小波实践作业一

小波实践作业一
小波实践作业一

小波实践作业一

实验目的

Butterworth 滤波器,其冲击响应函数为:

,t 0

()t 0

t Ae h t α-?≥=?

≤?若0,若 1) 求?()h

ω? 2) 判断是否为因果滤波器;是否为低通、高通、带通还是带阻滤波器? 3) 对于信号/3()(sin 22sin 40.4sin 2sin 40),0t f t e t t t t t π-=++?≤≤ 画出

()f t 图形

4) 画出滤波后图形*()f h t ,比较滤波前后图形。取10A α==

5) 取()(sin5sin3sin sin 40)t f t e t t t t -=+++,采用不同的变量值A α=,初

始设定10A α==,画出原信号图形与滤波后图形,比较滤波效果。

实验原理与分析

1) ?()h

ω (j )t 0

?()j t

j t

A

h Ae

e

dt A e dt αωαωωαω

+∞

+∞

---+=?==

+?

?

2)

0t ≤时,()0h t =并且0t >时,()0h t ≠

∴ Butterworth 滤波器为因果滤波器。

()h ω=

,当ω→+∞时,()h ω单调递减并且()0h ω→

∴Butterworth 滤波器的类型为低通滤波器。 3)

/3()(sin 22sin 40.4sin 2sin 40),0t f t e t t t t t π-=++?≤≤,其图形如下图所示:

4)

*()f h t 的图形如下图所示,其中10A α==

通过3)和4)中的两幅图明显可以看出*()f h t 的图形更有平滑,高频噪声明显被削弱。 5)

()(sin5sin3sin sin 40)t f t e t t t t -=+++,1A α==、10A α==、100A α==三种情况:

原信号如下:

==时滤波后的图形如下:

1

==时滤波后的图形如下:10

==时滤波后的图形如下:100

通过图形的对比,可以发现Aα

=的值越小,滤波效果越好。Matlab源程序

1)第3部分的源程序为:

clear;

t = 0:pi/100:pi;

f1 = (exp(-t/3)).*(sin(2*t)+2*sin(4*t)+0.4*sin(2*t).*sin(40*t));

plot(t,f1);

xlabel('t');

ylabel('f(t)');

2)第4部分的源程序为:

clear;

edit myfun;

//将下列3行定义在名为myfun的m文件内。

function h = myfun(t)

h = 10*exp(-10*t).*(t>=0)+0.*(t<0);

end

//以下可以在命令行中输入。

t = 0:pi/100:pi;

f1 = (exp(-t/3)).*(sin(2*t)+2*sin(4*t)+0.4*sin(2*t).*sin(40*t));

h = myfun(t);

y = conv(f1,h);

plot(t,y(1:101));

xlabel('t');

ylabel('f(t)*h(t)');

3)第5部分源程序:

i.原信号:

clear;

t = 0:pi/100:pi;

f1 = (exp(-t)).*(sin(5*t)+sin(3*t)+sin(t)+sin(40*t));

plot(t,f1);

xlabel('t');

ylabel('f(t)');

ii.1

==时滤波信号(要修改myfun.m内函数的系数,在此省略)

t = 0:pi/100:pi;

f1 = (exp(-t)).*(sin(5*t)+sin(3*t)+sin(t)+sin(40*t));

h = myfun(t);

y = conv(f1,h);

plot(t,y(1:101));

xlabel('t,A=alpah=1');

ylabel('f(t)*h(t)');

iii.10

==时滤波信号(要修改myfun.m内函数的系数,在此省略)

t = 0:pi/100:pi;

f1 = (exp(-t)).*(sin(5*t)+sin(3*t)+sin(t)+sin(40*t));

h = myfun(t);

y = conv(f1,h);

plot(t,y(1:101));

xlabel('t,A=alpah=10');

ylabel('f(t)*h(t)');

iv.100

==时滤波信号(要修改myfun.m内函数的系数,在此省略)

t = 0:pi/100:pi;

f1 = (exp(-t)).*(sin(5*t)+sin(3*t)+sin(t)+sin(40*t));

h = myfun(t);

y = conv(f1,h);

plot(t,y(1:101));

xlabel('t,A=alpah=100');

ylabel('f(t)*h(t)');

小波实践作业二

实验目的

设信号24

(sin(3x)2cos(5x)0.2sin(x)cos(55x))x f e -

=++,

将区间[0,1]实行256等分并得到信号在这些节点上的离散值

1) 利用Haar 小波对离散后的信号进行分解;

2) 画出1,8,7

,2,1j V j -=中的分量并与原信号j f 进行比较;

3) 进行压缩比为80%的压缩,画出压缩后的图像与原图像比较; 4) 选择合适的参数去噪,画出去噪后的图像与原图像比较。

实验原理与分析

1) 利用matlab 在区间[0,1]上对信号f 进行取样,取样点为前256个点。将这

256个点的数据用matlab 画出阶梯图变得到原信号j f ,此时8j =,图形如下图所示:

2) 7V 和6V 中的分量图像为:

5V 和4V 中的分量图像为:

3V 、2V 、1V 、0V 中的分量图像为:

3)压缩80%时,压缩后图像如下:

4)当压缩40%时,压缩后的图像如下:

Matlab 源程序

1) 第1部分源程序:

t = 0:1/256:1;

f = exp(-t.*t/4).*(sin(3*t)+2*cos(5*t)+0.2*sin(t).*cos(55*t)); stairs(t,f);

axis([0,1,-2,2.5]); xlabel('x'); ylabel('V_8 f');

2) 第2部分源程序:

//以下7行定义在一个m 文件内

function [ca1,cd1] = Harr_fenjie(t) n = length(t); j = 1:2:(n-1); for i = j

ca1((i+1)/2)=(t(i) + t(i+1))/2; cd1((i+1)/2)=(t(i) - t(i+1))/2; end

//以下程序可在命令行内输入(仅给出7V 和6V 的代码) t = 0:1/256:1;

f = exp(-t.*t/4).*(sin(3*t)+2*cos(5*t)+0.2*sin(t).*cos(55*t)); t7 = 0:1/128:1;

[c7,d7] = Harr_fenjie(f); subplot(2,1,1); n =length(c7); cc7 = c7;

cc7(n+1) = c7(n); stairs(t7,cc7); axis([0,1,-2,2.5]); xlabel('x');

ylabel('V_7 f');

[c6,d6] = Harr_fenjie(c7); t6 = 0:1/64:1; n =length(c6); cc6 = c6;

cc6(n+1) = c6(n); subplot(2,1,2); stairs(t6,cc6); axis([0,1,-2,2.5]); xlabel('x'); ylabel('V_6 f');

//

V的做法类似,仅仅将Harr_fenjie函数中的自变量变为c6,该函数返

5

回的2个数组可赋给[c5,d5],为了将

V的图像画出来,需要将横轴的分辨率降低

5

一半,即采样点数目减少一半,从t6的64个采样点变为32个。

3)第3部分源程序如下:

//以下12行定义在名为Harr_yasuo_80的m文件内

function y = Harr_yasuo_80(x)

temp_x = sort(x);

length_x = length(x);

compare_80_max = temp_x(fix(length_x*0.9)+1);

compare_80_min = temp_x(fix(length_x*0.1)+1);

for i =1:length_x

if (x(i) < compare_80_max && x(i) > compare_80_min)

y(i) = 0;

else

y(i) = x(i);

end

end

//以下5行定义在名为Harr_chonggou的m文件内

function c1 = Harr_chonggou(c0,d0)

for i = 1:length(c0)

c1(2*i-1) = c0(i) + d0(i);

c1(2*i) = c0(i) - d0(i);

end

//以下程序可在命令行内输入(运行前matlab里要存有c0、d0~d7的数据)

cc0 = Harr_yasuo_80(c0);

dd0 = Harr_yasuo_80(d0);

dd1 = Harr_yasuo_80(d1);

dd2 = Harr_yasuo_80(d2);

dd3 = Harr_yasuo_80(d3);

dd4 = Harr_yasuo_80(d4);

dd5 = Harr_yasuo_80(d5);

dd6 = Harr_yasuo_80(d6);

dd7 = Harr_yasuo_80(d7);

cc1 = Harr_chonggou(cc0,dd0);

cc2 = Harr_chonggou(cc1,dd1);

cc3 = Harr_chonggou(cc2,dd2);

cc4 = Harr_chonggou(cc3,dd3);

cc5 = Harr_chonggou(cc4,dd4);

cc6 = Harr_chonggou(cc5,dd5);

cc7 = Harr_chonggou(cc6,dd6);

f_yasuo = Harr_chonggou(cc7,dd7);

f_yasuo(257) = f_yasuo(end);

stairs(t,f_yasuo);

xlabel('t');

ylabel('80%f');

4)代码与80%压缩时一样,只需将名为Harr_yasuo_80的m文件内的0.9和0.1

两个系数分别改为0.8和0.2。

小波分析考试题(附答案)

《小波分析》试题 适用范围:硕士研究生 时 间:2013年6月 一、名词解释(30分) 1、线性空间与线性子空间 解释:线性空间是一个在标量域(实或复)F 上的非空矢量集合V ;设V1是数域K 上的线性空间V 的一个非空子集合,且对V 已有的线性运算满足以下条件 (1) 如果x 、y V1,则x +y V1; (2) 如果x V1,k K ,则kx V1, 则称V1是V 的一个线∈∈∈∈∈性子空间或子空间。2、基与坐标 解释:在 n 维线性空间 V 中,n 个线性无关的向量,称为 V 的一组n 21...εεε,,,基;设是中任一向量,于是 线性相关,因此可以被基αn 21...εεε,,,线性表出:,其中系数 αεεε,,,,n 21...n 21...εεε,,,n 2111an ...a a εεεα+++=是被向量和基唯一确定的,这组数就称为在基下的坐标,an ...a a 11,,,αn 21...εεε,,,记为 () 。an ...a a 11,,,3、内积 解释:内积也称为点积、点乘、数量积、标量积。,()T n x x x x ,...,,21= ,令,称为x 与y 的内积。 ()T n y y y y ,...,,21=[]n n y x y x y x y x +++=...,2211[]y x ,4、希尔伯特空间 解释:线性 完备的内积空间称为Hilbert 空间。线性(linearity ):对任意 f , g ∈H ,a ,b ∈R ,a*f+b*g 仍然∈H 。完备(completeness ):空间中的任何柯西序列都收敛在该空间之内。内积(inner product ):,它满足:,()T n f f f f ,...,,21=时。 ()T n g g g g ,...,,21=[]n n y x y x y x y x +++=...,22115、双尺度方程 解释:所以都可以用空间的一个1010,V W t V V t ?∈?∈)()(ψ?) ()和(t t ψ?1V

小波变换图像去噪综述

科技论文写作大作业小波变换图像去噪综述 院系: 班级: 学号: 姓名:

摘要小波图象去噪已经成为目前图象去噪的主要方法之一.在对目前小波去噪文献进行理解和综合的基础上,首先通过对小波去噪问题的描述,揭示了小波去噪的数学背景和滤波特性;接着分别阐述了目前常用的3类小波去噪方法,并从小波去噪中常用的小波系数模型、各种小波变换的使用、小波去噪和图象压缩之间的联系、不同噪声场合下的小波去噪等几个方面,对小波图象去噪进行了综述;最后,基于对小波去噪问题的理解,提出了对小波去噪方法的一些展望 关键词:小波去噪小波萎缩小波变换图象压缩 1.前言 在信号数据采集及传输时,不仅能采集或接收到与所研究的问题相关的有效信号,同时也会观测到各种类型的噪声。在实际应用中,为降低噪声的影响,不仅应研究信号采集的方式方法及仪器的选择,更重要的是对已采集或接收的信号寻找最佳的降噪处理方法。对于信号去噪方法的研究可谓是信号处理中一个永恒的话题。传统的去噪方法是将被噪声污染的信号通过一个滤波器,滤除掉噪声频率成分。但对于瞬间信号、宽带噪声信号、非平稳信号等,采用传统方法具有一定的局限性。其次还有傅里叶(Fourier)变换也是信号处理中的重要手段。这是因为信号处理中牵涉到的绝大部分都是语音或其它一维信号,这些信号可以近似的认为是一个高斯过程,同时由于信号的平稳性假设,傅立叶交换是一个很好的信号分析工具。但也有其不足之处,给实际应用带来了困难。 小波变换是继Fourier变换后的一重大突破,它是一种窗口面积恒定、窗口形状可变(时间域窗口和频率域窗口均可改变)的时频局域化分析方法,它具有这样的特性;在低频段具有较高的频率分辨率及较低的时间分辨率,在高频段具有较高的时间分辨率及较低的频率分辨率,实现了时频窗口的自适应变化,具有时频分析局域性。小波变换的一个重要应用就是图像信号去噪。将小波变换用于信号去噪,它能在去噪的同时而不损坏信号的突变部分。在过去的十多年,小波方法在信号和图像去噪方面的应用引起学者广泛的关注。本文阐述小波图像去噪方法的原理,概括目前的小波图像去噪的主要方法,最后对小波图像去噪方法的发展和应用进行展望。 2小波图像去噪的原理 所谓小波变化,即:

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨

小波分析基础及应用期末习题

题1:设{},j V j Z ∈是依尺度函数()x φ的多分辨率分析,101()0x x φ≤

11()3.k k h k p -=为高通分解滤波器,写出个双倍平移正交关系等式 题6:列出二维可分离小波的4个变换基。 题8:要得到“好”的小波,除要求滤波器0()h n 满足规范、双正交平移性、低通等最小条件外,还可以对0()h n 加消失矩条件来得到性能更优良的小波。 (1) 请写出小波函数()t ψ具有p 阶消失矩的定义条件: (2) 小波函数()t ψ具有p 阶消失矩,要求0()h n 满足等式: (3) 在长度为4的滤波器0()h n 设计中,将下面等式补充完整: 222200000000(0)(1)(2)(3)1 (0)(2)(1)(3)0 ,1 2h h h h h h h h n ?+++=???+==??? 规范性低通双平移正交阶消失矩

小波变换的本质

为了应付老板的的一个任务而收集了几篇相关文章! 我是搞电力系统故障波形分析的,正上研二,导师定的方向是用小波变换进行信号的消噪及波形奇异点检测.出于研究方向的需要从去年年底开始接触小波.毕竟是工科出身,学起小波来觉得难度很大.不夸张地说常有学不下去的感觉.硬着头皮看了一段时间,终于觉得有点眉目,现将我从信号奇异性方面的理解写出来,请各位同仁批评指正,并希望能对刚接触小波的朋友有点帮助! 1学习小波变换所需的基础知识 由于小波变换的知识涵盖了调和分析,实变函数论,泛函分析及矩阵论,所以没有一定的数学基础很难学好小波变换.但是对于我们工科学生来说,重要的是能利用这门知识来分析所遇到的问题.所以个人认为并不需要去详细学习调和分析,实变函数论,泛函分析及矩阵论等数学知识.最重要是的理解小波变换的思想!从这个意义上说付立叶变换这一关必需得过!因为小波变换的基础知识在付立叶变换中均有提及,我觉得这也就是很多小波变换的书都将付立叶分析作为其重要内容的原因.所以我认为学习小波应从<数字信号处理>中的付立叶分析开始.当然也可从<信号与系统>这本书开始.然后再看杨福生老师的小波变换书.个人觉得他的书最能为工科学生所接受.2信号的分解 付立叶级数将周期信号分解为了一个个倍频分量的叠加,基函数是正交的,也就是通常所说的标准正交基.通过分解我们就能将特定的频率成分提取出来而实现特定的各种需要,如滤波,消噪等.付立叶变

换则将倍频谱转换为了连续谱,其意义差不多.小波变换也是一种信号分解思想:只不过它是将信号分解为一个个频带信号的叠加.其中的低频部分作为信号的近似,高频部分作为信号的细节.所谓的细节部分就是一组组小波分量的叠加,也就是常说的小波级数. 3小波变换的时频分析思想 付立叶变换将信号从时域变换到了频域,从整体上看待信号所包含的频率成分.对于某个局部时间点或时间段上信号的频谱分析就无能为力了,对于我们从事信号的奇异性检测的人来说,付立叶变换就失去了意义(包括加窗付立叶变换).因为我们要找的是信号的奇异点(时域方面)和奇异点处所包含的频带(频域方面)也就是说需要一种时频分析方法.当然能有纯时域的分析方法更好!(据说数学形态学能达到这种效果).小波变换之所以可以检测信号的奇异点,正在于它的"小".因为用小的波去近似奇异信号要比正弦波要好的多. 4小波变换的实质 小波变换的公式有内积形式和卷积形式,两种形式的实质都是一样的.它要求的就是一个个小波分量的系数也就是"权".其直观意义就是首先用一个时窗最窄,频窗最宽的小波作为尺子去一步步地"量"信号,也就是去比较信号与小波的相似程度.信号局部与小波越相似,则小波变换的值越大,否则越小!当一步比较完成后,再将尺子拉长一倍,又去一步步地比较,从而得出一组组数据.如此这般循环,最后得出的就是信号的小波分解(小波级数).当然这只是一种粗略的解释.

小波分析结课论文

小波分析结课论文 基于正交滤波器组的Daubechies 小波设计及Quartus ll 仿真 1.非平稳信号的局部变换 信号s(t)和其频谱S(w)构成Fourier 变换对,由于Fourier 变换或反变换都属于全局变换,不能告知某种频率分量发生在那些时间内,因此用来不能描述信号的局部统计特性。对于非平稳信号s(t),应该采用局部变换来描述其随时间变化的统计特性。并且信号的局部性能需要使用时域和频域是我二维联合表示,才能精确描述。 1.1用内积构造信号变换 任何一种信号变换都可以写成该信号与某个选定的核函数之间的内积,因此可以用下面两种基本形式来构造。 信号s(t)的局部变换 = <取信号s(t)的局部,核函数无穷长> 或 信号s(t)的局部变换 = <取信号s(t)的全部,核函数局域化> 1.2小波变换 1.2.1选用小波变换的原因 三个信号局部变换的典型例子是短时Fourier 变换、Gabor 变换、小波变换,它们都是时频信号分析的线性变换。而短时Fourier 变换和Gabor 变换都属于“加窗Fourier 变换”,都以固定的滑动窗对信号进行分析,可以表征信号的局部频率特性。显然,这种时域固定等宽的滑动窗处理并不是对所有的信号都合适。因为有较多的自然界信号在低频端应具有很高的频率分辨率,在高频端的频率分辨率可以比较低。而从不相容原理的角度看,这类信号的高频分量应该具有高的时间分辨率,低频分量应该具有低的时间分辨率。对这类非平稳信号的线性时频分析,应该在时频平面的不同位置具有不同的分辨率,小波变换就是这样一种多分辨(率)分析方法,其目的是既见森林——信号概貌,又见树木——信号细节,所以,小波分析被称为数学显微镜。 1.2.2连续小波变换的定义及参数含义 平方可积分函数s(t)的连续小波变换定义为 (,)()*( )(),()s ab t b W T a b s t dt s t t a ψψ∞ -= =??? , a > 0

浙江大学小波变换及工程应用复习题

小波分析复习题 1、简述傅里叶变换、短时傅里叶变换和以及小波变换之间的异同。 答:三者之间的异同见表 2、小波变换堪称“数学显微镜”,为什么? 答:这主要因为小波变换具有以下特点: 1)具有多分辨率,也叫多尺度的特点,可以由粗及精地逐步观察信号; 2)也可以看成用基本频率特性为)(ωψ的带通滤波器在不同尺度a 下对信号作滤波; 如果)(t ?的傅里叶变换是)(ωψ,则)(a t ?的傅里叶变换为)(||a a ω ψ,因此这组滤波 器具有品质因数恒定,即相对带宽(带宽与中心频率之比)恒定的特点。a 越大相当于频率越低。 3)适当的选择基本小波,使)(t ?在时域上位有限支撑,)(ωψ在频域上也比较集中,便可以使WT 在时、频两域都具有表征信号局部特征能力,因此有利于检测信号的瞬态或奇异点。 4)如)(t x 的CWT 是),(τa WT x ,则)(λt x 的CWT 是),( λ τ λλa WT x ;0>λ 此定理表明:当信号)(t x 作某一倍数伸缩时,其小波变换将在τ,a 两轴上作同一比例的 伸缩,但是不发生失真变形。 基于上述特性,小波变换被誉为分析信号的数学显微镜。 3、在小波变换的应用过程中,小波函数的选取是其应用成功与否的关键所在,请列举一些选择原则。 答:选择原则列举如下:(也即需满足的一些条件和特性) 1)容许条件

当?∞ +∞-∞<=ωω ωψ?d c 2 ) (时才能由小波变换),(τa WT x 反演原函数)(t x ,?c 便是对 )(t ?提出的容许条件,若∞→?c ,)(t x 不存在,由容许条件可以推论出:能用作基本小 波)(t ?的函数至少必须满足0)(0==ωωψ,也就是说)(ωψ必须具有带通性质,且基本小波 )(t ?必须是正负交替的振荡波形,使得其平均值为零。 2)能量的比例性 小波变换幅度平方的积分和信号的能量成正比。 3)正规性条件 为了在频域上有较好局域性,要求),(τa WT x 随a 的减小而迅速减小。这就要求)(t ?的 前n 阶原点矩为0,且n 值越大越好。也就是要求? =0)(dt t t p ?,n p ~1:,且n 值越大越好, 此要求的相应频域表示是:)(ωψ在0=ω处有高阶零点,且阶次越高越好(一阶零点就是容许条件),即)()(01 ωψω ωψ+=n ,0)(00≠=ωωψ,n 越大越好。 4)重建核和重建核方程 重建核方程说明小波变换的冗余性,即在τ-a 半平面上各点小波变换的值是相关的。 重建核方程:τττττ?? ?∞ +∞ ∞-=0 00200),,,(),(),(a a K a WT a da a WT x x ; 重建核:><== ?)(),(1)()(1),,,(0000* 00t t c dt t t c a a K a a a a ττ? ττ??????ττ 4、连续小波变换的计算机快速算法较常用的有基于调频Z 变换和基于梅林变换两种,请用 框图分别简述之,并说明分别适合于什么情况下应用。 答: 1)基于调频Z 变换 ),(2a j a n j e A e W ππ--== 运算说明: a .原始数据及初始化:原始数据是)(k ?(1~0-=N k )和a 值,初始化计算包括 a j e A π-=和a n j e W π2-=。 --- 1)(2N k r )2(am N π 12~2--N N 对应于:1~0-=N r

整数小波变换作业

小波变换:S 整数变换作业 1. 题目:用整数小波的S 或2/6变换对256*256 Lena 灰度图像进行非标准方法的3级分解与重构。 2. 总体设计:本题目的意义在于通过实验体会整数小波变换,由于MA TLAB 自身对矩阵操作的方便性,以及其丰富的库函数(如可以用来直接显示图象),我决定用MA TLAB 编程完成本次作业。要说明的是,这里并不是直接利用MA TLAB 中的wavelet 工具箱中的已有小波函数对图象进行整数小波分解,而是用下面的已知分解公式进行小波分解和重构。分解公式:1,,21,21,,21,[] j k j k j k j k j k j k d s s s s d -+--=-=+ 重构公式:,21,1,,211,,2[] j k j k j k j k j k j k s s d s d s --+-=-=+ ,其中[ ]表示取整。 进行非标准小波分解,即交替进行3次行变换和3次列变换,程序对每次变换后的结果都保存为位图文件,运行后可以在程序所在路径下看到保存的6个分解位图文件和6个重构位图文件。最后还会在一个图像中显示每次分解后的图像,以便于对比。 3. 实现方法:编写S 变换的分解和重构子程序,分别对图像数据进行一次行列分解和列行重构,程序返回该次变换后的行列矩阵,在主程序中可以连续三次调用行列变换,即完成对原始图像的3级分解和重构,这里的变换是完全可逆的,也就是能够完全恢复原图像数据。通过对比3次重构后返回的数据与原图像数据后发现它们完全相同。主要用的MA TLAB 工具函数有: imread( )---------读取图像数据,为uint8类型,需变为double 类型才能进行各种运算 imwrite()---------用于保存图像,这里用它来保存每一级变换后的图像 image( )----------显示图像,需要给出色谱表colormap ,这里是灰度图,用colormap =gray (256)即可 subplot( )--------用于分开绘图,即在一个窗口下绘制多个图像,在这里用于输出变换后的图像,以便对比。 更详细的内容请参考函数文件SDecompose.m 和SRecompose.m ,分别是分解和重构图像的函数,main.m 是演示主程序。 命令行下输入main 运行后,按照提示输入要处理的图像文件名称即可(要求是256×256的灰度图像,否则结果可能会出错。程序所在目录下的lena.bmp 和girl.bmp 就是256×256的灰度图像)可以直接按键盘‘d ’键,程序会默认使用lena.bmp 进行演示。 3级分解完成后,输出后面的3级分解效果图。命令窗中会给出提示,按下任意键将继续进行图像3级重构,完成后会输出后面的3级重构图。 进行分解和重构同时已经将分解和重构得到的图像存盘,在当前工作目录下即可看到保存的12个位图文件,其中分解和重构图像各有6个。若要查看清晰的变换图像,可以 打开它们查看。 4. 经验教训:本次作业用MA TLAB 而不是VC 实现,虽然看上去简单许多,但是对于我

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

《小波分析及其应用》word版

现代数字信号处理作业 小波分析及其应用 电研111 梁帅

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反演公示,但当时该理论未能得到数学家的认可。1986年法国数学家YMcyer偶尔构造出一个真正的小波基,并与

基于提升算法的二维53和97小波变换的MATLAB仿真与DSP实现

基于提升算法的二维5/3和9/7小波变换的MATLAB 仿真与DSP 实现 王靖琰,刘蒙 中国科学院上海应用物理研究所,上海 (201800) E-mail :wjycas@https://www.360docs.net/doc/a410716656.html, 摘 要:本文讨论了基于提升算法的二维5/3和9/7小波的原理,对算法进行了MATLAB 仿真,并在浮点型DSP TMS320C6713B 上实现了图像的二维5/3、9/7小波提升变换和逆变换。实验结果证明了方法的有效性。 关键词:小波提升,二维9/7、5/3小波,MATLAB ,TMS320C6713B 1.引言 随着人们对多媒体信息需求的日益增长,数码相机、移动电话、MP4 等多媒体信息处理系统蓬勃发展。基于通用DSP 处理器的此类系统设计以灵活性强、扩展性好、可升级和易维护的优点成为系统开发的首选方案 [1]。 由于良好的时频局部特性和多分辨分析特性,小波已广泛应用于图像处理领域,并且被吸收进新的一些国际标准中成为了标准算法。文中在MATLAB 平台上对基于小波提升的二维离散5/3和9/7小波变换算法进行了仿真,并在浮点型DSP TMS320C6713B 上实现了算法,该程序运算速度快,可充分利用硬件资源,特别适用于嵌入式系统的需求。 2.小波变换提升算法基本原理 1994年Sweldens 提出了小波的提升算法,有效地解决传统的基于Mallat 的塔式分解小波变换算法计算量大、对存储空间的要求高的问题,从算法方面提高了小波变换的实现效率 [2]。 2.1 5/3小波提升格式 小波提升算法的基本思想是通过由基本小波(lazy wavelet)逐步构建出一个具有更加良好性质的新小波,其实现步骤有3个:分解(split)、预测(predict)和更新(update)。分解是将数据分为偶数序列和奇数序列2个部分,预测是用分解的偶数序列预测奇数序列,得到的预测误差为变换的高频分量,更新是由预测误差来更新偶数序列,得到变换的低频分量。在J PEG2000中,5/3提升小波变换的算法为[3]: (2)(22)(21)(21)(1)2(21)(21)2(2)(2)(2) 4x n x n c n x n c n c n d n x n ++??+=+????? ?+++??=+???? 由其正变换的反置即可得到逆变换的算法为 c(2n-1) + c(2n+1)+2x (2n) = d (2n) - (3)4x(2n)+x(2n+2)x(2n+1)=c(2n)+(4) 2?????? ?????? 从算式可以得出,提升算法是原位计算,即进行小波变换时在原位计算各个系数,计算

小波作业

小波分析基本理论及在信号去噪中的应用

摘要:小波分析由于在时域、频域同时具有良好的局部化性质和多分辨率分析的特点,因此不仅能满足各种去噪要求,如低通、高通、陷波、随机噪音的去除等,而且与传统的去噪方法相比较,有着无可比拟的优点,成为信号分析的一个强有力的工具。尤其是其中的小波阈值去噪方法,由于计算简单而得到了广泛的应用。 本文首先阐述了小波分析的基本理论,随后阐述了小波变换的计算过程,然后研究了小波分析在信号去噪问题中的应用,主要对小波阈值去噪的原理及其实现方法进行了分析,特别是软、硬阈值函数的优、缺点。 关键词:小波分析;母小波;信号去噪;阈值函数 Basic Theory Of Wavelet Analysis And Its Application In Signal Demising Abstract:Wavelet has good localizing quality at time domain and frequency simultaneously and the characteristic of multi-resolution ratio analysis, so it can fulfill all kinds of wave-filtering needs such as low-pass,high-pass, sink wave, random noise demising. Compare with traditional wave- filtering methods,wavelet has incomparable advantage, wavelet has become an effective means of signal analysis. The paper comprehensively expound the fundamental theory of Wavelet Transform, then the paper introduce the Wavelet Transform computing progress, then the application of wavelet in signal demising is studied. Keywords: Wavelet Analysis; Mother Wavelet; Signal demising; Threshold Function

小波变换的理解

由于小波变换的知识涵盖了调和分析,实变函数论,泛函分析及矩阵论,所以没有一定的数学基础很难学好小波变换.但是对于我们工科学生来说,重要的是能利用这门知识来分析所遇到的问题.所以个人认为并不需要去详细学习调和分析,实变函数论,泛函分析及矩阵论等数学知识.最重要是的理解小波变换的思想!从这个意义上说付立叶变换这一关必需得过!因为小波变换的基础知识在付立叶变换中均有提及,我觉得这也就是很多小波变换的书都将付立叶分析作为其重要内容的原因.所以我认为学习小波应从<数字信号处理>中的付立叶分析开始.当然也可从<信号与系统>这本书开始.然后再看杨福生老师的小波变换书.个人觉得他的书最能为工科学生所接受. 2信号的分解 付立叶级数将周期信号分解为了一个个倍频分量的叠加,基函数是正交的,也就是通常所说的标准正交基.通过分解我们就能将特定的频率成分提取出来而实现特定的各种需要,如滤波,消噪等.付立叶变换则将倍频谱转换为了连续谱,其意义差不多.小波变换也是一种信号分解思想:只不过它是将信号分解为一个个频带信号的叠加.其中的低频部分作为信号的近似,高频部分作为信号的细节.所谓的细节部分就是一组组小波分量的叠加,也就是常说的小波级数. 3小波变换的时频分析思想 付立叶变换将信号从时域变换到了频域,从整体上看待信号所包含的频率成分.对于某个局部时间点或时间段上信号的频谱分析就无能为力了,对于我们从事信号的奇异性检测的人来说,付立叶变换就失去了意义(包括加窗付立叶变换).因为我们要找的是信号的奇异点(时域方面)和奇异点处所包含的频带(频域方面)也就是说需要一种时频分析方法.当然能有纯时域的分析方法更好!(据说数学形态学能达到这种效果).小波变换之所以可以检测信号的奇异点,正在于它的"小".因为用小的波去近似奇异信号要比正弦波要好的多. 4小波变换的实质 小波变换的公式有内积形式和卷积形式,两种形式的实质都是一样的.它要求的就是一个个小波分量的系数也就是"权".其直观意义就是首先用一个时窗最窄,频窗最宽的小波作为尺子去一步步地"量"信号,也就是去比较信号与小波的相似程度.信号局部与小波越相似,则小波变换的值越大,否则越小!当一步比较完成后,再将尺子拉长一倍,又去一步步地比

小波变换 matlab 总结

小波变换matlab总结

目录 一、预置工具 (4) 1.预置信号 (4) 2.预置小波 (4) 3.滤波器函数 (6) wfilters函数 (6) 4.量化编码 (6) wcodemat函数 (6) 5.阈值获取 (6) ddencmp函数 (6) thselect函数 (7) wbmpen函数 (7) wdcbm函数 (7) 6.阈值去噪 (8) wden函数 (8) wdencmp函数 (8) wthresh函数 (9) wthcoef函数 (9) wpdencmp函数 (9) 二、小波变换函数 (12) 单尺度一维小波变换 (12) cwt一维连续小波变换 (12) dwt一维离散小波变换 (12) idwt一维离散小波逆变换 (13) upcoef 一维小波系数重构 (13) 多尺度一维小波变换 (14) wavedec多尺度一维分解 (14) waverec多尺度一维重构 (15) appcoef低频系数提取 (16) detcoef高频系数提取 (16) wrcoef多尺度小波系数重构 (17) 一维静态(平稳)小波变换 (18) swt一维平稳小波变换 (18) iswt一维平稳小波逆变换 (18) 实例 (19) 单尺度二维小波变换 (19) dwt2二维离散小波变换 (19) idwt2二维离散小波逆变换 (20) upcoef2二维系数重构 (20) 多尺度二维小波变换 (21) wavedec2多尺度二维分解 (21) waverec2多尺度二维重构 (22) appcoef2低频系数提取 (23) detcoef2高频系数提取 (23)

小波分析学习心得

小波分析学习心得 学习小波分析这门课程已经有一段时间了,我对于这一门课程已经有了一定程度的认识。由于学科专业所限,我平时接触小波分析的机会并不是很多,很高兴在这个学期能够有机会专门学习小波分析。经过这一段时间小波分析的学习,虽然我还不能说是精通小波分析,不过也是对其中的一些基本概念有了一定的理解。后文中,我将会对在小波分析学习过程中所得到的一些学习心得进行总结。 我们通常说的波一般指的是物质的一种运动方式,在数学中它对应于时间域或空间域的震荡方程。正弦波就是一种最为常见的波,它的振幅均匀的分布时域中,并不收敛,所具有的能量是无穷的。小波,顾名思义,就是小的波,它的能量是有限的,相对于正弦波而言,它的振幅在时域上是收敛的,能量并不是无穷的。傅里叶变换将函数投影到正弦波上,将函数分解成了不同频率的正弦波,这是一个非常伟大的发现,但是在大量的应用中,傅里叶变换的局限性却日趋明显,事实上在光滑平稳信号的表示中,傅里叶变换已经达到了近似最优表示,但是日常生活中的信号却并不是一直光滑的,傅里叶变换在奇异点的表现就令人非常不满意,从对方波的傅里叶逼近就可以看出来,用了大量不同频率的正弦波去逼近其系数衰减程度相当缓慢。其内在的原因是其基底为全局性基底,没有局部化能力,以至局部一个小小的摆动也会影响全局的系数。很多应用场合要求比较精确的时频定位,傅里叶变换的缺点就越来越突出了。 窗口傅里叶变换将信号乘上一个局部窗,然后再做傅里叶变换,获得比较好的时频定位特性,再沿时间轴滑动窗口,得到整个时间轴上的频率分布,似乎到这里就应该结束了,因为我们可以把窗设计小点获得较高的时间分辨率,并期望有同样高的频率分辨率,但测不准原理无情的告诉我们,没有这么好的窗能在时

小波变换第五次作业分析解析

小波变换第五次作业 专业:信息与通信工程 学号:406130714098 姓名:徐标 1. 设计一 CQMFB ,低通滤波器 ()0H z 来自一半带滤波器。该半带滤波器的长度为47, 通带截止频率0.42p ωπ=,试给出()0H z ,()0G z ,()1H z ,()0z G 的幅频响应, 单位抽样响应。 2. 产生一信号()x n ,它由两个正弦加白噪声组成,一个在低频,一个在高频,正弦的频率及与白噪声的信噪比自己给定。试用所设计的滤波器组对该信号进行分解和重建。比较重建后的效果。 设计思路:参照课本181页 (1) 首先设计一个半带滤波器()LF H z ,N=47,p ω=0.42π。根据第六章半带滤波器的 设计思路,先要用Chebyshew 最佳一致逼近法设计一个单带滤波器G (z ),令其通带截止频率为2p ω=0.84π,s ωπ=,长度为2J=24。由此单带滤波器,可得半带 滤波器()LF H z = ()() 1/2212N G z z --? ?+? ?,可以通过时域对g (n )作二倍的插值,并令插值后的序列的中心点位0.5。结果如下: (2)对半带滤波器()LF H z 进行处理,得到幅频响应非负的半带滤波器()P z 。 方法:令中间过度的滤波器:()() H jw jw LF LF e H e σ++=+,假定()LF H z 为零相位,实现上式的简单办法是令:

()()()n 0,0LF LF LF h n h n h n n σ+ ≠??=?+=??,, 再令()()0.5 H 0.5LF P z z σ += +,则()P z 是一个半带滤波器,()jw P e 是非负的。 产生半带滤波器()P z 的幅频响应: 零极分析如图: 由上面左图图可以看出,()P z 共有46对极零点,其中11个零点在单位圆内,11个零点在单位圆外,其余24个零点在单位圆上,对()P z 做谱分解,因为对于

小波分析结课作业——小波理论发展及应用综述

摘要 摘要 小波分析是一门正在迅速发展的新兴学科,目前,它在实际中得到了广泛的应用。研究小波的新理论、新方法以及新应用具有重要的理论意义和实用价值。 本文在简述了小波发展历史和小波的基本理论知识后,对以小波为工具进行数字图像处理进行了有益的探索。最后详细介绍了基于阈值的小波分析的图像去噪算法及其在信号处理中的应用。 关键字:小波分析研究现状应用图像去噪阈值

ABSTRACT ABSTRACT Wavelet analysis is a rapidly developing and novel subject. Nowadays,it has been widely used in practical applications. To study the new theory,methods and applications of wavelet is of great theoretical significance and practical value. After a brief description of the history of wavelet development and the basic theoretical knowledge of wavelet,this paper makes valid probe towards digital image processing using wavelet. Finally,this paper analysis and study of the classical thresholding denoising methods and the new scopes of wavelet applications. key word: Wavelet Analysis , Research Status , Application , Signal Denoising, Thresholding

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如 图所示[6] : 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下

相关文档
最新文档