Z2013 mir21通过pten和akt信号通过调控Kfb增殖和调亡

Z2013 mir21通过pten和akt信号通过调控Kfb增殖和调亡
Z2013 mir21通过pten和akt信号通过调控Kfb增殖和调亡

https://www.360docs.net/doc/a712221665.html, 561e

N

owadays, up to 4.5 percent of the general population suffers from hypertrophic scar-ring.1 Wounds, trauma, burns, surgical inci-sion, or disease can result in scar formation. To prevent infection, skin repairs itself from normal to scar tissue to close a wound.2 Keloid is an end of the full spectrum of scar that extends beyond the boundaries of the original wound. It can also spread to the surrounding skin by invasion. The clinical appearance of keloid is a raised growth, usually accompanied by pruritus and pain.3 Because the etiopathogenesis and mechanisms

of keloids are still not known, keloid therapy still leaves much to be desired.4 Treatment for keloid scars is dif?cult and frustrating, and the mecha-nisms underlying keloid formation are only par-tially understood.5

MicroRNAs (miRNAs) are small, highly con-served, 18- to 25-nucleotide-length, single-strand RNA molecules involved in the posttranscrip-tional regulation of gene expression. Because the functions of microRNAs are closely related to various aspects of cell physiology and biology, it is important to explore the molecular mechanism governing their expression levels. Our group has identi?ed differentially expressed miRNAs through an miRNA microarray between keloid tissue and normal skin tissue. MicroRNA-21 (miR-21) was revealed to have the highest fold Disclosure: The authors have no ?nancial interest to declare in relation to the content of this article.

Copyright ? 2014 by the American Society of Plastic Surgeons DOI: 10.1097/PRS.0000000000000577

Ying Liu, Ph.D.Xiaoxue Wang, M.D.Daping Yang, Ph.D.Zhibo Xiao, Ph.D.Xi Chen, Ph.D.

Harbin, People’s Republic of China

From the Departments of Plastic and Aesthetic and Gener-al Surgery, Second Af?liated Hospital of Harbin Medical

U niversity.Received for publication July 5, 2013; accepted January 28, 2014.

The ?rst two authors contributed equally to this article.MicroRNA-21 Affects Proliferation and

Apoptosis by Regulating Expression of PTEN in Human Keloid Fibroblasts

EXPERIMENTAL

Plastic and Reconstructive Surgery s /CTOBER

change (6.87-fold) among the 23 up-regulated miRNAs.6 Therefore, more work is needed to fur-ther explore the molecular mechanism between keloids and miR-21.

MicroRNA-21 is a speci?c miRNA that is over-expressed in many types of tumors, including stomach, prostate, head and neck, esophagus, glioblastoma, lung, colorectal, cholangiocarci-noma, breast, pancreatic cancer, and renal cell carcinoma.7–16It has been implicated in vari-ous processes involved in carcinogenesis such as inhibition of apoptosis, auxoaction of cell prolif-eration, and stimulation of tumor growth.12 Many genes under keen study have been con?rmed to be the target genes of miR-21.

The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene is a capital one. It was ?rst selected as a potential miR-21 target based on its mediating phenotypic characteris-tics of cancer cells17 and authenticated by several studies that followed.18,19 A large amount of data support the view that PTEN is a tumor suppressor gene. The phosphatidylinositol 3-kinase/PTEN/ AKT signaling pathway is involved in different cel-lular activities, including proliferation, migration, cell growth, cell survival, and tumorigenesis. It has been suggested that the constitutive activation of phosphatidylinositol 3-kinase/AKT signaling contributes to cancer formation because of con-current loss of function of the tumor suppressor molecule PTEN.

In this study, we ?rst found that PTEN was expressed at a low level in keloid tissues and nega-tively correlated with the level of miR-21. In addi-tion, we showed the in?uence of miR-21 on cell proliferation and apoptosis by modulating the expression of PTEN. We expect that these results could be explored as a gene therapy for the treat-ment of keloids.

PATIENTS AND METHODS Patient Samples

Keloid and normal skin tissue samples were obtained from 23 patients who underwent opera-tions from 2009 to 2012 at the Second Af?liated Hospital of Harbin Medical University. Informed consent was obtained from each patient recruited, and the study was approved by the hospital ethics committee. Keloid cells were obtained at surgi-cal release from six patients aged 18 to 37 years who had a nonpeduncular keloid on the main trunk, ear lobe, and upper arm of at least 1-year evolution, with clinical activity such as growth, hyperemia, pruritus, and pain. None of them had been treated previously.

Cell Culture

Primary cultures of ?broblasts from the sur-gical specimens were then established. Cells from passages 3 to 8 were used for experiments. Cells were maintained in Dulbecco’s Modi?ed Eagle Medium (Gibco BRL, Grand Island, N.Y.) supplemented with 10% fetal bovine serum (Gibco) and 5 mM L-glutamine, 100 U/ml peni-cillin, and 100 mg/mL of streptomycin in a 5% carbon dioxide air incubator at 37°C. Cells were subcultured every 3 days using trypsin/ethyl-enediaminetetraacetic acid solution (saline containing 0.05% trypsin, 0.01 M sodium phos-phate, and 0.53 μM ethylenediaminetetraacetic acid, pH7.4).

RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction

Total RNA was extracted from the tissue sam-ples using RNApure Tissue Kit (CW BioTech, Bei-jing, China). Quantitative real-time polymerase chain reaction for PTEN was performed with Prime Script RT reagent Kit (Takara Bio, Shiga, Japan). The quantitative real-time polymerase chain reac-tions were carried out using the SYBR green PCR master mix (Takara) and the miRcute miRNA quantitative real-time polymerase chain reaction detection kit (Tiangen, Beijing, China) with a Multiplex Quantitative PCR System (Applied Bio-systems, Foster City, Calif.), and β-actin was used as an internal standard. Primers were designed for quantitative real-time polymerase chain reac-tion from Primer Express software (Applied Biosystems). The primer sequences used were as follows: PTEN, 5′-TTTTGAAGACCATAA CCCACCA-3′ (forward) and 5′-ATCATTACACCA GTTCGTC C CT-3′(reverse); β-actin, 5′-AGAAGGA-GATCACTGCCCTGGCACC-3′(forward) and 5′-CCTGCTTGCTGATCCACATCTGCTG-3′(reverse); miR-21, 5′-GCGGTAGCTTATCAGACT-GATGTTGA-3′(forward); and U6, 5′-ACACG-CAAATTCGTGAAGCGT TCC-3′(forward). The polymerase chain reaction cycling conditions were as follows: PTEN, 5 minutes at 94°C, 40 cycles of 30 seconds at 94°C, 30 seconds at 54°C, and 30 seconds at 72°C, and ?nally 5 minutes at 72°C; and miR-21, 2 minutes at 94°C, 40 cycles of 20 seconds at 94°C, and 34 seconds at 51°C. Melt-ing curve analysis was conducted to determine the speci?city of the reaction. Each sample was tested in triplicate. The miR-21 cDNA was used for

562e

6OLUME .UMBER s MI2 2EGULATES +ELOID &IBROBLASTS

563e

quantitative real-time polymerase chain reaction analysis of miR-21 expression levels. U6 was used as an endogenous control. Relative expression level changes were calculated according to 2–?Ct [?Ct= Ct (miR-21)-Ct(U6)] method as described previously.20,21

Transfection of the miRNA Inhibitor or Mimics

An miR-21 inhibitor was designed according to the mature miR-21 sequence. The sequence of miR-21 antisense oligonucleotides with 2′O -methyl modi?cation and ?uorescently labeled was 5′-UCAACAUCAGUCUGAUAAGCUA-3′, and the negative control sequence was 5′-CAGUA-CUUUUGUGUAGUACAA-3′. The sequences were purchased from Genepharm Biotechnol-ogy (Shanghai, People’s Republic of China) and veri?ed by sequencing. Human keloid ?broblasts were transfected with an miR-21 inhibitor (50 nM) using X-tremeGENE siRNA TRansfection Reagent (Roche, Mannheim, Germany) according to the manufacturer’s instructions. Cells were harvested after 24, 48, and 72 hours to test the transfec-tion ef?ciency. All procedures were performed in triplicate. MicroRNA-21 mimic and a scramble control were purchased (Genepharm; BioTech, Shanghai, China and transfected into cells similar to miR-21 inhibitor. The sequence of miR-21 mim-ics was 5′-UAGCUUAUCAGACUGAUGUUGA-3′ and that of the scramble control was 5′-UUCUC-CGAACGUGUCACGUTT-3′. Cells were infected and subjected to further experiments.

Measurement of DNA Synthesis

We measured DNA synthesis by using the Cell-Light EdU Apollo567 In Vitro Imaging Kit (Ribo Bio Co., Guangzhou, China) according to the manufacturer’s protocol. Adherent ?broblasts in a 96-well plate (Nest Scienti?c, Rahway, N.J.) plated at a density of 5 × 103 cells/well were trans-fected for 24 hours and incubated with 5-ethynyl-2′-deoxyuridine for 2 hours.22 Cells were washed twice with phosphate-buffered saline and then ?xed with 4% paraformaldehyde in phosphate-buffered saline for 30 minutes at room tempera-ture. After washing with phosphate-buffered saline followed by incubation with 2 mg/ml amino acetic acid for 5 minutes, the cells were permeabilized with 0.5% Triton X-100 (Sigma, St. Louis, Mo.) in phosphate-buffered saline for 10 minutes. The cells were then incubated with freshly made Apollo reaction cocktail for 30 minutes at room temper-ature under light protection. After that, nuclei were stained with Hoechst 33342. The stained

cells were examined with a ?uorescence micro-scope and photographed. From the photographs of each cell sample, the ratio of red (5-ethynyl-2′-deoxyuridine–positive) versus blue (nuclear staining) ?uorescent cells was determined as the percentage of 5-ethynyl-2′-deoxyuridine–positive cells. Five ?elds of vision were observed for each group with a coverslip under high-power lens ran-domly, counting arid scoring cells, and the sum of the scores was divided by the cell number,Cell Proliferation Assay

Keloid cells were plated onto 96-well culture plates at 3 × 103 cells per well after 24 hours’ transfection; 3-4,5-dimethyl-2-thiazolyl)-2,5-di-phenyl-2-H-tetrazolium bromide(MTT) solution (5 mg/ml) was then added to each well on each day for 5 consecutive days (?ve wells per group each day). The cells were incubated for an addi-tional 4 hours, after which the supernatant was discarded and the formazan precipitate was dis-solved in dimethyl sulfoxide (100 μl); then, the absorbance was measured in an enzyme-linked immunosorbent assay reader (Thermo Molecu-lar Devices Co., Union City, N.J.) at 570 nm. The data are presented as the mean ± SD, which are derived from ?ve samples of three independent experiments.

Protein Isolation and Western Blot Analysis

Total protein extracts of the keloid and nor-mal skin samples and cells were prepared by homogenization in radioimmunoprecipitation assay (Beyotime BioTech, Jiangsu, China). Brie?y, for isolation of total protein fractions, cells (after 72 hours’ transfection) or tissue samples were collected, washed twice with ice-cold phosphate-buffered saline, and lysed using cell lysis buffer [20 mM Tris (pH 7.5), 150 mM sodium chloride, 1% Triton X-100, 2.5 mM sodium pyrophos-phate, 1 mM ethylenediaminetetraacetic acid, 1% sodium carbonate, 0.5 μg/ml leupeptin, and

Table 1. Flow Cytometric Analysis of Cell Apoptosis

Group Q1 (%)Q2 (%)Q3 (%)Q4 (%)miR-21 inhibitor 3.15 3.9478.914.72Negative control 6.38 2.684.27 6.75Scramble control 6.45 3.1784.06 6.32miR-21 mimic

4.99

1.49

84.06

2.68

Q1, dead cells; Q2, late apoptosis; Q3, normal cells; Q4, early apoptosis.

564e

Plastic and Reconstructive Surgery s /CTOBER

1 mM phenylmethanesulfonyl ?uoride]. The lysates were collected by scraping from the plates and then centrifuged at 12,000 rpm at 4°C for 15 minutes. Total protein samples (20 μg) were loaded onto a 12% of sodium dodecyl sulfate polyacrylamide gel for electrophoresis, and trans-ferred onto polyvinyl di?uoride transfer mem-branes (Millipore, Billerica, Mass.) at 0.8 mA/cm

2 for 70 minutes. Membranes were blocked at 37°C for 1 hour with blocking solution (1% bovine serum albumin in phosphate-buffered saline plus 0.05% Tween-20). The samples were incubated overnight at 4°C with primary anti-bodies for PTEN, AKT, and phosphorylated AKT (Cell Signaling Technology, Danvers, Mass.) and caspase

3 (Cell Signaling Technology) at a com-patible dilution in blocking solution. After three wash steps in Tris-buffered saline Tween-20 for 10 minutes each, membranes were incubated for 1 hour at room temperature with a horserad-ish peroxidase–conjugated anti-rabbit secondary antibody (ZhongShan JinQiao, Beijing, China) at a dilution of 1:10,000 in blocking solution. After washing three times for 30 minutes each time in Tris-buffered saline Tween-20, signals were visual-ized using an enhanced chemiluminescence kit (Beyotime BioTech).

Immuno?uorescence

Cells were seeded onto 24-well plates at a density of 4 × 104 cells/well. After 72 hours’ transfection, cells were ?xed with 2% formalde-hyde at 4°C for 30 minutes, and permeabilized

with 0.2% Triton X-100 (Sigma) for 15 minutes at room temperature. After three wash steps with phosphate-buffered saline, cells were blocked for 30 minutes with 5% bovine serum albumin in phosphate-buffered saline. The samples were incubated for 2 hours at room temperature with primary antibody at a 1:200 dilution (anticaspase 3 was rabbit polyclonal antibody). After being washed three times in phosphate-buffered saline, samples were incubated for 1 hour with 1 mg/ml ?uorescein isothiocyanate–labeled anti-rab-bit secondary antibody (ZhongShan JinQiao) in blocking solution. After three additional wash steps, the samples were visualized by ?uores-cence microscopy.

Flow Cytometric Analysis of Cell Apoptosis

The extent of apoptosis was measured by means of an annexin V–?uorescein isothiocya-nate/propidium iodide apoptosis detection kit (Beyotime BioTech) as described by the manu-facturer. After transfection with the miRNA inhibitor or mimics for 24 hours, cells were col-lected, washed twice with phosphate-buffered saline, gently resuspended in annexin V bind-ing buffer, and incubated with annexin V–?uo-rescein isothiocyanate/propidium iodide in the dark for 15 minutes and analyzed by ?ow cytom-etry using FloMax software (Partec, Munich, Germany). The fraction of the cell population in different quadrants was analyzed using quad-rant statistics. The lower left quadrant contained

intact cells, the lower right quadrant contained

Fig. 1.

fi broblasts were transfected with miR-21 mimic, scramble control, miR-21 inhibitor, and nega-tive control, respectively. At 24, 48, and 72 hours later, relative expression levels of miR-21 were analyzed by quantitative real-time polymerase chain reaction. Results showed that miR-21 levels had changed greatly in cells compared with related controls (*p < 0.0001), whereas they were not signi fi cantly di ff erent between time points (p = 0.43).

6OLUME .UMBER s MI2 2EGULATES +ELOID &IBROBLASTS

565e

early apoptotic cells, and the upper right quad-rant contained necrotic or postapoptotic cells.Statistical Analysis

The data are expressed as mean ± SD. The t test was conducted to compare the difference between the expression levels of PTEN in the 23 keloid samples and normal skin tissues. Transient transfection results and proliferation of keloid cells were compared by analysis of repeated measure-ments for four groups. The effect of DNA synthesis was measured by using the chi-square test. Western blot analysis was performed with ImageJ software (National Institutes of Health, Bethesda, Md.), and the experimental result was handled by analysis of variance. All statistics were calculated using the STATISTICA program (StatSoft, Inc., Tulsa, Okla.). A value of p < 0.05 was considered signi?cant.

RESULTS

miR-21 Inhibitor and Mimic Regulation of miRNA Expression

To evaluate the biological impact of cutting down miR-21 levels in human keloid ?broblasts, we transfected the keloid cells with miR-21 mimic, scramble control, miR-21 inhibitor, and negative control, respectively. To determine the ef?ciency of transfection, the amount of miR-21 was detected by quantitative real-time polymerase chain reaction at 24, 48, and 72 hours after transfection. We found that the levels of miR-21 were strikingly changed after transfection at 24, 48, and 72 hours compared with relative control (Fig. 1). Compared with nega-tive controls, expression of miR-21 was signi?cantly enhanced in cells transfected with miR-21 mimics (p < 0.0001), whereas miR-21 expression was obvi-ously decreased in cells transfected with

miR-21

Fig. 2. Transient transfection of miR-21 inhibitor inhibits DNA synthesis and cell proliferation in keloid cells, opposite the e ff ect of miR-21 mimic. Cells were treated with 5-ethynyl-2′-deoxyuridine (EdU ) and nuclei were stained with Hoechst after 24 hours’ trans-fection. Photographs are shown at 100× magni fi cation by imaging with fl uorescence microscopy. Scale bar = 200 μ

m.

566e

Plastic and Reconstructive Surgery s /CTOBER

inhibitor (p < 0.0001). There is no statistical signi?-cance between control groups or between different time points (p = 0.43).

miR-21 Modulates Keloid Fibroblast DNA Synthesis and Proliferation

DNA synthesis was measured by using a nucleotide analogue of thymidine, 5-ethynyl- 2′-deoxyuridine, which is incorporated into DNA during S phase. The incorporation rate can re?ect DNA synthesis speed (i.e., the cell vitality). In the inhibitor group, the incorporating rate was 28.89 percent (Fig. 2), whereas in the cells transfected with miR-21 mimics, the cell banding rate was 54.05 percent (Fig. 3). The groups of negative and scram-ble control were 43.2 percent and 42.71 percent,

respectively. All of these results indicated that low expression of miR-21 markedly inhibited keloid cell DNA synthesis (p = 0.035), and overexpression of miR-21 visibly increased keloid ?broblast DNA synthesis (p = 0.005). From the MTT assay (Fig. 4), proliferation of keloid cells after small interfering RNA transfection was signi?cantly reduced com-pared with control and that overexpression of miR-21 led to elevated proliferation. It is indicated that the aberrant expression of miR-21 in keloid ?bro-blasts may contribute to the overmultiplication.Down-Regulation of miR-21 Inhibits Apoptosis of Keloid Fibroblasts

Furthermore, we performed ?ow cytometry

to analyze the effect of miR-21 on cell apoptosis

Fig. 4. Proliferation of keloid cells after transfection was signi fi cantly reduced in the miR-21 inhibitor group compared with the control group and increased in the mimic group. *p < 0.05 (signi fi cant di ff

erence).

Fig. 3. The black histogram represents the ratio of the percentage of 5-ethynyl-2′-deoxyuridine (EdU ) incorporation rate and is expressed as the ratio of 5-ethynyl-2′-deoxyuridine–positive cells versus total cells. *p = 0.035 (signi fi cant di ff erence); ?p = 0.005 (signi fi cant di ff

erence).

6OLUME .UMBER s MI2 2EGULATES +ELOID &IBROBLASTS

567e

by conducting annexin V and propidium iodide double-staining. As shown in Figure 5, the annexin V–positive early apoptotic cells were increased in cells transfected with miR-21 inhib-itor (14.72 percent) compared with the nega-tive control group (Table 1). The percentage of early-phase apoptosis was decreased after over-expression of miR-21. These results indicate that down-regulation of miR-21 induces apopto-sis. Immuno?uorescent assay and Western blot were used to determine the miR-21–induced apoptosis in keloid ?broblast cells. As shown in Figures 6 and 7, the expression of active caspase 3 was much stronger in cells transfected with miR-21 inhibitor than in the other groups.

Low Expression of PTEN in Keloid Tissue Compared with Normal Skin

PTEN mRNA expression of 23 keloid and normal skin samples was detected by real-time polymerase chain reaction analysis. As shown in Figures 8 and 9, PTEN mRNA levels were signi?cantly higher in the normal skin samples (p < 0.0001). PTEN protein was greatly decreased in keloid compared with nor-mal skin samples. This result con?rmed the lower expression level of PTEN in keloid samples.miR-21 Suppresses PTEN and Negatively

Regulates the AKT Pathway in Keloid Fibroblasts

We estimated whether the regulation of miR-

21 could affect PTEN protein expression in keloid

Fig. 5. Keloid cells were transfected with miR-21 inhibitor, mimics, and their controls. Cells were collected for the next procedure after transfection. Flow cytometric analysis was used to assess cell apoptosis. (Above , left ) Cells transfected with miR-21 inhibitor. (Above , right ) Cells transfected with negative control. (Below , left ) Cells transfected with scramble control. (Below , right ) Cells transfected with miR-21 mimics. PI , propidium iodide; FITC , fl uorescein isothiocyanate.

568e

Plastic and Reconstructive Surgery s /CTOBER

cells. Total cellular protein was isolated from cells transfected with miR-21 inhibitor, miR-21 mimics, and negative and scramble control, respectively. The miR-21 inhibitor signi?cantly increased PTEN protein expression (Fig. 10). AKT was a considerable downstream target of PTEN; thus, the expression of phosphorylated AKT and AKT was measured at the same time (Fig. 11). The down-regulation of miR-21 resulted in a signi?-cant increase of PTEN protein, and up-regulation of miR-21 induced the opposite result. Meanwhile, the diversity of phosphorylated AKT protein was

inversely related to the change of PTEN protein. The expression of phosphorylated AKT was con-comitantly decreased by miR-21 inhibitor.Mimics miR-21 Transfection in Normal Skin Fibroblasts Increases Proliferation

We wondered whether raising the miR-21 level of normal ?broblasts could result in changes of the cell phenotype. Therefore, experiments to increase miR-21 expression by transfecting miR-21 mimics were conducted. Our results showed that overexpression of miR-21 caused an

increased

Fig. 7. Immunocytochemical staining of active caspase 3 in keloid fi broblast cells after transfection with miR-21 inhibitor. Caspase 3 was visualized by counterstaining with an anti–fl

ized with 4′,6-diamidino-2-phenylindole (fl uorescence microscopy; original magni fi Scale bar = 50 μm.

Fig. 6. Western blot analysis showed endogenous levels of full-length caspase 3 (35 kDa) in each group and cleaved caspase 3 (17 kDa) in miR-21 inhibitor transfected keloid cells.

Caspase-3 32KD Caspase-3 17KD

6OLUME .UMBER s MI2 2EGULATES +ELOID &IBROBLASTS

569e

ability of ?broblasts to synthesize DNA (Fig. 12). The percentage of cells incorporating 5-ethynyl-2′-deoxyuridine transfected with miR-21 mimics was 47.06 percent compared with the scramble control, which was 38.09 percent (p = 0.0006) (Fig. 13), which means that miR-21 may be a stim-ulus to abnormal growth.

DISCUSSION

To date, the cause of keloid formation is still vague, and it is necessary to further explore the pathogenesis of keloids. The main conclusion of this study is that miR-21 may serve as a novel etiologic factor for keloid by negatively regulating PTEN. MicroRNA-21, one of the most prominent miRNAs, is implicated in human malignancy. Its expression is obviously up-regulated in diverse

types of malignancies such as breast cancer, lung cancer, esophageal cancer, gastrointesti-nal cancer, and others.10,12,17 PTEN, identi?ed as a tumor suppressor, could induce cell apoptosis and control cell growth, invasion, migration, and angiogenesis through interference with several signaling pathways.23–25 It has been proven that miR-21 suppresses PTEN by direct binding to the 3′ untranslated region of PTEN.26 Conversely, the links between miR-21, PTEN, and keloids have not been described.

Recent reports indicate that PTEN can be reg-ulated by miR-21 in many tumor cells.23,24,27 This is consistent with our ?ndings. In this work, the PTEN regulation effect by miR-21 and its possible mecha-nism was studied in keloid tissue ?rst. Expression of PTEN in 23 keloid tissues and adjacent nor-mal skin tissues was investigated by

quantitative

Fig. 8. PTEN expression in keloid and normal skin samples, signi fi -cant di ff erences (p

< 0.0001).

Fig. 9. The protein level of PTEN in keloid and normal skin samples detected by Western blot assay (N1 to N4, normal skin samples; K1 to K4, keloid samples). Bands were quantitated by densitometric analysis. Fold change represents the protein level of keloid and samples to the fi rst normal skin sample and the resulting protein levels were then normalized to the β

-actin protein.

570e

Plastic and Reconstructive Surgery s /CTOBER

real-time polymerase chain reaction and Western blot assay. The results showed that PTEN protein was decreased in keloid samples compared with normal skin samples (Fig. 9). In a previous study, we found that the expression of miR-21 was much higher in keloid tissues than in adjacent normal skin.6 Considered together, we can conclude that the protein level of PTEN was negatively corre-lated to the level of miR-21 in keloid tissues.

Apoptosis, a form of programmed cell death that occurs through activation of cell-intrinsic suicide machinery,28 has been considered as the major form of cell death in various physiologic events.29,30 Caspases are part of a growing family of cysteine proteases that have been involved in many forms of apoptosis.31 Activation of caspase proteases was required for the induction of apop-tosis in different cell types.32,33 Caspase 3 is one of the key executioners of apoptosis. On activation, caspase 3 can cleave ?ve substrates, including other effectors’ caspases and fodrin, which forms a cytoskeletal network.34

Fig. 10. Western blot analysis of PTEN, phosphorylated AKT, AKT, and β-actin with loss or gain of function of miR-21. Total cellular protein was isolated from cells transfected with miR-21 inhibitor, miR-21 mimics, and negative and scramble control, respectively. The miR-21 inhibitor enhanced PTEN expression. β-actin was used as a loading

control.

Fig. 11. Data were normalized to β-actin and presented in a column chart (?p < 0.01, *p < 0.05).

6OLUME .UMBER s MI2 2EGULATES +ELOID &IBROBLASTS

571e

AKT (v-akt murine thymoma viral oncogene/protein kinase B) is a serine/threonine kinase that is involved in mediating various biological responses.35 The actions of AKT in the cell are numerous and diverse, including metabolism, protein synthesis, apoptosis pathways, transcrip-tion factor regulation, and the cell cycle. AKT exerts its effects in the cell by phosphorylating a variety of downstream substrates.36 Recent stud-ies have demonstrated that miR-21 increases tumor cell proliferation, migration, and invasion through targeting PTEN ,37 a tumor suppressor

3-kinase by removing the 3′ untranslated region phosphate of phosphatidylinositol 3,4,5-trisphos-phate. It is well known that PTEN negatively regu-lates the phosphatidylinositol 3-kinase–protein kinase B pathway 38 and the mitogen-activated pro-tein kinase/extracellular signal regulated kinase 1/2 pathway.39

In various cancer cells (e.g., renal cancer, breast cancer, ovarian carcinomas), researchers have provided evidence for an inverse correla-tion between miR-21 levels and PTEN abun-dance. Furthermore, they have demonstrated that miR-21–sensitive PTEN regulates prolifera-tion and migration of cancer cells by means of activation of AKT.40–42 Thus, we evaluated the expression of phosphorylated AKT in cells trans-fected with miR-21 inhibitor, miR-21 mimics, and negative and scramble control, respectively, to further study the apoptosis pathway induced by PTEN in keloid ?broblasts. Data showed that miR-21 inhibitor increased expression of PTEN and inhibited phosphorylated AKT expression (Fig. 10), which suggested that miR-21 inhibi-tor transfection induced cell apoptosis by means of blocking the phosphatidylinositol 3-kinase/AKT pathway. It seems that miR-21 suppresses PTEN and negatively regulates the AKT pathway in keloid ?broblasts. To further demonstrate the effect of miR-21 on PTEN expression and cell proliferation and apoptosis, miR-21 mimics was transfected in normal skin ?broblasts. Results

Fig. 12. Normal skin fi broblasts were transfected with miR-21 mimics and scramble control, respectively. Twenty-four hours later, cells were treated with 5-ethynyl-2′-deoxyuridine (EdU )– and Hoechst-stained nuclei. Photographs are shown at 100× magni fi ca-tion. Scale bar = 200 μm.

Fig. 13. The black histogram represents the ratio of the per-centage of DNA synthesis and was expressed as the ratio of 5-ethynyl-2′-deoxyuridine–positive (Edu ) cells versus total cells. *p = 0.0006 (signi fi cant di ff erence).

572e

Plastic and Reconstructive Surgery s /CTOBER

showed that cell proliferation was increased when normal skin ?broblasts were transfected with miR-21 mimics (Fig. 12). These data also supported that miR-21 could negatively regulate PTEN expression and then affect cell apoptosis by means of the AKT pathway.

There must be many other factors and path-ways that can affect these processes; we can only show that the phosphatidylinositol 3-kinase/AKT pathway is one of them, but it is certainly not the one and only pathway. Further studies will be required to investigate precise molecular mechanisms on how miR-21 affects related gene expression and functions. Our data thus suggest that miR-21 in?uences cell proliferation and apoptosis, perhaps by modulating the expression of PTEN in keloid ?broblasts. These ?ndings pro-vide some hints toward effective applications of

miR-21 as a therapy target for keloids.

Zhibo Xiao, Ph.D.

Plastic and Aesthetic Department

Second Af?liated Hospital of Harbin Medical University

Harbin 150086, People’s Republic of China

xiaozhibodoctor@https://www.360docs.net/doc/a712221665.html,

A CKNOWLEDGMENTS The research was supported by the National Natu-ral Science Fund of China (no. 81271711 and no.

81301635) and the Natural Science Foundation of Heilongjiang Province of China (no. 2011-D-61). The authors thank the scienti?c research center of Second Af?liated Hospital of Harbin Medical University for donating their time, equipment, and personnel.

REFERENCES

1. Atiyeh BS. Nonsurgical management of hypertrophic scars:

Evidence based therapies, standard practices, and emerging methods. Aesthetic Plast Surg . 2007;31:468–492.

2. Juckett G, Hartman-Adams H. Management of keloids and

hypertrophic scars. Am Fam Physician 2009;80:253–260.

3. Nurul Syazana MS, Halim AS, Gan SH, Shamsuddin S.

Antiproliferative effect of methanolic extraction of tualang honey on human keloid ?broblasts. BMC Complement Altern Med . 2011;11:82.

4. Vincent AS, Phan TT, Mukhopadhyay A, Lim HY, Halliwell B,

Wong KP. Human skin keloid ?broblasts display bioenerget-ics of cancer cells. J Invest Dermatol . 2008;128:702–709.

5. Al-Attar A, Mess S, Thomassen JM, Kauffman CL, Davison

SP. Keloid pathogenesis and treatment. Plast Reconstr Surg . 2006;117:286–300.

6. Liu Y, Yang D, Xiao Z, Zhang M. miRNA expression pro-?les in keloid tissue and corresponding normal skin tissue. Aesthetic Plast Surg . 2012;36:193–201.

7. Zhang Z, Li Z, Gao C, et al. miR-21 plays a pivotal role in

gastric cancer pathogenesis and progression. Lab Invest . 2008;88:1358–1366.

8. Folini M, Gandellini P, Longoni N, et al. miR-21: An oncomir

on strike in prostate cancer. Mol Cancer 2010;9:12.

9. Kimura S, Naganuma S, Susuki D, et al. Expression of microR-NAs in squamous cell carcinoma of human head and neck and the esophagus: miR-205 and miR-21 are speci?c markers for HNSCC and ESCC. Oncol Rep . 2010;23:1625–1633.

10. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an anti-apoptotic factor in human glioblastoma cells. Cancer Res . 2005;65:6029–6033.

11. Selaru FM, Olaru AV, Kan T, et al. MicroRNA-21 is over-expressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metallopro-teinase 3. Hepatology 2009;49:1595–1601.

12. Si ML, Zhu S,Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene 2007;26:2799–2803.

13. Gao W, Xu J, Liu L, Shen H, Zeng H, Shu Y. A systematic-analysis of predicted miR-21 targets identi?es a signature for lung cancer. Biomed Pharmacother . 2012;66:21–28.

14. Yamamichi N, Shimomura R, Inada K, et al. Locked nucleic acid

in situ hybridization analysis of miR-21 expression during colorec-tal cancer development. Clin Cancer Res . 2009;15:4009–4016.

15. Dillhoff M, Liu J, Frankel W, Croce C, Bloomston M. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg . 2008;12:2171–2176.

16. Zhang A, Liu Y, Shen Y, Xu Y, Li X. miR-21 modulates cell apoptosis by targeting multiple genes in renal cell carci-noma. Urology 2011;78:474.e13–474.e19.

17. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007;133:647–658.

18. Wickramasinghe NS, Manavalan TT, Dougherty SM, Riggs KA, Li Y, Klinge CM. Estradiol downregulates miR-21 expres-sion and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res . 2009;37:2584–2595.

19. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking in?ammation to cancer. Mol Cell 2010;39:493–506.

20. Schmittgen TD, Lee EJ, Jiang J, et al. Real-time PCR quan-ti?cation of precursor and mature microRNA. Methods 2008;44:31–38.

21. Livak KJ, Schmittgen TD. Analysis of relative gene expres-sion data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402–408.

22. Wang F, Zhao XQ, Liu JN, et al. Antagonist of microRNA-21 improves balloon injury-induced rat iliac artery remodeling by regulating proliferation and apoptosis of adventitial ?bro-blasts and myo?broblasts. J Cell Biochem . 2012;113:2989–3001.

23. Stewart AL, Mhashilkar AM, Yang XH, et al. PI3K block-ade by Ad-PTEN inhibits invasion and induces apoptosis in radial growth phase and metastatic melanoma cells. Mol Med . 2002;8:451–461.

24. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM. Inhibition of cell migration, spreading, and focal adhe-sions by tumor suppressor PTEN. Science 1998;280:1614–1617.

25. Castellino RC, Durden DL. Mechanisms of disease: The PI3K-Akt-PTEN signaling node. An intercept point for the control of angiogenesis in brain tumors. Nat Clin Pract Neurol . 2007;3:682–693.

26. Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta 2010;411:846–852.

6OLUME .UMBER s MI2 2EGULATES +ELOID &IBROBLASTS

573e

27. Friedland DR, Eernisse R,Erbe C, Gupta N, Ciof? JA. Cholesteatoma growth and proliferation: Posttranscrip-tional regulation by miR-21. Otol Neurotol . 2009;30: 998–1005.

28. Vinatier D, Dufour P, Subtil D. Apoptosis: A programmed cell death involved in ovarian and uterine physiology. Eur J Obstet Gynecol Reprod Biol . 1996;67:85–102.

29. Sarraf CE, Bowen ID. Proportions of mitotic and apoptotic cells in a range of untreated experimental tumours. Cell Tissue Kinet . 1988;21:45–49.

30. Carson DA, Ribeiro JM. Apoptosis and disease. Lancet 1993;341:1251–1254.

31. Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ . 1999;6:1028–1042.

32. Islam S, Islam N, Kermode T, et al. Involvement of cas-pase-3 in epigallocatechin-3-gallate-mediated apoptosis of human chondrosarcoma cells. Biochem Biophys Res Commun . 2000;270:793–797.

33. Hayakawa S, Saeki K, Sazuka M, et al. Apoptosis induction by epigallocatechin gallate involves its binding to Fas. Biochem Biophys Res Commun . 2001;285:1102–1106.

34. Hsu HF, Houng JY,Kuo CF, Tsao N, Wu YC. A novel phen-ylpropanoid from Glossogyne tenuifolia , induced apopto-sis in A549 lung cancer cells. Food Chem Toxicol . 2008;46: 3785–3791.

35. Testa JR, Tsichlis PN. AKT signaling in normal and malig-nant cells. Oncogene 2005;24:7391–7393.

36. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002;2:489–501.

37. Vogt PK, Gymnopoulos M, Hart JR. PI 3-kinase and cancer: Changing accents. Curr Opin Genet Dev . 2009;19:12–17. 38. Weng LP , Smith WM, Brown JL, Eng C. PTEN inhibits insulin-stimulated MEK/MAPK activation and cell growth by blocking

IRS-1 phosphorylation and IRS-1/Grb-2/Sos complex forma-tion in a breast cancer model. Hum Mol Genet . 2001;10:605–616.

39. Park MJ, Kwak HJ, Lee HC, et al. Nerve growth factor induces endothelial cell invasion and cord formation by promoting matrix metalloproteinase-2 expression through the phos-phatidylinositol 3-kinase/Akt signaling pathway and AP-2 transcription factor. J Biol Chem . 2007;282:30485–30496.

40. Dey N, Das F, Ghosh-Choudhury N, et al. microRNA-21 gov-erns TORC1 activation in renal cancer cell proliferation and invasion. PLoS One 2012;7:e37366.

41. Han M, Liu M, Wang Y, et al. Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS One 2012;7:e39520.

42. Polytarchou C, Iliopoulos D, Hatziapostolou M, et al. Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen depriva-tion. Cancer Res . 2011;71:4720–4731.

【信号通路解析】Hippo信号通路

Hippo信号通路 一、Hippo信号通路概述 Hippo 信号通路,也称为Salvador / Warts / Hippo(SWH)通路,命名主要源于果蝇中的蛋白激酶Hippo(Hpo),是通路中的关键调控因子。该通路由一系列保守激酶组成,主要是通过调控细胞增殖和凋亡来控制器官大小。 Hippo信号通路是一条抑制细胞生长的通路。哺乳动物中,Hippo信号通路上游膜蛋白受体作为胞外生长抑制信号的感受器,一旦感受到胞外生长抑制信号,就会激活一系列激酶级联磷酸化反应,最终磷酸化下游效应因子YAP和TAZ。而细胞骨架蛋白会与磷酸化后的YAP和TAZ结合,使它滞留在细胞质内,降低其细胞核活性,从而实现对器官大小和体积的调控。 二、Hippo信号通路家族成员 虽然Hippo信号通路在各个物种中保守性很高,但是相同功能的调控因子或效应因子在不同物种间还是存在着差异,下表中我们对比了果蝇与哺乳动物中Hippo信号通路相同功能的关键因子[1]。

Expanded(Ex) FRMD6/Willin 含有FERM结构域的蛋白,能与Kibra及Mer结合,调控Hippo信号通路的上游信号 Dachs(Dachs) 肌浆球蛋白myosin的一种,能结合Wts 并促进其降解 Kibra(Kibra) WWC1 含有WW结构域的蛋白,能与Ex及Mer 结合,调控Hippo信号通路的上游信号 Merlin(Mer) NF2 含有FERM结构域的蛋白,能与Kibra及Ex结合,调控Hippo信号通路的上游信号 Hippo(Hpo) MST1,MST2 Sterile-20-样激酶,磷酸化并激活Wts Salvador(Sav) WW45(SAV1) 含有WW结构域的蛋白,能起到一个脚手架蛋白的作用,易化Hippo对Warts的磷酸化 Warts(Wts)LATS1,LATS2 核内DBF-2相关激酶,能磷酸化Yki并使之失活 Mob as tumor suppressor(Mats) MOBKL1A,MOBKL1B 能与Wts结合的激酶,与Wts结合后能 促进Wts的催化活性 Yorkie(YKi) YAP,TAZ 转录共激活因子,能在非磷酸化的激活状态下与转录因子Sd结合,并激活下游靶基因的转录。这些受调控的下游靶基因主要参与了细胞的增殖、生长并抑制凋亡的发生 Scalloped(Sd) TEAD1,TEAD2,TEAD3, TEAD4 能与Yki结合的转录因子,与Yki共同 作用,调控靶基因的转录 三、Hippo信号通路的功能 近十年相关研究结果表明,无论是果蝇还是哺乳动物,Hippo信号通路都可以通过调节细胞增殖、凋亡和干细胞自我更新能力实现对器官大小的调控。Hippo信号通路异常会导致大量组织过度生长。此外,大量研究证实,Hippo信号通路在癌症发生、组织再生以及干细胞功能调控上发挥着重要功能[2][3][4]。 a.Hippo信号通路在器官大小控制中的作用 起初,关于Hippo信号通路的研究主要集中在器官大小的调控。大量研究表明,Hippo 途径主要通过抑制细胞增殖并促进细胞凋亡,继而实现对器官大小的调控。激酶级联反应是该信号传导的关键。Mst1/2激酶与SA V1形成复合物,然后磷酸化LATS1/2;活化后的LATS1/2激酶随即磷酸化Hippo信号通路下游关键效应分子——Y AP和TAZ,同时抑制了

Notch信号通路研究进展

224 中国医药生物技术 2009年6月第4卷第3期Chin Med Biotechnol, June 2009, V ol. 4, No. 3 DOI:10.3969/cmba.j.issn.1673-713X.2009.03.012 · 综述·Notch信号通路研究进展 王利祥,华子春 1917 年,Morgan 及其同事在果蝇体内发现一种基因,因其功能部分缺失可导致果蝇翅缘出现缺口,故命名该基因为 Notch。随后的研究发现,Notch 从无脊椎动物到脊椎动物的多个物种中表达,其家族成员的结构具有高度保守性,在细胞分化、发育中起着关键作用。迄今研究已阐明 Notch 信号通路的主要成员及核心转导过程,然而随着研究的深入,人们逐渐认识到该通路实际上处于十分复杂的调控网络之中,而这与其在发育过程中功能的多样性相符合。本文结合最新进展,系统阐述 Notch 信号通路的组成,功能,作用机制及调控,并揭示该通路异常与疾病的联系。 1 Notch 受体 Notch 受体是一个相对分子量约为 30 000 的 I 型膜蛋白,由胞外亚基和跨膜亚基组成,2 亚基之间通过 Ca2+ 依赖的非共价键结合形成异源二聚体。胞外亚基包含一组串联排列的 EGFR 和 3 个家族特异性的 LNR 重复序列。EGFR 在 Notch 受体与配体的结合中起关键作用,在果蝇中,Notch 受体的第 11 位和 12 位 EGFR 介导了其与配体的结合。LNR 位于 EGFR 的下游,富含半胱氨酸,介导了 2 亚基之间 Ca2+ 依赖的相互作用。跨膜亚基包括跨膜区、RAM 序列、锚蛋白重复序列、核定位序列、多聚谷氨酰胺序列以及 PEST 序列。RAM 结构域是 Notch 信号效应分子 CBF1/RBPJk 主要的结合部位。ANK 重复序列结构域是 Deltex、Mastermind 等的结合部位,这些蛋白对Notch 信号通路有修饰作用。PEST 结构域与泛素介导的Notch 胞内段降解有关[1]。 2 Notch 配体 Notch 配体与受体一样为 I 型跨膜蛋白。果蝇 Notch 配体有 2 个同源物 Delta 和 Serrate,线虫的 Notch 配体为 Lag 2,故又称 Notch 配体为 DSL 蛋白。脊椎动物体内也发现了多个 Notch 配体,与 Delta 同源性高的称为Delta 样分子,与 Serate 同源性高的被称作 Jagged。目前,发现人的 Notch 配体有 D ll l、3、4和 Jagged l、2。配体胞外 DSL 结构域在进化中高度保守,是配体与受体结合、激活 Notch 信号所必需的。Notch 配体的胞内域较短,仅70 个左右氨基酸残基,功能尚未阐明。近来研究发现,Delta 1 的胞内域能够诱导细胞的生长抑制[2]。有人推测,配体胞内段可能类似与受体胞内段,具有信号转导功能,但具体机制有待进一步研究。3 Notch 信号传递与效应因子 迄今研究发现主要有 6 种信号通路在多细胞生物的生长中发挥关键作用,分别是刺猬、骨形态发生蛋白、无翅、类固醇激素受体、Notch 和受体酪氨酸激酶。Notch 相对于其他信号通路结构较简单,没有第二信使的参与。现有研究提出了 Notch 信号活化的“三步蛋白水解模型”[3]。首先,Notch 以单链前体模式在内质网合成,经分泌运输途径,在高尔基体内被 Furin 样转化酶切割成相对分子质量为180 000 含胞外区的大片段和 120 000 含跨膜区和胞内区的小片段。两者通过 Ca2+依赖性的非共价键结合为异源二聚体,然后被转运到细胞膜。当 Notch 配体与受体结合,Notch 受体相继发生 2 次蛋白水解。第一次由 ADAM 金属蛋白酶家族的 ADAM 10/Kuz 或 ADAM 17/TACE 切割为 2 个片段。N 端裂解产物(胞外区)被配体表达细胞内吞,而 C 端裂解产物随后由早老素 1/2,Pen-2,Aph1 和Nicastrin 组成的γ-促分泌酶复合体酶切释放 Notch 受体的活化形式 NICD。 经典的 Notch 信号通路又称为 CBF-1/RBP-Jκ依赖途径。CBF-1/RBP-Jκ本身是 1 个转录抑制因子,能够特异性地与 DNA 序列“CGTGGGAA”相结合,并招募 SMRT,SKIP,I/II 型组蛋白去乙酰化酶等蛋白形成共抑制复合物,抑制下游基因的转录。当 Notch 信号激活后,NICD 通过上述酶切反应被释放进入胞核,通过 RAM 结构域及 ANK 重复序列与 CBF-1/RBP-Jκ结合使共抑制复合物解离,并募集 SKIP,MAML 1 组成共激活复合体,激活下游基因的转录。Notch 信号的靶基因多为碱性螺旋-环-螺旋转录抑制因子家族成员,如哺乳动物中的 HES、非洲爪蟾中的XHey-1,以及近来发现的 BLBP [3]。此外,存在非CBF-1/RBP-Jκ依赖的 Notch 信号转导途径。最近有研究报道,果蝇 Notch 结合蛋白 Deltex 是某些组织特异性非 Su (H)依赖性信号所必需的,同时发现 Deltex 也具有拮抗Notch 的功能 [4]。 4 Notch 信号途径功能 Notch 信号途径的功能最初是在果蝇神经系统发育的 基金项目:国家自然科学基金(30425009,30730030);江苏省自然科学基金(BK2007715) 作者单位:210093 南京大学医药生物技术国家重点实验室 通讯作者:华子春,Email:zchua@https://www.360docs.net/doc/a712221665.html, 收稿日期:2009-02-01

pikakt信号通路图谱

P I3K/A K T信号通路 磷脂酰肌醇3-激酶(PI3Ks)信号参与增殖、分化、凋亡和葡萄糖转运等多种细胞功能的调节. 近年来发现, IA型PI3K和其下游分子蛋白激酶B(PKB或Akt)所组成的信号通路与人类肿瘤的发生发展密切相关. 该通路调节肿瘤细胞的增殖和存活, 其活性异常不 仅能导致细胞恶性转化, 而且与肿瘤细胞的迁移、黏附、肿瘤血管生成以及细胞外基质的降解等相关, 目前以PI3K-Akt信号通路关键分子为靶点的肿瘤治疗策略正在发展中. 在PI3K家族中, 研究最广泛的是能被细胞表面受体所激活的I型PI3K. 哺乳动物细胞中Ι型PI3K又分为IA和IB两个亚型, 他们分别从酪氨酸激酶连接受体和G蛋白连接受体传递信号.IA 型PI3K是由催化亚单位p110和调节亚单位p85所组成的二聚体蛋白, 具有类脂激酶和蛋白激酶的双重活性.PI3K通过两种方式激活, 一种是与具有磷酸化 酪氨酸残基的生长因子受体或连接蛋白相互作用, 引起二聚体构象改变而被激活; 另 一种是通过Ras和p110直接结合导致PI3K的活化. PI3K激活的结果是在质膜上产生 第二信使PIP3, PIP3与细胞内含有PH结构域的信号蛋白Akt和 PDK1(phosphoinositidedependentkinase-1)结合, 促使PDK1磷酸化Akt蛋白的 Ser308导致Akt的活化. Akt还能通过PDK2(如整合素连接激酶ILK)对其Thr473的磷酸化而被激活.活化的Akt通过磷酸化作用激活或抑制其下游靶蛋白Bad 、Caspase9、NF-κB、GSK-3、FKHR、 p21Cip1和p27 Kip1等, 进而调节细胞的增殖、分化、凋亡 以及迁移等. PI3K-Akt信号通路的活性被类脂磷酸酶PTEN(phosphatase and tensin homolog deleted on chromosome ten)和SHIP(SH2-containing inositol 5-phosphatase)负调节, 他们分别从PIP3的3′和5′去除磷酸而将其转变成PI(4,5)P2和PI(3,4)P2而降解. 迄今为止, 尚未发现下调Akt活性的特异磷酸酶, 但用磷酸酶抑制剂处理细胞后, 发 现Akt的磷酸化和活性均有所增加. 最近发现Akt能被一种C末端调节蛋白(CTMP)所失活, CTMP能结合Akt并通过抑制Akt的磷酸化而阻断下游信号的传递, CTMP的过表达能够逆转v-Akt转化细胞的表型. 热休克蛋白90(HSP90)亦能结合Akt, 阻止Akt被 PP2A磷酸酶的去磷酸化而失活, 因此具有保护Akt的作用. 本信号转导涉及的信号分子主要包括 Integrin,FAK,Paxillin,ILK,PIP3,S6,p70S6K,RTK,Gab1,Gab2,IRS-1,PI3K,PTEN,AKT,PDK1,Cytokine Receptor,Jak1,CD19,BCR,Ag,BCAP,Syk,Lyn,GPCR,TSC1,TSC2,Gβγ,GαGTP,PP2A,PHLPP,CTMP,PDCD4,4E-BP1,ATG13,mTORC1,TSC1,TSC2,PRAS40,XIAP,FoxO1,Bim,Bcl-2,Bax,MDM2,p53,Bax,Bad,14-3-3,Wee1,Myt1,p27Kip1,p21Waf1/Cip1,CyclinD1,GSK-3,GS,Bcl-2,mTORC2,LaminA,Tpl2,IKKα,eNOS,GABAAR,Huntingtin,Ataxin-1,PFKFB2,PIP5K,AS160等。

ERK5信号通路研究现状

World Journal of Cancer Research 世界肿瘤研究, 2014, 4, 41-46 Published Online October 2014 in Hans. https://www.360docs.net/doc/a712221665.html,/journal/wjcr https://www.360docs.net/doc/a712221665.html,/10.12677/wjcr.2014.44008 Review of the ERK5 Signaling Pathway Research Song Luo*, Shengfa Su, Weiwei Ouyang#, Bing Lu# Teaching and Research Section of Oncology, Guiyang Medical University, Guiyang Email: 4567436@https://www.360docs.net/doc/a712221665.html,, #ouyangww103173@https://www.360docs.net/doc/a712221665.html,, #lbgymaaaa@https://www.360docs.net/doc/a712221665.html, Received: Sep. 25th, 2014; revised: Oct. 16th, 2014; accepted: Oct. 20th, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/a712221665.html,/licenses/by/4.0/ Abstract Extracellular signal regulated kinase 5 (ERK5) is an important part of mitogen activated protein kinase (MAPK) system, and also is a new signal transduction pathway of MAPK signaling system, which has attracted much attention in recent years. ERK5 can be activated by many stimulating factors and plays an important role in cell survival, proliferation and differentiation. Furthermore, ERK5 is closely related to vascular development and proliferation, and other critical functions. This paper focuses on the origin, structure, property, physiological features of ERK5, and the relation-ship between ERK5 and tumor and non-oncologic diseases, and reviews the research direction in the future. Keywords ERK5, Signaling Pathways, MAPK ERK5信号通路研究现状 罗松*,苏胜发,欧阳伟炜#,卢冰# 贵阳医学院肿瘤学教研室,贵阳 Email: 4567436@https://www.360docs.net/doc/a712221665.html,, #ouyangww103173@https://www.360docs.net/doc/a712221665.html,, #lbgymaaaa@https://www.360docs.net/doc/a712221665.html, 收稿日期:2014年9月25日;修回日期:2014年10月16日;录用日期:2014年10月20日 *第一作者。 #通讯作者。

(完整版)细胞信号转导研究方法

细胞信号转导途径研究方法 一、蛋白质表达水平和细胞内定位研究 1、信号蛋白分子表达水平及分子量检测: Western blot analysis. 蛋白质印迹法是将蛋白质混合样品经SDS-PAGE后,分离为不同条带,其中含有能与特异性抗体(或McAb)相应的待检测的蛋白质(抗原蛋白),将PAGE胶上的蛋白条带转移到NC膜上此过程称为blotting,以利于随后的检测能够的进行,随后,将NC膜与抗血清一起孵育,使第一抗体与待检的抗原决定簇结合(特异大蛋白条带),再与酶标的第二抗体反应,即检测样品的待测抗原并可对其定量。 基本流程: 检测示意图:

2、免疫荧光技术 Immunofluorescence (IF) 免疫荧光技术是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光素制成荧光标记物,再用这种荧光抗体(或抗原)作为分子探针检查细胞或组织内的相应抗原(或抗体)。在细胞或组织中形成的抗原抗体复合物上含有荧光素,利用荧光显微镜观察标本,荧光素受激发光的照射而发出明亮的荧光(黄绿色或桔红色),可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质、定位,以及利用定量技术测定含量。 采用流式细胞免疫荧光技术(FCM)可从单细胞水平检测不同细胞亚群中的蛋白质分子,用两种不同的荧光素分别标记抗不同蛋白质分子的抗体,可在同一细胞内同时检测两种不同的分子(Double IF),也可用多参数流式细胞术对胞内多种分子进行检测。 二、蛋白质与蛋白质相互作用的研究技术 1、免疫共沉淀(Co- Immunoprecipitation, Co-IP)

Co-IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“protein A”能特异性地结合到免疫球蛋白的FC片段的现象而开发出来的方法。目前多用精制的protein A预先结合固化在agarose的beads 上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原抗体达到沉淀抗原的目的。 当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。如果用蛋白质X的抗体免疫沉淀X,那么与X在体内结合的蛋白质Y也能沉淀下来。进一步进行Western Blot 和质谱分析。这种方法常用于测定两种目标蛋白质是否在体内结合,也可用于确定一种特定蛋白质的新的作用搭档。缺点:可能检测不到低亲和力和瞬间的蛋白质-蛋白质相互作用。 2、GST pull-down assay GST pull-down assay是将谷胱甘肽巯基转移酶(GST)融合蛋白(标记蛋白或者饵蛋白,GST, His6, Flag, biotin …)作为探针,与溶液中的特异性搭档蛋白(test protein或者prey被扑获蛋白)结合,然后根据谷胱甘肽琼脂糖球珠能够沉淀GST融合蛋白的能力来确定相互作用的蛋白。一般在发现抗体干扰蛋白质-蛋白质之间的相互作用时,可以启用GST沉降技术。该方法只是用于确定体外的相互作用。

经典信号通路之PI3K-AKT-mTOR信号通 路

经典信号通路之PI3K-AKT-mTOR信号通路 PI3K是一种胞内磷脂酰肌醇激酶,与v.src和v.ras等癌基因的产物相关,且PI3K本身具有丝氨酸/苏氨酸(Ser/Thr)激酶的活性,也具有磷脂酰肌醇激酶的活性。由调节亚基p85和催化亚基p110构成。 磷脂酰肌醇3-激酶(PI3Ks)蛋白家族参与细胞增殖、分化、凋亡和葡萄糖转运等多种细胞功能的调节。PI3K活性的增加常与多种癌症相关。 PI3K磷 酸化磷脂酰肌醇PI(一种膜磷脂)肌醇环的第3位碳原子。PI在细胞膜组分中所占比例较小,比磷脂酰胆碱、磷脂酰乙醇胺和磷脂酰丝氨酸含量少。但在脑细胞膜中,含量较为丰富,达磷脂总量的10%。 PI的肌醇环上有5个可被磷酸化的位点,多种激酶可磷酸化PI肌醇环上的4th和5th位点,因而通常在这两位点之一或两位点发生磷酸化修饰,尤其发生在质膜内侧。通常,PI-4,5-二磷酸(PIP2)在磷脂酶C的作用下,产生二酰甘油(DAG)和肌醇-1,4,5-三磷酸。PI3K转移一个磷酸基团至位点3,形成的产物对细胞的功能具有重要的影响。譬如,单磷酸化的PI-3-磷酸,能刺激细胞迁移(cell trafficking),而未磷酸化的则不能。PI-3,4-二磷酸则可促进细胞的增殖(生长)和增强对凋亡的抗性,而其前体分子PI-4-磷酸则不 然。PIP2转换为PI-3,4,5-三磷酸,可调节细胞的黏附、生长和存活。

PI3K的活化 PI3K可分为3类,其结构与功能各异。其中研究最广泛的为I类PI3K, 此类PI3K为异源二聚体,由一个调节亚基和一个催化亚基组成。调节亚基含有SH2和SH3结构域,与含有相应结合位点的靶蛋白相作用。该亚基通常称为p85, 参考于第一个被发现的亚型(isotype),然而目前已知的6种调节亚基,大小50至110kDa不等。催化亚基有4种,即p110α, β,δ,γ,而δ仅限于白细胞,其余则广泛分布于各种细胞中。 PI3K的活化很大程度上参与到靠近其质膜内侧的底物。多种生长因子和信号传导复合 物,包括成纤维细胞生长因子(FGF)、血管内皮生长因子(VEGF)、人生长因子(HGF)、血管位蛋白I(Ang1)和胰岛素都能启始PI3K 的启动 过程。这些因子启动受体酪氨酸激酶(RTK),从而引起自磷酸化。受体上磷酸化的残基为异源二聚化的PI3Kp85亚基提供了一个停泊位点 (docking site)。然而在某些情况下,受体磷酸化则会介导募集一个接头蛋白(adaptor protein)。比如,当胰岛素启动其受体后,则必须募集一个胰岛素受体底物蛋白(IRS),来促进PI3K的结合。相似的,当整连蛋白 integrin(非RTK)被启动后,粘着斑激酶(FAK) 则作为接头蛋白,将PI3K通过其p85停泊。但在以上各情形下,p85亚基的SH2和SH3结构域均在一个磷酸化位点与接头蛋白结合。PI3K募集到活化的受体后,起始多种PI中间体的磷酸化。与癌肿尤其相关的PI3K转化PIP2为PIP3。 PIP3作为锚定物(anchor) 许多蛋白含有一个Pleckstrin Homology(PH)结构域,因而可使其与PI-3,4-P2或PI-3,4,5-P3相结合。这种相互作用可以控制蛋白与膜结合的时间与定位,通过这种方式来调节蛋白的活性。蛋白与脂质间的这种相互作用亦可能引起蛋白构像的变化而改变蛋白的功能。PI3K启动的结果是在质膜上产生第二信使PIP3, PIP3与细胞内含有PH结构域的信号蛋白AKT和PDK1(phosphoinositide dependent kinase-1)结合, 促使PDK1磷酸化AKT蛋白的Ser308导致AKT活化。其它PDK1的底物还包括PKC(蛋白激酶C)、S6K(p70S6)和 SGK(serum/glucocorticoid regulated kinases)。AKT, 亦称为蛋白激酶B(PKB),是PI3K下游主要的效应物。AKT可分为3种亚型(AKT1、AKT2、AKT3或PKBα, PKBβ,PKBγ),3种亚型的功能各异,但也有重迭。该家族主要有三个成员:AKT1,AKT2和AKT3。其中,Akt1通过抑制细胞凋亡过程参与了细胞生存途径,Akt1酶也能诱导蛋白质的合成途径,因此是一个重要的信号蛋白介导组织的生长。因为它可以阻止细胞凋亡,从而促进细胞的存活,AKT1参与了在许多类型的癌症发生。AKT2是胰岛素信号转导通路中的一个重要信号分子,而AKT3则是主要表达在脑部。它的启动机制是:PI3K可以被g蛋白偶联受体或者受

常见的信号通路

1JAK-STAT信号通路 1)JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。(1)酪氨酸激酶相关受体(tyrosinekinaseassociatedreceptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生 长激素)、EGF(表皮生长因子)、PDGF(血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2)酪氨酸激酶JAK(Januskinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosinekinase,RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Januskinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸、JAK1个成员:4蛋白家族共包括JAK结构域的信号分子。SH2化多个含特定

JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAKhomologydomain,JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3)转录因子STAT(signaltransducerandactivatoroftranscription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“GTFLLRFSS”。 2)JAK-STAT信号通路 与其它信号通路相比,JAK-STAT信号通路的传递过程相对简单。信号传 递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位点”(dockingsite),同时含有SH2结构域的STAT蛋白被招募到这个“停泊位点”。最后,激酶JAK 催化结合在受体上的STAT蛋白发生磷酸化修饰,活化的STAT蛋白以二 聚体的形式进入细胞核内与靶基因结合,调控基因的转录。值得一提的是,一种JAK激酶可以参与多种细胞因子的信号转导过程,一种细胞因子的信号通路也可以激活多个JAK激酶,但细胞因子对激活的STAT分子却具有一定的选择性。例如IL-4激活STAT6,而IL-12 。STAT4却特异性激活

资深PI最新文章解析信号通路

资深PI最新文章解析信号通路 ------------------------------------------------------------------------------------------------------------------------------------ 摘要:来自新加坡分子与细胞生物学研究院,癌症与发育细胞生物学部的研究人员获得了YAP-TEAD4复合物在YAP因子N端结构域相互作用,以及在TEAD4 C端结构域与YAP相互作用的晶体结构,从中研究人员认为YAP中的PXXΦP片段是与TEAD4相互作用的关键结构,这为研究Hippo信号通路提供了重要的分子机理线索。这一研究成果公布在《Genes Development》杂志上。 生物通报道:来自新加坡分子与细胞生物学研究院,癌症与发育细胞生物学部的研究人员获得了YAP-TEAD4复合物在YAP因子N端结构域相互作用,以及在TEAD4 C端结构域与YAP相互作用的晶体结构,从中研究人员认为YAP中的PXXΦP片段是与TEAD4相互作用的关键结构,这为研究Hippo信号通路提供了重要的分子机理线索。这一研究成果公布在《Genes Development》杂志上。 领导这一研究的是新加坡分子与细胞生物学研究院宋海卫博士,其早年毕业于河南大学化学系,之后进入中科院生物物理研究院进行分子生物学方面的学习,1998年获得利兹大学(The University of Leeds)分子生物学专业博士学位。目前任新加坡分子与细胞生物学研究所资深研究员。 Hippo信号转导通路是几年前发现的一个信号转导通路。研究发现Hippo信号通路是参与调控器官大小发育的关键信号通路,这一观点首先在果蝇中被发现,后来的研究发现在哺乳动物的发育过程中Hippo有相同的功能。06年Cell发表的一篇文章证实Hippo 是一种细胞分裂和死亡的控制开关。Hippo信号转导通路通过促进细胞调亡和限制细胞

细胞凋亡主要发生机制及相关作用研究

细胞凋亡主要发生机制及相关作用研究 摘要 细胞凋亡是一种有序的或程序性的细胞死亡方式,是细胞接受某些特定信号刺激后在基因调控下所发生的一系列细胞主动死亡过程,通常来说是一种正常生理应答反应。目前认为细胞凋亡信号传导通路主要包括三种:内源性途径、外源性途径以及内质网途径。细胞凋亡的研究已成为当前生命科学研究热点之一。研究细胞凋亡的信号传导通路及其调控对进一步认识和治疗凋亡相关疾病有重要意义。 关键词:细胞凋亡信号传导通路疾病治疗

ABSTRACT Apoptosis is an orderly or programmed cell death way, is a series of cells active death process under gene regulation that after cell accepted certain specific signal stimulation, it is a normal physiological response. At presently, the cell apoptosis signaling pathways mainly includes three types: intrinsic pathway, extrinsic pathway, and the way of endoplasmic reticulum. The research of apoptosis has become the life science research hotspot. Researching cell apoptosis signaling pathways and regulation can get further understanding and also have the important meaning to treatment of apoptosis related diseases. Key words: A poptosis Signal conduct pathway Treatment of diseases

PIKAKT信号通路图谱

P I K A K T信号通路图谱公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

PI3K/AKT信号通路 磷脂酰肌醇3-激酶(PI3Ks)信号参与增殖、分化、凋亡和葡萄糖转运等多种细胞功能的调节. 近年来发现, IA型PI3K和其下游分子蛋白激酶 B(PKB或Akt)所组成的信号通路与人类肿瘤的发生发展密切相关. 该通路调节肿瘤细胞的增殖和存活, 其活性异常不仅能导致细胞恶性转化, 而且与肿瘤细胞的迁移、黏附、肿瘤血管生成以及细胞外基质的降解等相关, 目前以PI3K-Akt信号通路关键分子为靶点的肿瘤治疗策略正在发展中.

在PI3K家族中, 研究最广泛的是能被细胞表面受体所激活的I型PI3K. 哺乳动物细胞中Ι型PI3K又分为IA和IB两个亚型, 他们分别从酪氨酸激酶连接受体和G蛋白连接受体传递信号.IA 型PI3K是由催化亚单位p110和调节亚单位p85所组成的二聚体蛋白, 具有类脂激酶和蛋白激酶的双重活性.PI3K通过两种方式激活, 一种是与具有磷酸化酪氨酸残基的生长因子受体或连接蛋白相互作用, 引起二聚体构象改变而被激活; 另一种是通过Ras和p110直接结合导致PI3K的活化. PI3K激活的结果是在质膜上产生第二信使PIP3, PIP3与细胞内含有PH结构域的信号蛋白Akt和PDK1(phosphoinositidedependentkinase-1)结合, 促使PDK1磷酸化Akt蛋白的Ser308导致Akt的活化. Akt还能通过PDK2(如整合素连接激酶ILK)对其Thr473的磷酸化而被激活.活化的Akt通过磷酸化作用激活或抑制其下游靶蛋白Bad 、Caspase9、NF-κB、GSK-3、FKHR、 p21Cip1和p27 Kip1等, 进而调节细胞的增殖、分化、凋亡以及迁移等. PI3K-Akt信号通路的活性被类脂磷酸酶PTEN(phosphatase and tensin homolog deleted on chromosome ten)和SHIP(SH2-containing inositol 5-phosphatase)负调节, 他们分别从PIP3的3′和5′去除磷酸而将其转变成PI(4,5)P2和PI(3,4)P2而降解. 迄今为止, 尚未发现下调Akt活性的特异磷酸酶, 但用磷酸酶抑制剂处理细胞后, 发现Akt 的磷酸化和活性均有所增加. 最近发现Akt能被一种C末端调节蛋白(CTMP)所失活, CTMP能结合Akt并通过抑制Akt的磷酸化而阻断下游信号的传递, CTMP的过表达能够逆转v-Akt转化细胞的表型. 热休克蛋白

信号通路研究思路

信号通路研究思路

证明一个药物能通过抑制P38表达而发挥保护细胞的作用,需要做的是: 要证明你的药物是通过抑制P38表达而发挥保护作用,首先要证明P38表达增加会导致损伤。 其次,要证明你的药物存在保护作用。 再次,证明你的药物可以抑制P38表达。 最后,证明你的药物是由于抑制了P38表达而发挥保护作用。 首先证明P38表达增加会导致损伤。 这里需要建立一个损伤模型。正如你提到的,钙离子导致P38mapk的增高,如果某种损伤可以通过钙离子导致P38mapk的增高,那么你就建立起了一个损伤模型。这时,对P38做个RNA干扰,使其表达下降,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说P38mapk的增高会导致损伤。 这里最好不要用P38的抑制剂SB来处理,因为这个抑制剂是针对P38活性的抑制剂,抑制的是P38的磷酸化,而不是表达量。 如果说明的问题是p38磷酸化水平增加而导致损伤,那么我建议用抑制剂。这时还可以用Dominant-negative。抑制剂的实验证实该药物不影响P38表达,而影响其活化。(应该首先考虑选用抑制剂,因为目前一些药物的作用机制不是抑制靶点的表达,而是抑制靶点的激活。如果在此应用RNAi的话,很可能会漏掉这个机制或增加实验步骤。) 其次,要证明你的药物存在保护作用。

当然就是用你的药物先处理一下,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说你的药物存在保护作用。 再次,证明你的药物可以抑制P38表达。 用你的药物先处理一下,再来损伤刺激,再检测P38表达,如果用药组相对于没有用药组P38表达下降,那么可以说你的药物可以抑制P38表达。 最后,证明你的药物是由于抑制了P38表达而发挥保护作用。 这一步看似不必要,其实是最重要的步骤,而国内的文章往往忽略了这一关键环节。 这里建议还是用RNA干扰P38表达,再用你的药物处理,再进行损伤刺激,如果用药组与没有用药组的损伤程度一致,那么才可以说你的药物是由于抑制了P38表达而发挥保护作用。 抑制剂也有其局限性,有时是“致命”的,主要原因是抑制剂缺乏特异性。虽然我们在文章里看到用抑制剂的时候都说是什么什么的特异性抑制剂,但真的那么特异吗?其实往往是作者为了写文章发文章的需要而夸大了抑制剂的特异性。细胞里无数的信号通路,谁也不能保证抑制剂在作用于靶分子时不会影响其他信号通路。其实无论什么抑制剂,对剂量的要求都相对比较苛刻,为什么?就是因为一旦浓度高了,就不知道会干扰到其他哪些信号通路,从而产生很多说不清道不明的现象。 PI3K的抑制剂---LY294002和wortmannin,它们都能抑制PI3K和相关的激酶,但LY294002的浓度达到200μM常用来抑制DNA依赖的蛋白激酶(DNA-PK);wortmannin在浓度超过3μM常用来抑制运动失调性毛细血管扩张基因

AKT信号通路概述

AKT信号通路概述 日期:2012-03-12 来源:未知 标签:信号转导Akt通路 摘要: 目前,Akt 是基础研究和药物研发领域中研究最热门的激酶和激酶通路之一。PI3K-Akt信号通路对于细胞增殖、分化和凋亡的调节是必要的. 其组成性活化与肿瘤发生及肿瘤侵袭转移的相关性, 提示 天隆科技NP968自动核酸提取仪,产品试用进行中! 佛山泰尔健生物细胞培养器材诚征代理

磷脂酰肌醇3-激酶(PI3Ks)信号参与增殖、分化、凋亡和葡萄糖转运等多种细胞功能的调节. 近年来发现, IA型PI3K和其下游分子蛋白激酶B(PKB或Akt)所组成的信号通路与人类肿瘤的发生发展密切相关. 该通路调节肿瘤细胞的增殖和存活, 其活性异常不仅能导致细胞恶性转化, 而且与肿瘤细胞的迁移、黏附、肿瘤血管生

成以及细胞外基质的降解等相关, 目前以PI3K-Akt信号通路关键分子为靶点的肿瘤治疗策略正在发展中. Akt信号通路总况 PI3K信号通路中另一个重要的激酶AKT PI3K/Akt通路的负性调节因子-PTEN 在PI3K家族中, 研究最广泛的是能被细胞表面受体所激活的I型PI3K. 哺乳动物细胞中Ι型PI3K又分为IA和IB两个亚型, 他们分别从酪氨酸激酶连接受体和G 蛋白连接受体传递信号.IA 型PI3K是由催化亚单位p110和调节亚单位p85所组成的二聚体蛋白, 具有类脂激酶和蛋白激酶的双重活性.PI3K通过两种方式激活, 一种是与具有磷酸化酪氨酸残基的生长因子受体或连接蛋白相互作用, 引起二聚体构象改变而被激活; 另一种是通过Ras和p110直接结合导致PI3K的活化. PI3K激活的结果是在质膜上产生第二信使PIP3, PIP3与细胞内含有PH结构域的信号蛋白Akt和PDK1(phosphoinositidedependentkinase-1)结合, 促使PDK1磷酸化Akt蛋白的Ser308导致Akt的活化. Akt还能通过PDK2(如整合素连接激酶ILK)对其 Thr473的磷酸化而被激活.活化的Akt通过磷酸化作用激活或抑制其下游靶蛋白Bad 、Caspase9、NF-κB、GSK-3、FKHR、p21Cip1和p27 Kip1等, 进而调节细胞的增殖、分化、凋亡以及迁移等. PI3K-Akt信号通路的活性被类脂磷酸酶PTEN(phosphatase and tensin homolog deleted on chromosome ten)和SHIP(SH2-containing inositol 5-phosphatase)负调节, 他们分别从PIP3的3′和5′去除磷酸而将其转变成 PI(4,5)P2和PI(3,4)P2而降解. 迄今为止, 尚未发现下调Akt活性的特异磷酸酶, 但用磷酸酶抑制剂处理细胞后, 发现Akt的磷酸化和活性均有所增加. 最近发现Akt 能被一种C末端调节蛋白(CTMP)所失活, CTMP能结合Akt并通过抑制Akt的磷酸化而阻断下游信号的传递, CTMP的过表达能够逆转v-Akt转化细胞的表型. 热休克蛋白90(HSP90)亦能结合Akt, 阻止Akt被PP2A磷酸酶的去磷酸化而失活, 因此具有保护Akt的作用. 作者:xiluxyz 点击:1472次

细胞常见信号通路图片合集

目录 actin肌丝 (5) Wnt/LRP6 信号 (7) WNT信号转导 (7) West Nile 西尼罗河病毒 (8) Vitamin C 维生素C在大脑中的作用 (10) 视觉信号转导 (11) VEGF,低氧 (13) TSP-1诱导细胞凋亡 (15) Trka信号转导 (16) dbpb调节mRNA (17) CARM1甲基化 (19) CREB转录因子 (20) TPO信号通路 (21) Toll-Like 受体 (22) TNFR2 信号通路 (24) TNFR1信号通路 (25) IGF-1受体 (26) TNF/Stress相关信号 (27) 共刺激信号 (29) Th1/Th2 细胞分化 (30) TGF beta 信号转导 (32) 端粒、端粒酶与衰老 (33) TACI和BCMA调节B细胞免疫 (35) T辅助细胞的表面受体 (36) T细胞受体信号通路 (37) T细胞受体和CD3复合物 (38) Cardiolipin的合成 (40) Synaptic突触连接中的蛋白 (42) HSP在应激中的调节的作用 (43) Stat3 信号通路 (45) SREBP控制脂质合成 (46) 酪氨酸激酶的调节 (48) Sonic Hedgehog (SHH)受体ptc1调节细胞周期 (51) Sonic Hedgehog (Shh) 信号 (53) SODD/TNFR1信号 (56) AKT/mTOR在骨骼肌肥大中的作用 (58) G蛋白信号转导 (59) IL1受体信号转导 (60) acetyl从线粒体到胞浆过程 (62) 趋化因子chemokine在T细胞极化中的选择性表达 (63) SARS冠状病毒蛋白酶 (65) SARS冠状病毒蛋白酶 (67) Parkin在泛素-蛋白酶体中的作用 (69)

细胞凋亡机制的研究及其意义

细胞凋亡机制的研究及其意义 摘要: 细胞凋亡是维持神经系统正常发育, 维持其免疫系统正常功能所必需过程。目前, 对细胞凋亡的研究已经成为生命科学领域研究的热点。本文就细胞凋亡的发生机制、基因调节机制等方面作一综述。 关键词: 细胞凋亡; 机制;意义 引言:细胞凋亡对机体的健康发育甚为重要,在生理条件下,它作为机体正常细胞群生长与死亡相协调的重要方式,有利于清除多余的细胞、无用细胞、发育不正常细胞、有害细胞、完成正常使命的衰老细胞;有利于维持机体细胞群的自身稳定,从而维持器官组织的正常发育。细胞凋亡过少时,机体易患肿瘤性疾病、自身免疫性疾病;细胞凋亡过多时,机体易患神经系统方面的疾病。人的艾滋病等疾病之所以发生,主要是由于机体细胞凋亡发生异常的结果。 正文: 1、细胞凋亡机制 1.1 信号传递机制 凋亡一般由细胞外的调节因素与其在细胞表面的受体结合而启动。经活化的受体又启动胞内第二信号系统,激活核酸内切酶,引起DNA裂解,进而引发细胞凋亡。细胞外的调节因素包括生理活性因子:如肿瘤坏死因子、转化生长因子及表皮生长因子等;非生理因素:如X射线、紫外线、一氧化氮、毒素及化疗药物等;感染因素:如EB病毒、腺病毒及HIV病毒等。有学者认为,细胞凋亡的信号传导能使用或部分利用细胞增殖和分化过程中的传统信号途径。传统信号途径包括G 结合蛋白信号途径和酶蛋白信号途径,前者可以调节第二信使cAMP和钙离子的生成,细胞内cAMP和钙离子浓度的变化可以对细胞凋亡产生影响;后者可通过酪氨酸蛋白激酶(PTK)、Ras-MAPK或JaK-STAT等途径参与凋亡信号的传导。但众多研究表明可直接启动细胞凋亡的信号途径或死亡信号途径是两种死亡因子,即肿瘤坏死因子和Fas配体与细胞膜表面的相应受体TNF受体和37? 结合以后所发生的凋亡反应。目前对TNF和FasL与相应受体结合所介导的细胞凋亡信号途径及其机制已取得了突破性进展 1.2 酶学机制 1.2.1 caspases蛋白酶 胱冬蛋白酶(caspases)是近几年研究的热点之一,属于ICE/CED3蛋白酶家族成员,目前发现至少有14种之多,分别命名为caspases1-caspases14。与细胞凋亡密切相关,它是通过级联反应,最终激活核酸内切酶来实现的。也有人认为凋亡并不总是引起caspases的释放,而caspases的释放也并不总是引起凋亡,很可能还与细胞的迁移和分化有关.。蛋白酶前体可在天冬氨酸位点上被切断成3部分,H2N端是抑制区域被移去,另一端COOH端断裂成一大一小亚单位

相关文档
最新文档