第五章 代数特征值问题

线性代数第五章(答案)

第五章 相似矩阵及二次型 一、 是非题(正确打√,错误打×) 1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. ( √ ) 2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. ( √ ) 3.n 阶正交阵A 的n 个行(列)向量构成向量空间n R 的一个规范正交基. ( √ ) 4.若A 和B 都是正交阵,则AB 也是正交阵. ( √ ) 5.若A 是正交阵, Ax y =,则x y =. ( √ ) 6.若112???=n n n n x x A ,则2是n n A ?的一个特征值. ( × ) 7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. ( × ) 8.n 阶矩阵A 在复数范围内有n 个不同的特征值. ( × ) 9. 矩阵A 有零特征值的充要条件是0=A . ( √ ) 10.若λ是A 的特征值,则)(λf 是)(A f 的特征值(其中)(λf 是λ的多项式). ( √ ) 11.设1λ和)(212λλλ≠是A 的特征值, 1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. ( × ) 12. T A 与A 的特征值相同. ( √ ) 13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. ( × )

14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足: B PAP =-1,则A 与B 有相同的特征值. ( √ ) 15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. ( √ ) 16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. ( √ ) 17.实对称矩阵A 的非零特征值的个数等于它的秩. ( √ ) 18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. ( √ ) 19.实对称阵A 与对角阵Λ相似Λ=-AP P 1,这里P 必须是正交阵 。 ( × ) 20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. ( √ ) 21.任一实对称矩阵合同于一对角矩阵。 ( √ ) 22.二次型 Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为 标准型. ( × ) 23.任给二次型 Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化 为规范型。 ( × )

(完整版)线性代数第五章特征值、特征向量试题及答案

第五章 特征值和特征向量 一、特征值与特征向量 定义1:设A 是n 阶矩阵,λ为一个数,若存在非零向量α,使λαα=A ,则称数λ为矩阵A 的特征值,非零向量α为矩阵A 的对应于特征值λ的特征向量。 定义2:()E A f λλ-=,称为矩阵A 的特征多项式, )(λf =0E A λ-=, 称为矩阵A 的特征方程,特征方程的根称为矩阵A 的特征根 矩阵E A λ-称为矩阵A 的特征矩阵 齐次方程组(0)=-X E A λ称为矩阵A 的特征方程组。 性质1:对等式λαα=A 作恒等变形,得(0)=-αλE A ,于是特征向量α 是齐次方程组(0)=-X E A λ的非零解向量,由齐次线性方程组有非零解的充要条件知其系数行列式为零,即0=-E A λ,说明A 的特征值λ为 0E A λ-=的 根。 由此得到对特征向量和特征值的另一种认识: (1)λ是A 的特征值?0=-E A λ,即(λE -A )不可逆.(2)α是属于λ的特征向量?α是齐次方程组(0)=-X E A λ的非零解. 计算特征值和特征向量的具体步骤为: (1)计算A 的特征多项式, ()E A f λλ-=(2)求特征方程)(λf =0E A λ-=的全部根,他们就是A 的全 部特征值;(3)然后对每个特征值λ,求齐次方程组(0)=-X E A λ的非零解,即属于λ的特征向量. 性质2:n 阶矩阵A 的相异特征值m λλλΛΛ21,所对应的特征向量 21,ξξ……ξ线性无关 性质3:设λ1,λ2,…,λn 是A 的全体特征值,则从特征多项式的结构可得到: (1)λ1+λ2+…+λ n =tr(A )( A 的迹数,即主对角线上元素之和). (2)λ1λ2…λn =|A |. 性质4:如果λ是A 的特征值,则 (1)f(λ)是A 的多项式f(A )的特征值. (2)如果A 可逆,则1/λ是A -1的特征值; |A |/λ是A *的特征值. 即: 如果A 的特征值是λ1,λ2,…,λn ,则 (1)f(A )的特征值是f(λ1),f(λ2),…,f(λn ). (2)如果A 可逆,则A -1的特征值是1/λ1,1/λ2,…,1/λn ; 因为A AA =*, A *的特征值是|A |/λ1,|A |/λ2,…,|A |/λn . 性质5:如果α是A 的特征向量,特征值为λ,即λαα=A 则 (1)α也是A 的任何多项式f(A )的特征向量,特征值为f(λ); (2)如果A 可逆,则α也是A -1的特征向量,特征值为1/λ;α也是A *的特征向量,特征值为|A |/λ 。 1122 ,.m m A k kA a b aA bE A A A A A λλλλλλ-*??++????? ????是的特征值则:分别有特征值 α是A 关于λ的特征向量,则α也是上述多项式的特征向量。 推论:(1)对于数量矩阵λE ,任何非零向量都是它的特征向量,特征值都是λ. (2)上三角、下三角、对角矩阵的特征值即对角线上的各元素. (3)n 阶矩阵A 与他的转置矩阵T A 有相同的特征多项式,从而有相同的特征值,但是它们的特征向量可能不相同.

线性代数第五章 课后习题及解答

第五章课后习题及解答 1. 求下列矩阵的特征值和特征向量: (1) ;1332??? ? ??-- 解:,0731332 2=--=--=-λλλλλA I 2 373,237321-=+=λλ ,00133637123712137 1??? ? ??→→???? ??=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T - 因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T ,001336371237123712??? ? ??→→???? ??-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T +

因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T (2) ;211102113???? ? ??-- 解:2)2)(1(2 111211 3--==------=-λλλλ λλ A I 所以,特征值为:11=λ(单根),22=λ(二重根) ???? ? ??-→→????? ??------=-0001100011111121121 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T 因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T ???? ? ??-→→????? ??-----=-0001000110111221112 A I λ 所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T 因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T

第五章习题几个典型的代数系统

第五章习题几个典型的代数系统 .设A={0,1},试给出半群的运算表,其中为函数的复合运算。 .设G={a+bi|a,b∈Z},i为虚数单位,即i2=-1.验证G关于复数加法构成群。 .设Z为整数集合,在Z上定义二元运算如下: x,y∈Z,x y=x+y-2 问Z关于运算能否构成群为什么 .设A={x|x∈R∧x≠0,1}.在A上定义六个函数如下: f 1(x)=x,f 2 (x)=x-1,f 3 (x)=1-x, f 4(x)=(1-x)-1,f 5 (x)=(x-1)x-1, f 6 (x)=x(x-1)-1 令F为这六个函数构成的集合,运算为函数的复合运算。 (1) 给出运算的运算表。 (2) 验证是一个群。 .设G为群,且存在a∈G,使得 G={a k|k∈Z}, 证明G是交换群。.证明群中运算满足消去律.

.设G为群,若x∈G有x2=e,证明G为交换群。 .设G为群,证明e为G中唯一的幂等元。 .证明4阶群必含2阶元。 设A={a+bi|a,b∈Z,i2=-1},证明A关于复数的加法和乘法构成环,称为高斯整数环。 .(1) 设R 1,R 2 是环,证明R 1 与R 2 的直积R 1 ×R 2 也是环。 (2) 若R 1和R 2 为交换环和含幺环,证明R 1 ×R 2 也是交换环和含幺环。 . 判断下列集合和给定运算是否构成环、整环和域,如果不能构成,说明理由。 (1) A={a+bi|a,b∈Z},其中i2=-1,运算为复数的加法和乘法。 (2) A={-1,0,1},运算为普通加法和乘法。 (3) A=M 2 (Z),2阶整数矩阵的集合,运算为矩阵加法和乘法。 (4) A是非零有理数集合Q*,运算为普通加法和乘法。 .设G是非阿贝尔群,证明G中存在元素a和b,a≠b,且ab=ba. .设H是群G的子群,x∈G,令 xHx-1={xhx-1|h∈H}, 证明xHx-1是G的子群,称为H的共轭子群。 .设

第14章 代数系统

第14章代数系统 14.1 代数系统 1.集合A={1,2,3,4}, * 是A 上的二元运算,定义为 a * b = a ·b - b ,试写出*的运算表。 2.< Z 5,5⊕>是代数系统,其中Z 5 ={0,1,2,3,4},运算5⊕是模5加法,试写出5⊕的运算表。 3.设A={1,2,3,4,5},A 上二元运算*定义 a * b = min(a,b), 其中min(a,b)是求a 和b 的最小值,写出*的运算表。 4.< Z 3,3?>是代数系统,其中Z 3 = {0,1,2},运算3?是模3乘法,试写出3?的运算表,并求(23?2)3?2和23?(23?2)的值。

5.是代数系统,其中A={a,b,c,d,e}, 运算*由下表给出: 求(b * c) * d 和 b * (c * d)。 6.设< A, *>是代数系统,其中 A = {a,b,c,d}, *是可结合运算,且b = a 2, c = b 2, d = c 2, 证明*是可交换运算。 7.写出< Z 5,5⊕>的幺元和各元素的逆元,并求435⊕3-1。 8.写出< Z 5,5?>中的幺元和各元素的逆元(如果存在的话)。

9.设Z+是所有正整数的集合,Z+上的二元运算*定义为a*b = gcd(a,b), 其中gcd(a,b)表示a和b的最大公约数。写出代数系统< Z+, * >幺元和零元(如果存在的话)。 10.设是代数系统,其中A={a,b,c,d}, 运算*由下表给出,请指出中的幺元,零元和各元素的逆元(如果存在的话)。 11.请构造一个代数系统,除幺元外,每个元素都没有逆元。

线性代数练习册第五章题目及答案(本)复习进程

第五章 相似矩阵与二次型 §5-1 方阵的特征值与特征向量 一、填空题 1.已知四阶方阵A 的特征值为0,1,1,2,则||A E λ-= 2(1)(2)λλλ-- 2.设0是矩阵??? ? ? ??=a 01020101A 的特征值,则=a 1 3.已知三阶方阵A 的特征值为1,-1,2,则2 32B A A =-的特征值为 1,5,8 ;||A = -2 ;A 的对角元之和为 2 . 4.若0是方阵A 的特征值,则A 不可逆。 5. A 是n 阶方阵,||A d =,则*AA 的特征值是,,,d d d ???(共n 个) 二、选择题 1.设1λ,2λ为n 阶矩阵A 的特征值,1ξ,2ξ分别是A 的属于特征值1λ,2λ的特征向量,则( D ) (A )当1λ=2λ时,1ξ,2ξ必成比例 (B )当1λ=2λ时,1ξ,2ξ必不成比例 (C )当1λ≠2λ时,1ξ,2ξ必成比例 (D )当1λ≠2λ时,1ξ,2ξ必不成比例 2.设a=2是可逆矩阵A 的一个特征值,则1 A -有一个特征值等于 ( C ) A 、2; B 、-2; C 、 12; D 、-1 2 ; 3.零为方阵A 的特征值是A 不可逆的( B ) A 、充分条件; B 、充要条件; C 、必要条件; D 、无关条件;

三、求下列矩阵的特征值和特征向量 1.1221A ?? = ??? 解:A 的特征多项式为12(3)(1)2 1A E λλλλλ --==-+- 故A 的特征值为123,1λλ==-. 当13λ=时,解方程()30A E x -=. 由221132200r A E --???? -= ? ?-???? : 得基础解系111p ?? = ??? ,故1(0)kp k ≠是13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ???? += ? ????? : 得基础解系211p -?? = ??? ,故2(0)kP k ≠是21λ=-的全部特征向量. 2.100020012B ?? ?= ? ??? 解:B 的特征多项式为 2100020(1)(2)0 1 2B E λ λλλλλ --= -=--- 故B 的特征值为1231,2λλλ===. 当11λ=时,解方程()0B E x -=. 由000010010001011000r B E ???? ? ? -= ? ? ? ????? :

第五章 矩阵的特征值与特征向量 习题

第五章 矩阵的特征值与特征向量 习题 1. 试用施密特法把下列向量组正交化: (1)???? ? ??=931421111) , ,(321a a a ; (2)?????? ? ??---=011101110111) , ,(321a a a . 2. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 3. 求下列矩阵的特征值和特征向量: (1)???? ? ??----20133 5212; (2)???? ? ??633312321. 4. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 5. 设λ≠0是m 阶矩阵A m ?n B n ?m 的特征值, 证明λ也是n 阶矩阵BA 的特征值. 6. 已知3阶矩阵A 的特征值为1, 2, 3, 求|A 3-5A 2+7A |. 7. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |. 8. 设矩阵???? ? ??=50413102x A 可相似对角化, 求x . 9. 已知p =(1, 1, -1)T 是矩阵???? ? ??---=2135 212b a A 的一个特征向量.

(1)求参数a , b 及特征向量p 所对应的特征值; (2)问A 能不能相似对角化?并说明理由. 10. 试求一个正交的相似变换矩阵, 将对称阵???? ? ??----020212022化为对角阵. 11. 设矩阵????? ??------=12422421x A 与???? ? ??-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ. 12. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A . 13. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A . 14. 设???? ? ??-=340430241A , 求A 100.

线性代数第五章答案

第五章 相似矩阵及二次型 1. 试用施密特法把下列向量组正交化: (1)??? ? ??=931421111) , ,(321a a a ; 解 根据施密特正交化方法, ??? ? ??==11111a b , ??? ? ?? -=-=101] ,[],[1112122b b b a b a b , ? ?? ? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b . (2)??? ? ? ??---=011101110111) , ,(321a a a . 解 根据施密特正交化方法, ??? ? ? ??-==110111a b , ? ???? ??-=-=123131],[],[1112122b b b a b a b , ? ??? ? ??-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .

2. 下列矩阵是不是正交阵: (1)?????? ? ??-- -1 21312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵. (2)???? ?? ? ??---- --979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵. 3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为 H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为 H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵. 4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T , (AB )T (AB )=B T A T AB =B -1A -1AB =E ,

线性代数第五章作业参考答案(唐明)

第五章作业参考答案 5-2试证:()()()1231,1,0,2,1,3,3,1,2T T T ααα=-== 是3R 的一组基,并求向量()()125,0,7,9,8,13T T v v ==--- 在这组基之下的坐标。 证明:要证123,,ααα 线性无关,即证满足方程1122330k k k ααα++= 的123,,k k k 只能均是0.联立方程得 1231232 32300320k k k k k k k k ++=?? -++=??+=? 计算此方程系数的行列式123 1116003 2 -=-≠ 故该方程只有零解,即1230k k k ===,因此,123,,ααα 是3R 的一组基 设1v 在这组基下的坐标为()123,,x x x ,2v 在这组基下的坐标为()123,,y y y ,由已知得 ()()1111232 212323 3,,,,,x y v x v y x y αααααα???? ? ? == ? ? ? ? ???? 代入易解得112233233,312x y x y x y ???????? ? ? ? ?==- ? ? ? ? ? ? ? ?--????????即为1v ,2v 在这组基下的坐标。 5-5设()()()1,2,1,1,2,3,1,1,1,1,2,2T T T αβγ=-=-=--- ,求: (1 ),,,αβαγ 及,,αβγ 的范数;(2)与,,αβγ 都正交的所有向量。 解(1 ),1223111(1)6αβ=?+?-?+?-= ()()(),112112 121 αγ=?-+?--?-+?= α= = β== γ= = (2)设与,,αβγ 都正交的向量为()1234,,,T x x x x x =,则 123412341234,20 ,230,220x x x x x x x x x x x x x x x αβγ?=+-+=??=++-=??=---+=?? 解得1 43243334 4 5533x x x x x x x x x x =-?? =-+?? =??=? 令340,1x x ==得()()1234,,,5,3,0,1x x x x =- 令341,0x x ==得()()1234,,,5,3,1,0x x x x =-

线性代数第五章特征值与特征向量自测题

第五章《特征值与特征向量》自测题(100分钟) 一、填空题:(共18分,每小题3分) 1、设三阶矩阵A 的特征值为-1,1,2,则A -1的特征值为( );A *的特征值为 ( );(3E +A )的特征值为( )。 2、设三阶矩阵A =0,则A 的全部特征向量为( )。 3、若A ~E ,则A =( )。 4、已知A =??????????x 10100002与=B ???? ??????-10000002y 相似,则x =( ),y =( )。 5、设三阶实对称矩阵A 的特征值是1,2,3,矩阵A 的属于特征值1,2的特征向量分别是 1(1,1,1)T α=-,T )1,2,1(2---=α,则A 的属于特征值3的特征向量是( )。 6、设n 阶方阵A 有n 个特征值分别为2,3,4,…,n ,n +1,且方阵B 与A 相似,则 |B-E |=______________ 二、选择题(共18分,每小题3分) 1、已知三阶矩阵A 的特征值是0,-2,2,则下列结论中不正确的是 (A ) 矩阵A 是不可逆矩阵 (B ) 矩阵A 的主对角线元素之和为0 (C ) 特征值2和-2所对应的特征向量是正交的 (D ) AX =0的基础解系由一个向量组成 2、矩阵A ??????????=300 030000与矩阵( )相似。 (A )??????????000030300; (B )??????????300130010; (C )??????????300000003; (D )???? ??????310031000 3、下述结论正确的有( )。 (A )n 阶矩阵A 可对角化的充分必要条件是A 有n 个互不相同的特征值; (B )n 阶矩阵A 可对角化的必要条件是A 有n 个互不相同的特征值; (C )有相同特征值的两个矩阵一定相似; (D )相似的矩阵一定有相同的特征值。 4、下述结论正确的有( ),其中A 为n 阶矩阵。 (A )方程0)(0=-x A E λ的每一个解向量都是对应于特征值0λ的特征向量; (B )若21,αα为方程0)(0=-x A E λ的一个基础解系,则2211ααC C +(21,C C 为非 零常数)是A 的属于特征值0λ的全部的特征向量;

计算机代数系统第5章-方程求解

第五章 方程求解 1 代数方程(组)求解 1.1 常用求解工具—solve 求解代数方程或代数方程组, 使用Maple 中的solve 函数. 求解关于x 的方程eqn=0的命令格式为: solve(eqn, x); 求解关于变量组vars 的方程组eqns 的命令为: solve(eqns, vars); > eqn:=(x^2+x+2)*(x-1); := eqn () + + x 2x 2() - x 1 > solve(eqn,x); ,,1- + 1212I 7- - 1212 I 7 当然, solve 也可以求解含有未知参数的方程: > eqn:=2*x^2-5*a*x=1; := eqn = - 2x 25a x 1 > solve(eqn,x); , + 5a 14 + 25a 28 - 5a 1 + 25a 28 solve 函数的第一个参数是有待求解的方程或方程的集合, 当然也可以是单个表达式或者表达式的集合, 如下例: > solve(a+ln(x-3)-ln(x),x); 3e a - + 1e a 对于第二个参数, Maple 的标准形式是未知变量或者变量集合, 当其被省略时, 函数indets 自动获取未知变量. 但当方程中含有参数时, 则会出现一些意想不到的情况: > solve(a+ln(x-3)-ln(x));

{}, = x x = a - + ()ln - x 3()ln x 很多情况下, 我们知道一类方程或方程组有解, 但却没有解决这类方程的一般解法, 或者说没有解析解. 比如, 一般的五次或五次以上的多项式, 其解不能写成解析表达式. Maple 具备用所有一般算法尝试所遇到的问题, 在找不到解的时候, Maple 会用RootOf 给出形式解. > x^7-2*x^6-4*x^5-x^3+x^2+6*x+4; - - - + + + x 72x 64x 5x 3x 26x 4 > solve(%); + 15 - 15()RootOf , - - _Z 5_Z 1 = index 1()RootOf , - - _Z 5_Z 1 = index 2()RootOf , - - _Z 5_Z 1 = index 3,,,,, ()RootOf , - - _Z 5_Z 1 = index 4()RootOf , - - _Z 5_Z 1 = index 5, > solve(cos(x)=x,x); ()RootOf - _Z ()cos _Z 对于方程组解的个数可用nops 命令获得, 如: > eqns:={seq(x[i]^2=x[i],i=1..7)}; := eqns {},,,,,, = x 12x 1 = x 22x 2 = x 32x 3 = x 42x 4 = x 52x 5 = x 62x 6 = x 72 x 7 > nops({solve(eqns)}); 128 但是, 有时候, Maple 甚至对一些“显而易见”的结果置之不理, 如: > solve(sin(x)=3*x/Pi,x); ()RootOf - 3_Z ()sin _Z π 此方程的解为0 ,6 π±, 但Maple 却对这个超越方程无能为力, 即便使用allvalues 求解也只有下述结果: > allvalues(%); ()RootOf , - 3_Z ()sin _Z π0. 另外一个问题是, Maple 在求解方程之前,会对所有的方程或表达式进行化简, 而不管表达式的类型, 由此而产生一些低级的错误: > (x-1)^2/(x^2-1); () - x 12 - x 21 > solve(%); 1

线性代数学习指导第五章矩阵的特征值与特征向量

第五章 矩阵的特征值与特征向量 一.内容提要 1 . 特征值和特征向量 定义1 设() ij n n A a ?=是数域P 上的n 阶矩阵,若对于数域P 中的数λ,存在数域P 上 的非零n 维列向量X ,使得 X AX λ= 则称λ为矩阵A 的特征值,称X 为矩阵A 属于(或对应于)特征值λ的特征向量 注意:1)() ij n n A a ?=是方阵; 2)特征向量 X 是非零列向量; 3)方阵 () ij n n A a ?= 与特征值 λ 对应的特征向量不唯一 4)一个特征向量只能属于一个特征值. 2.特征值和特征向量的计算 计算矩阵A 的特征值与特征向量的步骤为: (1) 计算n 阶矩阵A 的特征多项式|λE -A |; (2) 求出特征方程|λE -A |=0的全部根,它们就是矩阵A 的全部特征值; (3) 设λ1 ,λ2 ,… ,λs 是A 的全部互异特征值。 对于每一个λi ,解齐次线性方程组()i E A X λ-=0,求出它的一个基础解系,该基础解系的向量就是A 属于特征值λi 的线性无关的特征向量,方程组的全体非零解向量就是A 属于特征值λi 的全体特征向量. 3. 特征值和特征向量的性质 性质1 (1)若X 是矩阵A 属于特征值λ的特征向量,则kX (0k ≠)也是A 属于λ的特 征向量; (2)若12,, ,s X X X 是矩阵A 属于特征值λ的特征向量,则它们的非零线性组合 1122s s k X k X k X +++也是A 属于λ的特征向量; (3)若A 是可逆矩阵,λ是A 的一个特征值,则 λ 1是A — 1的一个特征值,λ||A 是 A *的一个特征值; (4)设λ是n 阶矩阵A 的一个特征值,f (x )= a m x m + a m-1x m -1 + … + a 1x + a 0 为一个多项式,则()f λ是f (A )的一个特征值。 性质2(1) nn n a a a +???++=+???++221121λλλ (2) || 21A n =???λλλ

离散数学 代数系统

第三部分:代数系统 1.在代数系统,S *中,若一个元素的逆元是唯一的,其运算*必定可结合。( ) 2.每一个有限整环一定是域,反之也对。( ) 3.任何循环群必定是阿贝尔群,反之亦真。( ) 4.设(),A ∧∨是布尔代数,则(),A ∧∨一定为有补分配格。( ) 5.设Q 为有理数集,Q 上运算*定义为max(,)a b a b *=,则 ,Q * 是半群。( ) 6.阶数为偶数的有限群中,周期为2的元素的个数一定为偶数。( ) 7.群中可以有零元(对阶数大于一的群)。( ) 8.循环群一定是阿贝尔群。( ) 9.每一个链都是分配格。( ) 1. 对自然数集合N ,哪种运算不是可结合的,运算定义为任,a b N ∈ ( ) A. min(,)a b a b *= B. 2a b a b *=+ C. 3a b a b *=+- D. a b a b *=+ (mod 3) 2. 任意具有多个等幂元的半群,它 ( ) A. 不能构成群 B. 不一定能构成群 C. 不能构成交换群 D. 能构成交换群 3. 循环群33,Z +的生成元为[][]1,2,它们的周期为 ( ) A. 5 B. 6 C. 3 D. 9 4. 设是环,则下列正确的是 ( ) A. 是交换群 B. 是加法群 C. 对*是可分配的 D. *对 是可分配的 5. 下面集合哪个关于减法运算是封闭的 ( ) A. N B. {2|}x x I ∈ C. {21|}x x I +∈ D. {x |x 是质数} 6. 具有如下定义的代数系统,G ?*?,哪个不构成群 ( ) A. G={1,10},*是模11乘 B. G={1,3,4,5,9},*是模11乘 C. G =Q(有理数集),*是普通加法 D. G =Q(有理数集),*是普通乘法 7. 设G ={23|,m n m n I *∈},*为普通乘法.则代数系统,G ?*?的么元为 ( ) A.不存在 B. e =0023? C. e =2×3 D. e =1123--? 8. 任意具有多个等幂元的半群,它( A ) A. 不能构成群 B. 不一定能构成群 C. 必能构成群 D. 能构成交换群 9. 在自然数集N 上,下面哪个运算是可结合的,对任意a ,b N ∈ ( ) A. a b a b *=- B. max(,)a b a b *= C. 5a b a b *=+ D. ||a b a b *=-

第5章代数系统的一些性质

第五章代数系统的一般性质 代数的概念与方法是研究计算机科学和工程的重要数学工具。众所周知,在许多实际问题的研究中都离不开数学模型,而构造数学模型就要用到某种数学结构,而近世代数研究的中心问题是代数系统的结构:半群、群、格与布尔代数等等。近世代数的基本概念、方法和结果已成为计算机科学与工程领域中研究人员的基本工具。在研究形式语言与自动机理论、编码理论、关系数据库理论、抽象数据类型理论中,在描述机器可计算的函数、研究计算复杂性、刻画抽象数据结构、研究程序设计学中的语义学、设计逻辑电路中有着十分广泛的应用。 5.1 代数运算及其性质 5.1.1代数运算的定义 定义5.1.1 设S是一个非空集合, (1)函数f:S→S,称为一个S上的一个一元运算。 (2)函数f:S?S→S,称为一个S上的一个二元运算。 记号: f(x,y)=z, xfy=z x y=z (3)函数f:S?S?…?S →S,称为一个S上的一个n元运算。 [例5.1.1](1)数理逻辑中的联结词;集合论中的并运算、交运算和补运算;整数集中的加法、减法和乘法运算都是相应集合上的运算. (2)但Z中的除法不是一个二元运算。 (3) 在Z商定义x*y=x+y-2,则*是一个二元运算。 当S是有限集时,S上的一元、二元运算可用运算表来定义。 定义5.1.2 设 是集合S上的n元运算,S是S的一个非空子集。若对?x1,x2,…,x n∈S,有 (x 1,x 2,…,x n)∈S,则称S关于运算 是封闭的。 [例5.1.2]实数集关于数的普通除法是封闭的,整数集关于数的普通加法不是封闭的。

5.1.2代数运算的性质 定义5.1.3 设*是集合S上的二元运算。若?x,y∈S,x*y=y*x, 则称运算*满足交换律(或称*是可交换的)。 定义5.1.4 设*是集合S上的二元运算。若?x,y,z∈S,(x*y)*z = x*(y*z),则称运算*满足结合律(或称*是可结合的)。 定义5.1.5 设*是集合S上的二元运算。若?x∈S,x*x = x,则称运算*满足幂等律。定义5.1.8 设*和 是集合S上的二元运算。若?x,y,z∈S, x*(y z)=(x*y) x*z), (y z)*x =(y*x) (z*x), 则称*关于 满足分配律。 定义5.1.9设*和 是集合S上的二元运算。若?x,y∈S, x*(x y)=x x (x*y)=x 则称*关于 满足分配律。 [例5.1.3]R上的加法和乘法运算是可交换的,也是可结合的;但减法却是不可交换和 不可结合的;乘法关于加法是可分配的,但加法关于乘法则是不可分配的。任一集合的幂集 上的并和交运算是可交换和可结合的,并且它们是相互可分配的。 注:若运算*是可结合的,则有时我们简称*为乘法,而把x*y简记为xy,称为x 与y的积。 5.1.3特殊元素:单位元、零元、逆元 定义5.1.10 设*是集合S上的二元运算。 (1)若e l∈S,使得?x∈S,有e l*x=x,则称e l是关于运算*的左单位元(左么元); (2)若e r∈S,使得?x∈S,有x*e r=x,则称e r是关于运算*的右单位元(右么元); (3)若e∈S,使得?x∈S,有e*x=x*e=x,则称e是关于运算*的单位元(么元)。 定理5.1.3 设*是集合S上的二元运算,且e l,e r分别为关于运算*的左和右么元,则

线性代数第五章习题答案

思考题5-1 1. 1123123100,000=?+?+?=?+?+?a a a a 0a a a . 2.不一定。例如,对于123101,,012?????? ===???????????? a a a ,它们中的任两个都线性无关,但 是123,,a a a 是线性相关的。 3. 不一定。也可能是2a 能由13,a a 线性表示,还可能是3a 能由12,a a 线性表示。 4. 不一定。例如,对于12121100,;,0012-???????? ====???????????????? a a b b 。12,a a 和12,b b 这两个 向量组都线性相关,但1122,++a b a b 却是线性无关的。 5. 向量组121,,,,n n +a a a a 线性无关。根据定理5-4用反证法可以证明这一结论。 习题5-1 1.提示:用行列式做。 (1)线性无关。 (2)线性相关。. 2. 0k ≠且1k ≠。 3.证:1212,,,1,,,,n n ==∴e e e E e e e 线性无关。 设[]12,,,,T n b b b =b 则1122.n n b b b =+++b e e e 4. 证法1:因为A 可逆,所以方程组=Ax b 有解。根据定理5-1,向量b 能由A 的列向量组12,,,n a a a 线性表示,所以向量组12,,,,n a a a b 线性相关. 证法2:通过秩或根据m n >时m 个n 元向量一定线性相关也可马上证明。 5. .证: (1)因为A 的列向量组线性相关,所以齐次线性方程组=Ax 0有非零解,设≠u 0是它的非零解,则.=Au 0 由=B PA ,得.=Bu 0可见=Bx 0有非零解,所以B 的列向量组线性相关。 (2)若P 可逆,则1-=A P B 。由(1)的结论可知,B 的列向量组线性相关时,A 的列向量组也线性相关,所以A 和B 的列向量组具有相同的线性相关性。 注:该题也可根据性质5-6和性质5-3来证明。 6. 证:由A 可逆知,A 的列向量组线性无关。根据定理5-6,增加两行后得到的矩阵B 的列向量组也线性无关.

第五章部分答案

5.2 设S=Q×Q,其中Q为有理数集合。定义S上的二元运算*, ?,∈S有 *= 则(1)<3,4>=则[A],<-1,3>*<5,2>=[B]. (2)是[D]. (3)的幺元是[D]. (4)[E]. 供选择的答案 A、B:① <3,10>; ②<3,8>; ③ <-5,1>. C:④可交换的;⑤可结合的;⑥不是可交换的,也不是可结 合的. D:⑦ <1,0>;⑧ <0,1>. E:⑨只有唯一的逆元;⑩ a≠0时,元素有逆元。 答案:A=①;B=③;C=⑤;D=⑦;E=⑩ 5.3 R为实数集,定义以下6个函数f1 , f2 , ……,f6 , ?x,y ∈R 有 f1()=x+y, f2()=x-y, f3()=xy, f4()=max{x,y}, f5()=min{x,y}, f6()=|x-y|. 那么,其中有A个是R上的二元运算,有B个是可交换的,C个是

可结合的,D个是有幺元的,E个是有零元的。 供选择的答案 A、B、C、D、E:①0;②1;③2;④3;⑤4;⑥5;⑦6. 解:f1()=x+y, :是二元运算,可交换,可结合,有幺元0,没有零元. f2()=x-y, :是二元运算,不可交换,不可结合,有右幺元0,没有零元. f3()=xy :是二元运算,可交换,可结合,有幺元1,有零元0. f4()=max{x,y},:是二元运算,可交换,可结合,没有幺元,没有零元. f5()=min{x,y}, :是二元运算,可交换,可结合,没有幺元,没有零元. f6()=|x-y|. :是二元运算,可交换,不可结合,有幺元0,没有零元. 5.5设V={R+,?},其中?为普通乘法。对任意x∈R+令φ1(x)=?x?. φ2(x)=2x. φ3(x)=x?x. φ4(x)=1/x. φ5(x)=-xi.其中有④个是V的自同态,它们是⑨,有①个是单自同态,而不是满自同态,①个是满自同态,而不是单自同态,④个是自同构。 供选择的答案 A、C、D、E:①0;②1;③2;④3;⑤4;⑥5。 B:⑦φ1,φ2,φ3;⑧φ1,φ3;⑨φ1,φ3,φ4;⑩φ1,φ2,φ3,φ4 5.6 设V=,其中+为普通加法。?x ∈Z令1?(x)=x,2?(x)=0,3?(x)=x+5, ?(x)=2x, 5?(x)=x 6?(x)=-x,则1?, ……,6?中1,2,4,6是V的自同态,其中4,4 2 不是V的字同构,4只是单字同态,不是满自同态,没有函数是满自同态,不是单自同态。零同态的同态像是<{0},+>. 5.7 (1)是 (2)不是 (3)不是 (4)是

居于马线性代数第五章答案

第五章 特征值和特征向量 矩阵的对角化答案 1.求下列矩阵的特征值和特征向量: (1) 2331-?? ?-?? (2) 311201112-?? ? ? ?-?? (3) 200111113?? ? ? ?-?? (4) 1234012300120001?? ? ? ? ??? (5) 452221111-?? ?-- ? ?--?? (6) 220212020-?? ?-- ? ?-?? 【解析】(1) 令2331A -??= ?-?? ,则矩阵A 的特征方程为 故A 的特征值为123322λλ+= =。 当132 λ+=时,由1()0I A x λ-=,即 得其基础解系为(16,1T x =-,因此,11k x (1k 为非零任意常数)是A 的对应 于132 λ=的全部特征向量。 当2λ=时,由2()0I A x λ-=,即 得其基础解系为(26,1T x =,因此,22k x (2k 为非零任意常数)是A 的对应于2λ=的全部特征向量。 (2) 令3112 01112A -?? ?= ? ?-?? ,则矩阵A 的特征方程为 故A 的特征值为121,2λλ==(二重特征值)。 当11λ=时,由1()0I A x λ-=,即 得其基础解系为()10,1,1T x =,因此,11k x (1k 为非零任意常数)是A 的对应于11λ=的全部

特征向量。 当22λ=时,由2()0I A x λ-=,即 得其基础解系为()21,1,0T x =,因此,22k x (2k 为非零任意常数)是A 的对应于22λ=的全部特征向量。 (3) 令200111113A ?? ?= ? ?-?? ,则矩阵A 的特征方程为 故A 的特征值为2λ=(三重特征值)。 当2λ=时,由()0I A x λ-=,即 得其基础解系为()()121,1,0,0,1,1T T x x ==,因此,A 的对应于2λ=的全部特征向量为1122k x k x +(其中12,k k 为不全为零的任意常数)。 (4) 令1234012300120001A ?? ? ?= ? ??? ,则矩阵A 的特征方程为 故A 的特征值为1λ=(四重特征值)。 当1λ=时,由()0I A x λ-=,即 得其基础解系为()1,0,0,0T x =,因此,kx (k 为非零任意常数)是A 的对应于1λ=的全部特征向量。 (5) 令45222 1111A -?? ?=-- ? ?--?? ,则矩阵A 的特征方程为 故A 的特征值为1λ=(三重特征值)。 当1λ=时,由()0I A x λ-=,即 得其基础解系为()1,1,1T x =-,因此,kx (k 为非零任意常数)是A 的对应于1λ=的全部特征向量。 (6) 令2202 12020A -?? ?=-- ? ?-?? ,则矩阵A 的特征方程为 按沙路法(课本P2),得 故A 的特征值为1231,4,2λλλ===-。

代数结构

1、设二元运算x y x = ,则它满足( ) A.交换律 B. 吸收律 C. 幂等律 D. 消去律 2、在正整数集上定义二元运算y x y x = ,则它满足( ) A.交换律 B. 结合律 C.幂等律 D. 消去律 3、设Z 是整数集,在Z 上定义二元运算y y x = ,则它满足( ) A.交换律、幂等律 B. 结合律、幂等律 C.幂等律、消去律 D. 消去律、结合律 4、Z 是整数集,定义Z 上的二元运算,x y x Z y x =∈? ,,,则该运算不满足...交换律、结合律、幂等律中的 律。 5 设R 为实数集,定义R 上4个二元运算,不满足... 结合律的是( )。 A.y x y x -= B. 2++=y x y x C.},min{y x y x = D. },max{y x y x = 6、S=Q ×Q,其中Q 为有理数集合,定义S 上的二元运算*,?,∈S *=,则<3,4>*<1,2>= 。 7、 设Z 为整数集,定义Z 上4个二元运算,有单位元的是( )。 A.y x y x -= B. y x y x += C.},min{y x y x = D. },max{y x y x = 8、设A={a,b,c},则代数系统>?<),(A P 的单位元和零元是( ) 9、设A={1,2},则群>?<),(A P 的单位元和零元是( ) A. Φ与A B. A 与Φ C. {1}与Φ D. {1}与A 10、设A={a,b,c},则代数系统>< ),(A P 的单位元...和零元.. 是( ) A. Φ与A B. A 与Φ C. {1}与Φ D. {1}与A 11、〈4Z ,⊕〉模4加群, 则3是 阶元, 12、〈4Z ,⊕〉模4加群, 则2 ⊕2⊕1= 。

相关文档
最新文档