SAR图像相干斑滤波算法及评价

SAR图像相干斑滤波算法及评价
SAR图像相干斑滤波算法及评价

SAR 图像相干斑滤波算法及评价

目前已有大量的雷达相干斑抑制算法,这些算法可分为成像前的多视平滑预处理和成像后的滤波两大类。而成像后的滤波又包括空域滤波和频域滤波两种。 为了减少相干斑噪声,早期的方法是在SAR 成像处理中,通过降低处理器带宽形成多视图子图像,然后对多视子图像进行非相干叠加来降低相干斑噪声。这种非相干叠加来降低斑点噪声的方法称为多视处理。多视处理通过牺牲SAR 图像的空间分辨率为代价来对相干斑进行抑制,已不能满足空间高分辨率的要求。空域滤波方法是利用图像像素的空间相关性对相干斑进行滤波,一般是利用一个滑动窗口,然后对窗口内的像素进行加权得到窗口中心点的像素值。频域的方法主要是利用小波变换,比较著名的有小波软阈值方法,基于小波变换和多尺度分析的滤波方法。

本文研究SAR 图像边缘检测,采用了局域统计自适应滤波算法,因为该方法考虑了图像的不均匀性,以局域的灰度统计特性为基础来决定参与滤波的邻域像素点及其权值,能在平滑噪声的同时较有效的保持明显的边缘,而且能通过参数控制来调整平滑效果和边缘保持效果之间的权衡。本文采用了增强Lee 滤波算法, Kuan 滤波算法,Frost 滤波算法,最大后验概率(MAP )滤波算法,边缘保持最优化(Edge Preserving Optimized Speckle ,EPOS )滤波算法等。

1.传统滤波方法

传统滤波算法包括均值滤波、中值滤波等。这类算法的特点是直接对图像进行处理,没有考虑任何噪声模型,也没有考虑噪声的统计特性。这些算法实现起来比较简单,但效果不太理想。它们计算简单,速度快,均匀区域的斑点噪声去除效果较好。缺点是细节保持得不好,图像边缘变模糊,点目标损失大,随着处理窗口的增大,图像的整体模糊和分辨率下降更严重。正是由于这两种传统滤波算法不适合相干斑噪声的乘性特点,实际中较少采用。

1.1 均值滤波

均值滤波是将平滑窗口内所有像元的灰度值进行平均计算,然后赋给平滑窗口的中心像元,其数学表达式为:

∑∑===n i n j j i j i DN n R 11

,2,1 (1) 式中,j i R ,为滤波后中心元素灰度值,j i DN ,为滤波窗口内各个像元的灰度值,窗口大小为n n ?。

1.2 中值滤波

中值滤波是一种非线性信号处理技术。它假设信号有极端的数值,即认为在平滑窗口内噪声是极大值或极小值。中值滤波将平滑区域内所有像素的中值作为平滑区域中心像元值。

设j i DN ,为奇数项离散系列(i =1,…2n-1,j =1,…2n-1),'

,j i DN 为j i DN ,按大小重新排列的奇数项离散系列,则中值滤波的数学表达式为: '

,,n n j i DN R = (2)

式中,j i R ,为滤波后的中心像元灰度值,j i DN ,为滤波前平滑模板内各个像元的原始灰度值,',j i DN 为平滑模板内各个像元重新排列后的灰度值,窗口大小为n n ?。

2.基于局域统计特性的自适应滤波算法

自适应滤波是近30年以来发展起来的一种最佳滤波方法。它是在维纳滤波、Kalman 滤波等线性滤波基础上发展起来的一种最佳滤波方法。由于它具有更强的适应性和更优的滤波性能,从而在工程实际中,尤其在信息处理技术中得到了广泛的应用。自适应滤波的研究对象是具有不确定的系统或信息过程。这里的“不确定性”是指所研究的处理信息过程及其环境的数学模型不是完全确定的。其中包含一些未知因素和随机因素。

2.1 自适应滤波原理

自适应滤波器的原理如图1所示:

)(j x )

(j y

图1 自适应滤波原理图

图中)(j x 表示j 时刻的输入信号值,)(j y 表示j 时刻的输出信号值,)(j d 表示j 时刻的参考信号值或所期望响应信号值,误差信号)(j e 为)(j d 与)(j y 之差。

自适应滤波器的滤波参数受误差信号)(j e 控制,根据)(j e 的值而自动调整,使之适合下一时刻的输入)1(+j x ,以便使得输出)1(+j y 接近于所期望的参考信号)1(+j d 。

局域自适应滤波算法是在图像上取一个平滑窗口,以窗口内所有像素值作为滤波器的输入值进行处理,得到的结果作为窗口内中心元素的滤波值。而在平滑窗口内如何完成滤波运算,是这类相干斑抑制算法研究的核心内容。基于局域统计的自适应滤波算法,应满足以下条件才能适合于SAR 图像的处理:

1) 不要求确知信号的统计模型;

2) 要达到保留边缘且加强细节;它可分为以局域统计特性(均值和方差)为依据和以其统计分布为依据两大类:

3) 有很好的相干斑抑制效果;

4) 算法高效,使每一个像素都能在滤波窗口内独立进行。

2.2 Sigma 滤波

该算法建立在SAR 图像的乘性噪声模型上,假设斑点噪声的分布为高斯分布,窗口内的像素灰度值与其中心像素的灰度值比较接近。其基本原理为:Sigma 滤波器将σ2范围内的像素进行平均,即可去除差别过大的象素的影响。我们知道,对于一维高斯分布,采样点落在σ2区间的概率是93.5%。在窗口滤波过程中,只选取窗口内像素灰度值落在σ2范围内的点,将它们的平均值作为中心像素灰度的估计,而其它变化显著的像素则被视作边缘而不做滤波处理。 首先计算滤波窗口内各像元灰度的平均值ij g 作为滤波中心像元),(j i 的平均值;然后再求窗口内标准差ij σ作为滤波中心像元点),(j i 的标准差,公式如下(设窗口为(2M +1)(2N+1)):

∑∑+-=+-=++==M j M j k N i N

i l ij l k g N M j i g g ),()12)(12(1),( (3) ()∑∑+-=+-=-++==M j M j k N i N i l ij ij g j i g N M j i 2),()12)(12(1),(σσ (4)

Sigma 滤波器的算法表达式如下:

∑∑∑∑+-=+-=+-=+-==m i m i k n j n j l kl

m i m i k n j n

j l kl kl g R δ

δ (5)

?

??+≤≤-= otherwise g g g F ij kl F ij kl 0)21()21( 1σσδ (6) g F /σσ= (7)

孤立散射体不应受到斑点平滑的影响,为此设置阈值,如果范围内的象素数小于或等于K =(滤波窗口大小+1)/2,则以中心象素周围最近的四点象素平均值作为滤波输出。

2.3 Lee 滤波及其增强算法

Lee 滤波基于完全发育的斑点乘性噪声模型,假定先验均值和方差可由均质区内计算局域的均值和方差来得到,它是使用滤波窗口内样本均值和方差的自适应滤波算法。该方法是以MMSE (最小均方误差)准则作为基础,是固定窗口中观察强度g 和局部平均强度ij g 的线性组合,是一个优化的线性滤波器。该方法是在图像上对每个像元逐个滤波移动的过程,局部统计量随着空间位置的改变而改变。 首先计算窗口内各像元灰度的平均值ij g 作为滤波中心像元),(j i 的平均值;然后再求窗口内标准差ij σ作为滤波中心像元点),(j i 的标准差,公式如下(设窗口为(2M +1)(2N+1)):

∑∑+-=+-=++==M j M j k N i N

i l ij l k g N M j i g g ),()12)(12(1),( (8) ()

∑∑+-=+-=-++==M j M j k N i N i l ij ij g l k g N M j i 2),()12)(12(1),(σσ (9) Lee 滤波表达式为:

)1('

w g w g g ij ij -+=

Lee 滤波算法是在均质区域的基础上推导得到的,但这一点事实上在真实的SAR 图像中是不成立的。因此,Lee 滤波方法对于在保持边缘等细节信息方面不是十分理想,但同质区则比较有效。

针对Lee 算法的缺陷,A. Lopes 提出根据图像不同区域采用不同滤波器的方

法。A. Lopes 把一个图像分为三类区域:第一类是均匀区域,其中的相干斑噪声可以简单地用均值滤波平滑掉;第二类是不均匀区域,在去除噪声时应保留纹理信息,应用Lee 滤波;第三类是包含分离点目标的区域,滤波器应尽可能地保留原始值。具体思想如图2所示:

图2 增强滤波算法流程

增强的Lee 滤波采用以下准则:

1) u I C C <时,在滤波子窗口内取均值代替中心像素的值;

2) max C C C I u ≤≤时,在滤波子窗口内用滤波算法计算中心像素的滤波值; 3) max C C I >时,保留该中心像素值。

以上区域的划分和准则同样适用于下文提到的增强的Kuan 滤波和增强的Frost 算法。

增强的Lee 滤波表达式为:

?????≥='≤≤-+='≤='max max

)1( c g g c c w g w g g c g g ij ij ij ij u ij ij u ij ij ij σσσ (10)

其中:22/1I u C C w -=是Lee 滤波的权函数; max ,c c u 为阈值;ij I g C σ=;

I σ为局部标准差;L C u 5227.0=;

u C C 3max =;L 为成像视数。

2.4 Kuan 滤波及其增强算法

Kuan 滤波算法假设噪声为与信号相关的加法噪声,然后运用最小方差估计获得固定窗口中观察强度g 和局部平均强度ij g 的线性组合。Kuan 滤波器与Lee 滤波器的区别在于用一个信号加上一个依赖于信号的噪声来表示乘性模型的相干斑噪声。该方法是在图像上对每个像元逐个滤波移动的过程,局部统计量随着空间位置的改变而改变,公式如下:

∑∑+-=+-=++==M j M j k N i N

i l ij l k g N M j i g g ),()12)(12(1),( (11) ()

∑∑+-=+-=-++==M j M j k N i N i l ij ij g l k g N M j i 2),()12)(12(1),(σσ (12) Kuan 滤波表达式为:

)1('

w g w g g ij ij -+=

Kuan 滤波算法与Lee 滤波算法一样,存在着保持边缘等细节信息不佳的问题。因此,它也有对应的增强算法。A. Lopes 提出的增强的Kuan 滤波表达式为: ?????≥='≤≤-+='≤='max max )1( c g g c c w g w g g c g g ij ij ij ij u ij ij u ij ij ij σσσ (13)

其中:ij

g '为平滑处理后的像元灰度值;ij g 为平滑窗口中各像元的原始灰度值;

ij g 为窗口内像元灰度平均值;2221/1u

I u C C C w +--=是Kuan 滤波的权函数; max ,c c u 为阈值;ij I

g C σ=;I σ为局部标准差; L C u 1=;L C /21max +=;L 为成像视数。

2.5 Frost 滤波及其增强算法

Frost 滤波算法假定斑点噪声是乘性噪声的前提下,并假设SAR 影像是平稳过程,对影像进行滤波。Frost 滤波器的冲激响应为一双边指数函数,近似为低通滤波器,其滤波器参数由图像局域方差系数决定。冲激响应的衰减快慢取决于局域方差系数的大小,与其成正比关系。Frost 自适应滤波器是以权重M 值为自适应调节参数的环形对称滤波器,其数学表达式为:

∑∑∑∑====?='n i n j ij

n i n

j ij

ij ij M M g g 11

11

ij

ij ij ij ij ij g A T A M 2

)

exp(σ

=?-= A. Lopes 提出的增强的Frost 滤波表达式为:

u I C C <时 ij ij g g =';

(14) max C C C I u ≤≤时 ∑∑∑∑====?='n i n j ij

n i n

j ij

ij ij M M g g 11

11

(15) max C C I >时 ij ij g g =';

(16) 其中:ij g '为平滑处理后的像元灰度值;

ij g 为平滑窗口中各像元的原始灰度值;

ij g 为窗口内像元灰度平均值;

ij M 为平滑窗口中各个对应像元的权重指数;

ij T 为平滑窗口内中心像元到其邻像元的绝对距离;

ij σ为平滑窗口中像元值的方差;2n 是平滑窗口的大小;

ij ij

I g C σ=;L C u 1

=;L C /21max +=;L 为成像视数。

3.2.6 MAP 滤波算法

最大后验概率(MAP )滤波法是假设相干斑为乘性gamma 分布,所以又称Gamma MAP 滤波器。在知道σ的概率密度函数(Probability Density Function ,PDF )先验知识情况下,就能获取更多的信息。这就是根据先验分布和似然函数的MAP 滤波方法。

u I C C <时 ij ij

g g ='; (17) max C C I >时 ij ij

g g ='; (18) max C C C I u ≤≤时

α

ααα24)1()1(22ij ij ij ij ij g g L L g L g g +--+--='(L ≠1) (19) αααα28)2()2(22ij

ij ij ij ij g g g g g +-+-='(L =1)。 (20)

其中:ij

g '为平滑处理后的像元灰度值; ij g 为平滑窗口中各像元的原始灰度值;

ij g 为窗口内像元灰度平均值;

)()

1(222u I u C C C -+=α;

ij σ为平滑窗口中像元值的方差;

2n 是平滑窗口的大小;

ij ij

I g C σ=;L C u 1=;L C /21max +=;L 为成像视数。

3.2.7 EPOS 滤波算法

边缘保持最优化(Edge Preserving Optimized Speckle ,EPOS )滤波算法,通过噪声方差的知识,区分均匀区域和含有边缘或单散射点的区域,提出了一种变大小滤波矩阵找到每个像素点的最大均匀区域,在此区域作平均,则达到最优滤波并能保证边缘不变模糊。

EPOS 算法基于改变窗口形状的思想,它改变步骤是逐步剔除与中心像素不相同的邻域,然后应用最后剩余的邻域内点的统计量估算最后的结果。

EPOS 算法将窗口的邻域分为8个不相重合的部分,如图3所示。

图3 EPOS 算法的中心象素邻域划分

首先计算滤波窗口的相对标准差σ和8个邻域的相对标准差i σ(i =0,

1,…,7),然后与SAR 图像的相对标准差阈值L 225227.0=’σ比较(L 为成像视数)

: 如果'σσ<,整个区域均值滤波;

否则剔除8个邻域中i σ最大的那个邻域,重新计算剩余区域的相对标准差进行比较,直至满足均值滤波的要求,即搜索出与中心象素处于相同区域的最大相同区域的象素,用搜索到的全部象素的平均值作为滤波输出值。当8个邻域全部剔除时,将窗口的长度减小1,重新计算,直至窗口的长度缩小为3 时,直接保留中心像元的灰度值。

3.滤波效果评价

对于滤波算法的效果评价,可以从两个方面进行,一是主观评价标准,即通过人眼视觉效果进行定性评价;二是客观评价标准,比较常用的有以下评价指标:均方误差、峰值信噪比、以及等效视数[17]等,这些指标从量化角度考虑滤波效果,能够辅助主观评价标准进行定量评价。

(1) 主观评价标准:人眼视觉效果

视觉是一种极为复杂和重要的感觉,人所感受的外界信息80%以上来自视觉。人眼对图像高度敏感,很多情况下需要目视判断图像的质量或目视解释处理结果。对于SAR 图像,图像中目标的识别可以是机器识别,不严格要求时效性的话,也可以是人眼判别,而且人眼判别具有更好的准确性。对于相干斑噪声的滤除效果,除了一些客观评价指标外,主观视觉判断是一条重要标准,毕竟人的知识、经验和判断能力都是计算机目前无法取代的。

(2) 客观评价标准:

均值(Mean )和方差(Standard Deviation ,STD )

图像均值是整个图像的平均强度,它反映了图像的平均灰度,即图像所包含目标的平均后向散射系数;图像方差代表了图像区域中所有点偏离均值的程度,反映了图像的不均匀性。图像的均值和方差是反映图像整体特征的指标,一般情况下,如果地形、含水量(复介电常数)和表面粗糙程度不同,则会有不同的后向散射系数,反映到SAR 图像中有不同的图像均值。图像区域中的地形差异大,人工目标多,图像的灰值变化大,对应的图像的方差变化也就越大。所以应当尽量保持图像的均值,同时减少图像的方差。

若图像区域大小为N M ?,图像在),(j i 处的像素灰度值为j i I ,,则图像均值μ和图像方差2σ分别定义如下:

∑∑===M i N j j i I MN 11

,1μ (21) ∑∑==-=M i N j j i I MN 112,2

)(1μσ (22) ? 均方误差(Mean Square Error ,MSE)

均方误差衡量滤波后图像和理想图像之间的差异程度。如果MSE 值越小,则反映滤波后的图像越接近于理想图像,滤波效果越好。若图像区域大小为N M ?,MSE 定义为:

∑∑==-=M i N j j i j i I I MN MSE 11

2,,')(1 (23) 其中'I 为滤波后图像,I 为理想无污染图像。

? 峰值信噪比(Peak Signal Noise Ratio ,PSNR)

峰值信噪比反映图像中信号和噪声所占的比重。如果PSNR 值越大,说明图像中噪声所占的比重越小。PSNR 定义为:

)/255255lg(10MSE PSNR ?= (24)

其中MSE 为均方误差。

? 等效视数(Equivalent Number of Looks ,ENL)

等效视数是衡量一幅图像斑点噪声相对强度的一种指标,也是衡量滤波器滤波性能的一种指标,又称为有效视数。当均匀区域内等效视数越大,则滤波器的滤波效果越好;当纹理区域内等效视数越小,说明滤波器保持纹理信息的能力越好。ENL 定义为:

22σ

μ=ENL M (25) 式中μ和2σ分别是SAR 图像区域内的均值和方差。

辐射分辨率(Radiation Resolution )

辐射分辨率表示区分SAR 目标后向散射系数的能力,是衡量SAR 系统区分相邻分布目标的能力的一种量度。它的好坏直接影响SAR 图像判读和定量化应用。辐射分辨率的大小由消除相干斑噪声的多少决定,因此好的相干斑噪声抑制算法能提高辐射分辨率。它定义为一个分辨单元内反射信号相对于平均值的绝对偏差与平均值的比值。辐射分辨率r 定义为:

)1lg(10)11lg(

10+=+=μσENL M r (26) 其中,ENL M 为等效视数。

图像去噪方法

图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声(一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在),但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差(在相同测量条件下进行的测量称为等精度测量,例如在同样的条件下,用同一个游标卡尺测量铜棒的直径若干次,这就是等精度测量。对于等精度测量来说,还有一种更好的表示误差的方法,就是标准误差。标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差。)最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。

改变图像质量的几种滤波方法比较

1 改变图像质量的几种滤波方法比较 一、概述 滤波是图像处理重要技术之一,是提高图像质量的主要手段。对输入的图像实现直方图均衡化;设计完成同态滤波器,并用之改善图象质量;对某图像加入不同类型﹑不同强度的噪声(周期﹑椒盐噪声),并分别用空间域和频率域的方法抑制噪声。 二、图像处理过程 1.直方图均衡化 输入一幅图片,统计原图直方图数组,用一个数组hf 记录hf(i);i 从0到255,令pa(i)=pa(i-1)+hf(i),其中hf(i)为灰度值为i 的像素点占总像素点的概率;一个数组F 记录新的索引值,即令F(i,j)= (pa(f(i,j)+1))*255;依次循环每一个像素,取原图的像素值作为数组F 的下标值,取该下标对应的数组值为均衡化之后的像素值。结果显示原图图像、原图直方图,均衡化后的图像和直方图,并用于对比。 其中图像中灰度级出现的概率近似为: ()n n r p k k r =,k=0,1,2,…,L -1。而变换函数为:00()(),0,1,2,,1 k k j k k r j j j n s T r p r k L n ======-∑∑ 2.巴特沃斯同态滤波器: 图像f(x,y)是由光源照度场(入射分量)fi(x,y)和场景中物体反射光(反射分量)的反射场fr(x,y)两部分乘积产生,关系式为: f(x,y)=fi(x,y)*fr(x,y); fi(x,y)的性质取决于照射源,fr(x,y)取决于成像物体的特性。一般情况下,照度场f i ( x , y) 的变化缓慢,在频谱上其能量集中于低频;而反射场f r ( x , y) 包含了所需要的图像细节信息,它在空间的变化较快,其能量集中于高频. 这样就可以根据照度—反射模型将图像理解为高频分量与低频分量乘积的结果。由于两个函数乘积的傅立叶变换是不可分的,故不能直接对照度和反射的频率部分分别进行操作。

地的总结图像配准算法

图像配准定义为:对从不同传感器、不同时相、不同角度所获得的两幅或多幅图像进行最佳匹配的处理过程[2]。图像配准需要分析各分量图像上的几何畸变,然后采用一种几何变换将图像归化到统一的坐标系统中。在配准过程中,通常取其中的一幅图像作为配准的标准,称之为参考图像;另一幅图像作为配准图像。 图1-1 图像配准的基本流程 图1-2 图像配准方法分类

根据配准使用的特征,图像配准的方法大致可分为三类: (1)基于图像灰度的配准算法。首先从参考图像中提取目标区作为配准的模板,然后用该模板在待配准图像中滑动,通过相似性度量(如相关系数法、差的平方和法、差的绝对值法、协方差法)来寻找最佳匹配点。 (2)基于图像特征的配准算法。该算法是以图像中某些显著特征(点、线、区域)为配准基元,算法过程分为两步:特征提取和特征匹配。首先从两幅图像中提取灰度变化明显的点、线、区域等特征形成特征集。然后在两幅图像对应的特征集中利用特征匹配算法尽可能地将存在对应关系的特征对选择出来。对于非特征像素点利用插值等方法作处理推算出对应匹配关系,从而实现两幅图像之间逐像素的配准。 (3)基于对图像的理解和解释的配准算法。这种配准算法不仅能自动识别相应像点,而且还可以由计算机自动识别各种目标的性质和相互关系,具有极高的可靠性和精度。这种基于理解和解释的图像配准涉及到诸如计算机视觉、模式识别、人工智能等许多领域。不仅依赖于这些领域中理论上的突破,而且有待于高速度并行处理计算机的研制。 从自动化角度来看,可以将配准过程分为自动、半自动和手动配准。 存在问题:如何提高图像的配准速度将是大范围遥感图像自动配准问题的要点;选取何种自动配准方案以保证图像的配准精度将是大范围遥感图像自动配准问题的另一要点。 2(,)[1((, f x y g f h x y 其中,h表示二维空间坐标变换。g表示灰度或辐射变换,描述因传感器类型的不同以及成像时气候等环境的影响所带来的图像灰度的变换。配准问题的实质就是要找到最优的空域变换h和灰度变换g,使得上述的等式成立,从而找到配准变换的参数 特征空间的选择通常要考虑以下几个因素:相似性;空间分布;唯一性。 在自动图像配准中对特征的理解可以分为两类。(1)基于灰度的方法:基于灰度的方法将重点放在特征匹配上,在其过程中并没有真正提取特征。一般所说的模板匹配法就是这种方法的代表。这种方法实际上将图像的灰度分布直接作为特征而构成匹配的基础。(2)基于特征的方法:基于特征的方法需要在图像中提取显著的特征:区域(森林、湖泊、农田等)、线(区域的边界、道路等)和点(区域的角

实验三常用图像滤波方法

实验三常用图像滤波方法 一、实验目的 1、熟悉并掌握MATLAB图像处理工具箱的使用; 2、理解并掌握常用的图像的滤波技术。 二、实验环境 MATLAB 6.5以上版本、WIN XP或WIN7计算机 三、相关知识 1 imnoise imnoise函数用于对图像生成模拟噪声,如: i=imread('e:\w01.tif'); j=imnoise(i,'gaussian',0,0.02);模拟均值为0方差为0.02的高斯噪声,j=imnoise(i,'salt&pepper', 0.04) 模拟叠加密度为0.04的椒盐噪声 2 fspecial fspecial函数用于产生预定义滤波器,如: h=fspecial('sobel');%sobel水平边缘增强滤波器 h=fspecial('gaussian');%高斯低通滤波器 h=fspecial('laplacian');%拉普拉斯滤波器 h=fspecial('log');%高斯拉普拉斯(LoG)滤波器 h=fspecial('average');%均值滤波器 3 基于卷积的图像滤波函数 imfilter函数,filter2函数,二维卷积conv2滤波,都可用于图像滤波,用法类似,如: i=imread('e:\w01.tif'); h=[1,2,1;0,0,0;-1,-2,-1];%产生Sobel算子的水平方向模板

j=filter2(h,i); 或者: h = fspecial(‘prewitt’) I = imread('cameraman.tif'); imshow(I); H = fspecial('prewitt‘); %预定义滤波器 M = imfilter(I,H); imshow(M) 或者: i=imread('e:\w01.tif'); h=[1,1,1;1,1,1;1,1,1]; h=h/9; j=conv2(i,h); 4 其他常用滤波举例 (1)中值滤波 medfilt2函数用于图像的中值滤波,如: i=imread('e:\w01.tif'); j=medfilt2(i,[M N]);对矩阵i进行二维中值滤波,领域为M*N,缺省值为3*3 (2)利用拉氏算子锐化图像, 如: i=imread('e:\w01.tif'); j=double(i); h=[0,1,0;1,-4,0;0,1,0];%拉氏算子 k=conv2(j,h,'same');

matlab图像去噪算法设计(精)

数字图像去噪典型算法及matlab实现 希望得到大家的指点和帮助 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。实验一:均值滤波对高斯噪声的效果 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5 K3=filter2(fspecial('average',7),J)/255; %模板尺寸为7 K4= filter2(fspecial('average',9),J)/255; %模板尺寸为9 subplot(2,3,3);imshow(K1); title('改进后的图像1'); subplot(2,3,4); imshow(K2); title('改进后的图像2');

常用图像去噪方法比较及其性能分析

龙源期刊网 https://www.360docs.net/doc/aa12964907.html, 常用图像去噪方法比较及其性能分析 作者:孟靖童王靖元 来源:《信息技术时代·下旬刊》2018年第02期 摘要:本文介绍了噪声的分类模型,之后又分别介绍了空间域去噪、傅里叶去噪算法以及小波去噪中的部分算法,并分别对相似算法进行了分析比较。同时为了更好的比较出各算法之间的去噪差别针对其中部分去噪算法进行了用matlab的实现,比较了去噪的效果。 关键词:数字图像;噪声;滤波 一、引言 随着当今社会数字化的普及,人们传递图像信息的方式已经从之前单纯的实物传递变为当今的数字图像的传递。然而由于各种原因会导致数字图像真实性减弱。针对这种问题,数字图像处理技术应运而生。数字图像处理技术的产生,不仅满足了人们的视觉,同时经过处理的图像还可以更好的应用于图像加密,图像识别等领域。 二、空间域去噪算法 (一)均值滤波去噪 通过计算某一滤波目标区域内的算数平均值来替代目标区域中心所对应的像素值的方法来达到去除噪声的目的。而加权均值滤波则是在原有均值滤波的基础上,通过对某些更趋进于真实像素的点进行加权的方法来达到更好的去噪效果,使最终区域中心像素更加趋近于真实像素。 利用均值滤波可以很好的去除由高斯噪声带来的对于图像的影响,然而对于由于椒盐噪声带来的对于图像的影响,均值滤波去除的效果并不很好。同时,由于均值滤波的算法是通过取目标范围内一小区域中点灰度值的平均值,来决定区域中心点灰度值的,所以不可避免的造成图像经过均值滤波后会导致图像部分原始真实细节被滤掉,造成视觉上细节不清楚的情况。并且所取范围越大,图像中细节部分越不清晰,图像越平滑。 (二)中值滤波去噪 通过求区域中心点及其周围点灰度值的中值,来代替该中心点的灰度值。因此利用中值去噪的方法可以较好的弥补均值滤波对于图像边缘不清晰处理的缺点。然而由于中值滤波对于所选滤波区域的选择要求较高,因此对于滤波区域大小形状的选择需要根据具体图像来确定。此外,与均值滤波相比,中值滤波对于椒盐噪声的处理比对于高斯噪声的处理更好。 (三)维纳滤波去噪

图像配准的方法

图像配准的方法 迄今为止,在国内外的图像处理研究领域,已经报道了相当多的图像配准 研究工作,产生了不少图像配准方法。总的来说,各种方法都是面向一定范围 的应用领域,也具有各自的特点。比如计算机视觉中的景物匹配和飞行器定位 系统中的地图匹配,依据其完成的主要功能而被称为目标检测与定位,根据其 所采用的算法称之为图像相关等等。 图像配准的方式可以概括为相对配准和绝对配准两种:相对配准是指选择 多图像中的一张图像作为参考图像,将其它的相关图像与之配准,其坐标系统 是任意的。绝对配准是指先定义一个控制网格,所有的图像相对于这个网格来 进行配准,也就是分别完成各分量图像的几何校正来实现坐标系的统一。本文 主要研究大幅面多图像的相对配准,因此如何确定多图像之间的配准函数映射 关系是图像配准的关键。通常通过一个适当的多项式来拟合两图像之间的平移、旋转和仿射变换,由此将图像配准函数映射关系转化为如何确定多项式的系数,最终转化为如何确定配准控制点(RCP)。目前,根据如何确定RCP的方法和图像配准中利用的图像信息区别可将图像配准方法分为三个主要类别:基于灰度信 息法、变换域法和基于特征法[25],其中基于特征法又可以根据所用的特征属 性的不同而细分为若干类别。以下将根据这一分类原则来讨论目前已经报道的 各种图像配准方法和原理。 1基于灰度信息的图像配准方法 基于灰度信息的图像配准方法一般不需要对图像进行复杂的预先处理,而 是利用图像本身具有灰度的一些统计信息来度量图像的相似程度。主要特点是 实现简单,但应用范围较窄,不能直接用于校正图像的非线性形变,在最优变 换的搜索过程中往往需要巨大的运算量。经过几十年的发展,人们提出了许多 基于灰度信息的图像配准方法,大致可以分为三类:互相关法(也称模板匹配法)、序贯相似度检测匹配法、交互信息法。 (1)互相关法

数字图像处理-图像去噪方法

图像去噪方法 一、引言 图像信号在产生、传输和记录的过程中,经常会受到各种噪声的干扰,噪声可以理解为妨碍人的视觉器官或系统传感器对所接收图像源信 息进行理解或分析的各种元素。噪声对图像的输入、采集、处理的各个环节以及最终输出结果都会产生一定影响。图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等。我们平常使用的滤波方法一般有均值滤波、中值滤波和小波滤波,他们分别对某种噪声的滤除有较好的效果。对图像进行去噪已成为图像处理中极其重要的内容。 二、常见的噪声 1、高斯噪声:主要有阻性元器件内部产生。 2、椒盐噪声:主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生泊松噪声。 3、量化噪声:此类噪声与输入图像信号无关,是量化过程存在量化误差,再反映到接收端而产生,其大小显示出数字图像和原始图像差异。 一般数字图像系统中的常见噪声主要有高斯噪声和椒盐噪声等,减少噪声的方法可以在图像空间域或在图像频率域完成。在空间域对图像处理主要有均值滤波算法和中值滤波算法.图像频率域去噪方法

是对图像进行某种变换,将图像从空间域转换到频率域,对频率域中的变换系数进行处理,再进行反变换将图像从频率域转换到空间域来达到去除图像噪声的目的。将图像从空间转换到变换域的变换方法很多,常用的有傅立叶变换、小波变换等。 三、去噪常用的方法 1、均值滤波 均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。其基本原理是用均值替代原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在 f?sf(x,y),其中,s为模板,M为该点上的灰度g(x,y),即g x,y=1 M 该模板中包含当前像素在内的像素总个数。这种算法简单,处理速度快,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别是在边缘和细节处。而且邻域越大,在去噪能力增强的同时模糊程度越严重。

滤波图像降噪算法研究报告

研究生课程论 文 基于滤波的图像降噪算法的研究 课程名称专业文献阅读与综述 姓名张志化 学号1200214006 专业模式识别与智能系统 任课教师钟必能 开课时间2018.9——2018.11 教师评阅意见: 论文成绩评阅日期 课程论文提交时间:2018 年11月11日

基于滤波的图像降噪算法的研究 摘要:图像在获取和传输过程中,往往受到噪声的干扰,而降噪的目的是尽可能保持原始信号主要特征的同时除去信号中的噪声。目前的图像去噪方法可以将图像的高频成分滤除,虽然能够达到降低噪声的效果,但同时破坏了图像细节。边缘特性是图像最为有用的细节信息,本文对邻域平均法、中值滤波法及维纳滤波法的图像去噪算法进行了研究分析和讨论。 关键词:滤波;图像噪声;图像降噪算法;评价方法; 1 引言 数字图像处理,就是利用数字计算机或其他数字硬件,对图像信息转换而来的电信号进行某种数字运算,以提高图像的实用性,进而达到人们所要求的某种预期效果[1]。数字图像处理已经广泛应用于遥感、工业检测、医学、气象、侦查、通信、智能机器人等众多学科与工程领域中。 数字图像处理技术的优点主要有:<1)再现性好。数字图像处理不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的真实再现。 <2)处理精度高。按目前的技术,几乎可以将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16 位甚至更高,意味着图像的数字化精度可以满足应用需求。 (3>适用面宽。图像可以来自多种信息源。从图像反映的客观实体尺度看,可以小到电了显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,均可用计算机来处理。 (4>灵活性高。由于图像的光学处理从原理上讲只能进行线性运算,极大地限制了光学图像处理能实现的目标;而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数字公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 (5>信息压缩的潜力大。数字图像中各个像素是不独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。就电视画面而言,同一

图像去噪原理

图像去噪 甘俊霖 噪声是图像干扰的重要原因。一副图像在实际应用中可能存在各种各样的噪声,这些噪声可能在传输中产生,也可能在量化等处理中产生。因此,正是为了处理这种问题,是有噪声的图片变得更加清晰,人们研究出各种各样的方式去除图像中的噪声。 首先,为了让本报告易懂,我先解释几个名词的含义。 线性滤波算法:利用图像原始的像素点通过某种算术运算得到结果像素点的滤波算法,如均值滤波、高斯滤波,由于线性滤波是算术运算,有固定的模板,因此滤波器的算法函数是确定并且唯一的。 非线性滤波算法:原始数据域处理结果数据之间存在的是一种逻辑关系,即采用逻辑运算实现的,如最大值滤波器、最小值滤波器、中值滤波器,通过比较领域内灰度值大小来实现的,它没有固定的模板和特定的转移函数。 高斯噪声:噪声服从高斯分布,即某个强度的噪声点个数最多,离这个强度越远噪声点越少,且这个规律服从高斯分布。高斯噪声是一种加性噪声,即噪声直接加到原图像上,因此可以采用线性滤波器滤除掉。 椒盐噪声:类似把胡椒和盐撒到图像上,因此得名,是一种在图像上出现很多白点或黑点的噪声。椒盐噪声可以认为是一种逻辑噪声,采用线性滤波器滤除的结果不好,一般采用中值滤波器滤波可以得到较好的结果。 白噪声:指在较宽的频率范围内,各等带宽的频带所含的噪声能量相等。由于白光是各个频率的单色光混合的,因此我们把这种性质叫做“白色的”,就把这种噪声称作白噪声。 现在介绍,我采用的去噪算法。 (1)均值滤波:均值滤波是典型的线性滤波算法。其采用的主要方法为领域平均法,即对待处理的某个像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,

图像滤波去噪处理

摘要 图像是信息社会人们获取信息的重要来源之一。在通过图像传感器将现实世界中的有用图像信号进行采集、量化、编码、传输、恢复的过程中,存在大量影响图像质量的因素。因此图像在进行使用之前,一般都要经过严格的预处理如去噪、量化、压缩编码等。噪声的污染直接影响着对图像边缘检测、特征提取、图像分割、模式识别等处理,使人们不得不从各种角度进行探索以提高图像的质量。所以采用适当的方法尽量消除噪声是图像处理中一个非常重要的预处理步骤。图像处理技术在20世纪首先应用于图像的远距离传送,而改善图像质量的应用开始于1964年美国喷气动力实验室用计算机对“徘徊者七号”太空船发回的月球照片进行处理,并获得巨大成功。现在图像处理技术已深入到科学研究、军事技术、工农业生产、医学、气象及天文学等领域。科学家利用人造卫星可以获得地球资源照片、气象情况;医生可以通过X射线或CT对人体各部位的断层图像进行分析。但在许多情况下图像信息会受到各种各样噪声的影响,严重时会影响图像中的有用信息,所以对图像的噪声处理就显得十分重要。 因此我选择图像去噪方面进行了解及研究,现将自己已了解的知识进行汇总。

目录 摘要 (2) 一、图像滤波的应用 (4) 二、均值滤波 (5) 2.1 均值滤波的思想 2.2 均值滤波的算法 2.3 均值滤波的实验结果 三、中值滤波 (7) 3.1 中值滤波的思想 3.2 中值滤波的算法 3.3 中值滤波的实验结果 四、维纳滤波 (8) 4.1 维纳滤波的思想 4.2 维纳滤波的算法 4.3 维纳滤波的实验结果 五、小波变换 (9) 5.1 小波变换滤波的思想 5.2 小波变换滤波的算法 5.3 小波变换滤波的实验结果 六、Contourlet变换的图像去噪 (11) 6.1 Contourlet变换的基本思想 6.2Contourlet变换的算法 七、全变差正则化的Shearlet收缩去噪 (12) 7.1 Shearlet收缩去噪原理简介 7.2 Shearlet收缩去噪算法 八、结果分析及自己的收获 (12) 8.1结果分析 8.2自己的收获 参考文献 (13)

基于ICP算法的图像配准的MATLAB实现

function [TR, TT] = icp(model,data,max_iter,min_iter,fitting,thres,init_flag,tes_flag,refpn t) % ICP Iterative Closest Point Algorithm. Takes use of % Delaunay tesselation of points in model. % % Ordinary usage: % % [R, T] = icp(model,data) % % ICP fit points in data to the points in model. % Fit with respect to minimize the sum of square % errors with the closest model points and data points. % % INPUT: % % model - matrix with model points, [Pm_1 Pm_2 ... Pm_nmod] % data - matrix with data points, [Pd_1 Pd_2 ... Pd_ndat] % % OUTPUT: % % R - rotation matrix and % T - translation vector accordingly so % % newdata = R*data + T . % % newdata are transformed data points to fit model % % % Special usage: % % icp(model) or icp(model,tes_flag) % % ICP creates a Delaunay tessellation of points in % model and save it as global variable Tes. ICP also % saves two global variables ir and jc for tes_flag=1 (default) or % Tesind and Tesver for tes_flag=2, which % makes it easy to find in the tesselation. To use the global variables % in icp, put tes_flag to 0. % % % Other usage: % % [R, T] = icp(model,data,max_iter,min_iter,... % fitting,thres,init_flag,tes_flag) % % INPUT: % % max_iter - maximum number of iterations. Default=104 % % min_iter - minimum number of iterations. Default=4 % % fitting - =2 Fit with respect to minimize the sum of square errors. (default) % alt. =[2,w], where w is a weight vector corresponding to data. % w is a vector of same length as data.

图像配准算法综述

杭州电子科技大学 毕业设计(论文)文献综述 毕业设计题目SIFT特征研究及应用 文献综述题目图像配准算法综述学院生命信息及仪器工程学院 专业电子信息技术及仪器 姓名 班级 学号 指导教师

图像配准算法综述 一.前言 图像配准是指找出场景中同一物体表面的结构点在不同图像上的投影像素点之间的对应关系,是图像信息处理领域中一项非常重要的技术,同时也是其它一些图像分析技术,如立体视觉、运动分析、数据融合等的基础。 目前图像配准广泛应用于虚拟现实、视频压缩、图像复原、图像数据库检索等技术中。图像配准的研究是计算机视觉中最困难也是最重要的任务之一。不同的图像配准方法总是对应于某种适用的图像变换模型,其核心问题是提高配准的速度、精度和算法的稳健度。 随着科学技术的发展现在约40%的机器视觉应用中都会使用图像匹配技术,所涉及的领域有:工业检测,导弹的地形匹配,光学和雷达的图像跟踪,交通管理,工业流水线的自动监控、工业仪表的自动监控,医疗诊断,资源分析,气象预报,文字识别以及图像检索等。 图像匹配研究按其处理步骤可以分为样本采集、样本预处理、样本分割、样本的特征提取等,并且与计算机视觉、多维信号处理和数值计算方法等紧密结合。它也是其它一些图像分析技术,如立休视觉、运动分析、数据融合等的基础。正因为其应用的广泛性,新的应用和新的要求逐步产生,使得匹配算法的研究逐步走向深入,出现了快速、稳定、鲁棒性好的匹配算法。因此,研究图像的匹配算法对于如何提高实际工程中的图像处理质量和识别精度具有非常重要的意义。 本文主要分析图像匹配常用方法的优点和不足之处,讨论了图像匹配中需要进一步研究和解决的问题。 二.图像配准算法的研究现状 图像配准是立体视觉、运动分析、数掘融合等实用技术的基础,在导航、地图与地形配准、自然资源分析、天气预报、环境监测、生理病变研究等许多领域有重要的应用价值。国内外学者针对不同的图像配准应用问题进行了大量的研究工作,早在1992年英国剑桥大学的Lisa Gottesfeld Brown在文献[1]习中就总结了图像配准的主要理论及图像配准在各个领域的应用。当时他讨论的图像配准技术主要还是著眼于医学图像处理、遥感图像处理等传统应用领域。图像配准是图像镶嵌技术的核心问题。 微软研究院的Richard Szeliski在1996年SIGGRAPH上提出了基于运动模型的全景图拼接算法[7]。Szeliski采用了非线性优化的方法来最小化像素两幅图像的亮度差以确定变换参数。该方法使用了全部像素进行优化处理,所以配准精度较高,但是计算速度较慢,且稳健性不佳。 国内的赵向阳。杜立民在2004年提出了一种基于特征点匹配的图像自动拼接算法[2],其中使用了Harris算法[3]提取角点并进行匹配。赵的算法采用了鲁棒变换估计技术,在一定程度上提高配准算法的稳健性,但是计算速度依然较慢,且无法配准重

图像预处理的滤波算法研究

第9卷 第13期 2009年7月1671-1819(2009)13-3830-04 科 学 技 术 与 工 程 Science T echno logy and Eng i neer i ng V o l 9 N o 13 July 2009 2009 Sci T ech Engng 图像预处理的滤波算法研究 周姗姗 柴金广 (中国科学院上海技术物理研究所,上海200083) 摘 要 对于需要持续跟踪目标的成像系统来说,目标会出现由点到面或由面到点的变化。针对这种情况,分析并比较了三 种点目标和面目标均适合的图像预处理滤波算法。仿真实验证明,改进的高通滤波算法比高通中值滤波算法和高斯高通滤波算法效果更好,可以在实际工程中得到应用。关键词 图像预处理 中值滤波 高通滤波 高斯滤波 中图法分类号 TN 911.73; 文献标志码 A 2009年3月20日收到 第一作者简介:周姗姗(1983 ),女,中国科学院上海技术物理研究所,物理电子学博士研究生,研究方向:信号与信息处理,E -m a i :l pu rpleas h an @126.co m 。 传统意义上,成像系统在获取图像之后,首先需要对图像进行预处理,以消除图像背景及系统噪声的干扰。这有利于后续的图像综合处理,从而降低目标识别等关键任务的复杂度。 在一帧图像上,对于点目标来说,其面积只占1个像素点,灰度与周围邻近象素点的灰度有明显的差异,反映在频谱上即处于高频部分,近似于高频噪声。基于这个特点,已有大量文献针对点目标提出了许多滤波算法,包括:高通滤波、Robinson 滤波、匹配滤波、神经网络、小波变换、分形滤波、形态滤波等等。预处理后的图像主要保留了点目标及孤立的高频噪声点。 对于面目标来说,目标边缘与背景的灰度差异仍旧显著,而目标内部的灰度变化缓慢,反映在频谱上则处于低频部分,若应用点目标的滤波算法,诸如高通滤波,处理后会发生目标边缘灰度增强但中心部分灰度降低的情况,相当于目标内部被看作背景受到抑制。因此,适用于面目标的算法,主要以能有效消除噪声并保留图像细节的滤波为主,如:中值滤波、均值滤波等。 对于需要持续跟踪目标的成像系统,目标在成 像面上的大小会随着跟踪距离的变化而不同,因此图像上呈现的目标会在点与面之间变化。如果对点目标和面目标采用两种不同的预处理算法,在工程应用时会增加系统的复杂度,延长系统的响应时间,降低系统的实时性。为此,寻找一种点目标、面目标均适合的滤波算法是很有必要的。 本文选取了以下几种滤波算法,分析了它们的基本原理和公式,通过仿真实验比较并验证其可行性。 1 高通中值滤波算法 传统的高通滤波算法能有效地抑制大面积的低频背景,增强目标边缘,但无法滤除孤立的高频噪声点,同时还会削弱目标中心的灰度。传统的中值滤波算法则恰好相反,它能有效滤除高频噪声点,保留完整的面目标,但无法抑制低频背景。基于将两者优缺点互补的思想,提出了一种高通滤波和中值滤波相结合算法。这里,高通滤波算法采用低通滤波的形式对输入图像作背景预测;中值滤波算法采用传统的滤波方法,即一个像素点的灰度值由该点邻域内像素点的灰度中值来代替。其滤波流程如图1所示。 算法表达式为 [1] : Y(i ,j)=X (i ,j)+M ed (i ,j)-2L p (i ,j) (1)

MATLAB图像滤波去噪分析及其应用

《MATLAB图像滤波去噪分析及其应用》,双线性滤波、Kirsch滤波、超限邻域滤波、逆滤波、双边滤波、同态滤波、小波滤波、六抽头滤波、约束最小平方滤波、非线性复扩散滤波、Lee滤波、Gabor滤波、Wiener 滤波、Kuwahara滤波、Beltrami流滤波、Lucy Richardson滤波、NoLocalMeans滤波等研究内容。 《MATLAB图像滤波去噪分析及其应用》全面而系统地讲解了MATLAB图像滤波去噪分析及其应用;结合算法理论,详解算法代码(代码全部可执行且验证通过),以帮助读者更好地学习本书内容。对于网上讨论的大部分疑难问题,本书均有涉及。 第1章图像颜色空间相互转换与MATLAB实现 1.1图像颜色空间原理 1.1.1RGB颜色空间 1.1.2YCbCr颜色空间 1.1.3YUV颜色空间 1.1.4YIQ颜色空间 1.1.5HSV颜色空间 1.1.6HSL颜色空间 1.1.7HSI颜色空间 1.1.8CIE颜色空间 1.1.9LUV颜色空间 1.1.10LAB颜色空间 1.1.11LCH 颜色空间 1.2颜色空间转换与MATLAB实现 1.2.1图像YCbCr与RGB空间相互转换及MATLAB实现 1.2.2图像YUV与RGB空间相互转换及MATLAB实现 1.2.3图像YIQ与RGB空间相互转换及MATLAB实现 1.2.4图像HSV与RGB空间相互转换及MATLAB实现 1.2.5图像HSL与RGB空间相互转换及MATLAB实现 1.2.6图像HSI与RGB空间相互转换及MATLAB实现 1.2.7图像LUV与RGB空间相互转换及MATLAB实现 1.2.8图像LAB与RGB空间相互转换及MATLAB实现 1.2.9图像LCH 与RGB空间相互转换及MATLAB实现 第2章图像噪声概率密度分布与MATLAB实现 2.1噪声概率密度分布函数 2.1.1均匀分布 2.1.2正态分布 2.1.3卡方分布 2.1.4F分布 2.1.5t分布 2.1.6Beta分布 2.1.7指数分布 2.1.8Gamma分布 2.1.9对数正态分布 2.1.10瑞利分布 2.1.11威布尔分布

基于滤波图像降噪算法的研究

研究生课程论文基于滤波的图像降噪算法的研究 课程名称专业文献阅读与综述 姓名张志化 学号1200214006 专业模式识别与智能系统 任课教师钟必能 开课时间2013.9——2013.11 课程论文提交时间:2013 年11月11 日

基于滤波的图像降噪算法的研究 摘要:图像在获取和传输过程中,往往受到噪声的干扰,而降噪的目的是尽可能保持原始信号主要特征的同时除去信号中的噪声。目前的图像去噪方法可以将图像的高频成分滤除,虽然能够达到降低噪声的效果,但同时破坏了图像细节。边缘特性是图像最为有用的细节信息,本文对邻域平均法、中值滤波法及维纳滤波法的图像去噪算法进行了研究分析和讨论。 关键词:滤波;图像噪声;图像降噪算法;评价方法; 1 引言 数字图像处理,就是利用数字计算机或其他数字硬件,对图像信息转换而来的电信号进行某种数字运算,以提高图像的实用性,进而达到人们所要求的某种预期效果[1]。数字图像处理已经广泛应用于遥感、工业检测、医学、气象、侦查、通信、智能机器人等众多学科与工程领域中。 数字图像处理技术的优点主要有: (1)再现性好。数字图像处理不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的真实再现。 (2)处理精度高。按目前的技术,几乎可以将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,意味着图像的数字化精度可以满足应用需求。 (3)适用面宽。图像可以来自多种信息源。从图像反映的客观实体尺度看,可以小到电了显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,均可用计算机来处理。 (4)灵活性高。由于图像的光学处理从原理上讲只能进行线性运算,极大地限制了光学图像处理能实现的目标;而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数字公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 (5)信息压缩的潜力大。数字图像中各个像素是不独立的,其相关性大。在图

2.1图像滤波方法的比较实验报告

课程大作业实验报告2.1 图像滤波方法的比较 课程名称:数字图像处理 组长:张佳林学号:200830460232 年级专业班级: 08 自动化 2 班 (ppt 制作,数据整 理) 成员一:卢洪炬学号:200830460222 年级专业班级:08 自动化 2 班(实验报告,编程) 成员二:余嘉俊学号: 200830460231 年级专业班级: 08 自动化 2 班(编程,程序整理) 指导教师邓继忠 报告提交日期2010 年 12 月 4 日项目答辩日期2010 年 12 月 5 日

目录 1项目要求 (3) 2项目开发环境 (3) 3系统分析·························································3 3.1 系统的主要功能分析 (3) 3.2 系统的基本原理 (4) 3.1 系统的关键问题及解决方法 (9) 4系统设计····························· ···························10 4.1 程序流程图及说明····························· (10) 4.2 程序主要模块功能介 绍 (11) 5实验结果与分析··················································11 5.1 实验结果····························· (11) 5.2 项目的创新之 处 (15) 5.3 存在问题及改进设 想 (15)

6心得体会························································15 6.1 系统开发的体会····························· (15) 6.2 对本门课程的改进意见或建议 (15)

MATLAB实现频域平滑滤波以及图像去噪代码

MATLAB实现频域平滑滤波以及图像去噪代码用MATLA实现频域平滑滤波以及图像去噪代码 悬赏分:50 - 解决时间 :2008-11-8 14:21 是数字图象处理的实验,麻烦高人给个写好的代码,希望能在重要语句后面附上一定的说明,只要能在 MATLAE t运行成功,必然给分。具体的实验指导书上的要求如下 : 频域平滑滤波实验步骤 1. 打开 Matlab 编程环境 ; 2. 利用’imread '函数读入图像数据; 3. 利用' imshow' 显示所读入的图像数据 ; 4. 将图像数据由' uint8 ' 格式转换为' double ' 格式,并将各点数据乘以 (-1)x+y 以便 FFT 变换后的结果中低频数据处于图像中央; 5. 用' fft2 ' 函数对图像数据进行二维 FFT 变换,得到频率域图像数据; 6. 计算频率域图像的幅值并进行对数变换,利用' imshow' 显示频率域图像; 7. 在频率图像上去除滤波半径以外的数据 (置 0); 8. 计算频率域图像的幅值并进行对数变换,利用' imshow' 显示处理过的 频域图像数据; 9. 用' ifft2 ' 函数对图像数据进行二维 FFT 逆变换,并用' real '函数取其实部,得到处理过的空间域图像数据; 10. 将图像数据各点数据乘以 (-1)x+y; 11. 利用' imshow' 显示处理结果图像数据; 12. 利用' imwrite '函数保存图像处理结果数据。 图像去噪实验步骤 : 1. 打开 Matlab 编程环境;

2. 利用' imread' 函数读入包含噪声的原始图像数据 ; 3. 利用' imshow' 显示所读入的图像数据 ; 4. 以 3X3 大小为处理掩模,编写代码实现中值滤波算法,并对原始噪声图像进行滤波处理 ; 5. 利用' imshow' 显示处理结果图像数据 ; 6. 利用' imwrite ' 函数保存图像处理结果数据。 即使不是按这些步骤来的也没关系,只要是那个功能,能实现就0K谢谢大家%%%%%%%%spatial frequency (SF) filtering by low pass filter%%%%%%%% % the SF filter is unselective to orientation (doughnut-shaped in the SF % domain). [FileName,PathName,FilterIndex] = uigetfile ; filename = fullfile(PathName, FileName) ; [X map] = imread(filename, fmt); % read image L = double(X); % transform to double %%%%%%%%%%%%% need to add (-1)x+y to L % calculate the number of points for FFT (power of 2) fftsize = 2 .A ceil(log2(size(L))); % 2d fft Y = fft2(X, fftsize(1), fftsize (2)); Y = fftshift(Y); % obtain frequency (cycles/pixel) f0 = floor([m n] / 2) + 1; fy = ((m: -1: 1) - f0(1) + 1) / m; fx = ((1: n) - f0(2)) / n; [mfx mfy] = meshgrid(fx, fy); % calculate radius SF = sqrt(mfx .A 2 + mfy .A 2);

相关文档
最新文档