高中数学 正弦型函数、余弦型函数的性质讲义 新人教A版必修4

高中数学 正弦型函数、余弦型函数的性质讲义 新人教A版必修4
高中数学 正弦型函数、余弦型函数的性质讲义 新人教A版必修4

余弦型函数的性质讲义 新人教A 版必修4

知识引入 题面:已知函数π()sin()6f x x ω=+,π()()9

f x f ≤对任意x ∈R 恒成立, 则ω可以是( )

(A)1

(B)3 (C)152 (D)12

重难点易错点解析

题一

题面:关于x 的方程sin sin5x x a =在[0,)x ∈π上有唯一解,

求实数a 的取值范围.

金题精讲

题一

题面:函数y =sin x 与y =cos x 图象交点的坐标为 .

题二

题面:函数y =cos(sin x )的值域是 .

题三 题面:函数π()3sin 23f x x ??=- ??

?的图象为C ,如下结论中正确的是_______ . ①图象C 关于直线11π12x =对称;②图象C 关于点2π03?? ???

,对称; ③函数f (x )在区间π5π1212??- ???

,内是增函数; ④由y =3sin2x 的图象向右平移

π3个单位长度得到图象C . 题四

题面:已知函数

()sin()(0,0)f x x ω?ω?=+>≤≤π是R 上的偶函数,其图像关于点3(

,0)4M π对称,且在区间[0,]2

π上是单调函数,求ω和?的值. 题五

题面:画出函数f (x ))14x π=

-+在区间35[,]88

ππ-上的图象并回答如下问题.

(1)求函数f (x )的值域; (2)求函数f (x )的最小正周期;

(3)求函数f (x )的单调递增区间.

思维拓展

题一

题面:若△ABC 外接圆半径为1,求周长l 的最大值.

讲义参考答案

重难点易错点解析

题一

答案:a =1

金题精讲

题一

答案:(,(1)42

k k k ππ+

-?∈Z 题二

答案:[cos1,1]

题三

答案:① ② ③

题四 答案:2,23

ω=,π2?=

题五

答案:作图略(1)值域为[1 (2)π (3) π3π[π,π]()88

k k k -+-+∈Z 思维拓展

题一

答案:

关于正弦函数和余弦函数的计算公式

同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα

cot(π-α)=-cotα sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanα sin(2π-α)=-sinαcos(2π-α)=cosα tan(2π-α)=-tanαcot(2π-α)=-cotα sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)

正弦函数余弦函数的图像(附答案)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象? 答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线.

11知识讲解_正弦函数、余弦函数的性质_基础

正弦函数、余弦函数的性质 【学习目标】 1.了解周期函数、周期、最小正周期的定义; 2.理解正弦函数、余弦函数在区间]2,0[π上的性质(如单调性、周期性、最大值和最小值以及与x 轴的交点等). 【要点梳理】 要点一:周期函数的定义 函数)(x f y =,定义域为I ,当I x ∈时,都有)()(x f T x f =+,其中T 是一个非零的常数,则)(x f y =是周期函数,T 是它的一个周期. 要点诠释: 1.定义是对I 中的每一个x 值来说的,只有个别的x 值满足)()(x f T x f =+或只差个别的x 值不满足 )()(x f T x f =+都不能说T 是)(x f y =的一个周期. 2.对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期,三角函数中的周期一般都指最小正周期. 要点二:正弦函数、余弦函数的图象和性质 (1)正弦函数、余弦函数的值域为[]1,1-,是指整个正弦函数、余弦函数或一个周期内的正弦曲线、余弦曲线,如果定义域不是全体实数,那么正弦函数、余弦函数的值域就可能不是[]1,1-,因而求正弦函数、余弦函数的值域时,要特别注意其定义域. (2)求正弦函数的单调区间时,易错点有二:一是单调区间容易求反,要注意增减区间的求法,如求

sin()y x =-的单调递增区间时, 应先将sin()y x =-变换为sin y x =-再求解,相当于求sin y x =的单调递减区间;二是根据单调性的定义,所求的单调区间必须在函数的定义域内,因此求单调区间时,必须先 求定义域. 要点三:正弦型函数sin()y A x ω?=+和余弦型函数cos()(,0)y A x A ω?ω=+>的性质. 函数sin()y A x ω?=+与函数cos()y A x ω?=+可看作是由正弦函数sin y x =,余弦函数cos y x =复合而成的复合函数,因此它们的性质可由正弦函数sin y x =,余弦函数cos y x =类似地得到: (1)定义域:R (2)值域:[],A A - (3)单调区间:求形如sin()y A x ω?=+与函数cos()(,0)y A x A ω?ω=+>的函数的单调区间可以通过解不等式的方法去解答,即把x ω?+视为一个“整体”,分别与正弦函数sin y x =,余弦函数cos y x =的单调递增(减)区间对应解出x ,即为所求的单调递增(减)区间.比如:由 )(2 22 2Z k k x k ∈+ ≤+≤- π π?ωπ π解出x 的范围所得区间即为增区间,由 )(2 3222Z k k x k ∈+≤+≤+ππ?ωππ解出x 的范围,所得区间即为减区间. (4)奇偶性:正弦型函数sin()y A x ω?=+和余弦型函数cos()(,0)y A x A ω?ω=+>不一定具备奇偶性.对于函数sin()y A x ω?=+,当()k k z ?π=∈时为奇函数,当()2 k k z π ?π=±∈时为偶函数; 对于函数cos()y A x ω?=+,当()k k z ?π=∈时为偶函数,当()2 k k z π ?π=±∈时为奇函数. 要点诠释: 判断函数sin()y A x ω?=+,cos()y A x ω?=+的奇偶性除利用定义和有关结论外,也可以通过图象直观判断,但不能忽视“定义域关于原点对称”这一前提条件. (5)周期:函数sin()y A x ω?=+及函数cos()y A x ω?=+的周期与解析式中自变量x 的系数有关,其周期为2T π ω = . (6)对称轴和对称中心 与正弦函数sin y x =比较可知,当()2 x k k z π ω?π+=± ∈时,函数sin()y A x ω?=+取得最大值(或 最小值),因此函数sin()y A x ω?=+的对称轴由()2 x k k z π ω?π+=± ∈解出,其对称中心的横坐标 ()x k k z ω?π+=∈,即对称中心为,0()k k z π?ω-?? ∈ ??? .同理,cos()y A x ω?=+的对称轴由

正弦函数余弦函数的图像(附)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象?

答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线. 根据诱导公式sin ????x +π2=cos x ,x ∈R .只需把正弦函数y =sin x ,x ∈R 的图象向左平移π2个单位长度即可得到余弦函数图象(如图). 要画出y =cos x ,x ∈[0,2π]的图象,可以通过描出(0,1),????π2,0,(π,-1),????3 2π,0,(2π,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y =cos x ,x ∈[0,2π]的图象. 思考 在下面所给的坐标系中如何画出y =cos x ,x ∈[0,2π]的图象? 答案

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

正弦函数余弦函数的性质

正弦函数余弦函数的性质 教学目标 1.掌握y=sin x(x∈R),y=cos x(x∈R)的周期性、奇偶性、单调性和最值.(重点) 2.会用正弦函数、余弦函数的性质解决一些简单的三角函数问题.(难点) 3.了解周期函数、周期、最小正周期的含义.(易混点) [基础·初探] 教材整理1函数的周期性 阅读教材P34~P35“例2”以上部分,完成下列问题. 1.函数的周期性 (1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期. (2)如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 2.两种特殊的周期函数 (1)正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. (2)余弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. 函数y=2cos x+5的最小正周期是________.

解:函数y =2cos x +5的最小正周期为T =2π. 【答案】 2π 教材整理2 正、余弦函数的奇偶性 阅读教材P 37“思考”以下至P 37第14行以上内容,完成下列问题. 1.对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称. 2.对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称. 判断函数f (x )=sin ? ?? ?? 2x + 3π2的奇偶性. 解:因为f (x )=sin ? ???? 2x +3π2=-cos 2x . 且f (-x )=-cos(-2x )=-cos 2x =f (x ),所以f (x )为偶函数. 教材整理3 正、余弦函数的图象和性质 阅读教材P 37~P 38“例3”以上内容,完成下列问题.

正弦函数和余弦函数的图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值;

正弦函数与余弦函数的图像与性质

2018年全国卷数学文科第一轮复习资料 第三节 正弦函数与余弦函数的图像与性质 A 组 1.已知函数f (x )=sin(x -π 2 )(x ∈R ),下面结论错误的是. ①函数f (x )的最小正周期为2π②函数f (x )在区间[0,π 2 ]上是增函数 ③函数f (x )的图象关于直线x =0对称④函数f (x )是奇函数 2.函数y =2cos 2 (x -π4 )-1是________. ①最小正周期为π的奇函数 ②最小正周期为π的偶函数 ③最小正周期为π2的奇函数 ④最小正周期为π 2 的偶函数 3.若函数f (x )=(1+3tan x )cos x ,0≤x <π 2 ,则f (x )的最大值为________. 4.已知函数f (x )=a sin2x +cos2x (a ∈R )图象的一条对称轴方程为x =π 12 ,则a 的值为 ________. 5.(原创题)设f (x )=A sin(ωx +φ)(A >0,ω>0)的图象关于直线x =π 3 对称,它的最小正 周期是π,则f (x )图象上的一个对称中心是________(写出一个即可). 6.设函数f (x )=3cos 2 x +sin x cos x -32 . (1)求函数f (x )的最小正周期T ,并求出函数f (x )的单调递增区间; (2)求在[0,3π)使f (x )取到最大值的所有x 的和. B 组 1.函数f (x )=sin(23x +π2)+sin 2 3 x 的图象相邻的两条对称轴之间的距离是________.

2.给定性质:a 最小正周期为π;b 图象关于直线x = π 3 对称.则下列四个函数中,同时具有性质ab 的是________. ①y =sin(x 2+π6) ②y =sin(2x +π6) ③y =sin|x | ④y =sin(2x -π 6) 3.若π40)在[-2π3,2π 3 ]上单调递增,则ω的最大值为________. 6.设函数y =2sin(2x +π3)的图象关于点P (x 0,0)成中心对称,若x 0∈[-π 2 ,0],则x 0= ________. 7.已知函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π 2 ,直线x = π 3 是其图象的一条对称轴,则下面各式中符合条件的解析式是________. ①y =4sin(4x +π6)②y =2sin(2x +π3)+2③y =2sin(4x +π3)+2 ④y =2sin(4x +π 6 )+2 8.有一种波,其波形为函数y =sin π 2 x 的图象,若在区间[0,t ]上至少有2个波峰(图象的 最高点),则正整数t 的最小值是________. 9.已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是________. 10.已知向量a =(2sin ωx ,cos 2 ωx ),向量b =(cos ωx,23),其中ω>0,函数f (x )=a ·b ,若f (x )图象的相邻两对称轴间的距离为π. (1)求f (x )的解析式;(2)若对任意实数x ∈[π6,π 3],恒有|f (x )-m |<2成立,数m 的取值 围

6.1.1 正弦函数和余弦函数的图像与性质(含答案)

【课堂例题】 例1.试画出正弦函数在区间[0,2]π上的图像. 例2.试画出余弦函数在区间[0,2]π上的图像. 课堂练习 1.作函数sin y x =-与sin 1y x =+在区间[0,2]π上的大致图像. 2.指出1.中各图像与正弦函数图像的位置关系. 3.作函数cos ,[,]y x x ππ=∈-的大致图像. 4.利用3.解不等式:cos sin ,[,]x x x ππ≥∈-

【知识再现】 正弦函数:y = ,x ∈ ; 余弦函数:y = ,x ∈ . 正弦函数和余弦函数在[0,2]π上的大致图像: 【基础训练】 1.(1)若MP 和OM 分别是角 76 π 的正弦线和余弦线,则( ) A.0MP OM <<;B.0OM MP >>; C.0OM MP <<;D.0MP OM >>. (2)正弦函数与余弦函数在区间[,]ππ-内的公共点的个数是( ) A.1; B.2; C.3; D.4. 2.我们学过的诱导公式中, (1)说明余弦函数cos ,y x x R =∈的图像关于y 轴对称的是 ; (2)说明正弦函数sin ,y x x R =∈的图像关于直线2 x π = 对称的是 . 3.(1)函数cos 3,y x x R =+∈的值域是 ; (2)函数24sin 2,(0,)y x x π=-∈的值域是 . 4.函数cos ,[0,2]y x x π=∈和1y =的图像围成的封闭的平面图形的面积为 . 5.利用“五点法”,画出下列函数的大致图像:(步骤:列表、描点、联线) (1)1sin ,[,]y x x ππ=+∈-; (2)cos ,[0,2]y x x π=-∈. O y x

1.4.2正弦、余弦函数的性质(一)

1.4.2正弦、余弦函数的性质(一) 教学目的: 知识目标:要求学生能理解周期函数,周期函数的周期和最小正周期的定义; 能力目标:掌握正、余弦函数的周期和最小正周期,并能求出正、余弦函数的最小正周期。 德育目标:让学生自己根据函数图像而导出周期性,领会从特殊推广到一般的数学思想,体会三 角函数图像所蕴涵的和谐美,激发学生学数学的兴趣。 教学重点:正、余弦函数的周期性 教学难点:正、余弦函数周期性的理解与应用 教学过程: 一、复习引入: 1.问题:(1)今天是星期一,则过了七天是星期几?过了十四天呢?…… (2)物理中的单摆振动、圆周运动,质点运动的规律如何呢? 2.观察正(余)弦函数的图象总结规律: 自变量x 2π- 32π- π- 2 π- 0 2π π 32 π 2π 函数值sin x 1 0 1- 0 1 1- 正弦函数()sin f x x =性质如下: (观察图象) 1? 正弦函数的图象是有规律不断重复出现的; 2? 规律是:每隔2π重复出现一次(或者说每隔2k π,k ∈Z 重复出现) 3? 这个规律由诱导公式sin(2k π+x)=sinx 可以说明 结论:象这样一种函数叫做周期函数。 文字语言:正弦函数值按照一定的规律不断重复地取得; 符号语言:当x 增加2k π(k Z ∈)时,总有(2)sin(2)sin ()f x k x k x f x ππ+=+==. 也即:(1)当自变量x 增加2k π时,正弦函数的值又重复出现; (2)对于定义域内的任意x ,sin(2)sin x k x π+=恒成立。 余弦函数也具有同样的性质,这种性质我们就称之为周期性。 二、讲解新课: 1.周期函数定义:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:f (x +T)=f (x )那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。 问题:(1)对于函数sin y x =,x R ∈有2sin( )sin 636π ππ+ =,能否说23 π 是它的周期? (2)正弦函数sin y x =,x R ∈是不是周期函数,如果是,周期是多少?(2k π,k Z ∈且0k ≠) (3)若函数()f x 的周期为T ,则kT ,* k Z ∈也是()f x 的周期吗?为什么? (是,其原因为:()()(2)()f x f x T f x T f x kT =+=+==+) 2、说明:1?周期函数x ∈定义域M ,则必有x+T ∈M, 且若T>0则定义域无上界;T<0则定义域无下界; 2?“每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)≠f (x 0)) – – π 2π 2π- π 5π π- 2π- 5π- O x y 1 1-

正弦函数和余弦函数的图象

1.4.1 正弦函数和余弦函数的图象 编写人: 杨朝书 审核人:王维芳 时间 2010-3-22 一、学习目标 1、 了解如何利用正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象。 2、 会用“五点法”画出正弦函数、余弦函数的简图。 二、重点难点 重点:正弦函数、余弦函数的图象。 难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数和余弦函数图象间的关系。 三、知识链接 1、sin(2)k απ+=_____________,cos(2)k απ+=____________,tan(2)k απ+=__________ (其中k Z ∈) 2、三角函数的几何表示,即___________,作出角 23 π 的正弦线、余弦线和正切线。 3、诱导公式:sin()2πα-= sin()2 πα+= cos()πα-= cos()πα+= 4、函数的定义__________________________________________________________________ 四、学习过程 [知识探究]正弦函数、余弦函数的图象 阅读课本30p 第一段:正弦函数、余弦函数的定义是:__________________________________. 问题1、用描点法作出正弦函数sin y x =的图象(试填写下表并描点,作出图象) 阅读课本31p 完成问题2、用几何法作出正弦函数sin y x =的图象。 1、利用几何法作正弦函数的图象可分为两步:一是画出______________的图象;二是把这一图象向_____________________________连续平移(每次2π个单位长度) 2、“五点法”作图的一般步骤是①_________;②_____________;③________________ 3、“五点法”作正弦函数图象的五个点是_______________________________;“五点法”作余弦函数图象的五个点是 _______________________________ 4、函数cos y x =(x R ∈)的图象可以通过sin ()y x x R =∈的图象向_______平移_____个单位长度得到。 5、通过图象能说出正弦曲线和余弦曲线是否是轴对称图象和中心对称图形?若是对称轴是什么?对称中心是什么? [典型例题] 例题 画出下列函数的简图: ⑴1sin y x =+,[0,2]x π∈;⑵cos ,[0,2]y x x π=-∈;⑶1sin(2)26 y x π= + 变式:你能否从函数图象变换的角度出发,利用函数sin y x =,[0,2]x π∈的图象来得到1sin y x =+, [0,2]x π∈的图象?同样的,能否从函数cos ,[0,2]y x x π=∈的图象得到函数cos ,[0,2] y x x π=-∈的图象?

正弦函数、余弦函数的图像

人教A版高中《数学》必修④《1.4.1 正弦函数、 余弦函数的图象》 教学设计与反思 黄建军 浙江省嵊州市三界中学 一、指导思想与理论依据 本节课的设计遵循从局部到整体、从特殊到一般的原则,适当运用多媒体辅助教学手段,用观察、启发、探究相结合的方法组织教学。从演示 “简谐运动”实验入手,形成直观的正弦曲线、余弦曲线印象,然后通过设置一系列具有挑战性的问题引领学生探究正弦函数、余弦函数的图象,再用例题、练习巩固五点法及应用,最后师生小结提升。这样设计比较自然、合理、符合认知规律,能够激发学生学习的兴趣,让学生在观察分析、自主探索、合作交流的过程中,掌握正弦函数、余弦函数的图象的作法,领会数形结合、类比、变换等数学思想,养成积极主动、勇于探索、自主学习的学习方式。整堂课体现了新课标“以学生为主体,教师为主导”的课堂教学理念。 二、教材分析 本节教材选自人教A版高中《数学》必修④第一章第四节,其主要内容是正弦函数、余弦函数的图象。本节课是在学生已经掌握了任意三角函数的定义,三角函数线,三角函数的诱导公式等知识基础上进行学习的,不仅是对前面所学知识应用的考察,也是后续学习正弦函数、余弦函数的性质的基础。对函数图象清晰而准确的掌握也为学生在解题实践中提供了有力的工具。因此,本节课的学习有着极其重要的意义与地位,它对知识的掌握起到了承上启下的作用。 三、学情分析 学生认知发展分析:所教学生的数学成绩在年段中属中上水平,学生学习数学兴致较高。他们已经掌握了一次函数、二次函数、指数函数和对数函数等基础函数的图象和性质,并了解一些函数的画法;已具有

较强的分析、判断、理解能力和一定层次上的合作交流能力。 学生认知障碍点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点。 四、教学目标 1、知识与技能:使学生理解作正弦函数和余弦函数图象的方法,掌握 用五点法作正弦函数和余弦函数的简图。 2、过程与方法:通过组织引导学生参与“用正弦线作正弦函数图 象”,培养学生探究能力及数学应用能力,提高学生分析、类比、抽 象、概括等思维能力。 3、情感、态度与价值观:让学生体会数学中的图形美,体验善于动手操 作、合作探究的学习方法带来的成功愉悦,渗透由抽象到具体的思想, 加深对数形结合思想的认识,理解动与静的辩证关系,树立科学的辩证 观唯物主义观。 五、教学重点、难点 重点:正弦函数、余弦函数的图象。 : 难点:(1)将单位圆中的正弦线通过平移转化为正弦函数图象上的点; (2)正弦函数与余弦函数图象间的关系。 六、教学过程 (一) 创设情景,导入新课 数形本是相倚依,焉能分作两边飞?数缺形时少直觉,形少数时难 入微,数形结合百般好,隔离分家万事休……”,这是我国著名数学家 华罗庚教授写过的一首诗,诗中充分肯定了数形结合这一重要的数学思 想方法。前面我们主要从“数”的角度研究了三角函数的一些问题,这 节课我们将从“形”上研究两个三角函数。 1. 在弧度制下,实数集与角的集合之间可以建立一一对应关系, 而一个确定的角又对应着唯一确定的正弦(或余弦)值,这样,任意给

正弦函数和余弦函数的图像与性质教案

6.1课题:正弦函数和余弦函数的图像与性质(2)教案 教学目的:1、理解正、余弦函数的值域、最值、周期性、奇偶性的意义; 2、会求简单函数的值域、最小正周期和单调区间; 3、掌握正弦函数y =A sin(ωx +φ)的周期及求法。 教学重点:正、余弦函数的性质。 教学过程: (一)、引入 回顾三角函数的图像: 函数y=sinx ,x ∈[0,2π]和y=cosx ,x ∈[0,2π]的图象, (二)、新课 1.定义域: 正弦函数、余弦函数的定义域都是实数集R [或(-∞,+∞)], 分别记作: y =sin x ,x ∈R y =cos x ,x ∈R 2.值域 因为正弦线、余弦线的长度小于或等于单位圆的半径的长度,所以|sin x |≤1, |cos x |≤1,即-1≤sin x ≤1,-1≤cos x ≤1 也就是说,正弦函数、余弦函数的值域都是[-1,1] 其中正弦函数y =sin x ,x ∈R ①当且仅当x = 2 π+2k π,k ∈Z 时, 取得最大值1 ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1 而余弦函数y =cos x ,x ∈R ①当且仅当x =2k π,k ∈Z 时,取得最大值1 ②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1 3.周期性 由sin(x +2k π)=sin x ,cos(x +2k π)=cosx (k ∈Z )知:

正弦函数值、余弦函数值是按照一定规律不断重复地取得的。 一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。 由此可知,2π,4π,……,-2π,-4π,……2k π(k ∈Z 且k ≠0)都是这两个函数的周期 对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期。 注意: (1)周期函数x ∈定义域M ,则必有x+T ∈M, 且若T>0则定义域无上界;T<0则定义域无 下界; (2)“每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)≠f (x 0)) (3)T 往往是多值的(如y=sinx ,2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数 叫做f (x )的最小正周期(有些周期函数没有最小正周期) 根据上述定义,可知:正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π。 4.奇偶性 由sin(-x)=-sinx , cos(-x)=cosx 可知:y =sinx 为奇函数, y =cosx 为偶函数 ∴正弦曲线关于原点O 对称,余弦曲线关于y 轴对称 5.单调性 从y =sin x ,x ∈[- 23,2ππ]的图象上可看出: 当x ∈[-2π,2 π]时,曲线逐渐上升,sin x 的值由-1增大到1 当x ∈[2 π,23π]时,曲线逐渐下降,sin x 的值由1减小到-1结合上述周期性可知: 正弦函数在每一个闭区间[- 2π+2k π,2 π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1。 余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1 (三)典型例题(3个,基础的或中等难度) 例1:求使下列函数取得最大值的自变量x 的集合,并说出最大值是什么。 (1)y =cosx +1,x ∈R ; (2)y =sin2x ,x ∈R 解:(1)使函数y =cos x +1,x ∈R 取得最大值的x 的集合,就是使函数y =cos x ,x ∈R 取 得最大值的x 的集合{x |x =2k π,k ∈Z }。 ∴函数y =cos x +1,x ∈R 的最大值是1+1=2。

正弦函数和余弦函数的计算公式

关于正弦函数和余弦函数的计算公式 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα

最新正弦函数与余弦函数的图像与性质练习题

正弦函数与余弦函数的图像与性质 1.已知函数f (x )=sin(x -π2 )(x ∈R ),下面结论错误的是________. ①函数f (x )的最小正周期为2π ②函数f (x )在区间[0,π2 ]上是增函数 ③函数f (x )的图象关于直线x =0对称 ④函数f (x )是奇函数 2.函数y =2cos 2(x -π4 )-1是________.①最小正周期为π的奇函数 ②最小正周期为π的偶函数 ③最小正周期为π2的奇函数 ④最小正周期为π2 的偶函数 3.若函数f (x )=(1+3tan x )cos x ,0≤x <π2 ,则f (x )的最大值为________. 4.已知函数f (x )=a sin2x +cos2x (a ∈R )图象的一条对称轴方程为x =π12 ,则a 的值为________. 5.设f (x )=A sin(ωx +φ)(A >0,ω>0)的图象关于直线x =π3 对称,它的最小正周期是π,则f (x )图象上的一个对称中心是________(写出一个即可). 6.设函数f (x )=3cos 2x +sin x cos x -32 . (1)求函数f (x )的最小正周期T ,并求出函数f (x )的单调递增区间; (2)求在[0,3π)内使f (x )取到最大值的所有x 的和. B 组 1.函数f (x )=sin(23x +π2)+sin 23 x 的图象相邻的两条对称轴之间的距离是________. 2.给定性质:a 最小正周期为π;b 图象关于直线x =π3 对称.则下列四个函数中,同时具有性质ab 的是________. ①y =sin(x 2+π6) ②y =sin(2x +π6) ③y =sin|x | ④y =sin(2x -π6 ) 3.若π4

任意角三角函数 正弦函数和余弦函数的定义与诱导公式

正弦函数和余弦函数的定义与诱导公式 尝试回忆 1、1弧度的角; 2、角度制与弧度制的互化; 3、弧长公式及扇形面积公式; 4、用弧度制表示第一象限内的角的集合和x 轴上的角的集合。 2、特别注意:角度与弧度不要混用。如0 90,k k Z π+∈,应写成0 18090,k k Z ?+∈或,2 k k Z π π+ ∈ 3、初中所学的锐角的正、余弦函数是如何定义的? 探究新知 1、单位圆 在直角坐标系中,以原点为圆心,以单位长为半径的圆,称为单位圆。 单位长:可以是1cm 、1m 、1km 、1光年等。单位圆可根据需要移到其它地方。 2、任意角的正、余弦函数定义 在直角坐标系中,给定单位圆,对于任意角α,使角α的顶点与原点重合,始边与x 轴正半轴重合,终边与单位圆交于点P(u,v),则交点P 的纵坐标v 叫作角α的正弦函数,记作v=sin α; 点P 的横坐标u 叫作角α的余弦函数,记作u=cos α. 通常,用x 表示自变量,用x 表示角的大小,用y 定义任意角的三角函数y=sinx 和y=cosx,定义域为R ,值域为设点P (a,b )是角α终边上除原点之外的任意一点,记r =则定义sin ,cos .b a r r αα= =更具有一般性。 3、三角函数值的符号 根据定义,三角函数值的符号仅与点P 的纵、横坐标的符号有关。sinα在一、二象限为正,三、四象限为负;cos α在一、四象限为正,二、三象限为负.轴线角的正余弦函数值也有符号。 例1功能:会求任意角的三角函数值。其步骤(1)画角;(2)求交点坐标。可联立方 程221,. x y y x ?+=?=-?解得;(3)求值。 4、单位圆与周期性 在单位圆中找到角 ,2,46 6 6 α α α ππ+ + 等与单位圆的交点,说明:(1)终边没变;(2) 交点没变;(3)交点的纵、横坐标没变。从而说明正弦函数值没变,余弦函数值没变。即 从而说明终边相同的角的正弦函数值相等,终边相同的角的余弦函数值相等。即 sin(2)sin ,.cos(2)cos ,.k x x k Z k x x k Z ππ+=∈+=∈ 说明:对于任意一个角x ,每增加2π的整数倍,其正弦函数值、余弦函数值均不变。所以,正弦函数值、余弦函数值均是随角的变化呈周期性变化的。这种随自变量的变化函数值呈周期性变化的函数叫做周期函数。特别指出,周期性不是三角函数特有的,一般函数也有周期性。周期函数的自变量不一定是角。2π是sin ,y x x R =∈的周期,则

正弦函数和余弦函数的计算公式

正弦函数和余弦函数的 计算公式 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

关于正弦函数和余弦函数的计算公式同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα

cos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosα tan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα

相关文档
最新文档