18号可动心轨提速道岔

18号可动心轨提速道岔
18号可动心轨提速道岔

18#可动心轨提速道岔

一、使用范围

60kg/m钢轨18#可动心提速道岔用于繁忙干线快速列车转线地段。其允许通过速度,旅客列车:直向为250km/h,货物列车(轴重23T)为120km/h,侧向为80km/h(图1-6-1);

图 1-6-1 18#可动心提速道岔

本道岔适用于跨区间无缝线路,允许温升为45℃,允许温降分别为50 ℃

(尖轨跟端采用间隔铁)和55 ℃(尖轨跟端采用限位器图1-6-2)。道岔前后端及道岔区均采用焊接接头,绝缘接头采用胶结绝缘钢轨。

图 1-6-2 18#可动心道岔限位器

岔枕按垂直于道岔直股布置除牵引点及两侧外,岔枕间距一般为600mm。道岔轨距均为1435mm。

二、主要结构特点

(一)尖轨为相离半切线型,采用21.45m长的60D40弹性可弯尖轨,尖轨尖端为藏尖式。

(二)尖轨设三个牵引点,采用分动钩型外锁闭装置,各牵引点设计动程分别为160mm、118mm、71mm。在正常情况下,各牵引点的理论转换力分别为712N、294N、2832N。

(三)转辙器尖轨跟端按采用限位器和间隔铁两种方案设计。

(四)转辙器尖轨跟端带施维格滚轮的滑床板和防跳限位装置,基本轨内侧采用弹性夹扣压。

(五)可动心轨辙叉主体结构采用长翼轨、钢轨拼装式可动心轨辙叉结构。采用长翼轨使心轨与翼轨成为整体,便于温度力的传递,心轨受到的温度力通过跟端固定装置传至翼轨,使心轨的伸缩得到有效控制。

(六)翼轨跟端用间隔铁分别与长心轨和岔跟轨胶接,胶接层厚度不大于1mm。技术要求参照TB/G2975《胶接绝缘钢轨技术条件》。

(七)心轨采用60D40钢轨组合的结构,短心轨后端仍为斜接头,具有制造简单、实现容易的特点。采用60D40钢轨拼接,可有效降低心轨的转换阻力。心轨前端不再轧制转换凸缘,在牵引点处将轨底刨切成32mm,为方便电务钩锁设置,轨底也刨切10mm。

心轨设二个牵引点,两个牵引点距离为3.6m。采用钩型外锁闭装置,各点的理论转换力分别为1080N、4536N。

可动心轨第一牵引点处的动程为115mm。

可动心轨第二牵引点处的动程为64mm。

提速道岔的动程虽然由电务部门负责,但动程的正确与否将直接影响尖轨和心轨的使用状态,因此工务部门应掌握动程标准,发现动程不符要求时及时通知电务部门调整动程。

(八)可动心轨辙可不设护轨,但侧向要设置长度为540Omm的防磨护轨,减少冲击加长护轨缓冲段长度,以防止心轨侧面磨耗而影响直股密贴。护轨为分开式,采用33kg/m槽型钢制造,护轨顶面高出基本轨顶面12mm,垫板为组合焊接垫板,护轨基本轨内侧采用施维格弹性夹扣压,轨距调整采用缓冲调距块。

1、可动心轨辙叉

长、短心轨均用60AT轨制造,长心轨与短心轨之间用间隔铁连接。长心轨为弹性可弯式,在理论弹性可弯部分轨底作刨切。长心轨跟端用模压成形工艺

制成60kg/m钢轨断面,与岔后连接轨可采用普通接头夹板连接或焊接,短心轨跟端为滑动端,与叉跟尖轨连接。

2、可动心轨辙叉主要尺寸

辙叉咽喉为124mm。长心轨实际尖端离辙叉咽喉50mm。

3、长短心轨联结螺栓扭矩为600N.m,限位器跟端用间隔铁及翼轨用间隔铁联结螺栓扭矩为1000N.m,垫板用M30螺栓扭矩为300~350N.m。

(九)道岔钢轨设置1﹕40的轨底坡或轨顶坡。

(十)扣件采用Ⅱ型弹条扣件,一般部位轨距块及缓冲调距块的号码。轨距块9、10、11、12;缓冲调距块的号码有6~9、5~10、4~11、7~8等。轨距调整采用轨距块和缓冲调距块联合进行,即可单独调距,也可联合调整。

(十一)绝缘接头两侧采用绝缘轨距块。

(十二)转辙器和可动心轨辙叉的滑床台板表面应设置减磨涂层。

(十三)钢轨轨下设置5mm厚橡胶垫板,铁垫板下设置20mm厚橡胶垫板。橡胶垫板下可以采用调高垫板进行调高,最大调高量30mm。

1、混凝土岔枕采用Ⅱ型。Ⅱ型弹条的弹程为10mm,初始扣压力不小于1OKN;

转辙器滑床板及护轨垫板在基本轨里侧采用弹片扣压,扣压力应与Ⅱ型弹条匹配。

2、垫板用钢板制成,承轨部分铣出1:40的轨底坡,两侧焊接铸钢弹条轨底座,钢轨中轴线下垫板的截面,混凝土岔枕为170mm×2Omm。

3、垫板与岔枕的连接,混凝土岔枕采用预埋塑料套管及螺栓,不采用硫磺锚固。

4、除尖轨、心轨外,道岔钢轨下及垫板下均设弹性垫层。

5、扣件中的T形螺栓为M24,当弹条前端中部下须与调距块表面接触时,螺母扭矩为140~160N.m。

(十四)心轨转换采用二点牵引及外锁闭装置。

1、在长心轨第一牵引点处,用热锻方式在轨底下部锻造出转换凸缘。转换杆件从翼轨下通过,与心轨连接,达到转换目的。

2、长、短心轨的顶面均刨切成1:40的轨顶坡,在长心轨跟端成形的起点按1:40扭转,以便与区间钢轨相连接。

3、翼轨采用60AT锻特种断面+P60焊接形式。翼轨采用目前的特种断面翼

轨,进行机加工,将内侧的轨底刨切17mm,内侧轨底上表面也作适量刨切。由于电务牵引的位置提高,可有效的解决电务4mm检查失效的问题,翼轨跟端用间隔铁分别与长心轨和叉跟轨胶接,胶接层厚度不大于1mm。

4、翼轨与心轨密贴段之前设1:40轨底坡,密贴段之后通过长度为40Omm 的过渡段将翼轨扭成平坡。

5、尖轨用60kg/m钢轨制造,设1:40轨底坡。短心轨跟部与叉跟尖轨非工作边相互贴合,在心轨转换过程中,短心轨跟部可前后滑动,滑动量约为6mm。

(十五)外锁闭装置

外锁闭就是道岔通过本身的锁闭装置直接把尖轨与基本轨、心轨与锁闭铁密贴夹紧锁闭(内锁闭是指通过杆件将密贴尖轨锁闭在转辙机内)。

(十六)提速道岔各部分的水平

提速道岔的尖轨和心轨采用AT轨制造,除尖轨和心轨轨顶刨切部分外,不存在构造水平。因此,水平的检查地点与轨距的检查地点相同。

ZDJ9道岔电路分析

ZDJ9道岔控制电路分析 一:道岔启动电路的技术条件和工作原理 1、道岔控制方式 控制电动转辙机的方式有两种: (1)道岔进路操纵。以进路的方式使进路中上各组道岔按进路的要求接通电动转辙机将道岔转换到定位或反位。选岔网路按照选路的要求,选出进路上各组道岔应转向的位置,即某道岔是定位操纵继电器DCJ吸起,就接通道岔启动电路使该道岔转向定位;若是反位操纵继电器FCJ吸起,则接通道岔启动电路就使道岔转向反位。全进路上的道岔按进路要求一次选出。 (2)道岔单独操纵。为维修、试验道岔和开放引导信号排列引导进路等,需要对道岔进行单独操纵。单独操纵道岔的办法是,按下被操纵的道岔按钮CA,若要使它转向定位,则同时按下道岔总定位按钮ZDA,接通道岔控制电路使道岔单独转至定位;若要使它转向反位,则同时按下道岔总反位按钮ZFA,接通道岔控制电路使道岔单独转至反位。 2、道岔启动电路的技术条件 (1)对道岔实行区段锁闭,道岔区段有车占用时,或道岔区段轨道电路发生故障时,不准备道岔转换; (2)对道岔实行进路锁闭,进路在锁闭状态时,不准进路上的道岔再转换; (3)道岔启动后,如果列车或调车车列随后驶入该道岔区段,则应保证道岔能继续转到底,不受第一条技术条件限制而停转。若使道岔停转或允许值班员控制它回转,都将造成脱轨或挤岔等严重事故; (4)道岔启动后,如果电路故障使道岔没有启动,如自动开闭器接触不良等造成道岔未转动,则启动电路应自动被切断。以免由于邻线行车震动等原因,使接触不良故障自动消除,造成道岔自行转换,此时若有车进入会造成道岔中途转换事故; (5)应保证道岔在不能转换到底时,能在车站值班员操纵下,随时都可以使它返回原位,以便在道岔尖轨与基本轨之间夹有障碍物时使道岔转回原位; (6)道岔转换完毕到位密码后,应自动切断启动电路使电机停转;

提速道岔维修养护

一、提速道岔结构 1、道岔允许通过速度: 直向:旅客列车:200 km/h; 侧向:50 km/h。 2、SC325提速道岔全长43.2米,前长16.592,后长26.608米,尖轨:14200,基本轨:20400。 3、尖轨、心轨动程:尖轨设三个牵引点,动程160,114,55,心轨设两个牵引点,动程100.8,57.8mm 4、可动心轨咽喉宽109.7,120.8,误差±3mm,轮缘槽宽开口80mm,小头65mm,平直段42mm,误差+1,-0.5mm . 提速道岔的结构特点:提速道岔有2个转辙部分,5个电机,其中尖轨部分3个,心轨部分2个。其中心轨部分构造复杂,维修养护困难。 5、提速道岔配件: a)提速道岔的连接零件有二型弹条和三型弹条,其中三型弹条的拆卸需要专用工具,三型弹条的拆卸不易多于三次,否则容易损坏。 b)增加了弹性轨撑,该处为道岔薄弱环节,一旦三型弹条松动,该轨撑脱落,危及行车安全,因此必须想办法加固,可焊接螺母,用铁丝固定三型弹条,防止其松动。 c)尖轨及心轨的滑床板与钢轨底边之间设有调整铁片,现在施工单位上的铁片为1~2mm,根据日常养护需要,可以加工部

分5,10mm铁条,并做成“L”型防止窜出,铁条必须填满滑床板与钢轨底边的间隙,否则轨距及方向会动态变化,预铺时必须填加部分铁条,否则日后无法改道。 d)尖轨防跳轮及心轨防跳顶铁:该处是尖轨的防跳装置,必须齐全有效,但安装后必须调整,可以安装垫片或打磨,防止压力过大或组卡钢轨影响搬动。 e)螺栓防脱:采用铁箍的形式即可,道岔所有的螺栓均为施必牢螺栓,因此本身放松,只要上铁箍就行。 二、提速道岔铺设初期的维修养护 1、道岔大方向应良好:根据以往的经验,道岔的大方向不良容易引起晃车,因此在道岔铺设初期,应首先拨正线路大方向,做到目视良好。 2、道岔铺设后,应立即补充石碴,全面捣固,尽快使道床基础稳定。尤其是电务拉杆处所,该处石碴较少,有的枕盒内漏枕木底,枕头安装电机处没有石碴,大机捣固时该处没有捣固,电机的振动将振动传递到轨枕上,因此该处为道岔最薄弱环节,因此必须仅最大可能,在不影响搬动的情况下补充石碴,并且采用机械捣固,其次由于道床尚未稳定,因此不是捣固一遍就能够保持,根据道床稳定的经验,道床至少要经过三个月的列车碾压才能稳定。因此在三个月内要经常检查道床状态,发现变化及时捣固,一般三个月以后会逐步稳定。 3、全面复紧所有扣件,达到规定扭力矩。

s700k提速道岔

一、S700K提速道岔的特点 1、S700K电动转辙机采用了交流三相电动机,从根本上解决了原直流电动机因碳刷故障而引起故障率高的特点; 2、采用了保持连接器,并选用不可挤型的零件,从根本上解决了由于挤切销不良而造成的道岔故障; 3、采用滚珠丝杠作为驱动装置,延长了转辙机的使用寿命; 4、采用多片干式可调摩擦连接器,经工厂调整加封后现场无须调整; 5、去掉了两尖轨间的连接杆,使两尖轨分动减少了道岔的转换阻力。 6、S700K提速道岔既能实行内锁闭又能实现外锁闭。 二、S700K提速道岔设备的组成 1、电动转辙机组成:主要由交流三相电动机、减速器、滚珠丝杠、保持连接器、上下检测杆、接点组、锁块及锁舌、转辙机机体、法兰、动作杆以及外表示连接杆等部件组成。 2、外锁闭装置组成:锁闭杆组件、锁钩、锁轴、锁闭铁、密贴调整片、锁闭框、尖轨连接铁、动作连接杆、长短表示杆以及尖轨铁(L铁)等组成。 三、S700K转辙机的动作原理 电动机上电转动后带动传动齿轮,传动齿轮带动减速器转动,减速器转动后致使滚珠丝杆转动。由于滚珠丝杆的曲线运动使得保持连接器和动作杆作直线运动,从而带动尖轨运动。 四、沾昆线S700K的型号及相关技术标准(依据《维规》) 1、五机牵引型号及开程:定反位偏差不大于2mm。 J1:(A13、A14) 开程160 ±5mm,两基本轨的距离1440mm; J2:(A19、A20) 开程114±5mm, 两基本轨的距离1475mm; J3:(A35、A36) 开程71±5mm, 两基本轨的距离1522mm; X1:(A21、A22) 开程101±3mm, 两基本轨的距离134mm; X2:(A35、A36) 开程58±0mm, 两基本轨的距离492mm; 2、两机牵引的型号及开程:(仅金马村站使用) J1:(A13、A14)开程160±5mm J2:(A15、A16)开程75±5mm 3、安装标准 a、尖轨部分两枕木中心距离650mm,锁闭框两安装螺孔中心距前方第一根枕木为350mm,距后方枕木中心为300mm,要求两枕木平行且垂直基本轨。 b、心轨部分两枕木中心距离600mm,锁闭框两安装螺孔中心距前方第一根枕木为350mm,距后方枕木中心为300mm,要求两枕木平行且垂直基本轨。 4、锁闭量要求:定反位两侧均衡,左右偏差不大于3mm,J2、J1、X1≥35mm,其余牵引点≥20mm。 5、开程要求:定反位两侧均衡,左右偏差不大于2mm。 五、S700K电动装辙机控制电路(以五机牵引为例) (一)提速所设组合及类型 1、组合名称 BHZ:保护组合,每组联锁(双动或单动)道岔设一个。 TDD:提速道岔主组合,每组(双动或单动)道岔设一个。 TDF:提速道岔辅助组合, 每个牵引点设一个。 2、组合包含的继电器 BHZ:1QDJ、2QDJ、1ZBHJ、2ZBHJ TDD:1DQJ、2DQJ、DBJ、FBJ、DCJ、FCJ、YCJ、SJ、QDH TDF:1DQJ、1DQJF、2DQJ、2DQJF、DBJ、FBJ、BHJ、DBQ

可动心提速道岔

六盘水工务段 后备工班长培训 一、铁路道岔的类型 (一)、单开道岔 单开道岔是主线为直线,侧线向主线的左侧或右侧分支的道岔。站在道岔前端面向尖轨,侧线向左分支的道岔称为左开道岔,侧线向右分支的道岔称为右开道岔。图1为右开道岔。 (二)、单式对称道岔 单式对称道岔是把直线轨道分为左右对称的两条轨道的道岔(又称双开道岔在),如图2。 (三)、单式不对称道岔 单式不对称道岔是把直线轨道分为左右不对称的两条轨道的道岔,如图3。 (四)、单式同侧道岔 单式同侧道岔是把直线轨道在同一侧分为两条轨道的道岔,如图4。(五)、三开道岔 三开道岔是主线为直线,用同一部位的两组转辙器,将一条轨道分为三条,两侧为对称分支的道岔,如图5。 (六)、不对称三开道岔 为对称三开道岔是主线为直线,在不同部位用两转辙器,将一条轨道分为三条,两侧不对称分支的道岔,如图6。 (七)、菱形交叉 菱形交叉是两直线在同一平面上相互成菱形的交叉,如图7。(八)、交分道岔 在两条和交叉地点,列车只能一侧转线的道岔称为单式交分道岔,(如图8)。列车能两侧转线的道岔称为复式交分道岔,(如图9)。(九)、渡线 渡线是使列车由一线转入他线的设备,由两组单开道岔及一条连接轨道组成,如图10。 (十)、交叉渡线 交叉渡线是相邻两线路间由两条相交的渡线和一组菱形交叉组成的设备,如图11。

二、提速道岔 为了满足我国开行快速列车的需要,消除道岔限速因素,改善列车过岔平稳性,提高综合经济效益,我国于1996年开始在四大干线上铺设提速道岔。经过几年的铺设和使用,在提速道岔的铺设和养护方面,取得了很好的经验,收到了较好的效益。 铁路提速道岔按型号及轨枕分类 铁路单开提速道岔按型号分为:9#、12#、18#、30#、38#等几种。 按轨枕类型分为:1.混凝土枕整铸提速道岔;2.混凝土枕可动心提速道岔;3.木枕整铸提速道岔;4.木枕可动心提速道岔。 本章从知识提速道岔的构造、养护维修工作等方面重点介绍18#可动心提速道岔的有关知识。 60kg/m钢轨18#可动心提速道岔 一、18#可动心提速的使用范围 (一)、60kg/m钢轨18号可动心提速道岔用于繁忙干线快速列车转线地段。其允许通过速度,旅客列车:直向为250km/h,货物列车(轴重23T)为120km/h,侧向为80km/h; (二)、本道岔适用于跨区间无缝线路,允许温升为45℃,允许温降分别为50 ℃(尖轨跟端采用间隔铁)和55 ℃(尖轨跟端采用限位器)。道岔前后端及道岔区均采用焊接接头,绝缘接头采用胶结绝缘钢轨。(三)、岔枕按垂直于道岔直股布置除牵引点及两侧外,岔枕间距一般为600mm。道岔轨距均为1435mm。 二、道岔主要结构特点: (一)、尖轨为相离半切线型,采用21.45m长的60D40弹性可弯尖轨,尖轨尖端为藏尖式。 (二)、尖轨设三个牵引点,采用分动钩型外锁闭装置,各牵引点设计动程分别为160mm、118mm、71mm。在正常情况下,各牵引点的理论转换力分别为712N、294N、2832N。 (三)、转辙器尖轨跟端按采用限位器和间隔铁两种方案设计。图为间隔铁。 (四)、转辙器尖轨跟端带施维格滚轮的滑床板和防跳限位装置,基本轨内侧采用弹性夹扣压。 (五)、可动心轨辙叉主体结构采用长翼轨、钢轨拼装式可动心轨辙叉

道岔启动电路及表示电路说明讲解学习

道岔启动电路及表示电路说明 1、道岔表示电路的技术条件 1.只能用继电器的吸起状态与道岔的正确位置相对应,分别设置道岔定位表示继电器DBJ和道岔反位继电器FBJ。 2.当室外联系线路发生混线或混入其他电源时,必须保证不致使DBJ或FBJ错误吸起。 3.当道岔在转换或发生挤岔事故、停电或断线等故障时,必须保证DBJ或FBJ失磁落下,因此必须使用安全型继电器。 2、四线制道岔控制电路 (一)道岔启动电路 现行的道岔控制电路采用四线制控制电路,通过三级电路完成对道岔转换的控制,如图 四线制道岔控制电路图 第一级控制电路是lDQJ3_4(道岔第一启动继电器)线圈励磁电路,检查联锁条件,确定能否接收控制命令。 人工操纵道岔[选路时DCJ(定位操纵继电器)↑或FCJ(反位操纵继电器)↑,单操时KF- ZDJ有电、AJ(按钮继电器)↑或KF-ZFJ有电、AJ↑]时,lDQJ3_4线圈检查了没有办理人工锁闭[CA(道岔按钮)在定位],没有进行区段锁闭和进路锁闭[SJ(锁闭继电器)↑],又经2DQJ(道岔第二启动继电器)检查道岔需要转换后,励磁吸起。 第二级控制电路是2DQJ的转极电路,确定道岔的转换方向(向定位转还是向反位转)。1DQJ↑后使2DQJ转极。 第三级控制电路是1DQJ1一2线圈自闭电路。接通并随时检查电动机动作电路是否正常。1DQJ↑、2DQJ转极接通道岔动作电路:1DQJ检查电动机正常工作而自闭,道岔转换到底后由电动转辙机的自动开闭器的动作接点切断动作电路,使动作电路复原。 (二)道岔表示电路 电路中使用了两个安全型偏极继电器,作为道岔表示继电器,使用了独立的表示变压器,并在电路的末端设置整流元件,检查电路完整后向发送端送回直流电源,为了防止半波整流造成表示继电器抖动,在表示继电器两端并联了4μF电容器起滤波作用。

道岔启动电路及表示电路说明

道岔启动电路及表示电路说明 1道岔表示电路的技术条件 1 ?只能用继电器的吸起状态与道岔的正确位置相对应,分别设置道岔定位表示继电器 DBJ和道岔反位继电器 FBJ。 2 ?当室外联系线路发生混线或混入其他电源时,必须保证不致使DBJ或FBJ错误吸起。 3 ?当道岔在转换或发生挤岔事故、停电或断线等故障时,必须保证DBJ或FBJ失磁落 下,因此必须使用安全型继电器。 2、四线制道岔控制电路 (一)道岔启动电路 现行的道岔控制电路采用四线制控制电路,通过三级电路完成对道岔转换的控制,如图 L:.! 四线制道岔控制电路图 第一级控制电路是IDQJ3_4 (道岔第一启动继电器)线圈励磁电路,检查联锁条件,确定能否接收控制命令。 人工操纵道岔[选路时DCJ(定位操纵继电器)↑或FCJ(反位操纵继电器)↑,单操时KF- ZDJ有电、AJ(按钮继电器)↑或KF-ZFJ有电、AJ ↑ ]时,IDQJ3_4线圈检查了没有办理人工锁闭[CA(道岔按钮)在定位],没有进行区段锁闭和进路锁闭[SJ (锁闭继电器)↑ ],又经 2DQJ(道岔第二启动继电器)检查道岔需要转换后,励磁吸起。 第二级控制电路是 2DQ J的转极电路,确定道岔的转换方向(向定位转还是向反位转)。 1DQJ↑后使2DQJ转极。 第三级控制电路是1DQJ1一 2线圈自闭电路。接通并随时检查电动机动作电路是否正常。1DQJ↑> 2DQJ转极接通道岔动作电路:1DQJ检查电动机正常工作而自闭,道岔转换到底后由电动转辙机的自动开闭器的动作接点切断动作电路,使动作电路复原。 (二)道岔表示电路 电路中使用了两个安全型偏极继电器,作为道岔表示继电器,使用了独立的表示变压器, 并在电路的末端设置整流元件,检查电路完整后向发送端送回直流电源,为了防止半波整流 造成表示继电器抖动,在表示继电器两端并联了 4 μF电容器起滤波作用。

18号可动心轨提速道岔

. 18#可动心轨提速道岔 一、使用范围 60kg/m钢轨18#可动心提速道岔用于繁忙干线快速列车转线地段。其允许 通过速度,旅客列车:直向为250km/h,货物列车(轴重23T)为120km/h,侧向为80km/h(图1-6-1); 图 1-6-1 18#可动心提速道岔

本道岔适用于跨区间无缝线路,允许温升为45℃,允许温降分别为50 ℃(尖轨跟端采用间隔铁)和55 ℃(尖轨跟端采用限位器图1-6-2)。道岔前后端及道岔区均采用焊接接头,绝缘接头采用胶结绝缘钢轨。 图 1-6-2 18#可动心道岔限位器 岔枕按垂直于道岔直股布置除牵引点及两侧外,岔枕间距一般为600mm。道岔轨距均为1435mm。 二、主要结构特点 .

(一)尖轨为相离半切线型,采用21.45m长的60D40弹性可弯尖轨,尖轨尖端为藏尖式。 (二)尖轨设三个牵引点,采用分动钩型外锁闭装置,各牵引点设计动程分别为160mm、118mm、71mm。在正常情况下,各牵引点的理论转换力分别为712N、294N、2832N。 (三)转辙器尖轨跟端按采用限位器和间隔铁两种方案设计。 (四)转辙器尖轨跟端带施维格滚轮的滑床板和防跳限位装置,基本轨内侧采用弹性夹扣压。 (五)可动心轨辙叉主体结构采用长翼轨、钢轨拼装式可动心轨辙叉结构。采用长翼轨使心轨与翼轨成为整体,便于温度力的传递,心轨受到的温度力通过跟端固定装置传至翼轨,使心轨的伸缩得到有效控制。 (六)翼轨跟端用间隔铁分别与长心轨和岔跟轨胶接,胶接层厚度不大于1mm。技术要求参照TB/G2975《胶接绝缘钢轨技术条件》。 (七)心轨采用60D40钢轨组合的结构,短心轨后端仍为斜接头,具有制造简单、实现容易的特点。采用60D40钢轨拼接,可有效降低心轨的转换阻力。.

18#可动心提速道岔

18#可动心提速道岔

六盘水工务段 后备工班长培训 一、铁路道岔的类型 (一)、单开道岔 单开道岔是主线为直线,侧线向主线的左侧或右侧分支的道岔。站在道岔前端面向尖轨,侧线向左分支的道岔称为左开道岔,侧线向右分支的道岔称为右开道岔。图1为右开道岔。 (二)、单式对称道岔 单式对称道岔是把直线轨道分为左右对称的两条轨道的道岔(又称双开道岔在),如图2。 (三)、单式不对称道岔 单式不对称道岔是把直线轨道分为左右不对称的两条轨道的道岔,如图3。 (四)、单式同侧道岔 单式同侧道岔是把直线轨道在同一侧分为两条轨道的道岔,如图4。 (五)、三开道岔 三开道岔是主线为直线,用同一部位的两组转辙器,将一条轨道分为三条,两侧为对称分支的道岔,如图5。 (六)、不对称三开道岔 为对称三开道岔是主线为直线,在不同部位用两转辙器,将一条轨道分为三条,两侧不对称分支的道岔,如图6。 (七)、菱形交叉 菱形交叉是两直线在同一平面上相互成菱形的交叉,如图7。 (八)、交分道岔 在两条和交叉地点,列车只能一侧转线的道岔称为单式交分道岔,(如图8)。列车能两侧转线的道岔称为复式交分道岔,(如图9)。 (九)、渡线 渡线是使列车由一线转入他线的设备,由两组单开道岔及一条连接轨道组成,如图10。 (十)、交叉渡线 交叉渡线是相邻两线路间由两条相交的渡线和一组菱形交叉组成的设备,如图11。 - 2 -

二、提速道岔 为了满足我国开行快速列车的需要,消除道岔限速因素,改善列车过岔平稳性,提高综合经济效益,我国于1996年开始在四大干线上铺设提速道岔。经过几年的铺设和使用,在提速道岔的铺设和养护方面,取得了很好的经验,收到了较好的效益。 铁路提速道岔按型号及轨枕分类 铁路单开提速道岔按型号分为:9#、12#、18#、30#、38#等几种。 按轨枕类型分为:1.混凝土枕整铸提速道岔;2.混凝土枕可动心提速道岔;3.木枕整铸提速道岔;4.木枕可动心提速道岔。 本章从知识提速道岔的构造、养护维修工作等方面重点介绍18#可动心提速道岔的有关知识。 60kg/m钢轨18#可动心提速道岔 一、18#可动心提速的使用范围 (一)、60kg/m钢轨18号可动心提速道岔用于繁忙干线快速列车转线地段。其允许通过速度,旅客列车:直向为250km/h,货物列车(轴重23T)为120km/h,侧向为80km/h; (二)、本道岔适用于跨区间无缝线路,允许温升为45℃,允许温降分别为50 ℃(尖轨跟端采用间隔铁)和55 ℃(尖轨跟端采用限位器)。道岔前后端及道岔区均采用焊接接头,绝缘接头采用胶结绝缘钢轨。 (三)、岔枕按垂直于道岔直股布置除牵引点及两侧外,岔枕间距一般为600mm。道岔轨距均为1435mm。 二、道岔主要结构特点: (一)、尖轨为相离半切线型,采用21.45m长的60D40弹性可弯尖轨,尖轨尖端为藏尖式。 (二)、尖轨设三个牵引点,采用分动钩型外锁闭装置,各牵引点设计动程分别为160mm、118mm、71mm。在正常情况下,各牵引点的理论转换力分别为712N、294N、2832N。 (三)、转辙器尖轨跟端按采用限位器和间隔铁两种方案设计。图为间隔铁。 (四)、转辙器尖轨跟端带施维格滚轮的滑床板和防跳限位装置,基本轨内侧采用弹性夹扣压。 (五)、可动心轨辙叉主体结构采用长翼轨、钢轨拼装式可动心轨辙 - 3 -

可动心轨的有关问题

提速道岔可动心轨辙岔外锁闭装置卡阻故障原因分析及改进建议 道岔转换设备是保证行车安全和效率的重要设备,自92年广深线准高速铁路道岔转换设备,首次采用外锁闭装置以来,全路已经进行了六次大提速,行车速度由160km/h提高到200km/h,部分区段最高时速达到250km/h。行车速度的提高,对道岔及其转换设备也提出了更高的要求,一是道岔转换设备要具备外锁闭装置,二是对尖轨与基本轨;心轨与基本轨密贴时的尖隙检查的更加严格,三是工作可靠。以此为目标,转换设备的外锁闭装置经过不断的改进,由水平锁闭的燕尾锁转变为垂直锁闭的勾型外锁。实践证明勾型外锁闭装置是一项较为理想的设备。正如所有的事物都要不断发展完善,总结多年来设备的运用情况,仍然存在一些不完善的地方需要改进,尤其是可动心轨辙岔第一牵引点外锁,在运用中有时发生4mm锁闭的病害,虽经调整不易保持,转换过程卡阻现象也时有发生。 原因分析: 造成上述问题有以下几个原因;1/道岔设计与外锁设计协调不够充分,提速道岔的心轨和翼轨都是锻件,其安装外锁部位机加工要求不严,锁铁安装后定反位锁闭面不平行,影响锁闭和解锁,第一牵引点锁闭杆带动锁勾转换时受心轨凸面影响,锁勾扭动(锁勾凹面和心轨凸面不平行).造成卡阻。2/心轨纵向伸缩或爬行影响锁勾中线与锁铁锁闭面平行(心轨中线在尖端弯折如图一),从而使锁闭力发生变化,严重时发生不能锁闭或不能解锁。 附图一 改进设想; 通过上述分析,根本解决问题是道岔和外锁从设计到制造,密切配合,道岔安装外锁部位钢轨要精加工。现有设备的改进主要是解决锁勾转换工作面与锁铁锁闭面的关系平行,初步设想改变锁勾结构如附图二,锁勾凹槽与心轨凸起部分结合部左右接触面缩小,心轨凸起在槽中滑动,不影响与锁闭面平行关系。

ZD6道岔启动电路及表示电路说明

ZD6道岔启动电路及表示电路说明 道岔表示电路的技术条件: 1.只能用继电器的吸起状态与道岔的正确位置相对应,分别设置道岔定位表示继电器DBJ和道岔反位继电器FBJ。 2.当室外联系线路发生混线或混入其他电源时,必须保证不致使DBJ或FBJ错误吸起。 3.当道岔在转换或发生挤岔事故、停电或断线等故障时,必须保证DBJ或FBJ失磁落下,因此必须使用安全型继电器。 四线制道岔控制电路 1、道岔启动电路 现行的道岔控制电路采用四线制控制电路,通过三级电路完成对道岔转换的控制,如图四线制道岔控制电路图 第一级控制电路是lDQJ3_4(道岔第一启动继电器)线圈励磁电路,检查联锁条件,确定能否接收控制命令。 人工操纵道岔[选路时DCJ(定位操纵继电器)↑或FCJ(反位操纵继电器)↑,单操时KF- ZDJ有电、AJ(按钮继电器)↑或KF-ZFJ有电、AJ↑]时,lDQJ3_4线圈检查了没有办理人工锁闭[CA(道岔按钮)在定位],没有进行区段锁闭和进路锁闭[SJ(锁闭继电器)↑],又经2DQJ(道岔第二启动继电器)检查道岔需要转换后,励磁吸起。 第二级控制电路是2DQJ的转极电路,确定道岔的转换方向(向定位转还是向反位转)。 1DQJ↑后使2DQJ转极。 第三级控制电路是1DQJ1一2线圈自闭电路。接通并随时检查电动机动作电路是否正常。 1DQJ↑、2DQJ转极接通道岔动作电路:1DQJ检查电动机正常工作而自闭,道岔转换到底后由电动转辙机的自动开闭器的动作接点切断动作电路,使动作电路复原。 2、道岔表示电路 电路中使用了两个安全型偏极继电器,作为道岔表示继电器,使用了独立的表示变压器,并在电路的末端设置整流元件,检查电路完整后向发送端送回直流电源,为了防止半波整流造成表示继电器抖动,在表示继电器两端并联了4μF电容器起滤波作用。 当轨道线路采用12号60 kg/m AT道岔时,一台转辙机已经适应不了转换力和牵引力的要求。所以,要采用双机牵引,在双机牵引道岔方式中,一般ZD6-E型转辙机使用在第一牵引点,而ZD6-J型转辙机则用在第二牵引点。

提速道岔电路彩图

Ⅰ1ⅡⅠ2 ⅡⅠⅡ220V 110V BD 1-7 3 4 DJZ RD4 4 1 DBJ R2 R1 Ⅰ1ⅡⅠ2 ⅡⅠ Ⅱ220V 110V BD 1-7 34 DJZ RD4 R2 R1 41 FBJ 1 1 X1(-) (1千欧)X5(-) X3(+) 反 位 表 示 简 图 X1(+) X4(+) X2(-) 定 位 表 示 简 图 (1千欧)制图:姚劲松

K 62 73 61 3141 11 21 2 ZYJ7提速道岔控制电路图 SH6KZ DGJ 2 SFJ 12D 1 2 341DQJ 1 2Z 2DQJ 3 BHJ KZ 3 TJ 1DQJ KF TJ-30S 4 1 1DQJF KZ 4 31 2 2DQJ 3 1DQJF KZ 4 1DQJF 2 DCJ KF R3-75/25 2 FCJ KF 141 4142 43 44 45 46 25 26 23 24 2122 35 36 33 3431321516 13 14 11 12 67 89 10 11 12 3R 1 2 转换锁闭器 1 2 RD3 1 2RD2 1 *2 RD1C 14 2 1DQJF 1 1DQJF 1 1DQJ 131 121 111 2DQJ 21DQJ Ⅰ1 4 Ⅰ2 3 ⅠⅡ220V BD1-7 12R1110V DJF 2 1RD4 DJZ 4 1 FBJ 4 1DBJ 2DQJ 1 4 53 2X1 X4X5 X3 X241 4243 44 4546 25 2623 2421 22 35 3633 3431 32 1516 13 14 1112b K 6 78910 11 12 13 ZYJ7 516131 4111 211 2DBQ K 定位表示由X1、X2、X4控制,表示电源正常值:交流56V左右(X1或X4与X2间),直流21V左右(X1、X4为正;X2为负)。 故障状态:X1、X2测不到交流电压--室内断线;电压远低于正常值,室内R1两端约有80V,为混线故障,可在分线盘甩开X2,电压升至108V左右,故障在室外,否则在室内。X1与X2所测直流30余伏,交流70余伏,为继电器支路断,X4与X2所测同前,故障在室内,否则在室外。如X1与X2所测电压为交流108V左右,则为室外二极管支路断。 制图:姚劲松 红色为继电器支路,蓝色为二极管支路。 KZ KZ 001 002 003

18号可动心轨提速道岔

18#可动心轨提速道岔 ,、使用范围 60kg∕m钢轨18#可动心提速道岔用于繁忙干线快速列车转线地段。其允许通过速度,旅客列车:直向为250km∕h,货物列车(轴重23T)为120km∕h,侧向为80km∕h (图1-6-1); 图1-6-1 18# 可动心提速道岔 本道岔适用于跨区间无缝线路,允许温升为45C,允许温降分别为50 O C

(尖轨跟端采用间隔铁)和 55 C (尖轨跟端采用限位器图1-6-2 )。道岔前后 端及道岔区均采用焊接接头,绝缘接头采用胶结绝缘钢轨。 图1-6-2 18#可动心道岔限位器 岔枕按垂直于道岔直股布置除牵引点及两侧外,岔枕间距一般为 道岔轨距均为1435mm 1、主要结构特点 (一)尖轨为相离半切线型,采用21.45m 长的60D40弹性可弯尖 轨,尖轨 尖端为藏尖式 60Omm

(二)尖轨设三个牵引点,采用分动钩型外锁闭装置,各牵引点设计动程分别为 160mm118mm71mm在正常情况下,各牵引点的理论转换力分别为712N 294N、2832N。 (三)转辙器尖轨跟端按采用限位器和间隔铁两种方案设计。 (四)转辙器尖轨跟端带施维格滚轮的滑床板和防跳限位装置,基本轨内侧采用弹性夹扣压。 (五)可动心轨辙叉主体结构采用长翼轨、钢轨拼装式可动心轨辙叉结构。采用长翼轨使心轨与翼轨成为整体,便于温度力的传递,心轨受到的温度力通过跟端固定装置传至翼轨,使心轨的伸缩得到有效控制。 (六)翼轨跟端用间隔铁分别与长心轨和岔跟轨胶接,胶接层厚度不大于Imm技术要求参照TB/G2975《胶接绝缘钢轨技术条件》。 (七)心轨采用60D40钢轨组合的结构,短心轨后端仍为斜接头,具有制造简单、实现容易的特点。采用60D4O钢轨拼接,可有效降低心轨的转换阻力。心轨前端不再轧制转换凸缘,在牵引点处将轨底刨切成32mm为方便电务钩锁 设置,轨底也刨切1Omm。 心轨设二个牵引点,两个牵引点距离为 3.6m。采用钩型外锁闭装置,各点的理论转换

四线制道岔控制电路图2014-12-17介绍

四线制道岔控制电路培训教案 第一章四线制道岔控制电路原理分析 道岔控制电路由动作电动转辙机的启动电路和反映道岔实际位置的表示电路组成。 一、道岔启动电路: 1、道岔启动电路应满足的技术条件: (1)道岔区段有车时,道岔不应转换。此种锁闭的作用叫做区段锁闭。 (2)进路在锁闭状态时,进路上的道岔,都不应再转换。此种锁闭的作用叫做进路锁闭。 (3)在道岔启动电路已经动作以后,如果车随后驶入道岔区段,则应保证转辙机能继续转换到底,不要受上列(1)的限制而停转。(4)道岔启动电路动作后,如果由于转辙机的自动开闭器接点接触不良或电动机的整流子与电刷接触不良,以致电动机电路不通时,应使启动电路自动停止工作复原,保证道岔不会在转换。 (5)为了便于维修试验,以及在尖轨与基本轨之间夹有障碍物,致使道岔转不到底时,能使道岔转回原位,必须保证道岔无论转到什麽位置,都可随时用手动操纵方法使它向回转。 (6)道岔转换完毕,应自动切断电动机的电路。 2、道岔控制方式: 控制道岔转换的方式有三种:人工转换;进路式操纵;单独操纵。(1)人工转换:当停电、故障、维修、清扫时,在现场用手摇把将道岔转换至所需位置。 (2)道岔进路操纵:以进路的方式使进路的要求接通电动转辙机将道岔转换到定位或反位。选岔网络按照选路的要求,选出进路上各组道岔应转向的位置,即某道岔是定位操纵继电器DCJ吸起,就接通道岔启动电路使该道岔转向定位;是反位操纵继电器FCJ吸起,就接

通道岔启动电路使该道岔转向反位。全进路上的道岔按进路要求一次排出。 (3)为了维修、试验道岔和开放引导信号排列引导进路等,需要对道岔进行单独操纵。单独操纵道岔的方法是:按下被操纵道岔按钮CA,若要使它转向定位,则同时按下道岔总定位按钮ZDA,接通道岔控制电路使该道岔转向定位;若要使它转向反位,则同时按下道岔总定位按钮ZFA,接通道岔控制电路使该道岔转向反位。 进路式操纵操纵与单独操纵之间的关系是:道岔的单独操纵优先于进路式操纵。 3、道岔启动电路的工作原理: 道岔启动电路采用分级控制方式控制道岔转换,由第一启动继电器1DQJ检查联锁条件,符合要求后才能励磁吸起;然后由第二启动继电器2DQJ控制电机的旋转方向,以决定使电机转向定位转向反位;最后由直流电机转换道岔。 (1)按进路方式动作的道岔启动电路: 图示电路道岔在定位状态,当选路将该道岔选至反位时,FCJ励磁吸起

地铁维修养护概要

地铁构造养护论文 - I -

摘要 铁路第六次提速后,工务的线路、道岔设备变化很大,给养护维修带来许多困难。道岔是一个联动的整体,它涉及着机务,工务、电务部门,在一个部门出现失误,轻则影响行车速度,重则中断行车,将会给运输带来直接损失。近年来随着提速道岔的不断上道应用,其日常养护和维修便成为工务段维修组织体系中一项基础性的工作。提速道岔是提高铁路运输的基础,如何搞好工务线路设备的维修养护工作,为铁路运输安全畅通夯实基础是职责所在,也对确保铁路运输的安全具有极为重要的意义。为满足提速需要,消除因道岔限速因素,改善列车过岔的平稳性,牢固树立安全意识、忧患意识。全面加强设备整修,全面提高设备运行质量,为安全生产提供强有力的基础保证,提高综合经济效益,针对提速道岔的病害,结合现有提速道岔尖轨、辙岔维修养护,道岔和是线路的薄弱环节,随着列车提速和重载列车的开行,列车通过道岔时的晃车现象比较普遍,对道岔病害的产生原因进行分析,并提出针对性的养护维修办法。 随着列车提速和重载列车的开行,线路周期性与随机性变化叠加引起的线路晃车现象日益突出,特别是在道岔处更为明显,控制线路晃车发生已成为日常养护维修工作中的一个重要内容。我们通过日常检查、保养、维修,对道岔病害的产生和整治,提出了针对性的养护维修办法。道岔是一机车车辆从一条线路转向另一条线路的轨道连接设备,道岔是复杂的连接设备,过岔速度直接影响列车的通过速度,道岔是三大薄弱环节之一。 在铁路线路设备中,道岔是铁路轨道一个重要组成部分。道岔本身构造复杂,强度较低、零件多、受冲击大、容易变形、磨耗,造成列车晃车病害,是线路的薄弱环节之一,是制约列车行车速度和行驶平稳的重要原因。 关键词:道岔折返线路轨枕晃车道床

18号可动心轨提速道岔

18#可动心轨提速道岔 一、使用范围 60kg/m钢轨18#可动心提速道岔用于繁忙干线快速列车转线地段。其允许通过速度,旅客列车:直向为250km/h,货物列车(轴重23T)为120km/h,侧向为80km/h(图1-6-1); 图1-6-1 18#可动心提速道岔 .

本道岔适用于跨区间无缝线路,允许温升为45℃,允许温降分别为50 ℃(尖轨跟端采用间隔铁)和55 ℃(尖轨跟端采用限位器图1-6-2)。道岔前后端及道岔区均采用焊接接头,绝缘接头采用胶结绝缘钢轨。 图1-6-2 18#可动心道岔限位器 .

岔枕按垂直于道岔直股布置除牵引点及两侧外,岔枕间距一般为600mm。道岔轨距均为1435mm。 二、主要结构特点 (一)尖轨为相离半切线型,采用21.45m长的60D40弹性可弯尖轨,尖 轨尖端为藏尖式。 .

(二)尖轨设三个牵引点,采用分动钩型外锁闭装置,各牵引点设计动程分别为160mm、118mm、71mm。在正常情况下,各牵引点的理论转换力分别为712N、294N、2832N。 (三)转辙器尖轨跟端按采用限位器和间隔铁两种方案设计。 (四)转辙器尖轨跟端带施维格滚轮的滑床板和防跳限位装置,基本轨内侧采用弹性夹扣压。 (五)可动心轨辙叉主体结构采用长翼轨、钢轨拼装式可动心轨辙叉结构。采用长翼轨使心轨与翼轨成为整体,便于温度力的传递,心轨受到的温度力通过跟端固定装置传至翼轨,使心轨的伸缩得到有效控制。 (六)翼轨跟端用间隔铁分别与长心轨和岔跟轨胶接,胶接层厚度不大于.

1mm。技术要求参照TB/G2975《胶接绝缘钢轨技术条件》。 (七)心轨采用60D40钢轨组合的结构,短心轨后端仍为斜接头,具有制造简单、实现容易的特点。采用60D40钢轨拼接,可有效降低心轨的转换阻力。心轨前端不再轧制转换凸缘,在牵引点处将轨底刨切成32mm,为方便电务钩锁设置,轨底也刨切10mm。 心轨设二个牵引点,两个牵引点距离为3.6m。采用钩型外锁闭装置,各点的理论转换力分别为1080N、4536N。 可动心轨第一牵引点处的动程为115mm。 可动心轨第二牵引点处的动程为64mm。 提速道岔的动程虽然由电务部门负责,但动程的正确与否将直接影响尖轨.

道岔控制原理

道岔控制原理 1、道岔启动电路应保证实现以下技术条件 ⑴道岔区段有车时,道岔不应转换。此种锁闭作用叫做区段锁闭。 ⑵进路在锁闭状态时,进路上的道岔都不应转换。此种锁闭作用叫做进路锁闭。 ⑶在道岔启动电路已经动作以后,即使有车驶入该道岔区段也应保证道岔继续转换到底。 ⑷道岔启动电路动作后,如果由于转辙机的自动开闭器接点接触不良或电机故障,以至电动机电路不通时,应使启动电路自动停止工作复原,保证道岔不会再转换。 ⑸为了便于维修试验,以及在道岔尖轨与基本轨之间夹有障碍物致使道岔转换不到底时应能使道岔转回原位。 2、道岔启动电路构成原理 ⑴1DQJ电路励磁电路 ①、道岔按钮CA-6接点 道岔按钮CA-61与CA-62接点定位时闭合,在维修转辙机或清扫道岔时,把CA按钮拉出CA-61与CA-62断开对道岔实行单独锁闭。 ②、锁闭继电器SJ-8前接点。 在6502电器集中里,SJ吸起反映道岔区段空闲和进路在解锁状态。当道岔区段有车时或进路在锁闭状态时,SJ落下,SJ81-82断开切断道岔启动电路,对道岔实行进路锁闭和区段锁闭使道岔不能转换。 ③、道岔按钮继电器CAJ前接点和条件电源“KF-ZFJ”或“KF-ZDJ”。CAJ-Q是道岔按钮按下DAJ吸起后闭合,是道岔按钮按下闭合接点的复示继电器。条件电源“KF-ZFJ”在道岔总反位继电器吸起后才有电。条件电源“KF-ZDJ”在道岔总定位继电器吸起后才有电。

④、道岔定位操纵继电器和DCJ接点道岔反位操纵继电器FCJ接点。当排列进路时,需要进路上的道岔向定位转动则DCJ吸起,当进路上的道岔需要向反位转动时,FCJ吸起。 ⑤道岔第二启动继电器第四组接点(2DQJ141)反映道岔处在什么位置。?141-142闭合,道岔处在定位。141-143闭合道岔处在反位。 ⑥向定位单独操纵道岔的操作方法为:?同时按下道岔的单操按钮和总定位按钮,这时CAJ吸起接通电路。ZDJ吸起使“KF-ZDJ”有电。1DQJ的励磁电路为:KZ-CA-SJ-Q -1DQJ3.4线圈-2DQJ141_143-CAJ-KF-ZDJ。 ⑦道岔向反位单独操纵的操作方法为:同时按下道岔的单操按钮和总反位按钮,这时CAJ吸起接通电路。ZFJ吸起使“KF-ZFJ”有电。1DQJ的励磁电路为:KZ-CA-SJ-Q -1DQJ3.4线圈-2DQJ141-142-CAJ-KF-ZFJ。 ⑵2DQJ电路 1DQJ吸起后,2DQJ跟着吸起。励磁电路为:KZ-1DQJ31-32-2DQJJ3.4线圈CAJ21-22-KF-ZDJ.或KZ-1DQJ41-42-2DQJ1、2线圈CAJ11-12-KF-ZFJ. ⑶1DQJ自闭电路 ①从反位向定位操纵 1DQJ吸起,2DQJ转极后,1DQJ自闭电路为: (2)DZ220-RD3-1DQJJ1、2线圈1DQJ11-12-2DQJ111-113-X2-电缆盒2 -电动转辙机插接件-2-自动开闭器11-12-电机2、3线圈-05-06-插接件5-电缆盒5-X4-1DQJ21-22-2DQJ121-122-RD1-DF220。 ②从定位向反位操纵 1DQJJ吸起,2DQJ转极后,1DQJ自闭电路为:DZ220-RD3-1DQJ1、2线圈1DQJ11-12-2DQJ111-112-X1-电缆盒1-电动转辙机插接件1-自动开闭器41-42 -电机-1、3线圈-05-06-插接件5-电缆盒5 --X4--1DQJ21-22-2DQJ121-123-RD2-DF220。 ⑷1DQJ何时落下

道岔养护维修细则

SC—330道岔养护维修细则 SC--330道岔是一种新型提速道岔,其各部强度、框架刚度、整体稳定性比前铺道岔具有巨大优势,实践证明该设备铺设能明显减少劳动强度和缩短养护维修周期。同时,新设备对养护维修方面提出了更高的要求。根据铁路局“精检细修”的要求,结合我段及其他兄弟单位在道岔养护维修方面存在的经验教训,特制定SC--330道岔的维修养护程序和办法。 一、SC—330道岔养护维修程序 SC—330道岔新铺上道或综合维修作业时,应按本办法规定的程序进行作业,确保道岔整修后各部设备质量尽快达到标准。 基本作业程序:拔道----起道----捣固----细拔细改----回填石碴----整正零部件----加强锁定。 1、首先把道岔的大方向拔好,使道岔处于正确的位置上,与前后线路衔接顺直,没有甩弯和折角。具体为先拔正直股,然后定好支距,最后通过轨距定好其他股。 2、对道岔全起全捣,起道量控制在40MM左右,辙叉心和未焊接的接头适当多起一点,辙叉、护轨部位的捣固要均匀,消灭暗坑吊板,达到基础坚实均匀。 3、采用道岔捣固车(机)或捣固棒对抬道量较大的部位加强捣固,特

别是接头、辙叉心、导曲线中部两股水平大的的部位必须进行强化捣固。 4、对小方向、碎弯和轨距变化率不良处所,通过细拔细改矫正钢轨硬弯,达到方向良好。改正轨距以调整轨距块为主,结合串枕、调整垫板“T”型螺栓间隙。目前我段铺设的SC---330道岔采用Ⅱ型弹条,轨距块型号(根据厚薄边定)有7---17、9---1 5、11---13,合理使用,可以调整轨距范围+8-12。 5、回填道床并保持道床丰满,碴肩宽度不小于40CM,碴肩堆高至枕面以上10CM。 6、整正联结零件,做到扣件齐全,配套使用,无缺少、损坏,位置正确,无偏斜,轨距块和支距挡板与轨底上部、侧面均保持密贴。紧固各部螺栓,并在列车碾压后再复紧1-----2遍,然后按以下规定上好防松螺母。 7、加强道岔前后100米的强化锁定,预防道岔爬行和横向移动。 8、标记各部尺寸,要求正确清晰,方便检查。 二、SC—330道岔日常维修养护方法 在日常养护维修中,要求严格按以下办法进行作业,确保设备达到精检细修。 1、SC—330道岔在维修保养时要严格处理好前后50米直线的顺接(要求前后50米范围直线几何尺寸达到道岔维修保养标准,扣件紧固),确保列车不将前后地段引起的摆动带入道岔。 2、道岔作业时要求用30米弦长检查定好直股(标准股),在此范围内直股方向误差超过1mm的每根轨枕均要进行调整。方向

提速道岔电路中保护、切断继电器电路

提速道岔电路中保护、切断继电器电路 摘要在车站S700K提速道岔试验开通及检修工作中,任何对S700K提速道岔中室内断相保护继电器(BHJ)和切断继电器(QDJ)电路的检查试验,现以S700K提速道岔为例对其进行简要的分析,提出试验方法和处理技巧。 关键词提速道岔;电路;切断 1 断相保护器(DBQ)电路 说到道岔断相保护继电器(BHJ),就不能不说说道岔断相保护器(DBQ),它的工作原理如下(见图1): 1)由于S700K提速道岔平时不动作,所以断相保护器的三个变压器输入线圈(A相、B相、C相)中无电流通过,桥式整流堆也没有直流输出,所以BHJ 处于落下状态; 2)当S700K提速道岔动作时,如果三相负载工作正常,则三个变压器的输入线圈(A相、B相、C相)中有电流通过,在变压器II次侧得到感应电压后,串联叠加送入整流堆的交流输入端,经桥式整流后,得到直流电源,使断相保护继电器(BHJ)处于吸起状态; 3)当发生任何一相断相时,缺相的变压器I次侧处于开路状态,其阻抗为无穷大,而另外两相电源由于三相缺少了一相,负载电流中的幅值也将变小,相位也发生了变化,与其对应的变压器II次侧感应电压幅值和相位也就发生了变化,使三个变压器II次侧串联叠加输出电压基本趋于零,故桥式整流堆的直流输出也为零,使断相保护继电器(BHJ)失磁落下。 图1 断相保护器内部电路图 可见,断相保护继电器(BHJ)平时处于落下状态,当电机正常动作期间,它处于吸起状态,直到1DQJ断开电路为止;而当发生断相等故障时,断相保护继电器(BHJ)也将处于落下状态。 2 总保护继电器(ZBH)电路 由图2可以知道,平时1保护继电器(1BHJ)和2保护继电器(2BHJ)都落下,所以总保护继电器(ZBH)也处于落下状态;而当道岔电机动作时,1BHJ 和2BHJ分别吸起,而ZBH也励磁吸起,同时由自身接点接通总保护继电器(ZBH)自闭电路,只有当道岔正常转换到位,1BHJ和2BHJ都落下时,ZBH 才会落下。 图2 总保护继电器电路

提速道岔电路彩图

R2 R2 1 1反 位 表 示 简 图 定 位 表 示 简 图 制图:姚劲松

C 定位表示由X1、X2、X4控制,表示电源正常值:交流56V左右(X1或X4与X2间),直流21V左右(X1、X4为正;X2为负)。 故障状态:X1、X2测不到交流电压--室内断线;电压远低于正常值,室内R1两端约有80V,为混线故障,可在分线盘甩开X2,电压升至108V左右,故障在室外,否则在室内。X1与X2所测直流30余伏,交流70余伏,为继电器支路断,X4与X2所测同前,故障在室内,否则在室外。如X1与X2所测电压为交流108V左右,则为室外二极管支路断。 制图:姚劲松 红色为继电器支路,蓝色为二极管支路。

C 反位表示由X1、X3、X5控制,表示电源正常值:交流56V左右(X1或X5与X3间),直流21V左右(X1、X5为负;X3为正)。 故障状态:X1、X3测不到交流电压--室内断线;电压远低于正常值,室内R1两端约有80V,为混线故障,可在分线盘甩开X3,电压升至108V左右,故障在室外,否则在室内。X1与X3所测直流30余伏,交流70余伏,为继电器支路断,X5与X3所测同前,故障在室内,否则在室外。如X1与X3所测电压为交流108V左右,则为室外二极管支路断。 制图:姚劲松 红色为继电器支路,蓝色为二极管支路。

C 定操反由X1、X3、X4控制,如操不动可先检查室内1DQJ、1DQJF、2DQJ、DBQ、BHJ及相关电路,然后可在分线盘在操动道岔时测X1、X3、X4间有无380V交流电,如有为室外断相,无电压为室内断线。如主机先到位,副机未完全到位,电路上的多为续操电路出了故障,可设法让SH6先操到位,或在主机电缆盒内测6#与9#(B相);8#与13#(C相)之间的电阻,不通,故障在该点至SH6;通的话故障在该点至主机内。 制图:姚劲松 机滞后于主机后到位时使电机电路不至于断开。当续操电路故障时,可用扳手头部卡在主机处,让副机先到位后再拔出等方法来应急处理。

相关文档
最新文档