Fluent中解决不收敛问题的方法

Fluent中解决不收敛问题的方法
Fluent中解决不收敛问题的方法

Fluent 判断是否收敛

判断计算是否收敛,没有一个通用的方法。通过残差值判断的方法,对一些问题或许很有效,但在某些问题中往往会得出错误的结论。因此,正确的做法是,不仅要通过残差值,也要通过监测所有相关变量的完整数据,以及检查流入与流出的物质和能量是否守恒的方法来判断计算是否收敛。

1、监测残差值。

在迭代计算过程中,当各个物理变量的残差值都达到收敛标准时,计算就会发生收敛。Fluent默认的收敛标准是:除了能量的残差值外,当所有变量的残差值都降到低于10-3 时,就认为计算收敛,而能量的残差值的收敛标准为低于10-6。

2、计算结果不再随着迭代的进行发生变化。

有时候,因为收敛标准设置得不合适,物理量的残差值在迭代计算的过程中始终无法满足收敛标准。然而,通过在迭代过程中监测某些代表性的流动变量,可能其值已经不再随着迭代的进行发生变化。此时也可以认为计算收敛。

3、整个系统的质量,动量,能量都守恒。在Flux Reports对话框中检查流入和流出整个系统的质量,动量,能量是否守恒。守恒,则计算收敛。不平衡误差少于0.1%,也可以认为计算是收敛的。残差是cell各个face的通量之和,当收敛后,理论上当单元内没有源项使各个面流入的通量也就是对物理量的输运之和应该为零。最大残差或者RSM残差反映流场与所要模拟流场(只收敛后应该得到的流场,当然收敛后得到的流场与真实流场之间还是存在一定的差距)的残差,残差越小越好,由于存在数值精度问题,不可能得到0残差,对于单精度计算一般应该低于初始残差1e-03以下才好,当注意具体情况,看各个项的收敛情况(比方说连续项不易收敛而能量项容易)。

一般在FLUENT中可以进行进出口流量监控,当残差收敛到一定程度后,还要看进出口流量是否稳定平衡,才可确定收敛与否(翼型计算时要监控升阻力的平衡)。残差在较高位震荡,需要检查边界条件是否合理,其次检查初始条件是否合理,比如激波的流场,初始条件的不合适会造成流场的振荡。有时流场可能有分离或者回流,这本身是非定常现象,计算时残差会在一定程度上发生振荡,这是如果进出口流量是否达到稳定平衡,也可以认为流场收敛。另外fluent 缺省采用多重网格,在计算后期将多从网格设置为0可以避免一些波长的残差在细网格上发生震荡。

Flunt不收敛的解决方法:

①、一般首先是改变初值,尝试不同的初始化,事实上好像初始化很关键,对于收敛。

②、FLUENT的收敛最基础的是网格的质量,计算的时候看怎样选择CFL 数,这个靠经验。

③、首先查找网格问题,如果问题复杂比如多相流问题,与模型、边界、初始条件都有关系。

④、有时初始条件和边界条件严重影响收敛性,曾经作过一个计算反反复复,通过修改网格,重新定义初始条件,包括具体的选择的模型,还有老师经常用的方法就是看看哪个因素不收敛,然后寻找和它有关的条件,改变相应参数。就收敛了。

⑤、A.检查是否哪里设定有误:比方用mm的unit建构的mesh,忘了scale;比方给定的边界条件不合理。

B从算至发散前几步,看presure 分布,看不出来的话,再算几步, 看看问题大概出在那个区域。C网格,配合第二点作修正,就重建个更漂亮的,或是更粗略的来处理。D再找不出来的话,换个solver。

⑥、解决的办法是设几个监测点,比如出流或参数变化较大的地方,若这些地方的参数变化很小,就可以认为是收敛了,尽管此时残值曲线还没有降下来。

⑦、调节松弛因子也能影响收敛,不过代价是收敛速度。

学习fluent(流体常识及软件计算参数设置)

luent 中一些问题 ( 目录 ) 离散化的目的 计算区域的离散及通常使用的网格 控制方程的离散及其方法 各种离散化方法的区别 8 9 10在GAMBIT 中显示的“check 主要通过哪几种来判断其网格的质量?及其在做网格时大 致注意到哪些细节? 11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克 服这种情况呢? 12在设置GAMBIT 边界层类型时需要注意的几个问题: a 、没有定义的边界线如何处理? b 、计算域内的内部边界如何处理( 2D )? 13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪 些? 14 20 何为流体区域( fluid zone )和固体区域( solid zone )?为什么要使用区域的概念? FLUENT 是怎样使用区域的? 15 21 如何监视 FLUENT 的计算结果?如何判断计算是否收敛?在 FLUENT 中收敛准则是 如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些 参数?解决不收1 如何入门 2 CFD 2.1 2.2 2. 3 2.4 2.5 2.6 计算中涉及到的流体及流动的基本概念和术语 理想流体( Ideal Fluid )和粘性流体( Viscous Fluid ) 牛顿流体( Newtonian Fluid )和非牛顿流体( non-Newtonian Fluid ) 可压缩流体 ( Compressible Fluid )和不可压缩流体( Incompressible Fluid ) 层流( Laminar Flow )和湍流( Turbulent Flow ) 定常流动( Steady Flow )和非定常流动( Unsteady Flow ) 亚音 速流动 (Subsonic) 与超音速流动( Supersonic ) 热传导( Heat Transfer )及扩散 ( Diffusion ) 2.7 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常 使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有 什么不 同? 3.1 3.2 3.3 3.4 4 常见离散格式的性能的对比(稳定性、精度和经济性) 5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是 什 么? 6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反 而比 可压缩流动有更多的困难? 6.1 可压缩 Euler 及 Navier-Stokes 方程数值解 6.2 不可压缩 Navier-Stokes 方程求解 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 在数值计算中,偏微分方程的 双曲型方程、椭圆型方程、抛物型方程有什么区别? 在网格生成技术中,什么叫贴体坐标 系?什么叫网格独立解?

fluent收敛

计算不收敛的话可能是什么原因呢 如果经过长时间不收敛有两种情况: (1) 由于网格质量不好引起,这需要改进网格;或者 (2) 也有可能已经收敛,但残差曲线并没有下降到要求的标准,此时需要检验特征点上的求解变量的变化,如果很小(达到自己的要求),可以认为已经收敛。如果开始迭代次数不多即发散: (1) 网格质量不好,需要改进网格,尤其要找到发散点的位置,重点改进该处的网格质量;或者 (2) 调整导致发散的初始变量的值(通常为k,e和能量),甚至有关方程的松弛因子,使其绕过发散区间,继续运行。 如果仍然发散,你所选用的物理和化学模型稳定性太差,建议在牺牲先进性的前提下,改用其他成熟的模型。 在fluent里,三角形网格的质量一般要小于0.8,计算结果才容易收敛。 转载:利用FLUENT不收敛通常怎么解决? ①、一般首先是改变初值,尝试不同的初始化,事实上好像初始化很关键,对于收敛。 ②、FLUENT的收敛最基础的是网格的质量,计算的时候看怎样选择CFL数,这个靠经验 ③、首先查找网格问题,如果问题复杂比如多相流问题,与模型、边界、初始条件都有关系。 ④、有时初始条件和边界条件严重影响收敛性,曾经作过一个计算反反复复,通过修改网格,重新定义初始条件,包括具体的选择的模型,还有老师经常用的方法就是看看哪个因素不收敛,然后寻找和它有关的条件,改变相应参数。就收敛了 ⑤、A.检查是否哪里设定有误:比方用mm的unit建构的mesh,忘了scale;比方给定的边界条件不合理。B从算至发散前几步,看presure分布,看不出来的话,再算几步, 看看问题大概出在那个区域。 C网格,配合第二点作修正,就重建个更漂亮的,或是更粗略的来处理。D再找不出来的话,换个solver。 ⑥、解决的办法是设几个监测点,比如出流或参数变化较大的地方,若这些地方的参数变化很小,就可以认为是收敛了,尽管此时残值曲线还没有降下来。 ⑦、调节松弛因子也能影响收敛,不过代价是收敛速度。 上面是关于不收敛的一些解决办法,这几周都在用fluent作冲击换热的计算,最初是用冲击孔的速度初始化时,算了我几天几夜,算了几千步,默认的残差曲线都差不多平了,都在e-5量级了,自己设置的一个监视面却一直变化,最明显看出没收敛的就是冲击孔的气流根本就没有冲下去,每隔1000步我都看一下,

学习fluent (流体常识及软件计算参数设置)

luent中一些问题----(目录) 1 如何入门 2 CFD计算中涉及到的流体及流动的基本概念和术语 2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid) 2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid) 2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid) 2.4 层流(Laminar Flow)和湍流(Turbulent Flow) 2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow) 2.6 亚音速流动(Subsonic)与超音速流动(Supersonic) 2.7 热传导(Heat Transfer)及扩散(Diffusion) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不 同? 3.1 离散化的目的 3.2 计算区域的离散及通常使用的网格 3.3 控制方程的离散及其方法 3.4 各种离散化方法的区别 4 常见离散格式的性能的对比(稳定性、精度和经济性) 5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么? 6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难? 6.1 可压缩Euler及Navier-Stokes方程数值解 6.2 不可压缩Navier-Stokes方程求解 7 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别? 9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解? 10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节? 11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢? 12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理? b、计算域内的内部边界如何处理(2D)? 13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些? 14 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的? 15 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收

fluent收敛方案仅供参考

收敛问题 求解器设置 求解器设置主要包括:1、压力-速度耦合方程格式选择2、对流插值3、梯度插值4、压力插值 下面对这几种设置做详细说明。 一、压力-速度耦合方程求解算法 中主要有四种算法:,,, (1)( )半隐式连接压力方程方法,是的默认格式。 (2)()。对于简单的问题收敛非常快速,不对压力进行修正,所以压力松弛因子可以设置为1 (3) ()。对非定常流动问题或者包含比平均网格倾斜度更高的网格适用 (4) ()对非定常流的分步方法。用于格式,及具有相同的特性。 二、对流插值(动量方程) 有五种方法:一阶迎风格式、幂率格式、二阶迎风格式、三阶格式、格式

(1)默认采用一阶格式。容易收敛,但精度较差,主要用于初值计算。 (2) .幂率格式,当雷诺数低于5时,计算精度比一阶格式要高。(3)二阶迎风格式。二阶迎风格式相对于一阶格式来说,使用更小的截断误差,适用于三角形、四面体网格或流动及网格不在同一直线上;二阶格式收敛可能比较慢。 (4)( ).当地3阶离散格式。主要用于非结构网格,在预测二次流,漩涡,力等时更精确。 (5)()格式。此格式用于四边形/六面体时具有三阶精度,用于杂交网格或三角形/四面体时只具有二阶精度。 三、梯度插值梯度插值主要是针对扩散项。 有三种梯度插值方案:,, . (1)格林-高斯基于单元体。求解方法可能会出现伪扩散。(2)格林-高斯基于节点。求解更精确,最小化伪扩散,推荐用于三角形网格上 (3)基于单元体的最小二乘法插值。推荐用于多面体网格,及基于节点的格林-高斯格式具有相同的精度和格式。 四、压力插值压力基分离求解器主要有五种压力插值算法。

辐射和对流模型Fluent参数设置

辐射和对流模型Fluent参数设置 1.读入***.mesh文件,并对网格文件进行进行检查,Grid→cheek,主要看最小体积和最小面积不能为负,之后进行刻度转换,Grid→scale,在Gmbit 里面建模默认尺寸为米,与实际尺寸之间要进行转化,如下图: 2.选择求解器,Define→Models→sover……根据情况选择,如上图:接着选择辐射模型,Define→Models→Radiation,如下图,当Radiation Model面板上 点击ok时,会出现一个信息提示框,告诉你新 的材料物性被添加了,你将在后面设置物性参 数,因此现在只需单击ok确认这个信息即可, 如下图: 注意:当你激活辐射模型后,Fluent会自动打开能量求解器,如下图: 不用再Define→Models→Energy……

3.设置流体粘性,由于模型中空气流速比较大,设成双方程模型:如下图: 4.设置操作条件,此模型此有流体,属有重力情况,Define→Operating Conditions,选中 Gravity.Y方向加速度设置为-9.8 2 m,击OK确定。 /s 设置工作温度,在后面要激活的Boussinesq model要用到,(Boussinesq model:

考虑温度变化而忽略压强变化引起的密度变化叫做Boussinesq 假设) 5. 定义材料并设置其物理属性 Define →Material …… 先定义空气物性,要定义成有浮力的,取Boussinesq 选项。 Density=1.1653/m kg ,()k kg j C p ?=/1005 Thermal Conductivity=0.0267()k m w ?/,Material Type :fluid ; Thermal Expansion Coefficient =0.0033()k /1。 通过滚动条使先前面板中不可见的物性显示出来。在Scattering Coefficient 和Scattering Phase Function 中保持默认值,在要解决的问题中不涉及到散射问题;设定热扩散系数(用boussinesq 模型时)为1e-5K -1。单击Change/Create ,关闭Materials 面板。 6.设置边界条件Define → Boundary Conditions ……

Fluent 中判断收敛的方法、残差的概念及不收敛通常的解决方式

fluent中判断收敛的方法[引用] FLUENT中判断收敛的方法 判断计算是否收敛,没有一个通用的方法。通过残差值判断的方法,对一些问题或许很有效,但在某些问题中往往会得出错误的结论。因此,正确的做法是,不仅要通过残差值,也要通过监测所有相关变量的完整数据,以及检查流入与流出的物质和能量是否守恒的方法来判断计算是否收敛。 1、监测残差值。 在迭代计算过程中,当各个物理变量的残差值都达到收敛标准时,计算就会发生收敛。Fluent默认的收敛标准是:除了能量的残差值外,当所有变量的残差值都降到低于10-3 时,就认为计算收敛,而能量的残差值的收敛标准为低于10-6。 2、计算结果不再随着迭代的进行发生变化。 有时候,因为收敛标准设置得不合适,物理量的残差值在迭代计算的过程中始终无法满足收敛标准。然而,通过在迭代过程中监测某些代表性的流动变量,可能其值已经不再随着迭代的进行发生变化。此时也可以认为计算收敛。 3、整个系统的质量,动量,能量都守恒。 在Flux Reports对话框中检查流入和流出整个系统的质量,动量,能量是否守恒。守恒,则计算收敛。不平衡误差少于0.1%,也可以认为计算是收敛的。 FLUENT中残差的概念 残差是cell各个face的通量之和,当收敛后,理论上当单元内没有源项使各个面流入的通量也就是对物理量的输运之和应该为零。最大残差或者RSM残差反映流场与所要模拟流场(只收敛后应该得到的流场,当然收敛后得到的流场与真实流场之间还是存在一定的差距)的残差,残差越小越好,由于存在数值精度问题,不可能得到0残差,对于单精度计算一般应该低于初始残差1e-03以下才好,当注意具体情况,看各个项的收敛情况(比方说连续项不易收敛而能量项容易)。 一般在FLUENT中可以进行进出口流量监控,当残差收敛到一定程度后,还要看进出口流量是否稳定平衡,才可确定收敛与否(翼型计算时要监控升阻力的平衡)。 残差在较高位震荡,需要检查边界条件是否合理,其次检查初始条件是否合理,比如激波的流场,初始条件的不合适会造成流场的振荡。有时流场可能有分离或者回流,这本身是非定常现象,计算时残差会在一定程度上发生振荡,这是如果进出口流量是否达到稳定平衡,也可以认为流场收敛。另外fluent缺省

Fluent求解参数设置

求解参数设置(Solution Methods/Solution Controls): 在设置完计算模型和边界条件后,即可开始求解计算了,因为常会出现求解不收敛或者收敛速度很慢的情况,所以就要根据具体的模型制定具体的求解策略,主要通过修改求解参数来完成。在求解参数中主要设置求解的控制方程、选择压力速度耦合方法、松弛因子、离散格式等。 在VOF模型中,PISO比较适合于不复杂的流体,SIMPLE和SIMPLEC适合于可压缩的流体或者处于封闭域中的流体。 ? 求解的控制方程: 在求解参数设置中,可以选择所需要求 解的控制方程。可选择的方程包括Flow(流动方 程)、Turbulence(湍流方程)、Energy(能量方 程)、Volume Fraction(体积分数方程)等。在 求解过程中,有时为了得到收敛的解,先关闭 一些方程,等一些简单的方程收敛后,再开启 复杂的方程一起计算。 ? 选择压力速度耦合方法: 在基于压力求解器中,FLUENT提供了压 力速度耦合的4种方法,即SIMPLE、 SIMPLEC(SIMPLE.Consistent)、PISO以及 Coupled。定常状态计算一般使用SIMPLE或者 SIMPLEC方法,对于过渡计算推荐使用PISO方 法。PISO方法还可以用于高度倾斜网格的定常 状态计算和过渡计算。需要注意的是压力速度 耦合只用于分离求解器,在耦合求解器中不可 以使用。 在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC算法,默认是SIMPLE算法,但对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松弛迭代时。 对于相对简单的问题(如没有附加模型激活的层流流动),其收敛性可以被压力速度耦合所限制,用户通常可以使用SIMPLEC算法很快得到收敛解。在SIMPLEC算法中,压力校正亚松弛因子通常设为1.0,它有助于收敛,但是,在有些问题中,将压力校正松弛因子增加到1.0可能会导致流动不稳定,对于这种情况,则需要使用更为保守的亚松弛或者使用SIMPLE算法。对于包含湍流或附加物理模型的复杂流动,只要用压力速度耦合做限制,SIMPLEC就会提高收敛性,它通常是一种限制收敛性的附加模拟参数,在这种情况下,SIMPLE和SIMPLEC 会给出相似的收敛速度。 对于所有的过渡流动计算,推荐使用PISO算法邻近校正。它允许用户使用大的时间步,而且对于动量和压力都可以使用亚松弛因子1.0。对于定常状态问题,具有邻近校正的PISO并不会比具有较好的亚松弛因子的SIMPLE或SIMPLEC好。对于具有较大扭曲网格上的定常状态和过渡计算推荐使用PISO倾斜校正。 当使用PISO邻近校正时,对所有方程都推荐使用亚松弛因子为1.0或者接近1.0。如果只对高度扭曲的网格使用PISO倾斜校正,则要设定动量和压力的亚松弛因子之和为1.0(例如,压力亚松弛因子0.3,动量亚松弛因子0.7)。

fluent 经典问题 Fluent 收敛判断和 solver选择

Fluent 收敛判断和solver选择 从https://www.360docs.net/doc/a412675485.html,上转过来的,虽然是英语,但是静下心来慢慢读一读能学到很多 问题:---------------------------- Hi! I have tried an external aerodynamic problem in Flunet. In it, I want to know pressure distribution over the wing assembly. I have used Coupled-Implicit-Spalart Allamaras solver with courant number 1 initially. I gave pressure-far-field BC in elliptical boundary around wing assembly which is 10 times larger. After 5000 iterations also, my solution is not converging or continuity and momentum residuals are not coming below 1e-3. They oscillating between 1e-2 and 1e-3. Viscous residual is less than 1e-3. I have changed under relaxation factors, discretization schemes also. Still, I am not able to achieve residual lesser than 1e-4. I want any one users help. I am conveying my advance thanks .......... with regards, vengi. 某人的回答 There's a few things that could be going on. One possible answer is that your model is converged (that's always the happiest answer, isn't it?). The residuals you are looking at are normalized based on the residuals of the first iteration. So if your initial guess is pretty accurate, then your first residuals will be small, and all of your following residuals will be small as well, but since they are normalized according to that first small value, they look large. This typically shows up in the continuity and momentum residuals, and sometimes even in the x, y, and z velocity residuals (at least in the coupled solver). One thing you should be doing with your model is monitoring other factors besides your residuals. If you're looking for the pressure distribution, then define a few points along your airfoil and monitor the pressure at these points. You should also monitor at least the lift of your airfoil. You can find these monitors under solve->monitors. Judge convergence by when these have leveled off. While your model is solving, you will probably have to go in and clear the data in the monitors or adjust the scale of the axis to get a better idea of when they've truly leveled off. That can all be done in the windows where you defined the monitors. Another possibility is that your model isn't converged (the less happy of the answers). If that's the case, then there's lots of possible reasons. One common one is the use of the Coupled Solver in low speed flows. Since the coupled solver

FLUENT不收敛的解决方法

利用FLUENT不收敛通常怎么解决? ①、一般首先是改变初值,尝试不同的初始化,事实上好像初始化很关键,对于收敛。 ②、FLUENT的收敛最基础的是网格的质量,计算的时候看怎样选择CFL数,这个靠经验 ③、首先查找网格问题,如果问题复杂比如多相流问题,与模型、边界、初始条件都有关系。 ④、有时初始条件和边界条件严重影响收敛性,曾经作过一个计算反反复复,通过修改网格,重新定义初始条件,包括具体的选择的模型,还有老师经常用的方法就是看看哪个因素不收敛,然后寻找和它有关的条件,改变相应参数。就收敛了 ⑤、A.检查是否哪里设定有误:比方用mm的unit建构的mesh,忘了scale;比方给定的边界条件不合理。B从算至发散前几步,看presure分布,看不出来的话,再算几步, 看看问题大概出在那个区域。 C网格,配合第二点作修正,就重建个更漂亮的,或是更粗略的来处理。D再找不出来的话,换个solver。 ⑥、解决的办法是设几个监测点,比如出流或参数变化较大的地方,若这些地方的参数变化很小,就可以认为是收敛了,尽管此时残值曲线还没有降下来。 ⑦、调节松弛因子也能影响收敛,不过代价是收敛速度。 亚松弛因子对收敛的影响 所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。用通用变量来写出时,为松驰因子(Relaxation Factors)。《数值传热学-214》 FLUENT中的亚松驰:由于FLUENT所解方程组的非线性,我们有必要控制变化。一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了变化量。亚松驰最简单的形式为:单元内变量等于原来的值加上亚松驰因子a与变化的积: 分离解算器使用亚松驰来控制每一步迭代中的计算变量的更新。这就意味着使用分离解算器解的方程,包括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松驰因子。 在FLUENT中,所有变量的默认亚松驰因子都是对大多数问题的最优值。这个值适合于很

详细FLUENT实例讲座翼型计算

详细FLUENT实例讲座翼型计算 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

CAE联盟论坛精品讲座系列 详细FLUENT实例讲座-翼型计算 主讲人:流沙 CAE联盟论坛总版主 1.1 问题描述 翼型升阻力计算是CFD最常规的应用之一。本例计算的翼型为 RAE2822,其几何参数可以查看翼型数据库。本例计算在来流速度0.75马赫,攻角3.19°情况下,翼型的升阻系数及流场分布,并将计算结果与实验数据进行对比。模型示意图如图1所示。 b5E2RGbCAP 1.p ng(12.13 K>2018/7/29 23:41:251.2 FLUENT前处理设置Step 1:导入计算模型 以3D,双精度方式启动FLUENT14.5。 利用菜单【File】>【Read】>【Mesh…】,在弹出的文件选择对话框中选择网格文件rae2822_coarse.msh,点击OK按钮选择文件。如图2所示。p1EanqFDPw

点击FLUENT模型树按钮General,在右侧设置面板中点击按钮Display…,在弹出的设置对话框中保持默认设置,点击Display按钮,显示网格。如图3所示。DXDiTa9E3d 2.png(11.51 K>2018/7/29 23:41:25

3.png(33.41 K>2018/7/29 23:41:253-2.png(52.04 K>2018/7/29 23:41:25Step 2:检查网格 采用如图4所示步骤进行网格的检查与显示。点击FLUENT模型树节点General节点,在右侧面板中通过按钮Scale…、Check及 Report Quality实现网格检查。 4.png(12. 10 K>RTCrpUDGiT2018/7/29 23:41:25点击按钮Check,在命令输出按钮出现如图5所示网格统计信息。从图中可以看出,网格尺寸分布: x轴:-48.97~50m

fluent过来人经验谈之continuity不收敛的问题

continuity不收敛的问题 (1)连续性方程不收敛是怎么回事? 在计算过程中其它指数都收敛了,就continuity不收敛是怎么回事。 这和fluent程序的求解方法SIMPLE有关。SIMPLE根据连续方程推导出压力修正方法求解压力。由于连续方程中流场耦合项被过渡简化,使得压力修正方程不能准确反映流场的变化,从而导致该方程收敛缓慢。 你可以试验SIMPLEC方法,应该会收敛快些。 在计算模拟中,continuity总不收敛,除了加密网格,还有别的办法吗?别的条件都已经收敛了,就差它自己了,还有收敛的标准是什么?是不是到了一定的尺度就能收敛了,比如10-e5具体的数量级就收敛了 continuity是质量残差,具体是表示本次计算结果与上次计算结果的差别,如果别的条件收敛了,就差它。可以点report,打开里面FLUX选项,算出进口与出口的质量流量差,看它是否小于0.5%.如果小于,可以判断它收敛. (2) fluent残差曲线图中continuity是什么含义? 是质量守恒方程的反映,也就是连续性的残差。这个收敛的快并不能说明你的计算就一定正确,还要看动量方程的迭代计算。表示某次迭代与上一次迭代在所有cells积分的差值,continuty表示连续性方程的残差 (3) 正在学习Fluent,模拟圆管内的流动,速度入口,出口outflow 运行后xy的速度很快就到1e-06了,但是continuity老是降不下去,维持在1e-00和1e-03之间,减小松弛因子好像也没什么变化大家有什么建议吗? 你查看了流量是否平衡吗?在report->flux里面操作,mass flow rate,把所有进出口都选上,compute一下,看看nut flux是什么水平,如果它的值小于总

fluent收敛方案仅供参考

Continuity收敛问题 FLUENT求解器设置 FLUENT求解器设置主要包括:1、压力-速度耦合方程格式选择2、对流插值 3、梯度插值 4、压力插值 下面对这几种设置做详细说明。 一、压力-速度耦合方程求解算法 FLUENT中主要有四种算法:SIMPLE,SIMPLEC,PISO,FSM (1)SIMPLE(semi-implicit method for pressure-linked equations)半隐式连接压力方程方法,是FLUENT的默认格式。 (2)SIMPLEC(SIMPLE-consistent)。对于简单的问题收敛非常快速,不对压力进行修正,所以压力松弛因子可以设置为1 (3)Pressure-Implicit with Splitting of Operators (PISO)。对非定常流动问题或者包含比平均网格倾斜度更高的网格适用 (4)Fractional Step Method (FSM)对非定常流的分步方法。用于NITA格式,与PISO具有相同的特性。 二、对流插值(动量方程) FLUENT有五种方法:一阶迎风格式、幂率格式、二阶迎风格式、MUSL三阶格式、QUICK格式 (1)FLUENT默认采用一阶格式。容易收敛,但精度较差,主要用于初值计算。(2)Power Lar.幂率格式,当雷诺数低于5时,计算精度比一阶格式要高。

(3)二阶迎风格式。二阶迎风格式相对于一阶格式来说,使用更小的截断误差,适用于三角形、四面体网格或流动与网格不在同一直线上;二阶格式收敛可能比较慢。 (4)MUSL(monotone upstream-centered schemes for conservation laws).当地3阶离散格式。主要用于非结构网格,在预测二次流,漩涡,力等时更精确。(5)QUICK(Quadratic upwind interpolation)格式。此格式用于四边形/六面体时具有三阶精度,用于杂交网格或三角形/四面体时只具有二阶精度。 三、梯度插值梯度插值主要是针对扩散项。 FLUENT有三种梯度插值方案:green-gauss cell-based,Green-gauss node-based,least-quares cell based. (1)格林-高斯基于单元体。求解方法可能会出现伪扩散。 (2)格林-高斯基于节点。求解更精确,最小化伪扩散,推荐用于三角形网格上 (3)基于单元体的最小二乘法插值。推荐用于多面体网格,与基于节点的格林-高斯格式具有相同的精度和格式。 四、压力插值压力基分离求解器主要有五种压力插值算法。 (1)标准格式(Standard)。为FLUENT缺省格式,对大表妹边界层附近的曲线发现压力梯度流动求解精度会降低(但不能用于流动中压力急剧变化的地方——此时应该使用PRESTO!格式代替) (2)PRESTO!主要用于高旋流,压力急剧变化流(如多孔介质、风扇模型等),或剧烈弯曲的区域。 (3)Linear(线性格式)。当其他选项导致收敛困难或出现非物理解时使用此格式。

FLUENT操作过程及全参数选择

振动流化床仿真操作过程及参数选择 1创建流化床模型。 根据靳海波论文提供的试验机参数,创建流化床模型。流化床直148mm 高1m开孔率9%孔径2mm在筛板上铺两层帆布保证气流均布。 因为实验机为一个圆形的流化床,所以可简化为仅二维模型。而实际实验中流化高度远小于1m甚至500mm所以为提高计算时间,可将模型高度缩为500mm由于筛板上铺设两层帆布以达到气流均分的目的,所以认为沿整个筛板的进口风速为均匀的。最终简化模型如下图所示: 上图为流化后的流化床模型,可以看出流化床下端的网格相对上端较密,因为流化行为主要发生的流化床下端,为了加快计算时间,所以采用这种下密上疏的划分方式。其中进口设置为velocity inlet ;出口设置为outflow ;左右两边分为设置为wall。在GAMBIT中设置完毕后,输出二维模型vfb.msh。 outflow 边界条件不需要给定任何入口的物理条件,但是应用也会有限制,大致为以下四点: 1.只能用于不可压缩流动

2.出口处流动充分发展 3.不能与任何压力边界条件搭配使用(压力入口、压力出口) 4.不能用于计算流量分配问题(比如有多个出口的问题) 2 打开FLUENT 6326,导入模型vfb.msh 点击GRID—CHECK检查网格信息及模型中设置的信息,核对是否正确,尤其查看是否出现负体积和负面积,如出现马上修改。核对完毕后,点击GRID-SCAL弹出SCALEGRID窗口,设置单位为mm 并点击change length unit 按钮。具体设置如下: 3设置求解器 保持其他设置为默认,更改TIME为unsteady,因为实际流化的过程是随时间变化的。 (1)pressure based 求解方法在求解不可压流体时,如果我们联立求解 从动量方程和连续性方程离散得到的代数方程组,可以直接得到各速

fluent经验之谈(过来人的总结)(可编辑修改word版)

continuity 不收敛的问题 (1)连续性方程不收敛是怎么回事? 在计算过程中其它指数都收敛了,就 continuity 不收敛是怎么回事。 这和 fluent 程序的求解方法 SIMPLE 有关。SIMPLE 根据连续方程推导出压力修正方法 求解压力。由于连续方程中流场耦合项被过渡简化,使得压力修正方程不能准确反映流场 的变化,从而导致该方程收敛缓慢。 你可以试验 SIMPLEC 方法,应该会收敛快些。 在计算模拟中,continuity 总不收敛,除了加密网格,还有别的办法吗?别的条件都 已经收敛了,就差它自己了,还有收敛的标准是什么?是不是到了一定的尺度就能收敛了, 比如10-e5具体的数量级就收敛了 continuity 是质量残差,具体是表示本次计算结 果与上次计算结果的差别,如果别的条件收敛了,就差它。可以点 report,打开里面 FLUX 选项,算出进 口与出口的质量流量差,看它是否小于0.5%.如果小于,可以判断它收敛. (2)fluent 残差曲线图中 continuity 是什么含义? 是质量守恒方程的反映,也就是连续性的残差。这个收敛的快并不能说明你的计算就一定 正确,还要看动量方程的迭代计算。表示某次迭代与上一次迭代在所有 cells 积分的差值,continuty 表示连续性方程的残差 (3)正在学习 Fluent,模拟圆管内的流动,速度入口,出口 outflow 运行后 xy 的速度很快 就到1e-06了,但是 continuity 老是降不下去,维持在1e-00和1e-03之间,减小松弛因子 好像也没什么变化大家有什么建议吗? 你查看了流量是否平衡吗?在 report->flux 里面操作,mass flow rate,把所有进出 口都选上,compute 一下,看看 nut flux 是什么水平,如果它的值小于总进口流量的1%,

学习fluent(流体常识及软件计算参数设置)

luent 中一些问题( 目录) 1 如何入门 2 CFD 计算中涉及到的流体及流动的基本概念和术语 2.1 理想流体( Ideal Fluid )和粘性流体( Viscous Fluid ) 2.2 牛顿流体( Newtonian Fluid )和非牛顿流体( non-Newtonian Fluid ) 2.3 可压缩流体( Compressible Fluid )和不可压缩流体( Incompressible Fluid ) 2.4 层流( Laminar Flow )和湍流( Turbulent Flow ) 2.5 定常流动( Steady Flow )和非定常流动( Unsteady Flow ) 2.6 亚音速流动(Subsonic) 与超音速流动( Supersonic ) 2.7 热传导( Heat Transfer )及扩散( Diffusion ) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同? 3.1 离散化的目的 3.2 计算区域的离散及通常使用的网格 3.3 控制方程的离散及其方法 3.4 各种离散化方法的区别 4 常见离散格式的性能的对比(稳定性、精度和经济性) 5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么? 6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难? 6.1 可压缩Euler 及Navier-Stokes 方程数值解 6.2 不可压缩Navier-Stokes 方程求解 7 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别? 9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解? 10在GAMBIT中显示的“check主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节? 11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢? 12 在设置GAMBIT 边界层类型时需要注意的几个问题:a 、没有定义的边界线如何处理? b、计算域内的内部边界如何处理( 2D)? 13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪 些? 14 20 何为流体区域( fluid zone )和固体区域( solid zone )?为什么要使用区域的概念?FLUENT 是怎样使用区域的? 15 21 如何监视FLUENT 的计算结果?如何判断计算是否收敛?在FLUENT 中收敛准则是 如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收

FLUENT收敛的判别

判断计算是否收敛,没有一个通用的方法。通过残差值判断的方法,对一些问题或许很有效,但在某些问题中往往会得出错误的结论。因此,正确的做法是,不仅要通过残差值,也要通过监测所有相关变量的完整数据,以及检查流入与流出的物质和能量是否守恒的方法来判断计算是否收敛。 1、监测残差值。 在迭代计算过程中,当各个物理变量的残差值都达到收敛标准时,计算就会发生收敛。Fluent 默认的收敛标准是:除了能量的残差值外,当所有变量的残差值都降到低于10-3 时,就认为计算收敛,而能量的残差值的收敛标准为低于10-6。 2、计算结果不再随着迭代的进行发生变化。 有时候,因为收敛标准设置得不合适,物理量的残差值在迭代计算的过程中始终无法满足收敛标准。然而,通过在迭代过程中监测某些代表性的流动变量,可能其值已经不再随着迭代的进行发生变化。此时也可以认为计算收敛。 3、整个系统的质量,动量,能量都守恒。 在Flux Reports 对话框中检查流入和流出整个系统的质量,动量,能量是否守恒。守恒,则计算收敛。不平衡误差少于0.1%,也可以认为计算是收敛的。 1.我一般首先是改变初值,尝试不同的初始化,事实上好像初始化很 关键,对于收敛~ 2.FLUENT的收敛最基础的是网格的质量,计算的时候看怎样选择CFL数,这个*经验 3.首先查找网格问题,如果问题复杂比如多相流问题,与模型、边界、初始条件都有关系。 4.边界条件、网格质量 5.有时初始条件和边界条件严重影响收敛性,我曾经作过一个计算反反复复,通过修改网格,重新定义初始条件,包括具体的选择的模型,还有老师经常用的方法就是看看哪个因素不收敛,然后寻找和它有关的条件,改变相应参数。就收敛了 6.A.检查是否哪里设定有误. 比方用mm的unit建构的mesh,忘了scale... 比方给定的b.c.不合里... B.从算至发散前几步,看presure分布,看不出来的话,再算几步, 看看问题大概出在那个区域,连地方都知道的话,应该不难想出问题所在. C.网格,配合第二点作修正, 或是认命点,就重建个更漂亮的,或是更粗略的来除错... D.再找不出来的话,我会换个solver... 7.我解决的办法是设几个监测点,比如出流或参数变化较大的地方,若这些地方的参数变化很小,就可以认为是收敛了,尽管此时残值曲线还没有降下来。 8.记得好像调节松弛因子也能影响收敛,不过代价是收敛速度。 9.网格有一定的影响,最主要的还是初始和边界条件

Fluent 收敛判据

Fluent中判断收敛的方法 FLUENT中判断收敛的方法 判断计算是否收敛,没有一个通用的方法。通过残差值判断的方法,对一些问题或许很有效,但在某些问题中往往会得出错误的结论。因此,正确的做法是,不仅要通过残差值,也要通过监测所有相关变量的完整数据,以及检查流入与流出的物质和能量是否守恒的方法来判断计算是否收敛。 1、监测残差值。 在迭代计算过程中,当各个物理变量的残差值都达到收敛标准时,计算就会发生收敛。Fluent默认的收敛标准是:除了能量的残差值外,当所有变量的残差值都降到低于10-3 时,就认为计算收敛,而能量的残差值的收敛标准为低于10-6。 2、计算结果不再随着迭代的进行发生变化。 有时候,因为收敛标准设置得不合适,物理量的残差值在迭代计算的过程中始终无法满足收敛标准。然而,通过在迭代过程中监测某些代表性的流动变量,可能其值已经不再随着迭代的进行发生变化。此时也可以认为计算收敛。 3、整个系统的质量,动量,能量都守恒。 在Flux Reports对话框中检查流入和流出整个系统的质量,动量,能量是否守恒。守恒,则计算收敛。不平衡误差少于0.1%,也可以认为计算是收敛的。 FLUENT中残差的概念 残差是cell各个face的通量之和,当收敛后,理论上当单元内没有源项使各个面流入的通量也就是对物理量的输运之和应该为零。最大残差或者RSM残差反映流场与所要模拟流场(只收敛后应该得到的流场,当然收敛后得到的流场与真实流场之间还是存在一定的差距)的残差,残差越小越好,由于存在数值精度问题,不可能得到0残差,对

于单精度计算一般应该低于初始残差1e-03以下才好,当注意具体情况,看各个项的收敛情况(比方说连续项不易收敛而能量项容易)。 一般在FLUENT中可以进行进出口流量监控,当残差收敛到一定程度后,还要看进出口流量是否稳定平衡,才可确定收敛与否(翼型计算时要监控升阻力的平衡)。 残差在较高位震荡,需要检查边界条件是否合理,其次检查初始条件是否合理,比如激波的流场,初始条件的不合适会造成流场的振荡。有时流场可能有分离或者回流,这本身是非定常现象,计算时残差会在一定程度上发生振荡,这是如果进出口流量是否达到稳定平衡,也可以认为流场收敛。另外fluent缺省 采用多重网格,在计算后期将多从网格设置为0可以避免一些波长的残差在细网格上发生震荡。 ----------------------------------------------------------------------------------------------------------------- FLUENT不收敛通常的解决方式 ①、一般首先是改变初值,尝试不同的初始化,事实上好像初始化很关键,对于收敛。 ②、FLUENT的收敛最基础的是网格的质量,计算的时候看怎样选择CFL数,这个靠经验。 ③、首先查找网格问题,如果问题复杂比如多相流问题,与模型、边界、初始条件都有关系。 ④、有时初始条件和边界条件严重影响收敛性,曾经作过一个计算反反复复,通过修改网格,重新定义初始条件,包括具体的选择的模型,还有老师经常用的方法就是看看哪个因素不收敛,然后寻找和它有关的条件,改变相应参数。就收敛了。 ⑤、A.检查是否哪里设定有误:比方用mm的unit建构的mesh,忘了scale;比方给定的边界条件不合理。B从算至发散前几步,看presure 分布,看不出来的话,再算几步, 看

相关文档
最新文档