一次同余式与一次同余式组的解的讨论

一次同余式与一次同余式组的解的讨论
一次同余式与一次同余式组的解的讨论

一次同余式与一次同余式组的解的讨论

摘 要: 这篇文章先给出有关同余式、同余式的解的概念,并在Euler 定理及孙子定理的基础上,详细地讨论了一次同余式、一次同余式组的是否有解的条件,若有解,则给出了求解方法. 一次同余式和一次同余式组的相关知识是学习数论过程中必须要掌握的知识,它在数学领域内有着及其广泛的应用。

关键词: 一次同余式; 一次同余式组;孙子定理;Euler 定理

1引言

南北朝时期的数学著作《孙子算经》中“物不知数”是这样的“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”解法和答案用算式表示为:702213152105223?+?+?-?=,即得到适合题意的最小正整数是23。

《孙子算经》的“物不知数”题虽然开创了一次同余式研究的先河,但真正从完整的计算程序和理论上解决这个问题的是南宋时期的数学家秦九韶。秦九韶在他的《数书九章》不仅给出了一次同余式的解,而且用“大衍求一术”数学方法给出了一次同余式组的最小正整数解。

2基本定义和定理

定义2.1 设1110()n n n n f x a x a x a x a --=++++ 是整系数多项式,m 是一正整数,称

()0(mod )f x m ≡ (1)

是模m 的同余式,若0(mod )n a m ≡/,则n 叫做同余式(1)的次数。

定义2.2 若a 是整数,且使得()0(mod )f a m ≡成立,则(mod )x a m ≡叫做同余式(1)的一个解。即把适合(1)式且对模m 相互同余的一切数叫做同余式(1)的一个解。

定义2.3 欧拉函数()a ?是定义在正整数上的函数,它在正整数a 上的值等于序列0,1,2,,1a - 中与a 互质的数的个数。

定理2.1(Euler) 设1m >,(,)1a m =,则()1(mod )m a m ?≡。

证明 设12(),,,m r r r ? 是模数m 的一组简化剩余系,则由定理(若(,)1,a m x =通过m 的

简化剩余系,则

ax 通过模m 的简化剩余系.)

可知12(),,,m ar ar ar ? 也是模m 的一组简化剩余系,故 12()12()()()()(mod )m m ar ar ar r r r m ??≡

即 ()12()12()(mod )m m m a r r r r r r m ???≡ (﹡) 由于 ()i r ,1,1,2,,().m i m ?==

故 12()(,)1.m r r r m ?= (﹡﹡)

根据性质(若11,,(,)1,a a d b b d d m ===则11(mod ).a b m ≡) 以及 (﹡)和(﹡﹡)得 ()1(mod ).m a m ?≡

定理2.2(孙子定理) 设12,,,k m m m 是k 个两两互素的正整数,

12,(1,2,,),k i i m m m m m m M i k ===

则同余式组

1122(mod ),(mod ),,(mod )k k x b m x b m x b m ≡≡≡ (2)

有唯一关于模m 的解

1112

22(mod ),k k k x M M b M M b M M b m '''≡+++ (3) 其中1(mod )(1,2,,).i i i M M m i k '≡=

证明 由于(,)1,i j m m i j =≠,即得(,)1i i M m =.由定理3.1知对每一i M ,有一

i M '存在,使1(mod ).i i i M M m '≡由i i m m M =,知|,j i m M i j ≠. 故

1

(mod ),1,2,,.k

j

j

j

i i i i i j M M b

M M b b m i k =''≡≡=∑

即(3)为(2)的解。

若12,x x 是适合(2)式的任意两个整数,则

12(mod )(1,2,,).i x x m i k ≡=

又由于(,)1,i j m m i j =≠,于是12(mod )x x m ≡,故(2)仅有解(3)。

3一次同余式

定理3.1 若(),1,|a m d d =>,b 则(mod )ax b m ≡无解。

证明 若有解,即可得()mod .ax b m ≡而|,d a 于是有0(mod ).b d ≡而这与|,d b 相矛盾,所以同余式无解。

定理3.2 设(,)1,0a m m =>,则同余式

(mod )ax b m ≡ (4)

有唯一解 ()1

(m o d ).m x b a

m ?-≡ 证明 由于1,2,,m 组成一组模数m 的完全剩余系,(,)1a m =,故,2,,a a m a 也

组成模数m 的一组完全剩余系,故其中恰有一个数设为aj ,适合

(mod ),(mod )aj b m x j m ≡≡

就是(4)的唯一解。

方法一 由定理2.1知 ()()()1mod .m m a x ba m ??-≡。 从而()()1mod m x ba m ?-≡为所求的解。 即原命题成立。 方法二

因为(),1a m =.由定理(若(),a b d

=由最大公因数性质可知必有二数,s t 使 1.as bt

+=)

知必有二数s t ,使1as mt +=,

即()1mod .as m ≡ 故由()mod asx bs m ≡知同余式(4)的解为 ()mod .x bs m ≡

定理3.3 设(,),0a m d m =>,同余式(4)有解的充分必要条件是|d b ,且恰有d 个解。

证明 若(4)有解,则由|,|d a d m 推出|d b 。如果|d b ,则,1a m d d ??

= ???

故同余式

mod a b m x d d d ??≡ ???

有一组解,即同余式(4)有一组解。

若整数c 适合(4),c 也适合同余式①;反之,若c 适合同余式①,c 也适合同

余式(4)。设t 适合①,则①有唯一解 (m o d )m

x t d

≡,

即全体整数,0,1,2,,m

t k k d

+?=±±

对模数m 来说,恰可选出d 个互不同余的整数

,,2,,(1).m m m

t t t t d d d d ++?+- ②

这是因为对于m

t k d +,设,0k qd r r d =+≤<代入得

()(mod ).m m m m

t k t qd r t r qm t r m d d d d

+?=++=++≡+

又若 ()0,0,mod m m

e d

f d t e t f m d d

≤<≤<+≡+,则推出f e =.这就证明了(4)的

任一解恰与②中的某一数模数m 同余,而②中的d 个数,又模数m 两两互不同余,即知(4)恰有d 个解。 一般地,我们有

定理3.4 设1k ≥,同余式

110(mod )k k a x a x b m +++≡ (5)

有解的充分必要条件是 ()1,,,|.k a a m b (6) 若条件(6)满足,则(5)的解数为()11,,,k k m a a m - 。

证明 现用归纳法来证明。由定理3.2知当1k =时结论显然成立。 设()()1111,,,,,,,k k a a m d a a m d -== ,则()11,d a d =。

由定理 3.3知 ()10m o k k a x b d +≡ (ⅰ) 有d 个解

()()()()11111mod mod mod 1mod k k k d d

x t d x t d x t d d d d

≡≡+

≡+- ,,

,, 从而对模数m 来说有1

m

d d ?

个解:

111

1

111(mod ),(mod ),,(

1)(mod ),(1)(mod ),,(1)(1)(mod )

k k k k k x t m x t d m m

x t d m d d x t d m d d m

x t d d m d d ≡≡+≡+-≡+

-≡+-+-

对(ⅰ)的一个解k x ,设11

n k a x b

b d +=, 由归纳法假定,

1111110(mod )k k a x a x b d m --+++≡

的解数为 22111(,,,)k k k m a a m m d ---= , 故(5)的解数为2111

k k m

m d d m d d --??=. 例1

解同余式 ()11175mod 321.x ≡

解 因为()111,3213,3|75,≡故同余式有解,且化为()3725mod107.x ≡ 故 ()257532

899m o d 10

7.371114

x -≡

≡≡≡-≡ 于是原同余式有三个解:()99,206,313mod321.x ≡ 例2

解同余式()286121mod341.x ≡

解 因为()286,34111,11|121,≡故同余式有解,且化为()2611mod31.x ≡

故 ()1120

4m o d 31

.265

x -≡

≡≡- 于是原同余式有三个解:

()4,35,66,97,128,159,190,221,252,283,314mod341.x ≡

4一次同余式组

定理4.1 设12,m m 是两个正整数,同余式组

()()1122mod mod x b m x b m ≡???≡??

(7) ① 若()12,|m m 12b b -,则同余式组(7)无解。

② 若()1212,|m m b b -,则同余式组(7)有以[]12,m m 为模的一类剩余解。

证明 ①满足同余式()11mod x b m ≡的数为 1,x b m t t Z ≡+∈ ⑴ 并且满足同余式 ()22mod x b m ≡, 则有 ()1122mod b m t b m +≡

即 ()1212m o d m t b b m

≡- ⑵ 由于()12,|m m 21b b -,所以同余式()22mod x b m ≡无解,即同余式组无解。 ③ 若()1212,|m m b b -,则可设

()

11222112,,,, 1.m m d m m d b b bd m m ''''==-==

由⑵得 (

)

12mod m t b m ''≡ ⑶

因为()()

1212m m m m d

d ''==,d ,,故(

)

121m m ''=,,所以⑶式有一个解。设()

2m o d t b m '≡ 从而⑵有d 个解

()()222,,,1mod t b b m b d m m ''≡++-

将2,t b m Z λλ'=+∈代入⑴有 ()

1121112.x b m b m b bm m m λλ''=++=++

又[]12

1212,m m m m m m d

'=

= []()1112

m o d ,x b b m m m ∴=+ 由于11,b m 是给定的,而且b 是唯一确定的,从而同余式组有唯一的解。 显然,若()12,1,m m =则同余式组(7)恒有解。 例3

解同余式组()()7mod152mod 6x x ≡???≡??

. 解 因为()6,153,3|72,=-故此同余式组无解。 例4

解同余式组()()7mod154mod 6x x ≡???≡??

. 解 因为()15,63,3|74,=-故同余式组有解。 由第一个同余式得 715,

x y =+ 代入第二式 ()715

4m o d 6,y +≡ 得 ()33m o d 6,y ≡- 即 ()1m o d 2,y ≡ 将12y z =+代入715x y ==中,得

()715122230.x z z =++=+

即同余式组得解为()22mod30.x ≡

下面把定理6推广到含任意个同余式的情形。先给出 命题1 设12,,,,(3)k m m m k ≥ 是任意k 个正整数,则

[]()()()()1

2

1

1

1121,,,,,,,,,,,2,3,, 1.s

s s s s s m m m m m

m m m m m s k ++++==-????

证明 对k 应用数学归纳法。 当3k =时,即证:

[]()()()1

2

3

1

3

2

3

,,,,,.m m m m m m m =????

设121

2,1,2,3.i i ri

i r j m p p p i p ααα== 是素数。0,1,2,,.ji a j r ≥= 令()()()()()

122123max min ,,min ,3,min max ,,.j j j j j j j j δααααγααα== 因为

[]()1

2

1

2

3

1

2,,.r r m m m p p p γ

γγ=

()()12132312,,,,r

r m m m m p p p δδδ=????

只需证: ,1,2

,,j j j r γδ== 当123j j j a a a ≥≥时,

()()333133max ,,min ,.j j j j j j j j a a a a a a δγ====

所以 .j j δγ= 当312j j j a a a ≥≥时,

()()121131max ,,min ,.j j j j j j j j a a a a a a δγ====

所以 .j j δγ= 当231j j j a a a ≥≥时,

()()133233max ,,min ,.j j j j j j j j a a a a a a δγ====

所以 .j j δγ=

再有对称性可知,对一切非负整数123,,j j j a a a 有:,1,2,,.j j j r δγ== 即

[]()(

)()1

2

3

1323,,,,

,.m m m m m m m =????

假设对(3)k s s =≥时成立,即

[]()()()()1

1

1

2

1

,,,,,,,,,.s s

s

s

s s m m m m m m m m

m --=????

假设对1k s =+时,因为 [][]12121,,,,,,,.

s s s m m m m m m m -??=??

由3k =的情形和归纳假设得:

[]()[]()

[]()()()()()()1

2

1

1

1

1

1

1

1

1

1211,,,,,,,,,,,,,,,,,,,,,.

s

s s s

s s s s

s s s s s s s m m m m m m m m m m m m m m m m m m m m m +-+-++-+??=????=??

=????

定理4.2 设12,,,k m m m 是k 个正整数,则同余式组

()

()()1122mod mod mod k k x b m x b m x b m ≡??

≡??

??≡?

(8)

令 (),.1.

i j i j m m d i j k =≤<≤ ①若至少有一个|ij d i j b b -,则同余式组(8)无解。

②若所有的ij d 都能整除.i j b b -则同余式组(8)有一个以[]12,,,k n m m m m M == 为模的一类剩余解。

证明: ①若|ij d i j b b -,则由定理4.1知同余式组中的第i 个和第j 个同余式没有公共解,从而同余式组(8)无解。 ②若所有的ij d 都能整除i j b b -,则可设

[][][][][][][]122

123233

1234344

123112

,,,,,,,,,,,,,,n n n n m m M m m m M m M m m m m M m M m m m m m M m M --=======

有定理4.1知同余式组(8)的前两个同余式必由一公解:()2mod .x M α≡ 假设同余式组(8)的前1n -个同余式已有一公共解()1mod n x M β-≡ 即 ()mod .1,2,, 1.i i b m k n β≡=-

()mod ,1,2,, 1.i i i i b t m i n t β=+=- 是整数.

于是 ,1,2,, 1.n i n i i b b b t m i n β-=-+=-

由于|,n i n in i d b b d m -,从而 |,1,2,, 1.in n d b i n β-=- 所以 12(1),,,|n n n n n d d d b β-??-?? 有命题1可得 ()1,|n n n M m b β--. 又由定理4.1知同余式组

()()1mod mod n n n x M x b m β-≡???

≡??

必有一公共解()mod n x r M ≡.也就是说同余式组(8)有解. 下面证明这个解的唯一性.

设还有一解()mod n x M δ≡,则由 ()mod ,1,2,,.i i r b m i n ≡= 及 ()mod ,1,2,,.i i b m i n δ≡= 有:

()()0mod 0mod ,1,2,,.i n r m M i n δ-≡≡=

即()mod n r M δ≡即唯一性得证.

如果12,,,n m m m 两两互素,则同余式组(8)恒有一个以12n m m m 为模的一类剩余解.

例5 解同余式组

()()()8mod153mod102mod8x x x ≡??

≡??≡?

. 解 因为()10,8|32,-故此同余式组无解。 例6

解同余式组

()()()8mod153mod101mod8x x x ≡??

≡??≡?

●. 解 因为()()()15,10|83,10,8|31,8,15|81,---所以此同余式组有解。 由①式有

815x y =+ ④

代入②式得 ()8153mod10,y +≡ 故得 ()1mod 2.y ≡ 即 12.y z =+ 将此式代入④式 得

()815122330.x z z =++=+ ⑤

代入③式得 ()23301mod8,z +≡

即得 ()22mod8.z ≡-从而()3mod 4,z ≡即34,z u == 代入⑤式得 ()233034113120.x u u =++=+ 即()113mod120x ≡为同余式组的解。

定理4.3 设12,,,k m m m 是k 个正整数,同余式组

()()()111222mod mod mod k

k k a x b m a x b m a x b m ≡??

≡??

??≡? 有解的充分且必要条件是以下两条同时成立: (ⅰ) (),|,1,2,,.i i i a m b i k =

(ⅱ) 若()mod i i i x x t m ≡是()mod i i i ax b m ≡1,2,,.i k = 的解。

则 (),|.,1,2,,i j i i j j m m x t x t i j k

-

= ; 若有解,设对模[]12,,,k m m m 的解的个数为T , 则 ()10,.k

i i i T a m =≤≤∏ 证明 必要性

若(1)有解,即存在整数0x 使()mod .i i i i a x b m ≡成立.由定理知

(),|,1,2,,.i i i a m b i k =

即(ⅰ)成立.

若(ⅰ)对模[]12,,,k m m m 的解为[]()012mod ,,,k x x m m m ≡ .

而 ()0m o d ,1,2,,.i i i x x t m i k ≡= 即 []()012

m o d ,,,k

x x m m m ≡ 是同余式

()()()111222mod ,mod ,,mod .k k k x x t m x x t m x x t m ≡≡≡

的解,由定理4.2知

(),|,,1,2,,.i

j

i i

j j

m m x t x t i j k -=

充分性

由(),|i i i a m b 知 ()mod .1,2,,.i i i i a x b m i k ≡= 有解。

令 ()()m o d .1,2,.1,2,,,i i i i i i x x t m

i k t a m ≡== 是 ()m o d i i i a x b m ≡ 的所有解。 对于每一个i 任取一解,构成一下同余式组

()()()111222mod ,mod ,,mod .k k k x x t m x x t m x x t m ≡≡≡

且()1,2,,,i i i t a m = ,其中有()1

,k

i i i a m =∏个一次同余式组,在这些同余式组中,

若满足 (),|.,1,2,

,..

i j i i j j m m x t x t i j k i j -

=≠ 则有对模[]12,,,k m m m 的唯一解;若不满足(ⅱ),则无解。 所以至多有 ()10,k

i i i T a m =≤≤∏ 个解。

例7

解同余式组

()()

46mod14915mod 33x x ≡???≡??. ① 解 因为()()4,14|6,9,33|15,所以原同余式组有解,且原同余式组可化为

()()23mod 735mod11x x ≡???≡??

② 解之得

()()5mod 79mod11x x ≡???≡??

③ 又因为()7,111,=故由定理4.1知同余式组③有解,且以[]7,1177=为模。显然,同余式

组③的解就是同余式组①的解。

从而得 ()2m o d 77.x ≡- 即 ()75m o d 77.x ≡ 若写成以[]14,33462=为模,则原同余式组的解为

()75,152,229,306,383,460mod 462.x ≡

二元一次方程组的概念及解法

二元一次方程组的概念及解法 知识点梳理 知识点一二元一次方程组的概念 含有两个未知数,并且含有未知数的相的次数都是1,像这样的方程叫做二元一次方程。 把两个二元一次方程合在一起就组成了一个方程组,像这样的方程组叫做二元一次方程组。 使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。 一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。 典例分析 例1、在方程组、、、、 、中,是二元一次方程组的有个; 例2、已知二元一次方程2x-y=1,若x=2,则y=;若y=0,则x=. 变式1:方程x+y=2的正整数解是__________. 变式2、在方程3x-ay=8中,如果是它的一个解,那 么a的值为? ? ? = = 1 3 y x

例3 方程组???=+=-5 21 y x y x 的解是( ) A 、 ???=-=21y x B 、???-==12 y x C 、???==21y x D 、???==12y x 例4、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组 。 例5、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十头,下有九十四足。问鸡兔各几何。”你能用二元一次方程组表示题中的数量关系吗?使找出问题的解。 知识点二 解二元一次方程 消元解二元一次方程???代入消元法加减消元法 典例分析 例1、 把方程2x -y -5=0化成含y 的代数式表示x 的形式:x = . 化成含x 的代数式表示y 的形式:y = .

中考专题复习(2)一次方程及方程组

中考专题复习(2)一次方程及方程组 3、当x=____时,代数式3x+2 与6-5x 的值相等。 5、3 名同学参加乒乓球赛,每两名同学之间赛一场,一共需要 ____场比赛,则5 名同学一共需要____比赛。 6、如图,是一个正方形算法图,□里缺的数是____, 并总结出规律:________________。 7、一轮船从重庆到上海要5 昼夜,而从上海到重庆要7 昼夜,那么一个竹排从重庆顺流漂到上海要___昼夜。 8、已知3-x+2y=0,则2x-4y-3 的值为() A、-3 B、3 C、1 D、0 9、用“加减法”将方程组2x-3y=9 2x+4y=-1 中的x 消去后得到的方程是() A、y=8 B、7y=10 C、-7y=8 D、-7y=10 10、某商品因换季准备打折出售,若按定价的七五折出售将赔25 元,若按定价的九折出售将赚20 元,则这种商品的定价为() A、280 元 B、300 元 C、320 元 D、200 元 11、小辉只带了2 元和5 元两种面额的人民币,他买了一件物品只需付27 元,如果不麻烦售货员找零钱,他有几种不同的付款方法() A、一种 B、两种 C、三种 D、四种 12、为了防沙治沙,政府决定投入资金,鼓励农民植树种草,经测算,植树1 亩需资金200 元,种草1 亩需资金100 元,某组农民计划在一年内完成2400 亩绿化任务,在实施中由于实际情况所限,植树完成了计划的90%,但种草超额完成了计划的20%,恰好完成了计划的绿化任务,那么计划植树、种草各多少亩?若设该组农民计划植树x 亩,种草y 亩,则可列方程组为() A、x+y=2400 x-90%+y (1-20%)=2400 B、 x+y=2400 (1-90%) x+(1+20%) y=2400 C、x+y=2400 (1+90%) x+(1+20%) y=2400 D、 x+y=2400 90%x+(1+20%) y=2400 13.解下列方程(组): (1)、1 2 x-1= 1 3 (x-2)(2)、 x-3 0.2 - x+4 0.1 =5 (3)、7 2 [ 5 3 ( 6 5 x-3)-1]=10x(4)、 x+2 3 + y-1 2 =3 x+2 3 + 1-y 2 =1 14、当x 为何值时,代数式x+1 2 的值比 5-x 3 的值大1。

一次同余式解法的综述

一次同余式的解法的综述 陈明丹 (华南师范大学数学科学学院 广州 510070) 【摘要】本文系统地将解一次同余式的各种解法集中在一起,如欧拉定理算法、代入求解法、消去系数法、不定方程求解法、不定方程求解法、分式法、威尔逊定理法、求s 、t 法、矩阵求法、“倒数”求法,这样就使得学习者在学习一次同余式的时候有个系统的归纳总结,方便理解。 关键词:一次同余式;解法;欧拉定理;威尔逊定理;不定方程;综述 初等数论是师范院校数学专业学生的一门必修课,也是高中数学教师继续教育的一项重要内容,而同余式是初等数论中非常重要的一部分内容,主要研究一次同余式、二次同余式、同余式组及高次同余式的解法及解数。[1]一次同余式是学习这一部分内容的基础,且结一次同余式是学习初等数论必须要掌握的解题方法。但是在严士键 [2]的教材中只给出了如欧拉定理算法[3]等一些比较简单的方法,而且比 较散乱。本文旨在系统地整理解一次同余式的各种方法,以方便大家的学习。 1.一次同余式ax ≡ b(mod m)的解法 1.1 同余式(mod ),(,)1ax b m a m ≡= 的解法 1.1.1欧拉定理算法 李晓东[1]和李婷[3]指出欧拉定理这种算法主要是运用欧拉定理,则有()1(mod )m m a ?≡,则()(mod )m a b b m a ???≡,则

()1(mod )m x b m a ?-≡ 满足同余式(mod )ax b m ≡,故为同余式的解。李婷还指出这种解法在理论上较易分析,但当模m 较大时,求()m ?就涉及m 的标准分解,此时这种解法在计算量上较为复杂,不宜进行计算机编程计算。所以这种解法更适合模m 较小时,或()m ?较易求解时使用。王靖娜 [4]给出了详细的定理证明过程,以帮 助大家的理解。 1.1.2代入求解法 代入求解法也称为观察法[3],当模m 较小时,可以将模m 的完全剩余系0、1、2……m-1 代入到(mod )ax b m ≡中,求出该同 余式的解。当模m 较大时,则可以利用同余式的性质[2],将同余式的 系数减少,而且有带余除法定理[5]可保证系数在一个固定的范围内作为模m 的余数,从而再用观察法得出一次同余式的解。 李婷[3]这种解法适用于多数情况,但是当模m 及x 的系数较大时,计算量也会变得比较大,此时就不适合使用这种方法,而改用其他的方法。 1.1.3 消去系数法 在同余式(mod )ax b m ≡中,如果|a b ,则可以解出该同 余式的解,因此,将x 的系数a 消去是解一次同余式的最简捷的方 法[6]。如果在同余式中但能找到c 使得(mod )b c m ≡且 |a c ,则根据同余的传递性质有(mod )ax b c m ≡≡,可解出 (mod )c x m a ≡。或者找到(mod )ax b c m ≡≡,且,a c 有公

什么是中国剩余定理

什么是中国剩余定理?

剩余定理详细解法 中国数学史书上记载:在两千多年前的我国古代算书《孙子算经》中,有这样一个问题及其解法:今有物不知其数,三三数之剩二;五五数之剩三:七七数之剩二。问物几何? 意思是说:现在有一堆东西,不知道它的数量,如果三个三个的数最后剩二个,如果五个五个的数最后剩三个,如果七个七个的数最后剩二个,问这堆东西有多少个?你知道这个数目吗? 《孙子算经》这道著名的数学题是我国古代数学思想“大衍求一术”的具体体现,针对这道题给出的解法是:N=70×2+21×3+15×2-2×105=23 如此巧妙的解法的关键是数字70、21和15的选择: 70是可以被5、7整除且被3除余1的最小正整数,当70×2时被3除余2 21是可以被3、7整除且被5除余1的最小正整数,当21×3时被5除余3 15是可以被3、5整除且被7除余1的最小正整数,当15×2时被7除余2 通过这种构造方法得到的N就可以满足题目的要求而减去2×105 后得到的是满足这一条件的最小正整数。 韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。 刘邦茫然而不知其数。 我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少? 首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。 中国有一本数学古书「孙子算经」也有类似的问题: 「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」答曰:「二十三」术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。」 孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。 中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。

二元一次方程的概念及其解法

二元一次方程(组)的概念及其解法 【知识要点】 1. 什么叫做二元一次方程?什么叫做二元一次方程组? 2. 你知道解二元一次方程组的基本思路吗? 3.掌握二元一次方程组的两种解法“代入消元法”“加减消元法”【典型例题】 概念 1.下列方程中属二元一次方程的是( ) A.x+y=3z B.3xy-7=0 C.6x-7y=8 D.113 x y += 2.下列是二元一次方程组的是( ) A. 1 2 3 y x x ? -= ? ? ?= ? B.19 2 4 x y ? -= ? ? ?= ? C. 1 2 x y y x + ? = ? ? ?-= ? D. 2 2 1 2 2 x y y x ?= ? ? += ?? 3.数对 2 4 x y =- ? ? = ? 是下列哪一个方程的解( ) A.x+y=2 B.x+y=0 C.2x+y=1 D.x-y=2 4.已知5x+y=25,则用x的代数式表示y为______,用y的代数式表示x为____. 5.写出二元一次方程3x-5y=1的一个正整数解________. 6.两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨? 7.在平面直角坐标系中,已知点A)8 2(- -, b a与点B)3 2 (b a+ -,关于原点对称,求a、b的值.

解法一——代入消元法 例1.把方程3x=1-4y变形:(1)用含x的代数式表示y;(2)用含y的代数式表示x. 例2.用代入法解方程组: (1) 23 3280 y x x y =+ ? ? --= ? (2) 31 324 x y x y += ? ? +=- ? 练习 解下列方程组 (1)(2) 解法二——加减消元法 例4. (1 ).(2) 561 324 x y x y -= ? ? -= ? (3) 15 35 35250 y y x x y +- ? = ? ? ?--= ?

中考总复习:一次方程及方程组--知识讲解

中考总复习:一次方程及方程组--知识讲解 【考纲要求】 1.了解等式、方程、一元一次方程的概念,会解一元一次方程; 2.了解二元一次方程组的定义,会用代入消元法、加减消元法解二元一次方程组; 3.能根据具体问题中的数量关系列出方程(组),体会方程思想和转化思想. 【知识网络】

【考点梳理】 考点一、一元一次方程 1.等式性质 (1)等式的两边都加上(或减去)同一个数(或式子),结果仍是等式. (2)等式的两边都乘以(或除以)同一个数(除数不为零),结果仍是等式. 2.方程的概念 (1)含有未知数的等式叫做方程. (2)使方程两边相等的未知数的值,叫做方程的解(一元方程的解也叫做根). (3)求方程的解的过程,叫做解方程. 3.一元一次方程 (1)只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程. (2)一元一次方程的一般形式:0(0)ax b a +=≠. (3)解一元一次方程的一般步骤: ①去分母;②去括号;③移项;④合并同类项;⑤系数化成1;⑥检验(检验步骤可以不写出来). 要点诠释: 解一元一次方程的一般..步骤 步 骤 名 称 方 法 依 据 注 意 事 项 1 去分母 在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数) 等式性质2 1、不含分母的项也要乘以最小公倍数; 2、分子是多项式的一定要先用括号括起来. 2 去括号 去括号法则(可先分配再去括号) 乘法分配律 注意正确的去掉括号前带负数的括号 3 移项 把未知项移到方程的一边(左边),常数项移到另一边 等式性质1 移项一定要改变符号

4.1基本概念及一次同余式

1. 同余方程15x ≡12(mod99)关于模99的解是__ x ≡14,47,80(mod99)_。 2. 同余方程12x+7≡0 (mod 29)的解是__ x ≡26 (mod 29)_____. 3. 同余方程41x≡3(mod 61)的解是__ _ . 4. 同余方程9x+12≡0(mod 37)的解是___ x ≡11(mod 37)______ 5. 同余方程13x ≡5(mod 31)的解是_ x ≡ 29(mod 31)__ 6. 同余方程24x ≡6(mod34)的解是__ x ≡13,30(mod34)__ 7. 同余方程26x+1≡33 (mod 74)的解是__ x ≡24,61 (mod 74)_ 8. 同余方程ax +b ≡0(mod m )有解的充分必要条件是__()b m a ,_ 9. 21x ≡9 (mod 43)的解是_ x ≡25 (mod 43)__ 10. 设同余式()m b ax mod ≡有解()m x x mod 0≡,则其一切解可表示为_ _ . 11. 解同余式()15mod 129≡x 12. 同余式()111mod 1227≡x 关于模11有几个解?( ) A 1 B 2 C 3 D 4 13. 同余式3x ≡2(mod20)解的个数是( B ) A.0 B.1 C.3 D.2 14. 同余式72x ≡27(mod81)的解的个数是_9_个。 15. 同余方程15x ≡12(mod27) 16. 同余方程6x ≡4(mod8)有 个解。 17. 同余式28x ≡21(mod35)解的个数是( B ) A.1 B.7 C.3 D.0 18. 解同余方程:63x ≡27(mod72) 19. 同余方程6x≡7(mod 23)的解是__ _ . 20. 以下同余方程或同余方程组中,无解的是( B ) A.6x ≡10(mod 22) B.6x ≡10(mod 18) C.???≡≡20) 11(mod x 8) 3(mod x D. ???≡≡9) 7(mod x 12) 1(mod x 21. 同余方程12x ≡8(mod 44)的解是x ≡8,19,30,41(mod 44)____ 22. 同余方程20x ≡14(mod 72)的解是 ___ 23. 下列同余方程无解的是( A ) A.2x ≡3(mod6) B.78x ≡30(mod198) C.8x ≡9(mod11) D.111x ≡75(mod321) 24. 解同余方程 17x+6≡0(mod25) 25. 同余方程3x ≡5(mod16) 的解是___ x ≡7(mod16)____ 26. 同余方程3x ≡5(mod14)的解是_ x ≡11(mod14)的解是__。 27. 同余方程3x ≡5(mod13)的解是__ x ≡6(mod13)_________。 28. 下列同余方程有唯一解的是( C )

二元一次方程组基本概念及配套练习题

二元一次方程组的基本概念及配套练习题 【课前导入】 (1)什么叫方程?什么叫方程的解和解方程?你能举一个一元一次方程的例子吗? 1)代数式:单独的一个数字或单独的一个字母以及用运算符号把数或表示数 的字母连成的式子。 2)等式:用“=”表示相等关系的式子。 3)方程:含有未知数的等式。 4)方程的解:使方程左右两边相等的未知数的值。 5)一元一次方程:在一个方程中未知数只有1个,并且未知数的最高次数是 1的等式。 【新课内容】 我们来看一个问题: 例1、丁丁想利用家里的天平称出一个苹果和一个梨的质量分别是多少? 问题展示:一个苹果和一个梨的质量合计200g。 这个问题中,如果设苹果和梨的质量分别为x g和y g,你能列出方程吗? 利用这个方程你能帮助丁丁分别求出苹果和梨的质量吗? 这个苹果的质量加上一个10g的砝码恰好与这个梨的质量相等,你还能列出方程吗? 例2、篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。 某队为了争取较好名次想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少? 思考:以上问题包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗? 胜的场数+负的场数=总场数, 胜场积分+负场积分=总积分, 这两个条件可以用方程表示:

x +y =22 2x +y =40 上面两个方程中,每个方程都含有两个未知数(x 和y),并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程。 这两个方程有什么特点?与一元一次方程有什么不同? 注意:二元一次方程的左边和右边都应是整式 上面的问题中包含两个必须同时满足的条件,也就是未知数x 、y 必须同时满足方程 x +y =22 ① 和2x +y=40 ② 把这两个方程合在一起,写成 x y 222x y 40+=?? +=? 由于问题中包含两个必须同时满足的条件(等量关系),所以未知数x ,y 必须同时满足方程 ①,②,也就是说,我们要解出的x ,y 必须是这两个方程的公共解。 像这样,把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。 这里给出二元一次方程组的概念,两个二元一次方程合在一起就组成二元一次方程组。更一般地说,如果两个一次方程合起来共有两个未知数,那么它们组成一 个二元一次方程组。特别地,x 2x y 4=??+=?,和x 1y 2=??=?这样的方程组也是二元一次方程组。 满足方程①,且符合实际的意义的x,y 的值有那些?把它们填入表中。 下表中哪对x,y 的值还满足方程②? 设计这个探究的目的是,让学生通过对具体数值代人方程的过程,感受到满足一个二元一次方程的未知数的值有许多对。由于要考虑实际意义,所以满足方程①的未知数的值有23对(未知数为0~22的整数)。 注意:二元一次方程的解是满足方程的一对数值,即 y b ?? =?,一个二元 一次方程有无数对解,但是并不是说任意一对数值都是它的解。 我们还发现,x=18,y=4既满足方程①,又满足方程②,也就是说它们是方程①与方程②的公共解。 我们把x =18,y=4叫做二元一次方程组

8、一次方程与方程组测试题

一次方程与方程组测试题 一、选择题 1. 方程2(x +1)=4x -8的解是( ) A . 4 5 B .-3 C .5 D .-5 2.方程2-x 3 - x-1 4 = 5的解是( ) A . 5 B . - 5 C . 7 D .- 7 3. 把方程 8 31412x x --=-去分母后,正确的结果是( ) A .)3(112x x --=- B .)3(1)12(2x x --=- C .x x --=-38)12(2 D .)3(8)12(2x x --=- 4. 用加减法解方程组 5 1{ =+-=-y x y x 中,消x 用 法,消y 用 法( ) A.加,加 B.加,减 C.减,加 D.减,减 5. 若方程组352 23x y m x y m +=+?? +=?的解x 与y 的和为0,则m 的值为( ) A .-2 B .0 C .2 D .4 6.若关于x 的方程2x -4=3m 和x+2=m 有相同的根,则m 的值是( ) A . 10 B .-8 C .-10 D . 8 7.代数式 2k-13 与代数式 1 4 k +3 的值相等时,k 的值为( ) A . 7 B . 8 C . 9 D . 10 8.由方程组43x m y m +=?? -=?, . 可得出x 与y 的关系是( ) A .1x y += B .1x y +=- C .7x y += D .7x y +=- 9.如果4 (1)6x y x m y +=??--=? 中的解x 、y 相同,则m 的值是( ) A .1 B .-1 C .2 D .-2 10.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分, 那么这个队胜了( ) A .3场 B .4场 C .5场 D .6场 二、填空题 11.已知方程4x+5y=8,用含x 的代数式表示y 为__________________。 12. 关于x 的方程0)1(2=--a x 的解是3,则a 的值为___________。 13.如果x =3,y =2是方程326=+by x 的解,则b =_______。 14.若5x -5的值与2x -9的值互为相反数,则x =_____。15.方程组ax+by=4bx+ay=5??? 的解是x=2 y=1??? ,则a+b=______。 三、解答题 16.已知2 33+-y x b a 与2 2ab -是同类项,求x 、y 的值。 17.解方程:⑴ ()()() 3175301x x x --+=+; ⑵ 16 2 31=--+x x 。

1 基本概念及一次同余式

1 基本概念及一次同余式 定义 设()110n n n n f x a x a x a --=+++,其中()0,0,1,,i n a i n >=是整数,又设0m >,则 ()()0mod f x m ≡ (1) 叫做模m 的同余式。若()0mod n a m ≡,则n 叫做同余式(1)的次数。如果0x 满足 ()()00mod ,f x m ≡则()0mod x x m ≡叫做同余式 (1)的解。不同余的解指互不同余的解。 当m 及n 都比较小时,可以用验算法求解同余式。如 例1 同余式 ()543222230mod7x x x x x +++-+≡ 仅有解()1,5,6mod7.x ≡ 例2 同余式 ()410mod16x -≡ 有8个解 ()1,3,5,7,9,11,13,15mod16x ≡ 例3 同余式 ()230mod5x +≡无解。 定理 一次同余式 ()()0mod ,0mod ax m a m ≡≡ (2) 有解的充要条件是(),.a m b 若(2)有解,则它的解数为(),d a m =。以及当同余式(2)有解时,若0x 是满足(2)的一个整数,则它的(),d a m =个解是 ()0mod ,0,1,,1m x x k m k d d ≡+=- (4) 证 易知同余式(2)有解的充要条件是不定方程 ax my b =+ (5) 有解。而不定方程(5)有解的充要条件为()(),,.a m a m b =- 当同余式(2)有解时,若0x 是满足(2)的一个整数,则

()0mod ,0,1,, 1.m a x k b m k d d ??+≡=- ??? 下证0,0,1,,1m x k k d d +=-对模m 两两部同余。设 ()00mod ,01,1m m x k x k m k d k d d d ''+≡+≤≤-≤≤- 则 ()mod ,mod ,.m m m k k d k k d k k d d d ??'''≡≡= ??? 再证满足(2)的任意一个整数1x 都会与某一个()001m x k k d d + ≤≤-对模m 同余。由 ()()01mod ,mod ax b m ax b m ≡≡得 ()101010mod ,mod ,.a a m m ax ax m x x x x d d d d ????≡≡≡ ? ????? 故存在整数t 使得10.m x x t d =+由带余除法,存在整数,q k 使得 ,0 1.t dq k k d =+≤≤-于是()()100mod .m m x x dq k x k m d d =++≡+ 故(2)有解时,它的解数为(),d a m =。以及若0x 是满足(2)的一个整数,则它的(),a m 个解是 ()0mod ,0,1,,1m x x k m k d d ≡+ =- 例1求同余式 ()912mod15x ≡ (6) 的解。 解 对如下的整数矩阵作初等列变换 9150303301052522501313113--???????? ? ? ? ?→--→--→- ? ? ? ? ? ? ? ?-???????? 故()9,15 3.=又因312,故同余式(6)有解,且由三个解。由以上初等变换还可知 ()()()()921513,924151412, 9812mod15. ?+?-=??+?-?=?????≡ 故同余式(6)的三个解为 ()158mod15,0,1,2.3 x k k ≡+=

三元一次方程组及其解法

7.3 三元一次方程组及其解法 【教学目标】 知识与能力 (1)了解三元一次方程组的概念. (2)会解某个方程只有两元的简单的三元一次方程组. (3)掌握解三元一次方程组过程中化三元为二元的思路. 过程与方法 通过消元可把“三元”转化为“二元”,充分体会“转化”是解二元一次方程组的基本思路. 情感、态度、价值观 通过本节的教学,应该使学生体会通过本节学习,进一步体会“消元”的基本思想,认识到数学的价值。 【教学重点】 (1)使学生会解简单的三元一次方程组. (2)通过本节学习,进一步体会“消元”的基本思想. 【教学难点】 针对方程组的特点,灵活使用代入法、加减法等重要方法. 【教学过程】 一、回顾旧知,引入新课 在7.2节中,我们应用二元一次方程组,求出了勇士队在我们的小世界杯足球赛第一轮比赛中胜与平的场数。 问题回顾 暑假里,《新晚报》组织了“我们的小世界杯”足球邀请赛。比赛规定:胜一场得3分,平一场得1分,负一场得0分。勇士队在第一轮比赛中赛了9场,只负了2场,共得17分。 那么这个队胜了几场?又平了几场呢? 解:设勇士队胜了x场,平了y场,则 胜 每场得分

?? ?=+=++17 39 2y x y x 解得???==25y x 提出问题: 在第二轮比赛中,勇士队参加了10场比赛,按同样的计分规则,共得18分。已知勇士队在比赛中胜的场数正好等于平与负的场数之和,那么勇士队在第二轮比赛中,胜、负、平的场数各是多少? 解:设勇士队胜了x 场,平了y 场,负了z 场,则 0 ?? ? ??+==+=++z y x y x z y x 18310 引出定义:像这种含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程组。一般情况下,三元一次方程组有三个方程,但不一定每个方程都出现三个未知数。 二、自主探究--------三元一次方程组的解法 探究一: 怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(展开思路,畅所欲言) 解方程?? ? ??+==+=++③②① z y x y x z y x 18 310 解:把③分别带入①②得???=++=+++18)(310 y z y z y z y 整理得???=+=+⑤④18341022z y z y 由?????12⑤④得? ??=+=+⑦⑥ 18342044z y z y 由⑦⑥-得2=z 把2=z 代入④得1042=+y , 即 3=y

(完整版)二元一次方程组知识点整理

第五章 二元一次方程组 知识点整理 知识点1:二元一次方程(组)的定义 1、二元一次方程的概念 含有两个未知数,且所含未知数的项的次数都是1的方程叫做二元一次方程 注意:1、(1)方程中的元指的是未知数,即二元一次方程有且只有两个未知数. (2)含有未知数的项的次数都是1. (3)二元一次方程的左右两边都必须是等式. (三个条件完全满足的就是二元一次方程) 2.含有未知数的项的系数不等于零,且两未知数的次数为1。 即若ax m +by n =c 是二元一次方程,则a ≠0,b ≠0且m=1,n=1 例1:已知(a -2)x -by |a|-1 =5是关于x 、y 的二元一次方程,则a =______,b =_____. 例2:下列方程为二元一次方程的有_________ ①y x =-52,②14=-x ,③2=xy ,④3=+y x ,⑤22 =-y x ,⑥22=-+y x xy ,⑦71 =+y x ⑧y x 23+,⑨1=++c b a 【巩固练习】 下列方程中是二元一次方程的是( ) A .3x-y 2 =0 B .2x +1y =1 C .3x -5 2 y=6 D .4xy=3 2、二元一次方程组的概念 由两个二元一次方程所组成的方程组叫二元一次方程组 注意:①方程组中有且只有两个未知数。②方程组中含有未知数的项的次数为1。③方程组中每个方程均为整式方程。 例:下列方程组中,是二元一次方程组的是( ) A 、2284 23119 (23754624) x y x y a b x B C D x y b c y x x y +=+=-=??=??? ? ? ?+=-==-=???? 【巩固练习】1,已知下列方程组:(1)32x y y =??=-?,(2)324x y y z +=??-=?,(3)1310x y x y ?+=?? ??-=?? ,(4)30x y x y +=??-=?, 其中属于二元一次方程组的个数为( ) A .1 B. 2 C . 3 D . 4 1、 若75331 3=+--m n m y x 是关于x 、y 二元一次方程,则m =_________,n =_________。 知识点2:二元一次方程组的解定义

一次同余式组的解法

学院学术论文 一次同余式组的解法 A congruence of the solution 姓名 所在学院 专业班级 学号 指导教师 日期

摘要:研究了有关同余式组的解法,特别是孙子定理的应用,当模不两两互质时,就不能用孙子定理来解了,那该怎么办呢?我们将在实例的求解中来揭密. [Summary] Has studied the related congruence group's solution, specially Residue theorem application, when the mold 22 are not coprime, could not use the Residue theorem to solve, how should that manage? We will reveal in the example solution. 关键字:一次同余式组 模 孙子定理 [Key words] A congruence group Mold Residue theorem 正文: 引理 1. (孙子定理)设1m ,2m ………. k m 是k 个两两互质的正数,m=12......k m m m , m=i i m M , i=1,2,…,k ,则同余式组x ≡1b (mod 1m ),x ≡2b (mod 2m ),…,x ≡k b (mod k m )的解为: x ≡` 111M M b +` 222M M b +…+` k k k M M b (modm ),……(2), 其中` i M M ≡1(mod i m ),i=1,2,…,k. 证明:由(i m ,j m )=1,i ≠j 即得(i M ,i m )=1,故由§1定理即知对每一i M ,有一` i M 存在,使得` i i M M ≡1(mod i m ). 另一方面m=i m i M ,因此j m |i M ,i ≠j ,故 `1k j j j j M M b =∑≡`i i i M M b ≡i b (mod i m )即为(1)的解。 若12,x x 是适合(1)的任意两个整数,则 1x ≡2x (mod i m ), i =1,2,…, k, 因(i m ,j m )=1,于是1x ≡2x (mod m ),故(1)的解只有(2) 完【1】 引理2 . 设所给的一次同余式组为:

(精心整理)三元一次方程组及其解法说课稿 (修改)

三元一次方程组及其解法说课稿 东华附校代修勇 教学内容:沪教版初中数学六年级下册第六章第4节第一课时(教材第74页)一、说教材: (一)教材简析 沪教版教材开门见山直接给出三元一次方程组的定义,然后,引导学生通过消元(代入、加减)的思想方法,解一些特殊的三元一次方程组。上本节课前,学生已学习一元一次方程和二元一次方程组的概念及解法,也深刻体会解二元一次方程组中“消元”的思想,这为过渡到本节课的学习起到铺垫作用。同时这节课是对“代入”和“加减”消元的再次检验,也为学生未来类比学习解高次方程(降次)提供思维上的启迪。 (二)学情分析 学生总体比较听话,上课认真,虽然思维不是很活跃,但有较好的理解能力和基础。在上课前,学生已较熟练的掌握二元一次方程组的概念及解法,对用方程(组)解决问题的建模思想有初步的认识。 (三)教学目标 1.知识与技能: (1)了解三元一次方程组的概念。 (2)会用“代入”“加减”把三元一次方程组化为“二元”,进而化为“一元”方程来解决。 2.过程与方法: 经历认识三元一次方程组并掌握三元一次方程组解法的过程,进一步体会“消元”思想。 3.情感态度与价值观: 培养分析问题、解决问题的能力与探索精神。 (四)教学重难点 根据以上分析,我将本节课的教学重点确定为:三元一次方程组的概念及解法。教学难点确定为:三元一次方程组向二元一次方程组的转化。 二、说教法、学法

(一)说教法 现代教学理论认为,学生是学习的主体,教师是学习的组织者。根据这一理念,本节课我采用启发引导、讲练结合及分组竞赛的教学方法,以提出问题、解决问题为主线,让学生去观察、类比、探索并及时的反思,从真正意义上完成对知识的自我建构。另外,在教学中我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。 (二)说学法 三元一次方程组比二元一次方程组要复杂些,有些题的解法技巧性太强,因此在解前必须认真观察方程组中各个方程的特征,选择好先消去的“元”,这是决定解题过程繁简的关键,一般来说,要引导学生先消去系数最简单的未知数。 三、说教学过程 (一)创设情境、引入新课 设计意图:通过创设问题情境,引入新课,使学生了解三元一次方程组的概念及本节课要解决的问题。 提出问题:小明春节收到12张面额分别1元、2元、5元的微信红包,共计22元,其中1元红包的数量是2元红包的4倍,求1元、2元、5元红包各多少个? 【通过学生实际生活中的问题,提高数学的学习兴趣,激发学生强烈的探究欲望。】 教师提问:这里有三个要求的量,直接设出三个未知数列方程组,顺理成章,直截了当,容易理解。如果设1元、2元、5元红包分别为x个、y个、z个,用它们可以表示哪些等量关系? 预测学生回答: 教师活动设计:强调审题抓住的三个等量关系,从而表示成以上三个方程,这个问题的解答必须同时满足这三个条件,因此,这三个方程联立起来,成 为

初等数论 第五章 同余方程

第五章同余方程 本章主要介绍同余方程的基础知识,并介绍几类特殊的同余方程的解法。 第一节同余方程的基本概念 本节要介绍同余方程的基本概念及一次同余方程。 在本章中,总假定m是正整数。 定义1设f(x) = a n x n a1x a0是整系数多项式,称 f(x) 0 (mod m) (1)是关于未知数x的模m的同余方程,简称为模m的同余方程。 若a n≡/0 (mod m),则称为n次同余方程。 定义2设x0是整数,当x= x0时式(1)成立,则称x0是同余方程(1)的解。凡对于模m同余的解,被视为同一个解。同余方程(1)的解数是指它的关于模m互不同余的所有解的个数,也即在模m的一个完全剩余系中的解的个数。 由定义2,同余方程(1)的解数不超过m。 定理1下面的结论成立: (ⅰ) 设b(x)是整系数多项式,则同余方程(1)与 f(x) b(x) b(x) (mod m) 等价; (ⅱ) 设b是整数,(b, m) = 1,则同余方程(1)与 bf(x) 0 (mod m) 等价; (ⅲ) 设m是素数,f(x) = g(x)h(x),g(x)与h(x)都是整系数多项式,又设x0是同余方程(1)的解,则x0必是同余方程 g(x) 0 (mod m) 或h(x) 0 (mod m)

的解。 证明 留做习题。 下面,我们来研究一次同余方程的解。 定理2 设a ,b 是整数,a ≡/0 (mod m )。则同余方程 ax b (mod m ) (2) 有解的充要条件是(a , m )b 。若有解,则恰有d = (a , m )个解。 证明 显然,同余方程(2)等价于不定方程 ax my = b , (3) 因此,第一个结论可由第四章第一节定理1得出。 若同余方程(2)有解x 0,则存在y 0,使得x 0与y 0是方程(3)的解,此时,方程(3)的全部解是 ??? ????-=+=t m a a y y t m a m x x ),(),(00,t Z 。 (4) 由式(4)所确定的x 都满足方程(2)。记d = (a , m ),以及 t = dq r ,q Z ,r = 0, 1, 2, , d 1, 则 x = x 0 qm r d m x r d m +≡0(mod m ),0 r d 1。 容易验证,当r = 0, 1, 2, , d 1时,相应的解 d m d x d m x d m x x )1(20000-+++,,,,Λ 对于模m 是两两不同余的,所以同余方程(2)恰有d 个解。证毕。 在定理的证明中,同时给出了解方程(2)的方法,但是,对于具体的方程(2),常常可采用不同的方法去解。 例1 设(a , m ) = 1,又设存在整数y ,使得a b ym ,则 x a ym b +(mod m ) 是方程(2)的解。 解 直接验算,有 ax b ym b (mod m )。

二元一次方程组的相关概念基础知识讲解

二元一次方程(组)的相关概念(基础)知识讲解 【学习目标】 1.理解二元一次方程、二元一次方程组及它们的解的含义; 2.会检验一组数是不是某个二元一次方程(组)的解. 【要点梳理】 要点一、二元一次方程 含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件: (1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 要点二、二元一次方程的解 一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释: (1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这

个二元一次方程. 要点三、二元一次方程组 把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如也是二元一次方程组. 要点四、二元一次方程组的解 一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释: (1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成的形式. (2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组的解有无数个. 【典型例题】 类型一、二元一次方程 1.已知下列方程,其中是二元一次方程的有. (1)25=y;(2)1=4;(3)=3;(4)=6;(5)24y=7; (6);(7);(8);(9);(10).【思路点拨】按二元一次方程满足的三个条件一一检验.

数论算法讲义 3章(同余方程)

第 3 章 同余方程 (一) 内容: ● 同余方程概念 ● 解同余方程 ● 解同余方程组 (二) 重点 ● 解同余方程 (三) 应用 ● 密码学,公钥密码学 3.1 基本概念及一次同余方程 (一) 同余方程 (1) 同余方程 【定义3.1.1】(定义1)设m 是一个正整数,f(x)为n 次多项式 ()0111a x a x a x a x f n n n n ++++=--Λ 其中i a 是正整数(n a ≠0(mod m )),则 f (x)≡0(mod m ) (1) 叫做模m 的(n 次)同余式(或模m 的(n 次)同余方程),n 叫做f(x)的次数,记为deg f 。 (2) 同余方程的解 若整数a 使得 f (a)≡0(mod m )成立,则a 叫做该同余方程的解。 (3) 同余方程的解数 若a 是同余方程(1)的解,则满足x ≡a (mod m )的所有整数都是方程(1)的解。即剩余类

a C ={x |x ∈Z ,x ≡a (mod m )} 中的每个剩余都是解。故把这些解都看做是相同的,并说剩余类a C 是同余方程(1)的一个解,这个解通常记为 x ≡a (mod m ) 当21,c c 均为同余方程(1)的解,且对模m 不同余时,就称它们是同余方程(2)的不同的解,所有对模m 的两两不同余的解的个数,称为是同余方程(1)的解数,记作()m f T ;。显然 ()m f T ;≤m (4) 同余方程的解法一:穷举法 任意选定模m 的一组完全剩余系,并以其中的每个剩余代入方程(1),在这完全剩余系中解的个数就是解数()m f T ;。 【例1】(例1)可以验证,x ≡2,4(mod 7)是同余方程 15++x x ≡0(mod 7) 的不同的解,故该方程的解数为2。 50+0+1=1≡3 mod 7 51+1+1=3≡3 mod 7 52+2+1=35≡0 mod 7 53+3+1=247≡2 mod 7 54+4+1=1029≡0 mod 7 55+5+1=3131≡2 mod 7 56+6+1=7783≡6 mod 7 【例2】求同余方程122742 -+x x ≡0(mod 15)的解。 (解)取模15的绝对最小完全剩余系:-7,-6,…,-1,0,1,2,…,7,直接计算知x =-6,3是解。所以,该同余方程的解是 x ≡-6,3(mod 15)

二元一次方程组的基本概念

详解点一、方程、一元一次方程的概念 ⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同. ⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 详解点二、二元一次方程: 含有两个未知数,并且含未知数的项的次数都是1的(整式)方程叫做二元一次方程。 练习:在方程(1) x + 2y = 3,(2) x 2 + 2x = 0,(3)93 1=-y x ,(4)4131=-y 中,属于二元一次方程的有 个。 详解点三、二元一次方程组: 把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。 详解点四、二元一次方程组的解: 一般地,使二元一次方程组的各个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。 练习:方程组???=-=+1 233 2y x y x 的解是( ) A .???=-=35y x B .???-=-=11y x C .???==11y x D .? ??-==53y x

例1:下列方程组中,不是二元一次方程组的是( ) A.1 23x y =?? +=?,. B.10x y x y +=?? -=?,. C.10x y xy +=?? =?,. D.21y x x y =?? -=?, . 分析:根据二元一次方程组的概念,我们知道,组成方程组必须含两个相同的未知数(如x 和y ),并且这两个方程中必须至少含一个二元一次方程。 例2:已知x y ,的值:①22x y =??= ?,;②32x y =??=?,;③32x y =-??=-?,;④66x y =??=? , .其中,是二元一次方程24 x y -=的解的是( ) A.① B.② C.③ D.④ 分析:这个题可以说是在整式乘除的基础上进行变形的一个类型,把这几组组解分别代入二元一次方程组检验即可。 例1、根据下表中所给的x 的值以及x 与y 的对应关系,填写下表: 【变式练习】若方程628kx y -=有一解32 x y =-??=?, 则k 的值等于 例2、有这样一道题目:判断31x y =??=?,是否是方程组2502350x y x y +-=??+-=? , 的解? 小明的解答过程是:将3x =,1y =代入方程250x y +-=,等式成立.所以31 x y =?? =?, 是方程组

相关文档
最新文档