二次函数交点式的代数方法

二次函数交点式的代数方法

二次函数交点式的代数方法

解:1、交点式:设(x1, 0)、(x2 ,0)是二次函数与x轴的交点

则,可设二次函数: y=a(x-x1)(x-x2)

例如:已知,二次函数与x轴相交于(-1, 0) 和(5,0)并经过点(4,-10), 求这个二次函数解析式

解:设所求的二次函数: y=a(x+1)(x-5) 将点(4,-10)代入y=a(x+1)(x-5)

即:-10=a*5*(-1) 得:a=2

所以,所求的二次函数: y=2(x+1)(x-5) 即:y=2x2-8x-10

1、2014二次函数与代数综合题题(学生版)

二次函数与代数综合题 一、二次函数与一次函数关系 (相交,相切,相离) 1(基础练习).已知抛物线322--=x x y . (1)它与x 轴的交点的坐标为_______ (2)将该抛物线在x 轴下方的部分(不包含与x 轴的交点)记为G ,若直线b x y +=与G 只有一个公共点,则b 的取值范围是_______. 1.(相切) 已知抛物线C 1:22y x x =-的图象如图所示,把C 1的图象沿y 轴翻折,得到 抛物线C 2的图象,抛物线C 1与抛物线C 2的图象合称图象C 3. (1)求抛物线C 1的顶点A 坐标,并画出抛物线C 2的图象; (2)若直线y kx b =+与抛物线2(0)y ax bx c a =++≠有且只有一个交点时,称直线与抛物线相切. 若直线y x b =+与抛物线C 1相切,求b 的值; (3)结合图象回答,当直线y x b =+与图象C 3 有两个交点时,b 的取值范围.

2. (相交)在平面直角坐标系xOy 中,二次函数2(3)3(0)y mx m x m =+-->的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C 。 (1)求点A 的坐标; (2)当45ABC ∠=?时,求m 的值; (3)已知一次函数y kx b =+,点P (n ,0)是x 轴上的一个动点,在(2)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数 2(3)3(0)y mx m x m =+-->的图象于N 。若只有当22n -<<时,点 M 位于点N 的上方,求这个一次函数的解析式。

3.在平面直角坐标系x O y 中,抛物线 222--=mx mx y (0≠m )与y 轴交于点A ,其对称轴与x 轴交于点B 。 (1)求点A ,B 的坐标; (2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的解析式; (3)若该抛物线在12-<<-x 这一段位于直线l 的上方,并且在32<

二次函数的特殊形式专题(交点式)

《二次函数的特殊形式》专题 班级 姓名 人的心灵在不同的时期有着不同的内容。 2.用十字相乘法分解因式: ①322 --x x ②342 ++x x ③6822 ++x x 3.若一元二次方程02 =++c bx ax 有两实数根21x x 、,则抛物线c bx ax y ++=2 与x 轴交点坐标是 . 【自主探究】 1.根据上面第3题的结果,改写下列二次函数: ①322 --=x x y ②342 ++=x x y ③6822 ++=x x y = = = 2.求出上述抛物线与x 轴的交点坐标: ①322 --=x x y ②342 ++=x x y ③6822 ++=x x y 归纳: ⑴若二次函数c bx ax y ++=2 与x 轴交点坐标是(01,x )、(02,x ),则该函数还可以表 示为 的形式; ⑵反之若二次函数是()()21x x x x a y --=的形式,则该抛物线与 x 轴的交点坐标 是 ,故我们把这种形式的二次函数关系式称为 式. ⑶二次函数的图象与x 轴有2个交点的前提条件是 ,因此这也 是 式存在的前提条件.

【练习】把下列二次函数改写成交点式,并写出它与坐标轴的交点坐标. ⑴232+-=x x y ⑵232-+-=x x y ⑶4622+-=x x y 与x 轴的交点坐标是: 与y 轴的交点坐标是: 例1.已知二次函数的图象与x 轴的交点坐标是(3,0),(1,0),且函数的最值是3. ⑴求对称轴和顶点坐标. ⑵在下列平面直角坐标系中画出它的简图. ⑶求出该二次函数的关系式. ⑷若二次函数的图象与x 轴的交点坐标是(3,0),(-1,0),则对称轴是 ; 若二次函数的图象与x 轴的交点坐标是(-3,0),(1,0),则对称轴是 ; 若二次函数的图象与x 轴的交点坐标是(-3,0),(-1,0),则对称轴是 .

二次函数与几何综合--面积问题

二次函数与几何综合--面积问题 知识点睛 1.“函数与几何综合”问题的处理原则:_________________,__________________. 2.研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________ . 2___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息. 3.二次函数之面积问题的常见模型①割补求面积——铅垂法: ②转化法——借助平行线转化:若S △ABP =S △ABQ ,若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,当P ,Q 在AB 异侧时,PQ ∥AB .AB 平分PQ . 例题示范例1:如图,抛物线y =ax 2+2ax -3a 与x 轴交于A ,B 两点(点A 在点 B 的左侧),与y 轴交于点 C ,且OA =OC ,连接AC . (1)求抛物线的解析式. (2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值. (3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A ,B , E , F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的 点F 的坐标;若不存在,请说明理由. 第一问:研究背景图形 【思路分析】 读题标注,注意到题中给出的表达式中各项系数都只含有字母a ,可以求解A (-3,0),B (1,0),对称轴为直线x =-1;结合题中给出的OA =OC ,可得C (0,-3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】 解:(1)由2 23y ax ax a =+-(3)(1) a x x =+-可知(30)A -,,(10)B ,, ∵OA OC =, ∴(03)C -,, 将(03)C -,代入2 23y ax ax a =+-, 第二问:铅垂法求面积 【思路分析】 (1)整合信息,分析特征: 由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在1()2 APB B A S PM x x =??-△

二次函数交点式的研究 专题

二次函数交点式 【问题提出】已知二次函数经过三点13,24A ?? ??? ,(1,3)B -,(2,3)C ,求解析式. 法:由,B C 的纵坐标相等知,1 1x =-,22x =是方程()30f x -=的两个根,可设 零点式()3(1)(2)f x a x x -=+-. 把A 代入,得1a =,从而()(1)(2)3f x x x =+-+,化简即得2 ()1f x x x =-+. 【探究拓展】 探究1:如图,已知二次函数c bx ax y ++=2(a ,b ,c 为实数,0≠a )的图象过点)2,(t C ,且与x 轴交于A ,B 两点,若BC AC ⊥,则a 的值 为 . 探究2:设函数f (x )=x 2+2bx +c (c

c +12<1?-30, ∴f (m -4)的符号为正. 变式1:已知函数c bx ax x f ++=2)(,且c b a >>,0=++c b a ,则以下四个命题中真命题的序号为__________. (1)()1,0∈?x ,都有0)(>x f ;(2)()1,0∈?x ,都有0)(x f . 变式2:已知函数c bx ax x f ++=2)(,且c b a >>,0=++c b a ,集合{}0)(<=m f m A ,则以下四个命题真命题的序号为__________. (1)A m ∈?,都有0)3(>+m f ;(2)A m ∈?,都有0)3(<+m f ; (3)A m ∈?0,使得0)3(0=+m f ;(4)A m ∈?0,使得0)3(0<+m f . 探究3:设二次函数2 ()(0)f x ax bx c a =++>,方程()0f x x -=的两个根12,x x 满足 121 0x x a <<< . (1)当1 (0,)x x ∈时,证明:1 ()x f x x <<; (2)设函数()f x 的图象关于直线0 x x =对称,证明:10 2 x x < . 【答案】(1)欲证1 ()x f x x <<,只须证1 0()f x x x x <-<-,

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

二次函数交点式练习题

二次函数交点式练习题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

二次函数交点式练习题 一、选择 1.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于() (A )8(B )14 (C )8或14(D )-8或-14 2.二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取() (A )12(B )11(C )10(D )9 3.若00,△>0 B.a>0,△<0 C.a<0,△<0 D.a<0,△<0 5.若抛物线 22y x x a =++的顶点在x 轴的下方,则a 的取值范围是( ) A.1a > B.1a < C.1a ≥ D.1a ≤ 二、填空 1、已知一条抛物线的开口大小、方向与2x y =均相同,且与x 轴的交点坐标是 (-2,0)、(-3,0),则该抛物线的关系式是. 2.已知一条抛物线的形状与22x y =相同,但开口方向相反,且与x 轴的交点坐 标是(1,0)、(4,0),则该抛物线的关系式是. 3.已知一条抛物线与x 轴的两个交点之间的距离为3,其中一个交点坐标是 (1,0)、则另一个交点坐标是,该抛物线的对称轴是. 4.二次函数()()43---=x x y 与x 轴的交点坐标是,对称轴是. 5.已知二次函数的图象与x 轴的交点坐标是(-1,0),(5,0),且函数的最值 是-3.则该抛物线开口向,当x 时,y 随的增大而增大. 6.请写出一个开口向下、与x 轴的交点坐标是(1,0)、(-3,0)的二次函数关系式:. /7、把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析 式为(???). 8.已知二次函数)1(3)1(2-++-=a a x x a y 的图象过原点则a 的值为 9.二次函数432--=x x y 关于Y 轴的对称图象的解析式为 关于X 轴的对称图象的解析式为 关于顶点旋转180度的图象的解析式为 10.二次函数y=2(x+3)(x-1)的x 轴的交点的个数有__个,交点坐标为 _______。 11.已知二次函数222--=x ax y 的图象与X 轴有两个交点,则a 的取值范围是 12.二次函数y=(x-1)(x+2)的顶点为___,对称轴为_。

2018北京二次函数代数综合题例讲(解析版)

二次函数的图象和性质重点落实什么能力? 2019北京中考26题重点题型------------ 必须会!!!!!! 例1 在平面直角坐标系xOy 中,抛物线 2443(0)y ax ax a a =-+-≠的顶点为A . (1)求顶点A 的坐标; (2)过点(0,5)且平行于x 轴的直线l ,与抛物线 2443(0)y ax ax a a =-+-≠交于B ,C 两点. ①当2a =时,求线段BC 的长; ②当线段BC 的长不小于6时,直接写出a 的取值范围. 代数变形能力:2 443(0)y ax ax a a =-+-≠通过配方转化为2 (2)(0)3y a x a =-≠- 几何作图能力:

考点: 二次函数的性质 分析: (1)配方得到y=ax2-4ax+4a-3=a (x-2)2-3,于是得到结论; (2)①当a=2时,抛物线为y=2x2-8x+5,如图.令y=5得到2x2-8x+5=5,解方程即可得到结论;②令y=5得到ax2-4ax+4a-3=5,解方程即可得到结论. 解答: (1)∵y =ax 2?4ax +4a ?3=a (x ?2)2?3, ∴顶点A 的坐标为(2,?3); (2)①当a =2时,抛物线为y =2x 2?8x +5,如图。 令y =5,得 2x 2?8x +5=5, 解得,x 1=0,x 2=4, ∴ a 2a 4线段BC 的长为4, ②令y =5,得ax 2?4ax +4a ?3=5, 解得,x 1= a a a 222 ,x 2=a a a 22-2 ∴线段BC 的长为 a 2a 4 ∵线段BC 的长不小于6,

《二次函数图像和性质(交点式)》专题

《二次函数与坐标轴交点》专题 2014年( )月( )日 班级: 姓名 大多数人想要改造这个世界,但却罕有人想改造自己。 1.直线42-=x y 与y 轴交于点 ,与x 轴交于点 。 我们知道:①一次函数与x 轴的交点的求法 ②一次函数与y 轴的交点的求法 那么:③二次函数与x 轴的交点的求法 ④二次函数与y 轴的交点的求法 【归纳】(1)函数与x 轴y 轴交点的求法是:__________ ______________________ (2)反比例函数与坐标轴没有交点的原因是______________________________ 2.一元二次方程02 =++c bx ax ,当Δ 时,方程有两个不相等的实数根; 当Δ 时,方程有两个相等的实数根;当Δ 时,方程没有实数根; 3.解下列方程 (1)0322=--x x (2)0962=+-x x (3)0322 =+-x x 5.对比第3题各方程的解,你发现什么? 一元二次方程02 =++c bx ax 的实数根就是对应的二次函数c bx ax y ++=2 与x 轴交 点的 .(即把0=y 代入c bx ax y ++=2 )

1. 二次函数232 +-=x x y ,当x =1时,y =______;当y =0时,x =______. 2.抛物线342+-=x x y 与x 轴的交点坐标是 ,与y 轴的交点坐标是 ; 3.二次函数642 +-=x x y ,当x =________时,y =3. 4.如图,一元二次方程02=++c bx ax 的解为 。 5.如图,一元二次方程32 =++c bx ax 的解为 。 6. 已知抛物线922 +-=kx x y 的顶点在x 轴上,则k =____________. 7.已知抛物线122-+=x kx y 与x 轴有两个交点,则k 的取值范围是_________ (4) (5)

打印版-圆与二次函数综合题精练(带答案)

圆与二次函数综合题 1、已知:二次函数y=x2-kx+k+4的图象与y轴交于点c,且与x轴的正半轴交于A、B两点(点A 在点B左侧)。若A、B两点的横坐标为整数。 (1)确定这个二次函数的解析式并求它的顶点坐标;(2)若点D的坐标是(0,6),点P(t,0)是线段AB上的一个动点,它可与点A重合,但不与点B重合。设四边形PBCD的面积为S,求S与t的函数关系式; (3)若点P与点A重合,得到四边形ABCD,以四边形ABCD的一边为边,画一个三角形,使它的面积等于四边形ABCD的面积,并注明三角形高线的长。再利用“等底等高的三角形面积相等”的知识,画一个三角形,使它的面积等于四边形ABCD的面积(画示意图,不写计算和证明过程)。 2、(1)已知:关于x、y的方程组有两个实数解,求m的取值范围; (2)在(1)的条件下,若抛物线y=-(m-1)x2+(m-5)x+6与x轴交于A、B两点,与y轴交于点C,且△ABC的面积等于12,确定此抛物线及直线y=(m+1)x-2的解析式; (3)你能将(2)中所得的抛物线平移,使其顶点在(2)中所得的直线上吗?请写出一种平移方法。 3、已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数。 (1)求证:不论m取何实数,这个二次函数的图像与x轴必有两个交点;(2)设这个二次函数的 图像与x轴交于点A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式。 4、已知二次函数y1=x2-2x-3. (1)结合函数y1的图像,确定当x取什么值时,y1>0,y1=0,y1<0; (2)根据(1)的结论,确定函数y2= (|y1|-y1)关于x的解析式; (3)若一次函数y=kx+b(k 0)的图像与函数y2的图像交于三个不同的点,试确定实数k与b应满足的条件。 5、已知:如图,直线y= x+ 与x轴、y轴分别交于A、B两点,⊙M经过原点O及A、 B两点。 (1)求以OA、OB两线段长为根的一元二次方程; (2)C是⊙M上一点,连结BC交OA于点D,若∠COD=∠CBO, 写出经过O、C、A三点的二次函数的解析式; (3)若延长BC到E,使DE=2,连结EA,试判断直线EA与 ⊙M的位置关系,并说明理由。(河南省) 6、如图,已知点A(tan ,0)B(tan ,0)在x轴正半轴上,点A在点B的左 边,、是以线段AB为斜边、顶点C在x轴上方的Rt△ABC的两个锐角。 (1)若二次函数y=-x2- 5/2kx+(2+2k-k2)的图像经过A、B两点,求它的解析式; (2)点C在(1)中求出的二次函数的图像上吗?请说明理由。(陕西省)

一轮二次函数代数综合题)

二次函数代数综合题 1.已知直线m x y +=和抛物线c bx x y ++=2都经过点A (1,0),B (3,2). (1)求m 的值和抛物线的解析式; (2) 结合函数图象,求不等式m x c bx x +>++2 的解集. 2.如图,二次函数的图象经过点D (0,39 7),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6. (1)求二次函数的解析式; (2)在该抛物线的对称轴上找一点P ,使P A +PD 最小,求出点P 的坐标. 3.已知抛物线2442y ax ax a =-+-,其中a 是常数. (1)求抛物线的顶点坐标; (2)若25 a >,且抛物线与x 轴交于整数点(坐标为整数的点),求此抛物线的解析式. 4.在平面直角坐标系xOy 中,抛物线2y mx n =++经过P ,A (0,2)两点. (1)求此抛物线的解析式; (2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线l ,直线l 与抛 物线的对称轴交于C 点,求直线l 的解析式; (3)在(2)的条件下,求到直线OB 、OC 、BC 距离相等的点的坐标.

5.已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4. (1)探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数. (2)设二次函数y 的图象与x 轴的交点为A (x 1,0),B (x 2,0),且21x +22x =5,与 y 轴的交点为C ,它的顶点为M ,求直线CM 的解析式. 6.已知抛物线223 4 y x kx k =+-(k 为常数,且k >0). (1)证明:此抛物线与x 轴总有两个交点; (2)设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别为OM 、ON ,且1123ON OM -=,求k 的值. 7. 已知二次函数y =x 2-(2m +4)x +m 2-4(x 为自变量)的图象与y 轴的交点在原点下方,与x 轴交于A ,B 两点,点A 在点B 的左边,且A ,B 两点到原点的距离AO 、OB ?满足3(?OB -AO )=2AO ·OB ,直线y =kx +k 与这个二次函数图象的一个交点为P ,且锐角∠POB ?的正切值4. (1)求m 的取值范围;(2)求这个二次函数的解析式;(3)确定直线y =kx +k 的解析式. 8.已知:二次函数y =2(32)220(0)mx m x m m -+++=>. (1)求证:此二次函数的图象与x 轴有两个交点; (2)设函数图象与x 轴的两个交点方程的分别为(1x ,0),(2x ,0)(其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式; (3)在(2)的条件下,结合函数的图象回答:当自变量m 满足什么条件时,2y m ≤.

4.二次函数与代数的综合

2014年中考解决方案二次函数与代数的综合

内容基本要求略高要求较高要求二次函数 能结合实际问题 情境了解二次函 数的意义;会用描 点法画出二次函 数的图象 能通过分析实际问题的情境确定二次函数的表 达式;能从图象上认识二次函数的性质;会根据 二次函数的解析式求其图象与坐标轴的交点坐 标,会确定图象的顶点、开口方向和对称轴;会 利用二次函数的图象求一元二次方程的近似解 能用二次函数解决 简单的实际问题; 能解决二次函数与 其他知识综结合的 有关问题 一、与一次函数只有一个交点 ?考点说明:二次函数一与次函数有交点问题,解法是联系解析式,组成关于x的二次方程,然后求解.如果只有一个交点,说明△=0,一次函数与二次函数相切;但是如果题目中给出的是直线,一定要注意是否有x a =的直线. 【例1】(2013年朝阳二模)已知关于x的一元二次方程2(4)10 x m x m --+-=. (1)求证:无论m取何值,此方程总有两个不相等的实数根; (2)此方程有一个根是3,在平面直角坐标系xOy中,将抛物线2(4)1 y x m x m =--+-向右平移3个单位,得到一个新的抛物线,当直线y x b =+与这个新抛物线有且只有一个公共点时,求b的值. 例题精讲 二次函数与代数的综合 中考说明

二、与x 轴的交点为整数 ?考点说明:二次函数与x 轴的交点问题是令0y =,解关于x 的二次方程,用含参量的未知数表示x ,然后用变量分离表示出x ,最后用整除解决问题. 【例2】 (2013年顺义区一模)已知关于x 的方程2 (32)220mx m x m -+++= (1)求证:无论m 取任何实数时,方程恒有实数根. (2)若关于x 的二次函数2 (32)22y mx m x m =-+++的图象与x 轴两个交点的横坐标均为正 整数,且m 为整数,求抛物线的解析式. 【巩固】(2011年昌平一模)已知二次函数22(1)(31)2y k x k x =---+. ⑴二次函数的顶点在x 轴上,求k 的值; ⑵若二次函数与x 轴的两个交点A 、B 均为整数点(坐标为整数的点),当k 为整数时,求A 、B 两点的坐标.

第7讲-二次函数与其它代数知识综合

内容 基本要求 略高要求 较高要求 二次函数 1.能根据实际情境了解二次函数的意义; 2.会利用描点法画出二次函数的图像; 1.能通过对实际问题中的情境分析确定二次函数的表达式; 2.能从函数图像上认识函数的性质; 3.会确定图像的顶点、对称轴和开口方向; 4.会利用二次函数的图像求出二次方程的近似解; 1.能用二次函数解决简单的实际问题; 2.能解决二次函数与其他知识结合的有关问题; 一、二次函数与一次函数的联系 一次函数()0y kx n k =+≠的图像l 与二次函数()20y ax bx c a =++≠的图像G 的交点,由方程组2 y kx n y ax bx c =+??=++? 的解的数目来确定: ①方程组有两组不同的解时?l 与G 有两个交点; ②方程组只有一组解时?l 与G 只有一个交点; ③方程组无解时?l 与G 没有交点. 二、二次函数与方程、不等式的联系 1.二次函数与一元二次方程的联系: 1.直线与抛物线的交点: (1)y 轴与抛物线2y ax bx c =++的交点为(0, c ). (2)与y 轴平行的直线x h =与抛物线2y ax bx c =++有且只有一个交点(h ,2ah bh c ++). (3)抛物线与x 轴的交点:二次函数2y ax bx c =++的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程20ax bx c ++=的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点?0?>?抛物线与x 轴相交; ②有一个交点(顶点在x 轴上)?0?=?抛物线与x 轴相切; ③没有交点?0?

二次函数的交点式

二次函数之交点式 【课前自习】 2.用十字相乘法分解因式: ①322 --x x ②342 ++x x ③6822 ++x x 3.若一元二次方程02 =++c bx ax 有两实数根21x x 、,则抛物线c bx ax y ++=2 与x 轴 交点坐标是 . 【课堂学习】 一、探索归纳: 1.根据《课前自习》第3题的结果,改写下列二次函数: ①322 --=x x y ②342 ++=x x y ③6822 ++=x x y = = = 2.求出上述抛物线与x 轴的交点坐标: ①322 --=x x y ②342 ++=x x y ③6822 ++=x x y 坐标: 3.你发现什么? 4.归纳: ⑴若二次函数c bx ax y ++=2 与x 轴交点坐标是(01,x )、(02,x ),则该函数还可以 表示为 的形式; ⑵反之若二次函数是()()21x x x x a y --=的形式,则该抛物线与x 轴的交点坐标是 ,故我们把这种形式的二次函数关系式称为 式. ⑶二次函数的图象与x 轴有2个交点的前提条件是 ,因此这也 是 式存在的前提条件.

练习.把下列二次函数改写成交点式,并写出它与坐标轴的交点坐标. ⑴232 +-=x x y ⑵232 -+-=x x y ⑶4622 +-=x x y 与x 轴的交点坐标是: 与y 轴的交点坐标是: 二、典型例题: 例1.已知二次函数的图象与x 轴的交点坐标是(3,0),(1,0),且函数的最值是3. ⑴求对称轴和顶点坐标. ⑶求出该二次函数的关系式. ⑷若二次函数的图象与x ,则对称轴是 ; 若二次函数的图象与x 轴的交点坐标是(-3,0),(1,0),则对称轴是 ; 若二次函数的图象与x 轴的交点坐标是(-3,0),(-1,0),则对称轴是 . 归纳:若抛物线c bx ax y ++=2 与x 轴的交点坐标是(01,x )、(02, x )则,对称轴是 ,顶点 坐标是【拓展提升】 已知二次函数的图象与x 轴的交点坐标是(⑴求对称轴和顶点坐标. ⑶求出该二次函数的关系式.

专题:二次函数与代数综合题(解析版)

专题:二次函数与代数综合题 【典例1】(2019?自贡)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点. (1)求抛物线C函数表达式; (2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标; (3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y=17 4 的距离?若存在,求出定点F的坐标;若不存在,请说明理由. 【点拨】(1)利用待定系数法,将A,B的坐标代入y=ax2+2x+c即可求得二次函数的解析式; (2)过点M作MH⊥x轴于H,交直线AB于K,求出直线AB的解析式,设点M(a,﹣a2+2a+3),则K(a,a+1),利用函数思想求出MK的最大值,再求出△AMB面积的最大值,可推出此时平行四边形MANB的面积S及点M的坐标; (3)如图2,分别过点B,C作直线y=的垂线,垂足为N,H,设抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离,其中F(1,a),连接BF,CF,则可根据BF=BN,CF=CN两组等量关系列出关于a的方程组,解方程组即可. 【解答】解:(1)由题意把点(﹣1,0)、(2,3)代入y=ax2+2x+c, 得,, 解得a=﹣1,c=3, ∴此抛物线C函数表达式为:y=﹣x2+2x+3; (2)如图1,过点M作MH⊥x轴于H,交直线AB于K,

将点(﹣1,0)、(2,3)代入y=kx+b中, 得,, 解得,k=1,b=1, ∴y AB=x+1, 设点M(a,﹣a2+2a+3),则K(a,a+1), 则MK=﹣a2+2a+3﹣(a+1) =﹣(a﹣)2+, 根据二次函数的性质可知,当a=时,MK有最大长度, ∴S△AMB最大=S△AMK+S△BMK =MK?AH+MK?(x B﹣x H) =MK?(x B﹣x A) =××3 =, ∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时, S最大=2S△AMB最大=2×=,M(,); (3)存在点F, ∵y=﹣x2+2x+3 =﹣(x﹣1)2+4, ∴对称轴为直线x=1, 当y=0时,x1=﹣1,x2=3, ∴抛物线与点x轴正半轴交于点C(3,0), 如图2,分别过点B,C作直线y=的垂线,垂足为N,H, 抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离,设F(1,a),连接BF,CF, 则BF=BN=﹣3=,CF=CH=,

二次函数的特殊形式

6.3.3二次函数的特殊形式 【学习目标】 1.经历探索二次函数交点式的过程,体会方程与函数之间的联系; 2.渗透数形结合的数学思想. 【课前预习】 2.用十字相乘法分解因式: ①322 --x x ②342 ++x x ③6822 ++x x 3.若一元二次方程02 =++c bx ax 有两实数根21x x 、,则抛物线c bx ax y ++=2 与x 轴 交点坐标是 . 一、探索归纳: 1.根据《课前预习》第3题的结果,改写下列二次函数: ①322 --=x x y ②342 ++=x x y ③6822 ++=x x y = = = 2.求出上述抛物线与x 轴的交点坐标: ①322 --=x x y ②342 ++=x x y ③6822 ++=x x y 坐标: 3.你发现什么? 4.归纳: ⑴若二次函数c bx ax y ++=2 与x 轴交点坐标是(01,x )、(02,x ),则该函数还可以 表示为 的形式; ⑵反之若二次函数是()()21x x x x a y --=的形式,则该抛物线与x 轴的交点坐标是 ,故我们把这种形式的二次函数关系式称为 式. ⑶二次函数的图象与x 轴有2个交点的前提条件是 ,因此这也 是 式存在的前提条件. 练习.把下列二次函数改写成交点式,并写出它与坐标轴的交点坐标. ⑴232 +-=x x y ⑵232 -+-=x x y ⑶4622 +-=x x y

与x 轴的交点坐标是: 与y 轴的交点坐标是: 二、尝试练习: 1.已知二次函数的图象与x 轴的交点坐标是(3,0),(1,0),且函数的最值是3. ⑴求对称轴和顶点坐标. ⑶求出该二次函数的关系式. ⑷若二次函数的图象与x 轴的交点坐标是(3,0),(-1,0),则对称轴是 ; 若二次函数的图象与x 轴的交点坐标是(-3,0),(1,0),则对称轴是 ; 若二次函数的图象与x 轴的交点坐标是(-3,0),(-1,0),则对称轴是 . 归纳:若抛物线c bx ax y ++=2与x 轴的交点坐标是(01,x )、(02, x )则,对称轴是 ,顶点 坐标是 . 2.已知一条抛物线的开口大小、方向与2x y -=均相同,且与x 轴的交点坐标是(2,0)、(-3,0),则该抛物线的关系式是 . 3.已知一条抛物线与x 轴有两个交点,其中一个交点坐标是(-1,0)、对称轴是直线1=x ,则另一个交点坐标是 . 4.已知一条抛物线与x 轴的两个交点之间的距离为4,其中一个交点坐标是(0,0)、则另 一个交点坐标是 ,该抛物线的对称轴是 . 5.二次函数()()43-+-=x x y 与x 轴的交点坐标是 ,对称轴是 . 6.请写出一个二次函数,它与x 轴的交点坐标是(-6,0)、(-3,0): . 7.已知二次函数的图象与x 轴的交点坐标是(-1,0),(5,0),且函数的最值是3.求出该二 次函数的关系式.(用2种方法) 解法1: 解法2:

二次函数综合(定值)问题与解析

成都市中考压轴题(二次函数)精选 【例一】.如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式; (2)求证:AO=AM; (3)探究: ①当k=0时,直线y=kx与x轴重合,求出此时的值; ②试说明无论k取何值,的值都等于同一个常数. 的长,然后代入计算即可得解; ,x+,再联立抛物线与直线解析式, , x ,

=AM==+==1x ,+==,+ = 取何值,++ 【例二】. 如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限 内,且AB ,sin ∠(1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式; (2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由; (3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ,△QNR

的面积QNR S ?,求QMN S ?∶QNR S ?的值. 解:(1)如图,过点B 作BD OA ⊥于点D . 在Rt ABD △中, AB = sin OAB ∠= sin 3BD AB OAB ∴=∠==. 又由勾股定理, 得6AD = ==. 1064OD OA AD ∴=-=-=. 点B 在第一象限内, ∴点B 的坐标为(43),. ∴点B 关于x 轴对称的点C 的坐标为(43)-,. · ·················································· 2分 设经过(00)(43)(100)O C A -,,,,,三点的抛物线的函数表达式为 2(0)y ax bx a =+≠. 由11643810010054 a a b a b b ? =?+=-?????+=??=-??,. ∴经过O C A ,,三点的抛物线的函数表达式为215 84 y x x = -. ····························· 2分 (2)假设在(1)中的抛物线上存在点P ,使以P O C A ,,,为顶点的四边形为梯形. ①点(43)C -, 不是抛物线215 84 y x =-的顶点, ∴过点C 作直线OA 的平行线与抛物线交于点1P .

2018二次函数压轴题题型归纳

一、二次函数常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()01222=-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程23(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213? ±-= ,m x 321-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22-+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-01 02 2x x y ,解得:???=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立)

【精品讲义】二次函数一般式、顶点式、交点式

二次函数一般式、顶点式、交点式 这节课我们学什么 1. 会用待定系数法求二次函数的解析式; 2. 会平移二次函数2(0)y ax a =≠的图象得到二次函数2()y a x h k =-+的图象; 了解特殊与一般相互联系和转化的思想; 3. 根据交点求解解析式.

知识点梳理 1、顶点式:()2y a x h k =-+的图像与性质 2、交点式:12()()y a x x x x =--的图像与性质 1x 、2x 分别是二次函数与x 轴的两个交点坐标,如果二次函数与x 轴的交点坐标已知,则我们可以设解析式为12()()y a x x x x =--,然后再根据条件求出a 即可; 3、一般式2y ax bx c =++的性质 对于一般式:2(0)y ax bx c a =++≠,我们怎么能知道二次函数的对称轴以及顶点坐标呢? 将一般式配方成顶点式: 2y ax bx c =++=2 ()b c a x x a a ++=22222()44b b b c a x x a a a a ++-+ =222(())()22b b c b a x x a a a a +++- =222424b b ac a x a a -??+= ?? ? 所以,任意二次函数,其对称轴方程为:直线2b x a =-;顶点坐标为2424b ac b a a ??-- ??? , 1. 当0a >时,抛物线开口向上,对称轴为直线2b x a =-,顶点坐标为2424b ac b a a ??-- ???,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大; 2. 当0a <时,抛物线开口向下,对称轴为直线2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;

相关文档
最新文档