOVL测试 ............................................................. 错误!未定义书签。第四章六轴机器人机械本体................................................................ 错误!未定义书签。 4.1 0.2KG简易六轴机器人机械本体............................................ 错误!未定义书签。 4.2 6KG六轴机器人机械本体....................................................... 错误!未定义书签。 4.3 6KG机器人机械本体强度和刚度的有限元分析 ................... 错误!未定义书签。 .................................................................................................. 错误!未定义书签。 .................................................................................................. 错误!未定义书签。 .................................................................................................. 错误!未定义书签。 .................................................................................................. 错误!未定义书签。 .................................................................................................. 错误!未定义书签。 4.4 6KG机器人机械测量............................................................... 错误!未定义书签。

工业机器人概述

工业机器人概述 摘要:工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动生产设备。 关键词:工业机器人;由来;发展;应用领域 0 引言 工业机器人是面向工业领域的多关节 机械手或多自由度的机器人,是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的专门系统。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术 制定的原则纲领行动。因其灵活性高、输出功率大、定位精确的特点,工业机器人被广泛应用于制造业的各个环节。以其高效 高质、稳定的运转工作,工业机器人为所在行业的高效生产和稳定质量起到重要作用。 图1 工业机器人 1 工业机器人的由来 1920年捷克作家卡雷尔·查培克在其剧本《罗萨姆的万能机器人》中最早使用机器人一词,剧中机器人“Robot”这个词的本意是苦力,即剧作家笔下的一个具有人的外表,特征和功能的机器,是一种人造的劳力。它是最早的工业机器人设想。20世纪40 年代中后期,机器人的研究与发明得到了更多人的关心与关注。50年代以后,美国橡树岭国家实验室开始研究能搬运核原料的遥控操纵机械手,如图0.2所示,这是一种主从型控制系统,主机械手的运动。系统中加入力反馈,可使操作者获知施加力的大小,主从机械手之间有防护墙隔开,操作者可通过观察窗或闭路电视对从机械手操作机进行有效的监视,主从机械手系统的出现为机器人的产生为近代机器人的 设计与制造作了铺垫。 1954年美国戴沃尔最早提出了工业机 器人的概念,并申请了专利。该专利的要点是借助伺服技术控制机器人的关节,利用人手对机器人进行动作示教,机器人能实现动作的记录和再现。这就是所谓的示教再现机器人。现有的机器人差不多都采用这种控制方式。1959年UNIMATION公司的第一台工业机器人在美国诞生,开创了机器人发展的新纪元。UNIMATION的VAL(very advantage language)语言也成为机器人领域最早的编程语言在各大学及科研机构中传播,也是各个机器人品牌的最基本范本。其机械结构也成为行业的模板。其后,UNIMATION公司被瑞士STAUBLI收购,并利用STAUBLI的技术优势,进一步得以改良发展。日本第一台机器人由KAWASAKI从UNIMATION进口,并由kawasaki模仿改进在国内推广。

机器人控制系统概述

机器人控制系统简述 摘要:机器人控制系统是机器人的大脑,是决定机器人功能和性能的主要因素。机器人控制技术的主要任务就是控制工业机器人在工作空间中的运动位置、姿态和轨迹、操作顺序及动作的时间等。其系统具有编程简单、软件菜单操作、友好的人机交互界面、在线操作提示和使用方便等特点。根据不同的分类方法,机器人控制方式可以有不同的分类。 关键字:控制系统;控制特点;控制要求;控制方法 机器人技术诞生于20世纪,发展比较快,而且应用极其广泛,应用于机械加工生产,科学研究,国防等方面。其对人们的生产生活起到了巨大的影响,在生活与生产中早就成为了必不可少的生产力,加快了人类的进步和社会的发展,促进了国家先进生产力的提高。机器人技术作为21世纪最先进的技术之一,它的的发展势必给人类的生产生活带来新的变革。而机器人控制系统作为机器人系统的主要组成部分,其的重要程度自然不言而喻。 1.机器人控制系统的概念 机器人控制系统是指由控制主体、控制客体和控制媒体组成的具有自身目标和功能的管理系统。控制系统意味着通过它可以按照所希望的方式保持和改变机器、机构或其他设备内任何感兴趣或可变化的量。控制系统同时是为了使被控制对象达到预定的理想状态而实施的。控制系统使被控制对象趋于某种需要的稳定状态。 2.机器人控制系统的特点 机器人的控制技术是在传统机械系统的控制技术的基础上发展起来的,因此两者之间并无根本的不同。但机器人控制系统也有许多特殊之处。其特点如下: ⑴机器人控制系统本质上是一个非线性系统。引起机器人非线性因素很多,机器人的结构、传动件、驱动元件等都会引起系统的非线性。 ⑵机器人控制系统是由多关节组成的一个多变量控制系统,且各关节间具有耦合作用。具体表现为某一个关节的运动,会对其他关节产生动力效应,每一个关节都要受到其他关节运动所产生的扰动。因此工业机器人的控制中经常使用前馈、补偿、解耦和自适应等复杂控制技术。 ⑶机器人系统是一个时变系统,其动力学参数随着关节运动位置的变化而变化。 ⑷较高级的机器人要求对环境条件、控制指令进行测定和分析,采用计算机建立庞大的信息库,用人工智能的方法进行控制、决策、管理和操作,按照给定的要求,自动选择最佳控制规律。 3.机器人控制系统的基本要求 从使用的角度讲,机器人是一种特殊的自动化设备,对其控制有如下要求: ⑴多轴运动的协调控制,以产生要求的工作轨迹。因为机器人的手部的运动是所有关节运动的合成运动,要使手部按照规定的规律运动,就必须很好地控制各关节协调动作,包括运动轨迹、动作时序的协调。 ⑵较高的位置精度,很大的调速范围。除直角坐标式机器人外,机器人关节上的位

机器人技术概述

机器人技术概述目录 一.工业机器人概述 二.工业机器人概念与组成﹑ 三.工业机器人的发展趋势 四.工业机器人的需求与前景 五.致谢 六.参考文献

工业机器人概述 机器人(Robot)是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。有些人认为,最高级的机器人要做的和人一模一样,其实非也。实际上,机器人是利用机械传动、现代微电子技术组合而成的一种能模仿人某种技能的机械电子设备,他是在电子、机械及信息技术的基础上发展而来的。然而,机器人的样子不一定必须像人,只要能独立完成一些人类的技能或有一定危险性的工作,就属于机器人大家族的成员。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。 一工业机器人的现状 1、工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的6.5万美元。 2、机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化;由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。 3、工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构;大大提高了系统的可靠性、易操作性和可维修性。 4、机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制;多传感器融合配置技术在产品化系统中已有成熟应用。 5、虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制,如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。 6、当代遥控机器人系统的发展特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系

国外的工业机器人控制系统介绍

国外的工业机器人都采用基于各自控制结构的控制软件,同时为了便于用户进行二次开发,都提供各自的二次开发包。 1. ABB机器人 ●系统构成 ●系统运行平台 ●主控制器特点 IRC5控制器(灵活型控制器)由一个控制模块和一个驱动模块组成,可选增一个过程模块以容纳定制设备和接口,如点焊、弧焊和胶合等。配备这三 种模块的灵活型控制器完全有能力控制一台6轴机器人外加伺服驱动工件定 位器及类似设备。如需增加机器人的数量,只需为每台新增机器人增装一个驱 动模块,还可选择安装一个过程模块,最多可控制四台机器人在MultiMove 模式下作业。各模块间只需要两根连接电缆,一根为安全信号传输电缆,另一 根为以太网连接电缆,供模块间通信使用,模块连接简单易行。 控制模块作为IRC5的心脏,自带主计算机,能够执行高级控制算法,为多达36个伺服轴进行MultiMove路径计算,并且可指挥四个驱动模块。控制

模块采用开放式系统架构,配备基于商用Intel主板和处理器的工业PC机以及PCI总线。由于采用标准组件,用户不必担心设备淘汰问题,随着计算机处理技术的进步能随时进行设备升级。 ●通信方式 完善的通信功能是ABB机器人控制系统的特点。其IRC5控制器的PCI扩展槽中可以安装几乎任何常见类型的现场总线板卡,包括满足ODV A标准可使用众多第三方装置的单信道DeviceNet,支持最高速率为12Mbps的双信道ProfibusDP 以及可使用铜线和光纤接口的双信道Interbus. ●模块化 控制模块作为IRC5的心脏,自带主计算机,能够执行高级控制算法,为多达36个伺服轴进行MultiMove路径计算,并且可指挥四个驱动模块。控制模块采用开放式系统架构,配备基于商用Intel主板和处理器的工业PC机以及PCI总线。由于采用标准组件,用户不必担心设备淘汰问题,随着计算机处理技术的进步能随时进行设备升级。 ●可扩展性 ●软件功能 ●交互性 基于PC的操作

相关文档
最新文档