原子转移自由基聚合基本原理及最新进展

原子转移自由基聚合基本原理及最新进展
原子转移自由基聚合基本原理及最新进展

原子转移自由基聚合及其应用新进展(精)

原子转移自由基聚合及其应用新进展 原子转移自由基聚合(ATRP),是近几年迅速发展并有着重要应用价值的一种活性聚合技术。自从1956 年Szwarc[1]等报道了一种没有链转移和链终止的负离子聚合技术以来,活性聚合的研究性得到了巨大的发展,并一直是高分子学术界高度重视的领域。1983年Webster等[2]成功地实现了适用于丙烯酸酯类单体的基团转移聚合。随后又成功的实现了开环聚合[3]、活性正离子聚合[4,5]、络合负离子聚合[6] 以及无金属离子的活性负离子聚合[7]。1993年Xerox公司在苯乙烯的普通自由基聚合体系中加入有机自由基捕捉剂(Tempo体系)[8],使反应体系在聚合过程中自由基保持较低的浓度,从而抑制了自由基的副反应。第一次实现了" 活性"自由基聚合。与此同时,1995年《美国化学会志》报道了CarnegieMellon大学Matyjaszewski教授和王锦山博士共同开发的原子转移自由基聚合(ATRP)[9],成功地实现了真正意义上的"活性"/可控自由基聚合,取得了活性自由基聚合领域的历史性突破。 1. ATRP基本原理 ATRP的基本原理如Figure 1.1所示: Figure 1.1 Mechanism of atom transfer radical polymerization

式中,R-X是引发剂卤代烃(X-般为Cl或Br),M t n为过渡金属络合物,它由过渡金属离子和配位剂构成。在引发阶段,处于低氧化态的过渡金属络合物(盐)M t n从一有机卤化物-X中夺取卤原子X,生成引发自由基R·及处于高氧化态的金属络合物(盐) M t n + 1 -X。R·引发可给出卤原子X,即M t n + 1-X 与R·/R-M·发生减活反应生成R-X/R-M-X。如果R-Mn-X (n = 1, 2, ...)与R-X-样可与M t n发生促活反应生成相应的R-Mn及M t n + 1-X,同时若R-Mn·与M t n + 1-X又可反过来发生减活反应生成R-Mn-X及M t n,在自由基聚合反应进行的同时,就会始终伴随着一个自由基活性种Mn·与有机大分子卤化物休眠种Mn-X的可逆转换平衡反应。卤原子的可逆转移控制着[Mn·],而一个快速的卤原子转换速率将控制着分子量及分子量分布。图示表明:ATRP的基本原理其实是通过一个交替的“活化—去活”可逆反应使得体系中游离基浓度处于极低,迫使不可逆终止反应被降低到最低程度,而链增长反应仍可进行,从而实现“活性”聚合[10]。由于在这种聚合反应中,只是将自由基活性种的浓度加以控制,链终止和链转移被极大地抑制了,所以这种聚合反应只能是可控聚合或“活性”聚合,而不是真正的活性聚合。同时,在这种可控聚合反应中包含着卤原子从卤化物到金属络合物(盐)、再从金属卤化物转移到自由基这样一个反复循环的原子转移过程,加之反应活性种为自由基,所以称为原子转移自由基聚合。由于已有实验证明某些基团也可发生类似的转移自由基反应,故王锦山等把这样一种反应称为“原子(基团)转移自由基聚合”[11]。 ATRP研究大致可以分成两个体系:一个是美国Carnegie-Mellon

自由基聚合习题参考答案

2. 下列烯类单体适于何种机理聚合自由基聚合、阳离子聚合还是阴离子聚合并说明原因。 CH 2=CHCl CH 2=CCl 2 CH 2=CHCN CH 2=C(CN)2 CH 2=CHCH 3 CH 2=C(CH 3)2 CH 2=CHC 6H 5 CF 2=CF 2 CH 2=C(CN)COOR CH 2=C(CH 3)-CH=CH 2 答:CH 2=CHCl :适合自由基聚合,Cl 原子是吸电子基团,也有共轭效应,但均较弱。 CH 2=CCl 2:自由基及阴离子聚合,两个吸电子基团。 CH 2=CHCN :自由基及阴离子聚合,CN 为吸电子基团。 CH 2=C(CN)2:阴离子聚合,两个吸电子基团(CN )。 CH 2=CHCH 3:配位聚合,甲基(CH 3)供电性弱。 CH 2=CHC 6H 5:三种机理均可,共轭体系。 CF 2=CF 2:自由基聚合,对称结构,但氟原子半径小。 CH 2=C(CN)COOR :阴离子聚合,取代基为两个吸电子基(CN 及COOR ) CH 2=C(CH 3)-CH=CH 2:三种机理均可,共轭体系。 3. 下列单体能否进行自由基聚合,并说明原因。 CH 2=C(C 6H 5)2 ClCH=CHCl CH 2=C(CH 3)C 2H 5 CH 3CH=CHCH 3 CH 2=CHOCOCH 3 CH 2=C(CH 3)COOCH 3 CH 3CH=CHCOOCH 3 CF 2=CFCl 答:CH 2=C(C 6H 5)2:不能,两个苯基取代基位阻大小。 ClCH=CHCl :不能,位阻效应,对称结构,极化程度低。 CH 2=C(CH 3)C 2H 5:不能,二个推电子基,只能进行阳离子聚合。 CH 3CH=CHCH 3:不能,位阻效应,结构对称,极化程度低。

自由基聚合

2.自由基聚合 2.1引言 连锁聚合 根据聚合反应机理分类,聚合反应可以分为 逐步聚合 连锁聚合反应需要活性中心,单体在活性中心上反应形成大分子。活性中心可以是自由基,也可以是阴、阳离子。活性中心的性质与化合物共价键断裂的方式有关。 共价键有两种断裂方式:均裂和异裂 均裂: 共价键上一对电子分属于两个基团,这种带独电子的基团呈电中性,称作自由基或游离基。 异裂: 共价键上一对电子全部归属于某一基团,形成阴离子或负离子,则另一缺电子基团称作阳离子或正离子。 自由基、阴离子、阳离子都有可能成为活性中心,可打开烯类单体或羰基单体中的π键,或使环状单体的σ键断裂开环,使之链引发和链增长,分别成为自由基聚合,阴离子聚合,阳离子聚合,和配位聚合,实际上配位聚合也属于离子聚合的范畴。 Eg: 自由基聚合: 2.2连锁聚合的单体 单体能否聚合,须从热力学和动力学两方面考虑,热力学上能聚合的单体还要求有适当的引发剂、温度等动力学条件,才能保证一定的聚合速度。从热力学考虑可以进行连锁聚合的单体有: 2.2.1适合连锁聚合的单体 大致可以分为三类: 1.含有碳碳双键的烯类单体:包括单烯类、共轭二烯类,甚至炔烃。其中:

单烯类:乙烯基单体中的碳碳双键中π键可以均裂也可以异裂,因此可以进行自由基聚合或离子聚合。具体选择哪种聚合方式,由取代基的性质决定。 共轭二烯类:如苯乙烯,丁二烯,异戊二烯等单体处于共轭体系,在外界的影响下,双键的电子云易流动,诱导极化。因此单体既可以进行自由基聚合,也可以进行离子聚合。 2.羰基化合物如HCHO,CH3CHO,甚至酮类。 Eg: HCHO 羰基的双键有极性,使氧原子带有部分负电荷,而碳原子则带有部分正电荷。 3.杂环化合物 羰基化合物和杂环化合物的极性较强,一般不能自由基聚合,只适合于离子聚合。因此实际上只有碳碳双键的烯类单体可以进行自由基聚合,但也不是所有的都行,其取代基的性质有很大影响。 2.2.2取代基对于乙烯类单体聚合能力的影响。 除了取代基的种类和性质外,取代基的数量和体积也颇有影响,概括起来,分电子效应和位阻效应两个方面。电子效应又有诱导(极性)效应和共轭效应之分。乙烯基单体取代基的诱导效应和共轭效应能改变双键的电子云密度,并且对所形成的活性种的稳定性也有影响,因此决定着对自由基,阴、阳离子聚合的选择性。 1.无取代基时 乙烯结构对称,偶极矩为零,对进攻试剂选择性差。(目前只有两种聚合途径,在高温高压下可进行自由基聚合;在低压下可进行配位聚合。) 2.一取代乙烯 1)取代基为供电基团 供电基团有:烷氧基,烷基、苯基、乙烯基等 它可以(1)使碳碳双键电子云密度增加,有利于阳离子进攻,生成碳阳离子。 (2)使生成的阳离子增长种共振稳定。(碳阳离子生成后,由于供电子基团的存在,使电子云密度缺少的情况有所改善,体系的能量有所降低,碳阳离子的稳定性有所增加。)例如: 从诱导效应来看:烷氧基使双键电子云密度下降,理应进行阴离子或自由基聚合。 从共轭效应看:氧上未共用电子对能和双键形成P-π共轭,使双键电子云密度增加。 一般情况下,共轭效应占主动,所以是碳碳双键上电子云密度增加。同时又因为烷氧基的共轭,使正电荷不单单集中在碳阳离子上,而分散在碳氧两个原子上,使形成的

活性自由基聚合的新进展_原子转移自由基聚合

第24卷第1期山 西 化 工V o l.24 N o.1 2004年2月SHAN X I CH E M I CAL I NDU STR Y Feb.2004 活性自由基聚合的新进展 ——原子转移自由基聚合 谭英杰, 梁玉蓉 (华北工学院分院材料工程系,山西 太原 030008) 摘要:活性自由基聚合是目前高分子科学中最为活跃的研究领域之一,原子转移自由基聚合(A TR P)反应 是实现活性聚合的一种颇为有效的途径,也是高分子化学领域的最新研究进展之一。A TR P的独 特之处在于使用了卤代烷作引发剂,并用过渡金属催化剂或退化转移的方式,有效地抑制了自由基 双基终止的反应。A TR P可以同时适用于非极性和极性单体,可以制备多种结构形式的、结构清晰的高 分子化合物。可实现众多单体的活性 可控自由基聚合。介绍了A TR P的研究进展,包括A TR P反应的 特点、聚合反应机理、应用、研究现状及前景展望。 关键词:活性聚合反应;原子转移聚合反应;自由基双基终止;进展;特点;机理;应用;前景 中图分类号:TQ316 文献标识码:A 文章编号:100427050(2004)0120011205 引 言 聚合物合成的控制主要是指聚合物结构的控制和聚合物分子量的控制。活性聚合可以得到分子量分布极窄的聚合物,是控制聚合物分子量最理想的方法。通过活性聚合还能容易地获得预定结构和序列的嵌段共聚物和接枝共聚物。因此,活性聚合的研究受到高度的重视。 活性聚合的概念是1956年Sz w are提出的,即无终止、无转移、引发速率远大于增长速率的聚合反应。 活性聚合中依引发机理的不同,分为阳离子活性聚合、阴离子活性聚合、配位活性聚合、自由基活性聚合等。至今为止发展最完善的是阴离子活性聚合,由此成功地获得了单分散聚合物、预定结构和序列的嵌段共聚物、接枝共聚物。然而,阴离子活性聚合对反应条件要求苛刻,可聚合的单体也比较少,应用范围很有限。 与其他类型聚合反应相比,自由基聚合可聚合 收稿日期:2003210221 作者简介:谭英杰,男,1971年出生,学士学位,讲师,主要从事高分子材料共混改性研究。 的单体多、反应条件温和、易控制,实现工业化生产容易。当今市场上60%以上的合成聚合物产品是由自由基聚合工艺制备的。所以,活性自由基聚合具有极高的实用价值。 但是,自由基不稳定,极易发生双自由基终止反应,难以实现自由基活性聚合。从20世纪70年代开始,人们就努力寻找获得自由基活性聚合的途径[1]。 1 原子转移自由基聚合(A TR P)的特点 新材料的合成技术是21世纪优先发展的三大产业之一。高分子合成化学技术的发展促进了能满足各种要求的新材料不断问世,成为合成材料技术取得日新月异进展的重要基础之一。20世纪50年代配位聚合技术的出现,开辟了立构规整聚合的新纪元;而各种活性聚合技术的发展为合成出结构和组成可控的聚合物材料提供了可能性。自由基聚合产品占了所有聚合物产品的一半以上,因此,发展“可控、活性自由基聚合”成为人们梦寐以求的目标。自1995年中国旅美学者王绵山等首先发明原子转移自由基聚合(A TR P)技术后,立即引起世界各国高分子界专家学者和工业界的极大兴趣。 原子转移自由基聚合技术是近几年迅速发展并有着重要应用价值的一种活性聚合技术,可有效地

自由基聚合习题

4. 下列单体适于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合,并说明理由。CH2=CHCl CH2=CHCl2CH2=CHCN CH2=C(CN)2CH2=CHCH3CH2=C(CH3)2 CH2=CHC6H5CF2=CF2CH2=C(CN)COOR CH2=C(CH3)-CH=CH2 CH2=CHCl 只能进行自由基聚合。Cl原子是吸电子基团,也有共轭效应,但均较弱。 CH2=CHCl2能进行自由基和阴离子聚合,因为两个氯原子使诱导效应增强。 CH2=CHCN 适合自由基聚合和阴离子聚合。-CN是较强的吸电子取代基,并有共轭效应。 CH2=C(CN)2 CH2=CHCH3不能进行自由基、阳离子、阴离子聚合,只能进行配位聚合,因为一个甲基供电性弱,不足以使丙烯进行阳离子聚合。 CH2=C(CH3)2只能进行阳离子聚合。-CH3为推电子取代基,-CH3与双键有超共轭效应,两个甲基都是推电子取代基,其协同作用相当于强的推电子取代基,有利于双键电子云密度增加和阳离子进攻。 CH2=CHC6H5可进行自由基、阳离子、阴离子聚合。因为共轭体系中电子流动性大,容易诱导极化。 CF2=CF2适合自由基聚合。F原子体积小。 CH2=C(CN)COOR适合阴离子聚合,两个吸电子取代基其协同作用相当含有强的吸电子取代基,并兼有共轭效应,只能进行阴离子聚合。 CH2=C(CH3)-CH=CH2 5. 判断下列烯类单体能否进行自由基聚合,并说明理由。 CH2=C(C6H5)2ClCH=CHCl CH2=C(CH3)C2H5CH3CH=CHCH3 CH2=C(CH3)COOCH3CH2=CHOCOCH3CH3CH=CHCOOCH3 CH2=CHCH3 CH2=C(C6H5)2不能通过自由基聚合形成高相对分子质量聚合物。因为C6H5-取代基空间位阻大,只能形成二聚体。 ClCH=CHCl不能通过自由基聚合形成高相对分子质量聚合物。因为单体结构对称,对1,2-二取代造成较大的空间位阻。 CH2=CHCH3与CH2=C(CH3)C2H5均不能通过自由基聚合形成高相对分子质量聚合物。由于双键的电荷密度大,不利于自由基的进攻,且易转移生成较稳定的烯丙基型自由基,难于再与丙烯等加成转变成较活泼的自由基,故得不到高聚物,前者只能进行配位阴离子聚合,后者只能进行阳离子聚合。 CH3CH=CHCH3不能通过自由基聚合形成高相对分子质量聚合物。因为结构结称、位阻大,且易发生单体转移生成烯丙基稳定结构。 CH2=C(CH3)COOCH3能通过自由基聚合形成高相对分子质量聚合物。因为是1,1-二元取代基,甲基体积较小,-COOCH3为吸电子取代基,-CH3为推电子取代基,均有共轭效应。 CH2=CHOCOCH3能通过自由基聚合形成高相对分子质量聚合物。 CH3CH=CHCOOCH3不能通过自由基聚合形成高相对分子质量聚合物。由于是1,2-二元取代基,结构结称,空间阻碍大。 CF2=CFCl能通过自由基聚合形成高相对分子质量聚合物。这是因为F原子体积很小,

可逆加成-断裂链转移(RAFT)聚合概述与最新研究进展

可逆加成-断裂链转移(RAFT)聚合概述与最新研究进展 摘要可逆加成-断裂链转移(RAFT)聚合是一种十分重要的“活性”自由 基聚合方法。这种聚合方式被人们发现以来,RAFT聚合被化学和材料界广泛应用于聚合物的设计和合成上。本文对RAFT聚合的产生、反应机理等做了简要描述,并综述了其最新研究进展。 关键词RAFT聚合“活性”自由基聚合链转移剂 前言 活性聚合最早由美国科学家Szwarc于1956年提出。所谓活性聚合是指那些不存在任何使聚合链增长反应停止或不可逆转副反应的聚合反应。经历了60年的发展,活性聚合已从最早的阴离子聚合扩展到其它典型的链式聚合:如阳离子(1986年),自由基(1993年)等,并在人们的生产和生活中产生了巨大影响。活性聚合是高分子发展史上最伟大的发现之一。 活性聚合中依引发机理的不同,分为阴离子活性聚合、阳离子活性聚合、活性自由基聚合、配位活性聚合等。活性自由基聚合较其它几种聚合方式可聚合的单体多,反应温度范围较宽,能采用的溶剂种类和聚合方法多[1],因而引起了化学和材料界的极大重视。 活性自由基聚合依据其方法可分为引发转移终止(Iniferter)法,稳定自由基聚合(SFRP,NMP)法,原子转移自由基聚合(ATRP)法[2]和可逆加成-断裂链转移聚合(RAFT)法[3]。其中Iniferter法的缺点是聚合过程难以控制,所得聚合物的相对分子质量与理论值偏差较大,相对分子质量分布较宽;NMP的主要缺点表现在需要使用价格昂贵氮氧自由基,而且氮氧自由基的合成较为困难;ATRP 的劣势则表现在当聚合一些能与过渡金属催化剂形成配位键的单体(如丙烯酸)时的控制力不强,而且较难除去金属离子和催化剂,此外还需要较为苛刻的反应条件(对除氧的要求较高)[4]。相比而言,可逆加成-断裂链转移聚合(RAFT)法有着其它几种无法比拟的优点(如反应条件温和、适用单体范围广等),使得“活性”自由基聚合技术的发展又向前迈进了一步[5]。 1RAFT聚合概述 1.1RAFT聚合的提出 1998年,Rizzardo E.等人在第37届国际高分子学术讨论会上提出了一种新的CRP方法即可逆加成-断裂链转移自由基聚合(RAFT)[6]。他们以二硫代酯类化合物为链转移剂,通过增长自由基与二硫代酯类化合物的可逆链转移反应,实现控制聚合体系中增长自由基浓度,达到“活性”/可控的目的。 RAFT技术几乎是在同时被澳大利亚联邦科学与工业研究组织(CSIRO)的Rizzardo课题组和法国的Charmot等人发现和申请专利的。Charmot等人将他们的发现命名为通过磺酸盐交换的大分子设计(MADLX),他们的专利仅仅限制在磺

自由基聚合习题参考答案

2. 下列烯类单体适于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。 CH 2=CHCl CH 2=CCl 2 CH 2=CHCN CH 2=C(CN)2 CH 2=CHCH 3 CH 2=C(CH 3)2 CH 2=CHC 6H 5 CF 2=CF 2 CH 2=C(CN)COOR CH 2=C(CH 3)-CH=CH 2 答:CH 2=CHCl :适合自由基聚合,Cl 原子是吸电子基团,也有共轭效应,但均较弱。 CH 2=CCl 2:自由基及阴离子聚合,两个吸电子基团。 CH 2=CHCN :自由基及阴离子聚合,CN 为吸电子基团。 CH 2=C(CN)2:阴离子聚合,两个吸电子基团(CN )。 CH 2=CHCH 3:配位聚合,甲基(CH 3)供电性弱。 CH 2=CHC 6H 5:三种机理均可,共轭体系。 CF 2=CF 2:自由基聚合,对称结构,但氟原子半径小。 CH 2=C(CN)COOR :阴离子聚合,取代基为两个吸电子基(CN 及COOR ) CH 2=C(CH 3)-CH=CH 2:三种机理均可,共轭体系。 3. 下列单体能否进行自由基聚合,并说明原因。 CH 2=C(C 6H 5)2 ClCH=CHCl CH 2=C(CH 3)C 2H 5 CH 3CH=CHCH 3 CH 2=CHOCOCH 3 CH 2=C(CH 3)COOCH 3 CH 3CH=CHCOOCH 3 CF 2=CFCl 答:CH 2=C(C 6H 5)2:不能,两个苯基取代基位阻大小。 ClCH=CHCl :不能,位阻效应,对称结构,极化程度低。 CH 2=C(CH 3)C 2H 5:不能,二个推电子基,只能进行阳离子聚合。 CH 3CH=CHCH 3:不能,位阻效应,结构对称,极化程度低。 CH 2=CHOCOCH 3:醋酸乙烯酯,能,吸电子基团。 CH 2=C(CH 3)COOCH 3:甲基丙烯酸甲酯,能。 CH 3CH=CHCOOCH 3 :不能,1,2双取代,位阻效应。 CF 2=CFCl :能,结构不对称,F 原子小。 计算题 1. 甲基丙烯酸甲酯进行聚合,试由H ?和S ?来计算77℃、127℃、177℃、227℃时的平衡单体浓度,从热力学上判断聚合能否正常进行。 解:由教材P75上表3-3中查得:甲基丙烯酸甲酯H ?=mol ,S ?=mol K 平衡单体浓度:)(1]ln[ΘΘ ?-?= S T H R M e T=77℃=,=e M ]ln[*10-3 mol/L T=127℃=,=e M ]ln[L T=177℃=,=e M ]ln[L T=227℃=,=e M ]ln[L

自由基聚合机理以及四种常见共聚物

自由基聚合机理 烯类单体的加聚反应多属连锁聚合,连锁聚合反应由链引发、链增长、链终止等基元反应组成,各步的反应速率和活化能相差很大。连锁聚合链引发形成活性中心(或称活性种),活性中心不断与单体加成而使链增长(单体之间并不反应),活性中心的破坏就是链终止。自由基、阳离子、阴离子都可能成为活性中心引发聚合,故连锁聚合又可分为自由基聚合、阳离子聚合、阴离子聚合和配位聚合等,其中自由基聚合产物约占聚合物总产量的60%。 热力学上能够聚合的单体对聚合机理的选择是有差异的,如氯乙烯只能自由基聚合、异丁烯只能阳离子聚合、MMA可以进行自由基聚合和阴离子聚合、苯乙烯则可按各种连锁机理聚合。 自由基聚合产物约占聚合物总产量60%以上,其重要性可想而知。高压聚乙烯、聚氯乙烯、聚苯乙烯、聚四氟乙烯、聚醋酸乙烯酯、聚丙烯酸酯类、聚丙烯腈、丁苯橡胶、丁腈橡胶、氯丁橡胶、ABS树脂等聚合物都通过自由基聚合来生产。本节将对自由基链式聚合反应作较详细的讨论。 自由基聚合的基元反应 烯类单体的自由基聚合反应一般由链引发、链增长、链终止等基元反应组成。此外,还可能伴有链转移反应。现将各基元反应及其主要特征分述如下。 1 链引发 链引发反应是形成单体自由基活性种的反应。用引发剂引发时,将由下列两步组成:(1)引发剂I分解,形成初级自由基R?; (2)初级自由基与单体加成,形成单体自由基。 单体自由基形成以后,继续与其他单体加聚,而使链增长。 比较上述两步反应,引发剂分解是吸热反应,活化能高,约105~150kJ/mo1,反应速

率小,分解速率常数约10-4~10-6s-1。初级自由基与单体结合成单体自由基这一步是放热反应,活化能低,约20~34kJ/mo1,反应速率大,与后继的链增长反应相似。但链引发必须包括这一步,因为一些副反应可以使初级自由基不参与单体自由基的形成,也就无法继续链增长。 有些单体可以用热、光、辐射等能源来直接引发聚合。这方面的研究工作不少,苯乙烯热聚合已工业化;紫外光固化涂料也已大规模使用。 2 链增长 在链引发阶段形成的单体自由基,仍具有活性,能打开第二个烯类分子的π键,形成新的自由基。新自由基活性并不衰减,继续和其他单体分子结合成单元更多的链自由基。这个过程称做链增长反应,实际上是加成反应。 为了书写方便,上述链自由基可以简写成,其中锯齿形代表由许多单元组成的碳链骨架,基团所带的独电子系处在碳原子上。 链增长反应有两个特征:一是放热反应,烯类单体聚合热约55~95kJ/mol;二是增长活化能低,约20~34KJ/mol,增长速率极高,在0.01~几秒钟内,就可以便聚合度达到数千,甚至上万。这样高的速率是难以控制的,单体自由基一经形成以后,立刻与其他单体分子加成,增长成活性链,而后终止成大分子。因此,聚合体系内往往由单体和聚合物两部分组成,不存在聚合度递增的一系列中间产物。 对于链增长反应,除了应注意速率问题以外,还须研究对大分子微观结构的影响。在链增长反应中,结构单元间的结合可能存在“头-尾”和“头-头”或“尾-尾”两种形式。经实验证明,主要以头-尾形式连接。这一结果可由电子效应和空间位阻效应得到解释。对一些取代基共轭效应和空间位阻都较小的单体聚合时头-头结构会稍高,如醋酸乙烯酯、偏二氟乙烯等。聚合温度升高时,头-头形式结构将增多。

自由基聚合习题参考答案

第3章自由基聚合-习题参考答案 1、判断下列单体能否进行自由基聚合并说明理由 H2C CHCl H2C CH H2C CCl2H2C CH2H2C C H2C CHCN H2C C(CN)2H2C CHCH3F2C CF2ClHC CHCl H2C C CH3 COOCH3H2C C CN COOCH3 HC CH OC CO O 答: (1)可以。Cl原子的诱导效应为吸电性,共轭效应为供电性两者相抵,电子效应微弱,只能自由基聚合。 (2)可以。为具有共轭体系的取代基。 (3)可以。结构不对称,极化程度高,能自由基聚合。 (4)可以。结构对称,无诱导效应共轭效应,较难自由基聚合。 (5)不能。1,1—二苯基乙烯,二个苯基具有很强的共轭稳定作用,形成的稳定自由基不能进一步反应。 (6)可以。吸电子单取代基。 (7)不可以。1,1双强吸电子能力取代基。 (8)不可以。甲基为弱供电子取代基。 (9)可以。氟原子半径较小,位阻效应可以忽略不计。 (10)不可以。由于位阻效应,及结构对称,极化程度低,难自由基聚合 (11)可以。1,1-双取代。 (12)可以。1,1-双取代吸电子基团。 (13) 不可以。1,2-双取代,空间位阻。但可进行自由基共聚。 2、试比较自由基聚合与缩聚反应的特点。

答: 自由基聚合:(1)由链引发,链增长,链终止等基元反应组成,其速率常数和活化能均不等,链引发最慢是控制步骤。 (2)单体加到少量活性种上,使链迅速增长。单体-单体,单体-聚合物,聚合物-聚合物之间均不能反应。 (3)只有链增长才是聚合度增加,从一聚体增加到高聚物,时间极短,中间不能暂停。聚合一开始就有高聚物产生。 (4)在聚合过程中,单体逐渐减少,转化率相应增加 (5)延长聚合时间,转化率提高,分子量变化较小。 (6)反应产物由单体,聚合物,微量活性种组成。 (7)微量苯酚等阻聚剂可消灭活性种,使聚合终止。 缩聚反应:(1)不能区分出链引发,链增长,链终止,各部分反应速率和活化能基本相同。 (2)单体,低聚物,缩聚物中任何物种之间均能缩聚,使链增长,无所谓活性中心。 (3)任何物种之间都能反应,使分子量逐步增加,反应可以停留在中等聚合度阶段,只在聚合后期才能获得高分子产物。 (4)聚合初期,单体缩聚成低聚物,以后再由低聚物逐步缩聚成高聚物,转化率变化微小,反应程度逐步增加。 (5)延长缩聚时间分子量提高,而转化率变化较小。 (6)任何阶段都由聚合度不等的同系缩聚物组成。 (7)平衡和基团非等当量可使缩聚暂停,这些因素一旦消除,缩聚又可继续进行。 3、解释下列概念: 歧化终止,偶合终止,引发剂效率,笼蔽效应,诱导效应,自动加速现象,诱导期,聚合上限温度,悬浮聚合,乳液聚合,增溶作用,临界胶束浓度,胶束,种子乳液聚合, 答: 歧化终止:链自由基夺取另一自由基的氢原子或其他原子终止反应。 偶合终止:两链自由基的独电子相互结合成共价键的终止反应。 引发剂效率:引发剂在均裂过程中产生的自由基引发聚合的部份占引发剂分解总量的分率,

第二章 自由基聚合-课堂练习题及答案

第二章 自 由 基 聚 合 课 堂 练 习 题 1. 对下列实验现象进行讨论: (1)乙烯、乙烯的一元取代物、乙烯的1,1-二元取代物一般都能聚合,但乙烯的1,2-取代物除个别外一般不能聚合。 (2)大部分烯类单体能按自由基机理聚合,只有少部分单体能按离子型机理聚合。 (3)带有π-π共轭体系的单体可以按自由基、阳离子和阴离子机理进行聚合。 解: (1) 对单取代乙烯,空间位阻小,可以聚合;对于1,1-二取代乙烯,一般情况下,取代基体积不大,空间位阻小,同时不对称结构使之更易极化,故1,1-二取代乙烯也可聚合;1,2-二取代乙烯,主要是结构对称的两端取代基的空间位阻要比单端二取代的位阻大得多,使之难以聚合。 (2) 对烯类单体来说,其参加聚合的官能团部分绝大多数情况下是碳碳双键或叁键,碳碳双键或叁键的两个碳电负性相同,不会使电子云密度大变化。大多数烯类单体的取代基的给电子或吸电子效应不是很强;自由基是电中性的,对其稳定作用没有太严格的要求,几乎所有取代基对自由基都有一定的稳定作用,因此发生自由基聚合的单体多。少数带有强电子效应取代基的单体,使碳碳双键或叁键的电子云密度发生较大变化,且取代基对生成的离子活性中心有很好的稳定作用,才能进行离子聚合。 (3) π-π体系单体具有大共轭效应,可在诱导极化下产生电子云的流动,从而产生利于在相应反应条件下的电子云密度分布,使反应容易进行,因此这类单体可发生自由基、阴离子、阳离子聚合。 2. 推导自由基聚合动力学方程时,作了哪些基本假定? 解:在不考虑链转移反应的前提下,作了三个基本假定:等活性假定,即链自由基的活性与链长无关;稳态假定,即在反应中自由基的浓度保持不变;聚合度很大假定。 3. 聚合反应速率与引发剂浓度平方根成正比,对单体浓度呈一级反应各是哪一机理造成的? 解:R p 与[I]1/2成正比是双基终止造成的,R p 与[M]成正比是初级自由基形成速率远小于单体自由基形成速率的结果。 4. 单体浓度0.2mol/L ,过氧类引发剂浓度为4.2×10-3mol/L, 在60O C 下加热聚合。如引发剂半衰期为44hr ,引发剂引发效率f=0.80,k p =145L/mol·s ,k t =7.0×107 L/mol·s ,欲达5%转化率,需多少时间? 答案:t = 24113s=6.7h 。 解:(1)法:0][][ln M M = kp -21)(t d k fk []21I t )1ln(x - = kp -21)(t d k fk []21I t k d =ln2/t 1/2=ln2/44×3600=4.38×10-6(S -1), k p =145(L/mol .s ), k t =7.0×107(L/mol .s )

原子转移自由基聚合理论

(1)ATRP介绍 王锦山等[1]采用1-苯-1-氯乙烷作为引发剂,氯化亚铜和联吡啶(bpy)的络合物作为催化剂,在130℃下引发苯乙烯(St)的本体聚合,反应3h产率可达95%。理论分子量和实验值符合较好。为了验证反应的自由基机理,比较了所得聚合物与一般自由基聚合所得聚合物的立构规整度,发现两者比较一致。并且当加入第二单体丙烯酸甲酯时,成功实现了嵌段共聚,具有明显的活性聚合特征。由此他们提出了原子转移自由基聚合(ATRP)。 ATRP是以简单的有机卤化物为引发剂、过渡金属配合物为卤原子载体,通过氧化还原反应,在活性种与休眠种之间建立可逆的动态平衡,从而实现了对聚合反应的控制。 聚合原理 引发阶段,处于低氧化态的转移金属卤化物Mt n,从有机卤化物R-X中吸取卤原子X,生成引发自由基R·及处于高氧化态的金属卤化物Mt n+1-X,自由基R·可引发单体聚合,形成链自由基R-M n·。R-M n·可从高氧化态的金属配位化合物Mt n+1-X中重新夺取卤原子而发生钝化反应,形成R-M n-X,并将高氧化态的金属卤化物还原为低氧化态的Mt n。增长阶段,R-M n-X与R-X一样(不总一样)可与Mt n发生促活反应生成相应的R-M n·和Mt n+1-X,R-M n·与R-M·性质相似均为活性种,同时R-M n·和Mt n+1-X又可反过来发生钝化反应生成R-M n-X和Mt n,则在自由基聚合反应进行的同时始终伴随着一个自由基活性种与大分子卤化物休眠种的可逆转换平衡反应。 由此可见,ATRP的基本原理其实是通过一个交替的“促活—失活”可逆反应使得体系中的游离基浓度处于极低,迫使不可逆终止反应被降到最低程度,从而实现可控/“活性”自由基聚合。 引发剂 ATRP聚合体系的引发剂主要是卤代烷RX(X=Br,C1),另外也有采用芳基磺酰氯、偶氮二异丁腈等。RX的主要作用是定量产生增长链。α-碳上具有诱导或共轭结构的RX,末端含有类似结构的大分子(大分子引发剂)也可以用来引发,形成相应的嵌段共聚物。另一方面,R的结构应尽量与增长链结构相似。卤素基团必须能快速且选择性地在增长链和转移金属之间交换。Br和Cl均可以采用,采用Br的聚合速率大于Cl[2]。 金属催化剂及配体 第一代ATRP催化剂为CuX(其中X为Br,Cl),此后有人采用了RuⅡ,RhⅡ,NiⅡ,FeⅡ,ReⅤ等过度金属卤化物[3]。而最早采用的配位剂是联二吡啶(bpy),后来有了dNbipy,PMDETA,BDE,BPMODA和Me6TREN等高活性的催化剂配

自由基聚合题库

? 1. 目前,悬浮聚合发主要用于生产( )。
A. PVC、PVDC C. PE
正确答案:A.
B. PS D. PP
? 2. 下列单体中可进行自由基、阴离子、阳离子聚合反应的是( )。
A. 氯乙烯 B. 苯乙烯 C. 乙烯 D. 醋酸乙烯 正确答案:B.
? 3. 聚乙烯醇的单体是( )。
A. 乙烯醇 B. 乙醇
C. 乙醛
D. 醋酸乙烯酯
正确答案:D.
? 4. 典型乳液聚合中,主要引发地点是在 ( )。
A. 单体液滴 B. 胶束 C. 水相 D. 单体液滴和胶束 正确答案:B.
? 5. 过硫酸钾引发剂属于( )。
A. 氧化还原引发剂 B. 水溶性引发剂 C. 油溶性引发剂 D. 阴离子引发剂 正确答案:B.
? 6. 在自由基聚合中,若初级自由基与单体的引发速度较慢,则最终聚合速率与单体浓 度呈( )级关系。
A. 1 C. 2
正确答案:B.
B. 1.5 D. 不能确定
? 7. 苯醌是常用的分子型阻聚剂,一般用单体的( )就能达到阻聚效果。
A. 1.0%一 0.5% C. 2.0%一 5.0% 正确答案:D.
B. 1.0%一 2.0% D. 0.1%一 0.001%
? 8. ( )的自由基是引发聚合反应常见的自由基。

A. 高活性 B. 低活性 C. 中等活性 D. 无活性 正确答案:C.
? 9. 某工厂用 PVC 为原料制搪塑制品时,从经济效果和环境考虑,他们决定用( )聚合 方法。
A. 本体聚合法生产的 PVC C. 乳液聚合法生产的 PVC
正确答案:C.
B. 悬浮聚合法生产的 PVC D. 溶液聚合法生产的 PVC
? 10. 自由基链转移反应中,不可能包括活性链向( )的转移。
A. 高分子 B. 单体 C. 引发剂 D. 溶剂
? 1. 对于自由基聚合,在其他条件保持不变的前提下升高聚合温度,得到的聚合物的分 子量将( )。
A. 减小 B. 增大 C. 不变 D. 不一定 正确答案:B.
? 2. 在乙酸乙烯酯的自由基聚合反应中加入少量苯乙烯,会发生( )
A. 聚合反应加速 C. 相对分子量降低 正确答案:B.
B. 聚合反应停止 D. 相对分子量增加
? 3. 传统自由基聚合的机理特征是( )。
A. 慢引发,快增长,速终止 C. 快引发,快增长,难终止
正确答案:A.
B. 快引发,慢增长,不中止 D. 慢引发,慢增长,速终止
? 4. 合成丁基橡胶的主要单体是( )。
A. 异丁烯+丁二烯 C. 异丁烯
正确答案:B.
B. 异丁烯+异戊二烯 D. 丁二烯
? 5. 合成橡胶通常采用乳液聚合反应,主要是因为乳液聚合( )。
A. 产品较纯净
B. 易获得高分子量聚合物
C. 不易发生凝胶效应 D. 聚合反应容易控制

离子聚合测验题答案

离子聚合测验题 一.填空题 1.只能进行阳离子聚合的单体有异丁烯和乙烯基醚等。 2.阳离子聚合的引发体系有 BF3+H2O 、 SnCl4+H2O 和 AlCl3+H2O 等。 3.阴离子聚合体系中活性中心离子对可能以松散离子对、紧密离子对和自由离子等三种形态存在。 4.阳离子聚合的特点是快引发、快增长、易转移、难终止。 5. 异丁烯阳离子聚合最主要的链终止方式是向单体链转移。合成高相对分 子质量的异丁烯,需要进行低温聚合的原因是抑制链转移。 6.离子聚合中溶剂的极性加大,反应速率加快,原因是极性溶剂使离子对 松散。 7.丁基橡胶是以异丁烯和异戊二烯为单体,按阳离子反应历程, 以AlCl3+H2O 为催化剂,采用溶液聚合方法,在-100℃温度下聚 合制得的。 8.在芳香烃溶剂中,以n-丁基锂为引发剂引发苯乙烯聚合,发现引发速率和增长 速率分别是正丁基锂浓度的1/6级和1/2级,表明引发过程和增长过程中存在着。 9.要制备SBS热塑性弹性体,可以采用_阴离子___聚合的原理。先用碱金属引发 剂引发聚合,生成丁二烯结构单元,然后再加入苯乙烯单体,最后加 终止剂使反应停止。 二.选择题 1. 阳离子聚合的引发剂(C D ) A C4H9Li B NaOH+萘 C BF3+H2O D H2SO4 2. 阳离子聚合的单体(A D ) A CH2=CH-C6H5 B CH2=C(CH3)COOCH3 C CH2=CH-CH3 D CH2=CH-OR 3.只能采用阳离子聚合的单体是(C ) A 氯乙烯 B MMA C 异丁烯 D 丙烯腈。 4.在高分子合成中,容易制得有实用价值的嵌段共聚物的是(B ) A配位聚合B阴离子活性聚合C自由基共聚合D阳离子聚合 5.阳离子聚合的特点可以用以下哪种方式来描述(B ) A慢引发,快增长,速终止B快引发,快增长,易转移,难终止 C 快引发,慢增长,无转移,无终止D慢引发,快增长,易转移,难终止 6.合成丁基橡胶的主要单体是(B ): A丁二烯+异丁烯B异丁烯+异戊二烯C丁二烯 7.制备高分子量聚异丁烯是以BF3为催化剂,在氯甲烷中,于-100℃下聚合,链 终止的主要形式为(B ): A双基终止B向单体转移终止C向溶剂转移终止 8.无终止阴离子聚合,调节聚合物分子量的有效手段是(B ): A、温度 B、引发剂浓度 C、溶剂性质 9.升高温度对阳离子聚合反应速率和分子量的影响规律是(C ): A Rp↑M↑ B Rp↑M↓ C Rp↓M↓

自由基本体聚合过程

3.1 自由基本体聚合过程 3.1.1 自由基本体聚合概述 1、定义:单体在有少量引发剂(甚至不加引发剂而是在光、热、辐射能)的作用下聚合为 高聚物的过程。 2、本体聚合的分类 依据生成的聚合物是否溶于单体分为均相与非均相本体聚合。均相本体聚合指生成的聚合物溶于单体(如苯乙烯、甲基丙烯酸甲酯)。非均相本体聚合指生成的聚合物不溶解在单体中,沉淀出来成为新的一相(如氯乙烯)。 根据单体的相态还可分为气相、液相和固相本体聚合。 3、工业上采用自由基本体聚合生产的聚合物品种 高压法聚乙烯、聚苯乙烯、聚甲基丙烯酸甲酯,及一部分聚氯乙烯。 3.1.2 自由基本体聚合的特点 1、优点:组分简单;工艺过程较简单(转化率高时,可免去分离工序,得到粒状树脂);设备利用率高;产品纯度高。 2、缺点:体系粘度大,聚合热不易排出;自动加速现象严重,工艺难控,易爆聚。 3.1.3 自由基本体聚合工艺过程及其特点 1、预聚合:聚合初期,转化率不高;体系粘度不大,反应釜内设置搅拌,聚合热易排出;反应温度相对较高,总聚合时间缩短,提高生产效率;体积部分收缩、聚合热部分排除,利于后期聚合。 2、聚合:聚合中期,转化率较高;反应温度低、时间长,有效利用反应热,使反应平稳进行。 聚合反应是放热反应,本体聚合使无其他介质存在,所以聚合设备内单位质量的反应物料与有反应介质存在的其他聚合方法比较,相对说放出的热量大,并且单体和聚合物的比热小,传热系数低,所以正赛聚合反应热的散发困难。因此物料温度容易升高,甚至失去控制,造成事故。工业上为了解决此难题,在设计反应器的形状、大小时,考虑传热面积等。此外还采用分段聚合即进行聚合达到适当转化率,或于单体中添加聚合物以降低单体含量。从而降低单位质量物料放出的热量。由于本体聚合过程中反应温度难以控制恒定,所以产品的分子量分布宽。 单体在未聚合前是液态,少数为气态,易流动、粘度低。聚合反应发生以后,多数情况下生成的聚合物可溶于单体,则形成粘稠溶液,聚合程度越深入,即转化率越高,物料越粘稠。一聚苯乙烯-苯乙烯物料体系为例,粘度与聚合物含量的关系见图3-2. 因而反应产生黏胶效应。单体反应不易进行完全,残存的单体应进行后处理除去。 3.1.2.2 聚合反应器 自由基本体聚合反应器大致分为以下类型。 1.形状一定的模型 适用于本体浇铸聚合,如甲基丙烯酸甲酯经浇铸聚合以生产有机玻璃板、管、棒材等。 模型的形状与尺寸根据制品要求而定,但要考虑这种反应装置无搅拌器,其聚合条件应根据聚合热传导条件而定。如以水作为散热介质即模型放在水箱中进行聚合,散热条件较好,聚合时间可缩短,但反应末期须进行加热以使反应近于完全时,加热最高温度为100℃。如在烘箱中进行聚合则散热条件较差,聚合时间较在水箱中更长,但末期加热可超过100℃,单体反应较为完全。 浇铸用模型反应器厚度一般不超过2.5cm,因为过厚时,反应热不易散发,内部单体可能过热而沸腾,因而造成塑料浇铸制品内产生气泡而影响产品质量,由于单体转变为聚合物后体积收缩。因此作为模型的反应器如版型反应器,两层模板之间应具有适当弹性,避免聚

原子转移自由基聚合概述

原子转移自由基聚合概述 1.引言 “活性”/可控自由基聚合不同于传统意义上的自由基聚合反应。它克服了分子量及其分布不可控,难以合成嵌段聚合物等缺陷,做到了分子量可控,分子量分布较窄,聚合物结构可控等一系列要求。这类聚合反应主要是有效降低了增长活性中心的浓度,抑制了双基终止的发生,延长了自由基的寿命和分子量的统一性;使用快引发的方式,保证不同分子链同时增长。目前大致有以下几种不同的机理得到了较为深入地研究:基于引发-转移-终止剂(Initiator-chain transfer-terminator)的活性自由基聚合(Iniferter法)、基于氮氧稳定自由基的活性自由基聚合(Living nitroxide-mediated stable free radical polymerization-SFRP)、原子转移自由基聚合(Atom transfer radical polymerization-ATRP)、基于可逆加成碎裂链转移剂的活性自由基聚合(Living radical polymerization in the presence of reversible addition-fragmentation chain transfer-RAFT)和退化转移自由基聚合(degenerative transfer process-DT)等等。 在这些不同的实现“活性”/可控自由基聚合的方法当中,原子转移自由基聚合是目前最有希望实现工业化的一种方法。 2.原子转移自由基聚合概述 原子转移自由基聚合是1995年由卡内基梅隆大学Matyjaszewski课题组提出的一种“活性”/可控自由基聚合新机理Wang, J-S; Matyjaszewski, K. Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117: 5614–5615.。在同一年,日本京都大学的泽本光南(Mitsuo Sawamoto)教授也在同时期独立发表了金属催化的活性自由基聚合Kato, M; Kamigaito, M; Sawamoto, M; Higashimura, T. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris-(triphenylphosphine)ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules. 1995, 28: 1721–1723.,其本质就是原子转移自由基聚合。原子转移自由基聚合主要是依靠大分子活性中心与卤素原子在催化剂的参与下形成增长活性中心(活性种)和与卤素可逆终止的大分子链自由基(休眠种)之间的平衡来控制聚合的。它可以抑制链终止反应,控制聚合速度以保证同时增长,最终达到控制分子量及分布,并实现大分子结构设计的。 2.1.原子转移自由基聚合体系组成 原子转移自由基聚合的体系有以下几个组份。 单体。原子转移自由基聚合适用的单体种类比较多,并无太大限制,最好有可以稳定自由基的基团。但是每一种单体的聚合速率相差较多,需要通过其他因素的控制来调控Matyjaszewski, Krzysztof; Xia, Jianhui. Atom Transfer Radical Polymerization. Chemical Reviews. 2001, 101 (9): 2921–90.。 溶剂。常用的溶剂如甲苯、二甲苯、氯仿、N,N-二甲基甲酰胺、二甲基亚砜、水等都可以使用。有些体系直接用单体做本体聚合。 引发剂。聚合要做到活性可控,就要求引发既有较快的引发速率,使所有大分子链几乎在同一时间开始增长来保证分子量窄分布。同时,由于原子转移自由基聚合的机理,一般使用有机卤代物做引发剂,最常用的是卤代烷。溴代烷和氯代烷都可以较好的控制聚合物的分子量,但是溴代烷有更强的活性。同时,一定的引发剂结构可制备不同结构的聚合物。如多卤代烷支链的引发剂可制备星型聚合物。 催化剂。催化剂是ATRP中的重要组份。它既决定了反应速率又一定程度上决定了产品分子量的分布。若催化剂投料较少,则活性种浓度较高,有利于加快反应速率。但会使双基终止等副反应增加,但不利于制备分子量窄分布的聚合物。 最初的催化剂体系是卤化亚铜/联吡啶体系,反应体系是非均相体系。后来在联吡啶上引入油溶性长链,变为均相催化体系,并且有史以来第一次在自由基聚合中获得近似单分散的聚合物。为了开发较为便宜且反应速率较快的催化体系,后来又出现了Fe、Ru、Ni体系,而配体开始用高催化活性的多胺、亚胺等代替。 配体。配体与催化剂形成络合物,以解决催化剂在有机相中的溶解问题。不同配体对此问题

相关文档
最新文档