应用经纬映射的鱼眼图像校正设计方法

应用经纬映射的鱼眼图像校正设计方法
应用经纬映射的鱼眼图像校正设计方法

鱼眼图像畸变校正算法

鱼眼图像畸变校正算法 司 磊 朱学玲 (安徽新华学院 信息工程学院 安徽 合肥 230088) 摘 要: 根据鱼眼镜头成像的特点,选择合适的图像畸变校正算法,标定鱼眼图像的中心和半径,用标定得到的参数进行校正,推出校正模型,方法简单,易于实现,并对鱼眼图的畸变矫正问题提出意见与看法。 关键词: 鱼眼图像;畸变矫正;图像预处理;图像增强 中图分类号:TP391 文献标识码:A 文章编号:1671-7597(2012)1110166-02 鱼眼图像的畸变矫正是以某种独特的变换方式将一副鱼眼 2 有关鱼眼图片的粗略校正 图像转换为理想图像的操作,这种操作在全方位视觉导航中具1)求取鱼眼图像行和列的比值 有重要的作用,是系统自动识别、跟踪和定位目标所必须的基将投射生成标准圆变换为鱼眼图片并求取图片中心点的方础操作。 法与普通相机照相原理不同,对于提取出来的鱼眼图片的轮1 畸变图像的校正原理 廓,我们先假定一个阈值,比如设一个灰度值30,用软件勾勒描绘出校正鱼眼图片大概的轮廓,然后先求出该轮廓的中心点根据畸变图像特点标定坐标图,求取标定点像素的理想值坐标,根据轮廓的图形和鱼眼图像的中心点的坐标,可计算出和实际值,同时生成坐标映射表,再把坐标映射表用于畸变图畸变图像的圆半径,从而求取鱼眼图像的中心点坐标和鱼眼图像的校正程序后,即可得到无畸变图像,具体处理过程如下: 像的粗略轮廓的图像的半径相对比,以便于将鱼眼图像的大概1)标定坐标 轮廓重新调整处理,变的更为精确和直观。假定畸变校正的鱼镜头中心的畸变可以忽略为零,以镜头为中心,离镜头越眼图片的半径中的行坐标曲线和列坐标曲线不相等,则我们需远的地方畸变越大。以镜头为中心标定坐标图,对图像进行坐要将畸变校正的鱼眼图像中的园的半径的曲线与下面的公式相标的标定,按正方形均匀排列圆点,如图1所示。 乘,然后就可以变换为普通的标准圆的图像。下面公式中(u,v)是畸变校正的鱼眼图片的中心点,β为畸变校正的鱼眼图像行和列的比值。 图1 2)图像预处理 先通过图像的、突出边缘细节;然后再用二值化处理增强调节对比度的图像,但部分样板点和背景的对比的差值较大,所以是设定一个阈值对整幅图像进行二值化,最后再对二值化后的图像再次进行中值滤波的方法处理,再次使用中值滤波方法可以有效的去除畸变图像中的部分椒盐噪声的影响。二值化的主要作用是可以提高畸变校正图像的质量,预处理图像可以为点阵样板圆点中心的确定提供重要的作用。 3)圆点中心的确定 由于图像畸变的影响,经过图像预处理后的畸变校正图像仍然是不规则的实心圆,然而样板中的确定的圆点却是规则排列的,所以可以在畸变校正的样板图像上把各个圆点的重心近似的2)鱼眼图片的粗略扭曲校正 替换为圆点中心,找出一个圆点的重心作为理想畸变校正样板图在得到中心点的坐标和校正形状之后,把扭曲的鱼眼图像像上与之对应的点,并找出该点处于二维平面坐标之中与之距离通过投射降低图像的扭曲程度变为正常的四方形的图像。 之和最大的圆点,从各个圆点的坐标之中找出与之距离之和最大在图2中,假设在没有扭曲的背景图像中,存在两个具有的圆点坐标,该点坐标即为畸变图像中与之相对应的点的坐标。相同x坐标的点,即k点和h点,并且在背景图像中随着圆上曲线再找出理想的点阵样板图像和该畸变校正图像中各圆点中心的位的经纬度的变大,扭曲程度也就越大,但是三维球面的整体从置,计算出点与点之间的垂直距离,即可得到点阵样板图像中各左到右的各个面的角度的差值全部都是相等的,而且在x轴方向点之间的偏移量,从而可以描绘和构建畸变校正图像上的各个点上与二维畸变校正图像相对应的线段dx的均匀分割经度或是纬之间偏移量的曲面。最后经过图像预处理过程的样板圆点中心的度也是相等的。因此在二维图像的X轴方向上任意点坐标经度或 确定,可计算出其它圆点中心的坐标位置。 图2

数字图像处理-畸变校正

数字图像处理

图像畸变及校正 1 图像畸变介绍 从数字图像处理的观点来考察畸变校正, 实际上是一个图像恢复的过程, 是对一幅退化了的图像进行恢复。在图像处理中,图像质量的改善和校正技术,也就是图像复原,当初是在处理从人造卫星发送回来的劣质图像的过程中发展、完善的。目前,图像畸变校正的应用领域越来越广,几乎所有涉及应用扫描和成像的领域都需要畸变校正。图像在生成和传送的过程中,很可能会产生畸变,如:偏色、模糊、几何失真、几何倾斜等等。前几种失真主要是体现在显示器上,而后一种失真则多与图像集角度有关。不正确的显影,打印、扫描,抓拍受反射光线的影响等方式,都会使图像产生偏色现像。模糊、几何畸变主要是在仪器采集图片过程中产生,大多是因机器故障或操作不当影响导致,如在医学成像方面。而几何空间失真广泛存在于各种实际工程应用中,尤其是在遥感、遥测等领域。 2 畸变产生的原因 在图像的获取或显示过程中往往会产生各种失真(畸变):几何形状失真、灰度失真、颜色失真。引起图像失真的原因有:成像系统的象差、畸变、带宽有限、拍摄姿态、扫描非线性、相对运动等;传感器件自身非均匀性导致响应不一致、传感器件工作状态、非均匀光照条件或点光源照明等;显示器件光电特性不一致;图像畸变的存在影响视觉效果,也是影响图像检测系统的形状检测和几何尺寸测量精度的重要因素之一。 3 图像畸变校正过程所用到的重要工具 灰度直方图是关于灰度级分布的函数,是对图象中灰度级分布的统计。灰度直方图是将数字图象中的所有像素,按照灰度值的大小,统计其所出现的频度。通常,灰度直方图的横坐标表示灰度值,纵坐标为想像素个数。直方图上的一个点的含义是,图像存在的等于某个灰度值的像素个数的多少。这样通过灰度直方图就可以对图像的某些整体效果进行描述。从数学上讲,图像的灰度直方图是图像各灰度值统计特征与图像灰度值出现的频率。从图形上来讲,它是一个一维曲线,表征了图像的最基本的统计特征。 作为表征图像特征的信息而在图像处理中起着重要的作用。由于直方图反映了图像的灰度分布状况,所以从对图像的观察与分析,到对图像处理结果的评价,灰度直方图都可以说是最简单、最有效的工具。

鱼眼图像国内外的研究

鱼眼图像国内外地研究 国外地研究主要偏重于建模与应用方面. 在对国外地资料收集地基础上,可以从两种方式来总结鱼眼图像校正算法. 第一种从鱼眼镜头成像地两种投影模型球面投影模型和抛物面投影模型来分析: () 球面投影模型是一种简单有效地方法,把鱼眼镜头成像面看成一个球面.但这种方法需要预先知道鱼眼图像地光学中心和变换球面地半径.因此现有地方法只适用于具有圆形区域地鱼眼图像. () 抛物面成像模型比较复杂,把鱼眼镜头成像面看成一个抛物面.在恢复场景深度时可以得到更加精确地效果.但用该模型计算时过于复杂.一般用于利用鱼眼照片恢复深度信息技术. 第二种分别从和空间进行鱼眼图像变形校正展开: () 鱼眼图像变形校正,该方法不涉及到空间点信息,直接确定变形图像与待校正图像上对应点坐标变换,然后进行像素灰度插值.该类方法包括有球面坐标定位,多项式坐标变换及其改进,射影不变性以及通过极半径映射来校正鱼眼畸变. () 鱼眼图像变形校正,包括投影转换和鱼眼镜头标定两种方法.投影转换算法是将鱼眼图像转换成透视投影地图像,具体上是把鱼眼图像上每个像平面点(,,)投影构成地平面点(’,’).根据图像像素点和对应光线向量间关系,来实现校正.原理是对任何投影(立体,球面,全景,透视等),对于图像上每一个像素点,从照相机地位置上,都有一个对应地向量光线. 鱼眼镜头标定算法是一类精确恢复地方法,在建立鱼眼镜头变形模型地基础上,考虑到鱼眼镜头成像地各种畸变类型,如常见地径向变形、离心变形、薄棱镜变形等,建立精确地鱼眼镜头城像模型,然后通过实验和目标函数来求解出鱼眼镜头内、外部参数,从而达到精确恢复鱼眼图像变形. 国外地应用方面,以球面传感器在交通监管,智能导航中地应用为例.为了实现智能导航,我们需要周边环境地信息比较敏感. 我们需要观察地面状况,地面上地物体,车辆地交通标志,以及沿路地景观.这些事实意味着一个全方位视场地球面图像传感器对于智能导航是有益地.为了获得全面地视场形像,因为用一个正常照相机视野(视场)有限,如果我们

鱼眼畸变矫正软件系统

fisheye畸变矫正软件系统 -西安冉科信息技术有限公司 技术目标: 鱼眼镜头的突出特点是一次性摄入 185°视角内所有的信息,无盲区,无须考虑图像拼合和嵌接等问题。但鱼眼图像具有非常严重的畸变,如果要利用这些具有严重变形图像的信息,就需将这些变形图像校正为人们所习惯的透视投影图像。本系统可以实现展开任意方向轴上的“展开窗口”,对图像中敏感信息的抓取具有积极效果。它的展开效果消除了其它恢复方法边缘“拉扯”的现象,在边缘也可以得到接近现实世界的效果。最终的实验结果表明,此算法具有流程简单、速度快、效果好、实用性强等特点,可以达到处理鱼眼镜头视频图像的实时校正要求。 技术内容: 1、确定鱼眼图像的圆心 2、建立鱼眼图像的符合等距投影原理的球面成像模型 3、建立透视投影平面坐标系与展开后的图像坐标系,并求出这两个坐标系之间的关系 4、建立恢复后图像坐标系与相机坐标系的关系 5、求出恢复后图像坐标系与鱼眼图像坐标系之间的关系

一、确定鱼眼图像圆心O与半径R 读取到视频帧,通过图像处理的方法,对图像进行分割,找到鱼眼图像区域的最小外接矩形,进一步对视频帧进行分割。根据分割出的鱼眼图像,确定鱼眼圆心。 二、建立鱼眼图像的符合等距投影原理的球面成像模型 1 以鱼眼图像的圆心O为原点建立鱼眼图像坐标系。 2 建立相机坐标系。 3 以O为中心,以鱼眼图像的半径R为半径做半球, 建立球面成像模型。 三、建立透视投影平面坐标系与展开后的图像坐标系,并求 出这两个坐标系之间的关系 1、确定展开的方位角、仰角、视角。

2、确定展开图像的大小。 3、根据展开图像大小和透视平面大小确定投影关系。 四、建立恢复后图像坐标系与相机坐标系的关系 1、建立透视投影平面坐标系与相机坐标系的关系 2、求出恢复后图像中点对应的在相机坐标系中的坐 标。 五、求出恢复后图像坐标系与鱼眼图像坐标系之间的关系 1、根据等距投影原理求出相机坐标系中的点在鱼眼图 像中的成像点的坐标。 2、根据所得到的映射关系即可得到恢复后图像任意一 点对应的鱼眼图像点的坐标。 技术方法和路线: UBANTU下结合opencv和ffmpeg对鱼眼视频进行解码和处理,视频帧的是通过ffmpeg解码获得,获得数据后,进行灰度处理,统计直方图,通过寻找最佳阈值,找到鱼眼区域。然后通过改变参数对任意区域进行校正,最后通过四分屏显示校正的结果。 开发语言:C 与 C++ 开发环境:UBANTU14.04 LTS(32bit),并配置opencv 与 ffmpeg 程序编程:使用gedit编辑、修改c/c++文件,用g++把编辑好的源文件编译成可执行程序,编译时需要链接opencv和线程库(因为使用了多线程),获得的可执行程序就可以对鱼眼畸变视频进行校正了。

最新6-图像畸变校正汇总

6-图像畸变校正

实验五图像形状及颜色畸变的校正 一、实验目的与要求 让学生了解数字图像的数学表达及相关概念,通过实验让学生加深对数学在相关学科的应用价值的认识,培养学生的实际操作能力,并引导他们建立基础学科在处理具体问题时方法上联系。 二、问题描述 对于在颜色或形状上发生畸变的图像,通过数学的方法实现校正。 三、问题分析 先由教师讲授数字图像的基本概念(包括图像的数学化、采样、量化、灰度、各种数学图像的文件格式、表色系、颜色映像等),再通过具体的实例给学生示范对于在颜色或形状上发生畸变的图像如何通过数学的方法实现校正的过程。最后让学生动手完成对某些特殊畸变的图像的校正,写出数学原理和实验报告。 四、背景知识介绍 1.数字图像的数值描述及分类 图像是对客观存在物体的一种相似性的生动模仿与描述,是物体的一种不完全的不精确的描述。数字图像是用一个数字阵列来表示的图像。数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素。采样是将空域上或时域上连续的图像变换成离散采样点(像素)集合的一种操作。 对一幅图像采样后,若每行像素为M个,每列像素为N个,则图像大小为 M?N个像素。例如,一幅640?480的图像,就表示这幅连续图像在长、宽方向

上分别分成640个和480个像素。显然,想要得到更加清晰的图像质量,就要提高图像的采样像素点数,即使用更多的像素点来表示该图像。 客观世界是三维的,从客观场景中所拍摄到的图像是二维信息。因此,一幅图像可以定义为一个二维函数f(x,y),其中x,y 是空间坐标。对任何一对空间坐标(x,y)上的幅值f(x,y),成为表示图像在该点上的强度或灰度,或简称为像素值。因为矩阵是二维结构的数据,同时量化值取整数,因此,一幅数字图像可以用一个整数矩阵来表示。矩阵的元素位置(i,j),就对应于数字图像上的一个像素点的位置。矩阵元素的值f(i,j)就是对应像素点上的像素值。 值得注意的是矩阵中元素f(i,j)的坐标含义是i 为行坐标,j 是列坐标。而像素f(x,y )的坐标含义一般指直角坐标系中的坐标,两者的差异如下图: 对应于不同的场景内容,数字图像可以大致分为二值图像,灰度图像,彩色图像三类。 1)二值图像 它是指每个像素不是黑就是白,其灰度值没有中间过度的图像。二值图像对画面的细节信息比较粗略,适合于文字信息图像的描述。它的矩阵取值非常简单,即f(i,j)=0(黑),或f(i,j)=1(白),除此之外没有其他的取值。当然,0和1表示黑或白都只是人定义的,可以人为地反过来定义。这种图像具有数据量小的优点。 2)灰度图像 列坐标(j) 行坐标(i) 矩阵元素 f (i,j) 0 纵坐标(y) 横坐标 像素图 1.1 矩阵坐标系与直角坐标系

基于圆心共线约束的鱼眼镜头径向畸变估计

第41卷第11期 光电工程V ol.41, No.11 2014年11月Opto-Electronic Engineering Nov, 2014 文章编号:1003-501X(2014)11-0036-08 基于圆心共线约束的鱼眼镜头径向畸变估计 朱云芳1,杜歆2 ( 1. 浙江工商大学计算机与信息工程学院,杭州 310018; 2. 浙江大学信息与电子工程学系,杭州 310027 ) 摘要:提出了基于圆心共线约束的鱼眼镜头径向畸变估计方法。拍摄单幅至少包含空间二组平行直线的标定图像。 在单参数除法径向畸变模型下,空间平行直线被映射为畸变图像上的一组圆弧。通过推导发现由同一组平行直线投影得到的圆弧会相交于二个公共交点,因而它们的圆心具有共线性质。在拟合圆弧参数时利用圆心共线性质,能够达到精确求解的目的。提出了基于圆心共线圆弧的单参数除法模型参数的求解方法,并进一步提出了圆心共线圆弧的非线性优化拟合方法。仿真和真实图像的实验结果都表明,相比传统方法,所提出的方法鲁棒性强,能有效提高标定的精度。 关键词:鱼眼镜头;除法模型;径向畸变;圆弧拟合;失真校正 中图分类号:TP391.7 文献标志码:A doi:10.3969/j.issn.1003-501X.2014.11.006 Estimating Radial Distortion for Fish-eye Lens Based on Collinear Constraint ZHU Yunfang1,DU Xin2 ( 1. College of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; 2. Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China ) Abstract: A method of calibrating radial distortion for fish-eye lens based on collinear constraint is proposed. The method only needs a single image which contains at least two sets of parallel lines in 3D world. Under single parameter division model, these lines are imaged as circular arcs in the distorted image. These circular arcs imaged from the same set of parallel lines will intersect at two common points, and thus their centers are collinear. Under this constraint, the calculation of parameters of the single parameter division model is then proposed, which can be solved by using the Levenberg-Marquardt algorithm effectively. Experimental results of both synthetic and real images show that the proposed method is simple, robust and accurate. Key words: fisheye lens; division model; radial distortion; arc fitting; distortion correction 0 引 言 鱼眼镜头相机因其具有非常大的视野而在视频监控、机器人导航以及三维重建等领域得到广泛应用。然而,在视野扩大的同时,鱼眼镜头成像也带来了非常大的失真,表现在图像上是越靠近图像的外边缘,畸变的程度越大。这种畸变如果不加以有效的校正,将会给鱼眼镜头的应用带来很大的阻碍。 鱼眼镜头的失真有多种类型,其中径向畸变被认为是主要因素[1]。有众多的学者对鱼眼镜头的失真校正进行了研究,他们采用了不同的径向畸变数学模型。例如有多项式模型[2]、Field-of-view 模型[3]、除法模型[4]、Equi-distant模型[5]、Stereographic模型[6]、非参数化模型[7]等。在这些模型中,多项式模型运用较 收稿日期:2014-03-31; 收到修改稿日期:2014-05-07 基金项目:浙江省自然科学基金项目(LY12F01019);国家自然科学基金面上项目(61271339) 作者简介:朱云芳(1980-),女(汉族),湖北荆州人。副教授,博士,主要研究工作是计算机视觉、图像处理。E-mail: zhuyf@https://www.360docs.net/doc/ad10919944.html,。 https://www.360docs.net/doc/ad10919944.html,

6-图像畸变校正

实验五 图像形状及颜色畸变的校正 一、 实验目的与要求 让学生了解数字图像的数学表达及相关概念,通过实验让学生加深对数学在相关学科的应用价值的认识,培养学生的实际操作能力,并引导他们建立基础学科在处理具体问题时方法上联系。 二、 问题描述 对于在颜色或形状上发生畸变的图像,通过数学的方法实现校正。 三、问题分析 先由教师讲授数字图像的基本概念(包括图像的数学化、采样、量化、灰度、各种数学图像的文件格式、表色系、颜色映像等),再通过具体的实例给学生示范对于在颜色或形状上发生畸变的图像如何通过数学的方法实现校正的过程。最后让学生动手完成对某些特殊畸变的图像的校正,写出数学原理和实验报告。 四、背景知识介绍 1. 数字图像的数值描述及分类 图像是对客观存在物体的一种相似性的生动模仿与描述,是物体的一种不完全的不精确的描述。数字图像是用一个数字阵列来表示的图像。数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素。采样是将空域上或时域上连续的图像变换成离散采样点(像素)集合的一种操作。 对一幅图像采样后,若每行像素为M 个,每列像素为N 个,则图像大小为M ?N 个像素。例如,一幅640?480的图像,就表示这幅连续图像在长、宽方向上分别分成640个和480个像素。显然,想要得到更加清晰的图像质量,就要提高图像的采样像素点数,即使用更多的像素点来表示该图像。 客观世界是三维的,从客观场景中所拍摄到的图像是二维信息。因此,一幅图像可以定义为一个二维函数f(x,y),其中x,y 是空间坐标。对任何一对空间坐标(x,y)上的幅值f(x,y),成为表示图像在该点上的强度或灰度,或简称为像素值。因为矩阵是二维结构的数据,同时量化值取整数,因此,一幅数字图像可以用一个整数矩阵来表示。矩阵的元素位置(i,j),就对应于数字图像上的一个像素点的位置。矩阵元素的值f(i,j)就是对应像素点上的像素值。 值得注意的是矩阵中元素f(i,j)的坐标含义是i 为行坐标,j 是列坐标。而像素f(x,y )的坐标含义一般指直角坐标系中的坐标,两者的差异如下图: 对应于不同的场景内容,数字图像可以大致分为二值图像,灰度图像,彩色0 列坐标(j) 行坐标(i) 矩阵元素 f (i ,j) 0 纵坐标(y) 横坐标(x) 像素f(x,y) 图 1.1 矩阵坐标系与直角坐标系

鱼眼图像畸变校正算法

据《硅谷》杂志2012年第21期刊文称,根据鱼眼镜头成像的特点,选择合适的图像畸变校正算法,标定鱼眼图像的中心和半径,用标定得到的参数进行校正,推出校正模型,方法简单,易于实现,并对鱼眼图的畸变矫正问题提出意见与看法。 关键词:鱼眼图像;畸变矫正;图像预处理;图像增强 鱼眼图像的畸变矫正是以某种独特的变换方式将一副鱼眼图像转换为理想图像的操作,这种操作在全方位视觉导航中具有重要的作用,是系统自动识别、跟踪和定位目标所必须的基础操作。 1畸变图像的校正原理 根据畸变图像特点标定坐标图,求取标定点像素的理想值和实际值,同时生成坐标映射表,再把坐标映射表用于畸变图像的校正程序后,即可得到无畸变图像,具体处理过程如下:1)标定坐标 镜头中心的畸变可以忽略为零,以镜头为中心,离镜头越远的地方畸变越大。以镜头为中心标定坐标图,对图像进行坐标的标定,按正方形均匀排列圆点,如图1所示。 2)图像预处理 先通过图像的、突出边缘细节;然后再用二值化处理增强调节对比度的图像,但部分样板点和背景的对比的差值较大,所以是设定一个阈值对整幅图像进行二值化,最后再对二值化后的图像再次进行中值滤波的方法处理,再次使用中值滤波方法可以有效的去除畸变图像中的部分椒盐噪声的影响。二值化的主要作用是可以提高畸变校正图像的质量,预处理图像可以为点阵样板圆点中心的确定提供重要的作用。 3)圆点中心的确定 由于图像畸变的影响,经过图像预处理后的畸变校正图像仍然是不规则的实心圆,然而样板中的确定的圆点却是规则排列的,所以可以在畸变校正的样板图像上把各个圆点的重心近似的替换为圆点中心,找出一个圆点的重心作为理想畸变校正样板图像上与之对应的点,并找出该点处于二维平面坐标之中与之距离之和最大的圆点,从各个圆点的坐标之中找出与之距离之和最大的圆点坐标,该点坐标即为畸变图像中与之相对应的点的坐标。再找出理想的点阵样板图像和该畸变校正图像中各圆点中心的位置,计算出点与点之间的垂直距离,即可得到点阵样板图像中各点之间的偏移量,从而可以描绘和构建畸变校正图像上的各个点之间偏移量的曲面。最后经过图像预处理过程的样板圆点中心的确定,可计算出其它圆点中心的坐标位置。 2有关鱼眼图片的粗略校正 1)求取鱼眼图像行和列的比值 将投射生成标准圆变换为鱼眼图片并求取图片中心点的方法与普通相机照相原理不同,对于提取出来的鱼眼图片的轮廓,我们先假定一个阈值,比如设一个灰度值30,用软件勾勒描绘出校正鱼眼图片大概的轮廓,然后先求出该轮廓的中心点坐标,根据轮廓的图形和鱼眼图像的中心点的坐标,可计算出畸变图像的圆半径,从而求取鱼眼图像的中心点坐标和鱼眼图像的粗略轮廓的图像的半径相对比,以便于将鱼眼图像的大概轮廓重新调整处理,变的更为精确和直观。假定畸变校正的鱼眼图片的半径中的行坐标曲线和列坐标曲线不相等,则我们需要将畸变校正的鱼眼图像中的园的半径的曲线与下面的公式相乘,然后就可以变换为普通的标准圆的图像。下面公式中(u,v)是畸变校正的鱼眼图片的中心点,β为畸变校正的鱼眼图像行和列的比值。 2)鱼眼图片的粗略扭曲校正 在得到中心点的坐标和校正形状之后,把扭曲的鱼眼图像通过投射降低图像的扭曲程度变为正常的四方形的图像。

图像畸变校正程序一

图像畸变校正OPENCV 使用USB摄像头,采集一副图像,然后对图像畸变校正。摄像头事先标定好 #include "cv.h" #include "highgui.h" #include "cxcore.h" #include "cvcam.h" //图像的像素直接提取 #define _I(img,x,y) ((unsigned char*)((img)->imageData + (img)->widthStep*(y)))[(x)] //亚像素级灰度值 #define _IF(image,x,y) ( ((int)(x+1)-(x))*((int)(y+1)-(y))*_I((image),(int)(x),(int)(y)) + ((int )(x+1)-(x))*((y)-(int)(y))*_I((image),(int)(x),(int)(y+1)) + ((x)-(int)(x))*((int)(y+1)-(y))*_I((imag e),(int)(x+1),(int)(y)) + ((x)-(int)(x))*((y)-(int)(y))*_I((image),(int)(x+1),(int)(y+1)) )//插值后的像素值(IN表示interpolation),x、y可以为小数 void callback(IplImage* image); void main() { int ncams = cvcamGetCamerasCount( );//返回可以访问的摄像头数目 HWND mywin; cvcamSetProperty(0, CVCAM_PROP_ENABLE, CVCAMTRUE); cvcamSetProperty(0, CVCAM_PROP_RENDER, CVCAMTRUE); mywin = (HWND)cvGetWindowHandle("cvcam window"); cvcamSetProperty(0, CVCAM_PROP_WINDOW, &mywin); cvcamSetProperty(0, CVCAM_PROP_CALLBACK, callback); //cvcamGetProperty(0, CVCAM_VIDEOFORMA T,NULL); cvNamedWindow( "径向矫正1", 1 );//创建窗口 cvNamedWindow( "径向矫正2", 1 );//创建窗口 cvcamInit( ); cvcamStart( ); cvWaitKey(0); cvcamStop( ); cvcamExit( ); cvDestroyWindow( "径向矫正1" );//销毁窗口 cvDestroyWindow( "径向矫正2" );//销毁窗口

畸变校正

畸变校正实现 1.相机标定 在计算机视觉中,通过相机标定能够获取一定的参数,其原理是基于三大坐标系(摄像机坐标系、图像坐标系和世界坐标系)之间的转换和摄像机的畸变参数矩阵。目前经常用张正友标定法,进行摄像机标定,获取到内参数矩阵和外参数矩阵以及畸变参数矩阵。 1.1三大坐标系 1)图像坐标系 在计算机系统中,描述图像的大小是像素,比如图像分辨率是1240*768.也就是以为图像矩阵行数1024,列数768。图像的原点是在图像的左上角。 以图像左上角为原点建立以像素为单位的坐标系u-v。像素的横坐标u与纵坐标v分别是在其图像数组中所在的列数与所在行数。这是像素坐标,而不是图像坐标系,为了后续的模型转换,有必要建立图像坐标系。 图像坐标系是以图像中心为原点,X轴和u轴平行,Y轴和v轴平行。dx和dy 表示图像中每个像素在X轴和Y轴的物理尺寸,其实就是换算比例。比如图像大小是1024*768,图像坐标系x-y中大小为19*17.那么dx就是19/1024。 2)相机坐标系 相机成像的几何关系可由图2.2表示。其中O点为摄像机光心(投影中心),Xc 轴和Yc轴与成像平面坐标系的x轴和y轴平行,Zc轴为摄像机的光轴,和图像平面垂直。光轴与图像平面的交点为图像的主点O1,由点O与Xc,Yc,Zc轴组成的直角坐标系称为摄像机的坐标系。OO1为摄像机的焦距。 3)世界坐标系 世界坐标系是为了描述相机的位置而被引入的,如图2.2中坐标系OwXwYwZw即为世界坐标系。平移向量t和旋转矩阵R可以用来表示相机坐标系与世界坐标系的关系。所以,假设空间点P在世界坐标系下的齐次坐标是(Xw,Yw,Zw,1)T,(这

图像畸变校正word版

实验五 图像形状及颜色畸变的校正 一、 实验目的与要求 让学生了解数字图像的数学表达及相关概念,通过实验让学生加深对数学在相关学科的应用价值的认识,培养学生的实际操作能力,并引导他们建立基础学科在处理具体问题时方法上联系。 二、 问题描述 对于在颜色或形状上发生畸变的图像,通过数学的方法实现校正。 三、问题分析 先由教师讲授数字图像的基本概念(包括图像的数学化、采样、量化、灰度、各种数学图像的文件格式、表色系、颜色映像等),再通过具体的实例给学生示范对于在颜色或形状上发生畸变的图像如何通过数学的方法实现校正的过程。最后让学生动手完成对某些特殊畸变的图像的校正,写出数学原理和实验报告。 四、背景知识介绍 1. 数字图像的数值描述及分类 图像是对客观存在物体的一种相似性的生动模仿与描述,是物体的一种不完全的不精确的描述。数字图像是用一个数字阵列来表示的图像。数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素。采样是将空域上或时域上连续的图像变换成离散采样点(像素)集合的一种操作。 对一幅图像采样后,若每行像素为M 个,每列像素为N 个,则图像大小为M ?N 个像素。例如,一幅640?480的图像,就表示这幅连续图像在长、宽方向上分别分成640个和480个像素。显然,想要得到更加清晰的图像质量,就要提高图像的采样像素点数,即使用更多的像素点来表示该图像。 客观世界是三维的,从客观场景中所拍摄到的图像是二维信息。因此,一幅图像可以定义为一个二维函数f(x,y),其中x,y 是空间坐标。对任何一对空间坐标(x,y)上的幅值f(x,y),成为表示图像在该点上的强度或灰度,或简称为像素值。因为矩阵是二维结构的数据,同时量化值取整数,因此,一幅数字图像可以用一个整数矩阵来表示。矩阵的元素位置(i,j),就对应于数字图像上的一个像素点的位置。矩阵元素的值f(i,j)就是对应像素点上的像素值。 值得注意的是矩阵中元素f(i,j)的坐标含义是i 为行坐标,j 是列坐标。而像素f(x,y )的坐标含义一般指直角坐标系中的坐标,两者的差异如下图: 对应于不同的场景内容,数字图像可以大致分为二值图像,灰度图像,彩色 列坐标(j) 行坐标(i) 矩阵元素 f (i ,j) 0 纵坐标(y) 横坐标(x) 像素f(x,y) 图 1.1 矩阵坐标系与直角坐标系

相关文档
最新文档