集合不等式三角函数解析几何归纳小结

集合不等式三角函数解析几何归纳小结
集合不等式三角函数解析几何归纳小结

集合不等式三角函数解析几何

概念 绝对值不等式 命题

运算 一元二次不等式 充要条件

集合 集合的应用 简易逻辑

【简易逻辑】

命题:可以判断真假的语句; 逻辑联结词:或、且、非; 简单命题:不含逻辑联结词的命题; 复合命题:由简单命题与逻辑联结词构成的命题。 三种形式:p 或q 、p 且q 、非p 真假判断:p 或q ,同假为假,否则为真;p 且q ,同真为真;非p ,真假相反

原命题:若p 则q ; 逆命题:若q 则p ; 否命题:若?p 则?q ; 逆否命题:若?q 则?p ; 互为逆否的两个命题是等价的。 反证法步骤:假设结论不成立→推出矛盾→假设不成立。

三角公式总表

湛江市二十中 洪飞

⒈L 弧长=αR=nπR 180 S 扇=21L R=2

1R 2

α=3602R n ?π

⒉正弦定理:

A a

sin =B b sin =C

c sin = 2R (R 为三角形外接圆半径)

⒊余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos

c 2

=a 2

+b

2

-2ab C cos bc

a c

b A 2cos 2

22-+=

⒋S ⊿=2

1a a h ?=2

1ab C sin =2

1bc A sin =2

1ac B sin =R

abc 4=2R 2A sin B sin C sin

=A

C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr =))()((c p b p a p p ---

(其中)(2

1c b a p ++=, r 为三角形内切圆半径)

⒌同角关系:

⑴商的关系:①θtg =x

y =θ

θ

cos sin =θθsec sin ? ②θθθ

θ

θcsc cos sin cos ?===

y x ctg ③θθθtg r

y

?==cos sin ④θθθθcsc cos 1sec ?==

=tg x r ⑤θθθctg r

x

?==

sin cos ⑥θθθθsec sin 1csc ?==

=ctg y r ⑵倒数关系:1sec cos csc sin =?=?=?θθθθθθctg tg ⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22?θθθ++=

+b a b a

(其中辅助角?与点(a,b )在

同一象限,且a

b tg =?)

⒍函数y=++?)sin(?ωx A k 的图象及性质:(0,0>>A ω) 振幅A ,周期T =ω

π2, 频率f =T

1, 相位?ω+?x ,初相?

⒎五点作图法:令?ω+x 依次为ππππ2,2

3,,2

0 求出x 与y , 依

点()y x ,作图 ⒏诱导公试 三角函数值等于α的同名

三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限

三角函数值等于α的异名

三角函数值,前面加上一个把α看作锐角时,原三角

函数值的符号;即:函数名改变,符号看象限

⒐和差角公式

①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =±

③β

αβ

αβαtg tg tg tg tg ?±=

± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=±

⑤γ

βγαβαγ

βαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ?-?-?-??-++=

++1)( 其中当A+B+C=π时,有:

i).tgC tgB tgA tgC tgB tgA ??=++ ii).12

22222=++C

tg B tg C tg A tg B tg A tg ⒑二倍角公式:(含万能公式) ①θ

θ

θθθ212cos sin 22sin tg tg +=

= ②θ

θ

θθθθθ222

2

2

2

11sin 211cos 2sin cos 2cos tg tg +-=-=-=-=

③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2

θθ+=

⒒三倍角公式:

①)60sin()60sin(sin 4sin 4sin 33sin 3θθθθθθ+?-?=-= ②)60cos()60cos(cos 4cos 4cos 33cos 3θθθθθθ+?-?=+-=

③)60()60(313323θθθθ

θ

θθ+?-?=--=

tg tg tg tg tg tg tg ⒓半角公式:(符号的选择由2

θ

所在的象限确定) ①2cos 12sin

θθ

= ②2

cos 12sin 2θ

θ-= ③2cos 12cos θθ+±= ④2cos 12

cos 2

θθ

+=

⑤2sin 2cos 12θθ=- ⑥2

cos 2cos 12θ

θ=+ ⑦2

sin

2

cos )2

sin 2

(cos sin 12θ

θθθθ±=±=±

⑧θ

θ

θθθθθ

sin cos 1cos 1sin cos 1cos 12

-=+=+-±

=tg

⒔积化和差公式:

[])sin()sin(21cos sin βαβαβα-++=

[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2

1

sin sin

⒕和差化积公式: ①2cos

2sin

2sin sin β

αβ

αβα-+=+ ②2

sin

2cos

2sin sin β

αβ

αβα-+=-

③2cos 2cos 2cos cos βαβαβα-+=+ ④2

sin

2sin 2cos cos β

αβαβα-+-=- ⒖反三角函数: ⒗最简单的三角方程

单元知识总结

一、不等式的性质

1.两个实数a 与b 之间的大小关系

(1)a b 0a b (2)a b =0a =b (3)a b 0a b ->>;-;-<<.??????

??

若、,则>>;;

<<. a b R (4)a

b 1a b (5)a b =1a =b (6)a

b 1a b ∈????????????+

2.不等式的性质

(1)a b b a()><对称性?

(2)

a b b c a c()>>>传递性?

???

(3)a b a c b c()>+>+加法单调性?

a b c 0 ac bc >>>?

???

(4)

(乘法单调性)

a b c 0 ac bc ><<?

???

(5)a b c a c b()+>>-移项法则?

(6)

a b c d a c b d()>>+>+同向不等式可加?

???

(7)a b c d a c b d()><->-异向不等式可减????

(8)a b 0c d 0ac bd()>>>>>同向正数不等式可乘???? (9)a b 00c d b d ()

>><<>异向正数不等式可除????a c

(10)

a b 0n N a b ()

n n

>>>正数不等式可乘方∈????

(11)a b 0n N a ()

n >>>正数不等式可开方∈????b n

(12)a b 01a ()>><正数不等式两边取倒数?

1

b

3.绝对值不等式的性质

(1)|a|a |a|= a (a 0)a (a 0)≥;≥,

-<.??

?

(2)如果a >0,那么

|x|a x a a x a 22<<-<<;?? |x|a x a x a x a 22>>>或<-.??

(3)|a ·b|=|a|·|b|.

(4)|a b | (b 0)=≠.

||

||a b

(5)|a|-|b|≤|a ±b|≤|a|+|b|.

(6)|a 1+a 2+……+a n |≤|a 1|+|a 2|+……+|a n |. 二、不等式的证明 1.不等式证明的依据

(1)a b ab 0a b ab 0a b 0a b a b 0a b a b =0a =b

实数的性质:、同号>;、异号<->>;-<<;-?????

(2)不等式的性质(略)

(3)重要不等式:①|a|≥0;a 2≥0;(a -b)2≥0(a 、b ∈R) ②a 2+b 2≥2ab(a 、b ∈R ,当且仅当a=b 时取“=”号)

≥、,当且仅当时取“”号a b

+∈+2ab(a b R a =b =)

2.不等式的证明方法

(1)比较法:要证明a >b(a <b),只要证明a -b >0(a -b <0),这种证明不等式的方法叫做比较法.

用比较法证明不等式的步骤是:作差——变形——判断符号.

(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.

(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.

三、解不等式

1.解不等式问题的分类

(1)解一元一次不等式.

(2)解一元二次不等式.

(3)可以化为一元一次或一元二次不等式的不等式.

①解一元高次不等式;

②解分式不等式;

③解无理不等式;

④解指数不等式;

⑤解对数不等式;

⑥解带绝对值的不等式;

⑦解不等式组.

2.解不等式时应特别注意下列几点:

(1)正确应用不等式的基本性质.

(2)正确应用幂函数、指数函数和对数函数的增、减性.

(3)注意代数式中未知数的取值范围.

3.不等式的同解性

(1)f(x)g(x)0f(x)0

g(x)0

f(x)0

g(x)0

·>与

同解.?

?

?

?

?

?

(2)f(x)g(x)0f(x)0

g(x)0

f(x)0

g(x)0

·<与

同解.?

?

?

?

?

?

(3)f(x)

g(x)

f(x)0

g(x)0

f(x)0

g(x)0

(g(x)0)>与

同解.≠

?

?

?

?

?

?

(4)f(x)

g(x)

f(x)0

g(x)0

f(x)0

g(x)0

(g(x)0)<与

同解.≠

?

?

?

?

?

?

(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)

(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.

(7)f(x)g(x)f(x)[g(x)]

f(x)0

g(x)0

f(x)0

g(x)0

2

>与

同解.?

?

?

?

?

?

?

?

(8)f(x)g(x)f(x)[g(x)]f(x)02

<与<≥同解.

???

(9)当a >1时,a f(x)>a g(x)与f(x)>g(x)同解,当0<a <1时,a f(x)>a g(x)与f(x)<g(x)

同解.

(10)a 1log f(x)log g(x)f(x)g(x)

f(x)0a a 当>时,>与>>同解.

???

当<<时,>与<>>同解.

0a 1log f(x)log g(x)f(x)g(x) f(x)0g(x)0a a ???

??

单元知识总结

一、坐标法

1.点和坐标

建立了平面直角坐标系后,坐标平面上的点和一对有序实数(x ,y)建立了一一对应的关系.

2.两点间的距离公式

设两点的坐标为P 1

(x 1

,y 1

),P 2

(x 2

,y 2

),则两点间的距离

|P P |=12()()x x y y 212212-+-

特殊位置的两点间的距离,可用坐标差的绝对值表示: (1)当x 1

=x 2

时(两点在y 轴上或两点连线平行于y 轴),则 |P 1

P 2

|=|y 2

-y 1

|

(2)当y 1

=y 2

时(两点在x 轴上或两点连线平行于x 轴),则 |P 1

P 2

|=|x 2

-x 1

|

3.线段的定比分点

(1)P P P P P PP P P PP P P P =

P P P P 12121212112定义:设点把有向线段分成和两部分,那么有向线段和的数量的比,就是点分所成的比,通常用λ表示,即λ,点叫做分线段为定比λ的定比分点.P

PP 2

当点内分时,λ>;当点外分时,λ<.P P P 0P P P 01212

(2)公式:分P 1

(x 1

,y 2

)和P 2

(x 2

,y 2

)连线所成的比为λ的分点坐标是

x x x y y y =++=++??

??

???-1212111λλλλλ≠()

特殊情况,当是的中点时,λ,得线段的中点坐标P P P =1P P 1212

公式

x x x y y y =+=+??

?????121222

二、直线

1.直线的倾斜角和斜率 (1)当直线和x 轴相交时,把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角,叫做这条直线的倾斜角.

当直线和x 轴平行线重合时,规定直线的倾斜角为0. 所以直线的倾斜角α∈[0,π).

(2)倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜

率,直线的斜率常用表示,即αα≠π

k k =tan ()2

∴当k ≥0时,α=arctank .(锐角)

当k <0时,α=π-arctank .(钝角)

(3)斜率公式:经过两点P 1

(x 1

,y 1

)、P 2

(x 2

,y 2

)的直线的斜率为

k =

y (x x )

21

2--y x x 1

21≠

2.直线的方程

(1)点斜式 已知直线过点(x 0

,y 0

),斜率为k ,则其方程为:y -y 0

=k(x -x 0

) (2)斜截式 已知直线在y 轴上的截距为b ,斜率为k ,则其方程为:y=kx +b (3)两点式 已知直线过两点(x 1

,y 1

)和(x 2

,y 2

),则其方程为:

y y y y x x x ----1211

21=x (x x )

1

2≠

(4)截距式 已知直线在x ,y 轴上截距分别为a 、b ,则其方程为:

x a y b +=1

(5)参数式 已知直线过点P(x 0

,y 0

),它的一个方向向量是(a ,b),

则其参数式方程为为参数,特别地,当方向向量为

x x at

y y bt =+=+???00(t )

v(cos α,sin α)(α为倾斜角)时,则其参数式方程为

x x t y y t =+=+??

?00cos sin α

α为参数(t )

这时,的几何意义是,→→

t tv =p p |t|=|p p|=|p p|000

(6)一般式 Ax +By +C=0 (A 、B 不同时为0). (7)特殊的直线方程

①垂直于x 轴且截距为a 的直线方程是x=a ,y 轴的方程是x=0. ②垂直于y 轴且截距为b 的直线方程是y=b ,x 轴的方程是y=0. 3.两条直线的位置关系

(1)平行:当直线l 1

和l 2

有斜截式方程时,k 1

=k 2

且b 1

≠b 2

当和是一般式方程时,≠

l l 12A A B B C C 12121

2=

(2)重合:当l 1

和l 2

有斜截式方程时,k 1

=k 2

且b 1

=b 2

,当l 1

和l 2

一般方程时,

A A

B B

C C 12121

2==

(3)相交:当l 1

,l 2

是斜截式方程时,k 1

≠k

2

当,是一般式方程时,

≠l l 12A A B

B 2212

①斜交交点:的解到角:到的角θ≠夹角公式:和夹角θ≠A x B y C A x B y C k k k k k k k k k k k k 1112

2222112

1212

2112120

0110110++=++=??

?=-++=-++??????

?

????l l l l 1tan ()

tan ||()

②垂直当和有叙截式方程时,-当和是一般式方程时,+l l l l 1212121212k k =1

A A

B B =0??

?

4.点P(x 0

,y 0

)与直线l :Ax +By +C=0的位置关系:

Ax By C =0P ()Ax By C 0P 0000++在直线上点的坐标满足直线方程++≠在直线外.

??l l

点,到直线的距离为:P(x y )d =

|Ax +By +C|

0000l A B 22

+

5.两条平行直线l 1

∶Ax +By +C 1

=0,l 2

∶Ax +By +C 2

=0间

的距离为:.

d =

|C C |12-+A B

2

2

6.直线系方程

具有某一共同属性的一类直线的集合称为直线系,它的方程的特点是除含坐标变量x ,y 以外,还含有特定的系数(也称参变量).

确定一条直线需要两个独立的条件,在求直线方程的过程中往往先根据一个条件写出所求直线所在的直线系方程,然后再根据另一个条件来确定其中的参变量.

(1)共点直线系方程:

经过两直线l 1

∶A 1

x +B 1

y +C 1

=0,l 2

∶A 2

x +B 2

y +C 2

=0的交点的直线系方程为:A 1

x +B 1

y +C 1

+λ(A 2

x +B 2

y +C 2

)=0,其中λ是待定的系数.

在这个方程中,无论λ取什么实数,都得不到A 2

x +B 2

y +C 2

=0,因此它不表示l 2

.当λ=0时,即得A 1

x +B 1

y +C 1

=0,此时表示l 1

(2)平行直线系方程:直线y=kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C=0平行的直线系方程是Ax +By +λ=0(λ≠C),λ是参变量.

(3)垂直直线系方程:与直线Ax +By +C=0(A ≠0,B ≠0)垂直的直线系方程是:Bx -Ay +λ=0.

如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,可选用直线系方程来求解.

7.简单的线性规划

(1)二元一次不等式Ax +By +C >0(或<0)表示直线Ax +By +C=0某一侧所有点组成的平面区域.

二元一次不等式组所表示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部分.

(2)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题,

例如,z=ax +by ,其中x ,y 满足下列条件:

A x

B y

C 0(0)A x B y C 0(0)A x B x C 0(0)

111222n

n n ++≥或≤++≥或≤……

++≥或≤??

?

????(*)

求z 的最大值和最小值,这就是线性规划问题,不等式组(*)是一组对变量x 、y

的线性约束条件,z=ax +by 叫做线性目标函数.满足线性约束条件的解(x ,y)叫做可行解,由所有可行解组成的集合叫做可行域,使线性目标函数取得最大值和最小值的可行解叫做最优解.

三、曲线和方程

1.定义

在选定的直角坐标系下,如果某曲线C 上的点与一个二元方程f(x ,y)=0的实数解建立了如下关系:

(1)曲线C 上的点的坐标都是方程f(x ,y)=0的解(一点不杂);

(2)以方程f(x ,y)=0的解为坐标的点都是曲线C 上的点(一点不漏).

这时称方程f(x ,y)=0为曲线C 的方程;曲线C 为方程f(x ,y)=0的曲线(图形). 设P={具有某种性质(或适合某种条件)的点},Q={(x ,y)|f(x ,y)=0},若设点M 的坐标为(x 0

,y 0

),则用集合的观点,上述定义中的两条可以表述为:

(1)M P (x y )Q P Q (2)(x y )Q M P Q P 0000∈,∈,即;,∈∈,即.????

以上两条还可以转化为它们的等价命题(逆否命题):

(1)(x y )Q M P (2)M P (x y )Q 0000,;,.??????

显然,当且仅当且,即时,才能称方程,P Q Q P P =Q f(x y)=0??

为曲线C 的方程;曲线C 为方程f(x ,y)=0的曲线(图形).

2.曲线方程的两个基本问题 (1)由曲线(图形)求方程的步骤:

①建系,设点:建立适当的坐标系,用变数对(x ,y)表示曲线上任意一点M 的坐标;

②立式:写出适合条件p 的点M 的集合p={M|p(M)}; ③代换:用坐标表示条件p(M),列出方程f(x ,y)=0; ④化简:化方程f(x ,y)=0为最简形式;

⑤证明:以方程的解为坐标的点都是曲线上的点. 上述方法简称“五步法”,在步骤④中若化简过程是同解变形过程;或最简方程的解集与原始方程的解集相同,则步骤⑤可省略不写,因为此时所求得的最简方程就是所求曲线的方程.

(2)由方程画曲线(图形)的步骤:

①讨论曲线的对称性(关于x 轴、y 轴和原点); ②求截距:

方程组,的解是曲线与轴交点的坐标;

f x y y ()==???0

0x 方程组,的解是曲线与轴交点的坐标;

f x y x ()==???0

0y

③讨论曲线的范围;

④列表、描点、画线. 3.交点

求两曲线的交点,就是解这两条曲线方程组成的方程组.

4.曲线系方程

过两曲线f 1

(x ,y)=0和f 2

(x ,y)=0的交点的曲线系方程是f 1

(x ,y)+λf 2

(x ,y)=0(λ∈R).

四、圆

1.圆的定义

平面内与定点距离等于定长的点的集合(轨迹)叫圆. 2.圆的方程

(1)标准方程(x -a)2

+(y -b)2

=r 2

.(a ,b)为圆心,r 为半径. 特别地:当圆心为(0,0)时,方程为x 2

+y 2

=r 2

(2)一般方程x 2

+y 2

+Dx +Ey +F=0

配方()()x D y E D E F

+++=

+-22442222

当+->时,方程表示以-,-为圆心,以

为半径的圆;D E 4F 0()2

2

D E

D E F 22

1

2

422+-

当+-时,方程表示点-

,-D E 4F =0()22D E 22

当D 2

+E 2

-4F <0时,方程无实数解,无轨迹.

(3)参数方程 以(a ,b)为圆心,以r 为半径的圆的参数方程为

x a r y b r =+=+??

?cos sin θ

θθ为参数()

特别地,以(0,0)为圆心,以r 为半径的圆的参数方程为

x r y r ==??

?cos sin θ

θθ为参数()

3.点与圆的位置关系

设点到圆心的距离为d ,圆的半径为r .

(1)d r (2)d =r (3)d r 点在圆外>;点在圆上;点在圆内<.???

4.直线与圆的位置关系

设直线l :Ax +By +C=0和圆C :(x -a)2

+(y -b)2

=r 2

,则

d Aa Bb C A B

=

+++||2

2

(1)0d r (2)=0d =r (3)0d r 相交直线与圆的方程组成的方程组有两解,△>或<;相切直线与圆的方程组成的方程组有一组解,△或;相离直线与圆的方程组成的方程组无解,△<或>.

???

5.求圆的切线方法

(1)已知圆x 2

+y 2+Dx +Ey +F=0.

①若已知切点(x 0

,y 0

)在圆上,则切线只有一条,其方程是

x x y y D x x E y y F 0000220=+++++=()()

当,在圆外时,++++表示

(x y )x x y y D(x )E(y )F =0000000++x y

22

过两个切点的切点弦方程.

②若已知切线过圆外一点(x 0

,y 0

),则设切线方程为y -y 0

=k(x -x 0

),再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.

③若已知切线斜率为k ,则设切线方程为y=kx +b ,再利用相切条件求b ,这时必有两条切线.

(2)已知圆x 2

+y 2

=r 2

①若已知切点P 0

(x 0

,y 0

)在圆上,则该圆过P 0

点的切线方程为x 0

x +y 0

y=r 2

②已知圆的切线的斜率为,圆的切线方程为±.k y =kx r k 2+1

6.圆与圆的位置关系

已知两圆圆心分别为O 1

、O 2

,半径分别为r 1

、r 2

,则

(1)|O O |=r r (2)|O O |=|r r |(3)|r r ||O O |r r 12121212121212两圆外切+;两圆内切-;

两圆相交-<<+.???

单元知识总结

一、圆锥曲线 1.椭圆 (1)定义

定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点).

定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常

数=<<时,这个点的轨迹是椭圆.

e (0e 1)c

a

(2)图形和标准方程

图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0)

821(a b 0)

x a y b x b y a 222

2222

2

(3)几何性质

单元知识总结

一、圆锥曲线 1.椭圆 (1)定义

定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点).

定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常

数=<<时,这个点的轨迹是椭圆.

e (0e 1)c

a

(2)图形和标准方程

图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0)

821(a b 0)

x a y b x b y a 222

2222

2

(3)几何性质

2.双曲线

(1)定义 定义1:平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).

定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e >1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点).

(2)图形和标准方程

图8-3的标准方程为:

x a

y

b

2

2

2

2

-=>,>

1(a0b0)

图8-4的标准方程为:

y a

x

b

2

2

2

2

-=>,>

1(a0b0)

(3)几何性

3.抛物线(1)定义

三角函数知识点及题型归纳

三角函数高考题型分类总结 一.求值 1.若4sin ,tan 05 θθ=->,则cos θ= . 2.α是第三象限角,2 1)sin(= -πα,则αcos = )25cos(απ+= 3.若角α的终边经过点(12)P -,,则αcos = tan 2α= 4.下列各式中,值为 2 3 的是 ( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5.若02,sin 3cos απαα≤≤> ,则α的取值范围是: ( ) (A),32ππ?? ??? (B),3ππ?? ??? (C)4,33ππ?? ??? (D)3,32 ππ ?? ??? 二.最值 1.函数()sin cos f x x x =最小值是 。 2.若函数()(13tan )cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 3.函数()cos 22sin f x x x =+的最小值为 最大值为 。 4.已知函数()2sin (0)f x x ωω=>在区间,34ππ?? - ??? ?上的最小值是2-,则ω的最小值等于 5.设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为 . 6.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A . 6π7 B .3π C .6π D .2 π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1 B .2 C .3 D .2 8.函数2 ()sin 3sin cos f x x x x =+在区间,42ππ?? ? ??? 上的最大值是 ( ) A.1 B. 13 2 + C. 3 2 D.1+3 三.单调性 1.函数]),0[()26 sin(2ππ ∈-=x x y 为增函数的区间是 ( ).

高中文科数学三角函数知识点总结

三角函数知识点 一.考纲要求 考试内容3 要求层次 A B C 三角函数、 三角恒等 变换、 解三角形 三角函数 任意角的概念和弧度制 √ △ 弧度与角度的互化◇ √ 任意角的正弦、余弦、正切的定义 √ 用单位圆中的三角函数线表示正弦、余弦和正切 √ 诱导公式 √ △ 同角三角函数的基本关系式 √ 周期函数的定义、三角函数的周期性 √ 函数sin y x =,cos y x =,tan y x =的图象 和性质 √ 函数sin()y A x ω?=+的图象 √ 用三角函数解决一些简单的实际问题◇ √ 三角 恒等 变换 两角和与差的正弦、余弦、正切公式 √ 二倍角的正弦、余弦、正切公式 √ 简单的恒等变换 √ 解三角形 正弦定理、余弦定理 √ △ 解三角形 √ △ 二.知识点 1.角度制与弧度制的互化:,23600π= ,1800π= 1rad =π 180°≈57.30°=57°18ˊ. 1°= 180 π≈0.01745(rad ) 2.弧长及扇形面积公式 弧长公式:r l .α= 扇形面积公式:S=r l .2 1 α----是圆心角且为弧度制。 r-----是扇形半径 3.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x +

(1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: sin α cos α tan α 4、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. 5.同角三角函数的基本关系: (1)平方关系:sin 2α+ cos 2α=1。 (2)商数关系: ααcos sin =tan α(z k k ∈+≠,2 ππ α) 6.诱导公式:奇变偶不变,符号看象限 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2παα??+= ???,cos sin 2παα??+=- ??? . x y +O — — + x y O — + + — + y O — + + — (3) 若 o|cosx| |cosx|>|sinx| |cosx|>|sinx| |sinx|>|cosx| sinx>cosx cosx>sinx 16. 几个重要结论:O O x y x y T M A O P x y

高一三角函数题型总结

1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:①画直角三角形 ②利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2. 2. 3. 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 133 π= ;

1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) 33 (D)± 3 3.) 4. ) 5.) * 6.)

三角函数诱导公式 诱导公式可概括为把 απ ±?k 2 的三角函数值转化成角α的三角函数值。(k 指奇数或者偶数, α相当锐角) 口诀“奇变偶不变,符号看象限。”其中奇偶是指2 π 的奇数倍还是偶数倍,变与不变指函数名称的变化。 公式一:=+)2sin(απk =+)2c o s (απk =+)2t a n (απk

三角函数诱导公式练习题 1.若(),2,5 3 cos παππα<≤= +则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 5 4 - 2.sin (-6 π 19)的值是( ) A 3 6 )= . 10.α是第四象限角,,则αsin 等于________. 13 12 cos =α

高中数学三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈g x 轴上角:{}()180k k Z αα=∈o g y 轴上角:{}()90180k k Z αα=+∈o o g 3、第一象限角:{}()036090360k k k Z αα? ?+<<+∈o g g 第二象限角:{}()90 360180360k k k Z αα??+<<+∈o o g g 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈o o g g 第四象限角: {}()270 360360360k k k Z αα??+<<+∈o o g g 4、区分第一象限角、锐角以及小于90o 的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈o g g 锐角: {}090αα<

,2 4 , 0π απ ≤ ≤=k ,2 345, 1παπ≤≤=k 所以 2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号

初中三角函数知识点题型总结+课后练习

锐角三角函数知识点 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4 5、0 锐角三角函数题型训练 类型一:直角三角形求值 1.已知Rt △ABC 中,,12,4 3 tan ,90== ?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4.已知A ∠是锐角,17 8 sin = A ,求A cos ,A tan 的值 类型二. 利用角度转化求值:

1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B . 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则 tan EFC ∠的值为 ( ) A.34 B.43 C.35 D. 4 5 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若1tan 5 DBA ∠= ,则AD 的长为( )A .2 C .1 D .4. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD = 3 16求∠ B 的度数及边B C 、AB 的长. 例2.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,?=3 sin A (1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B . 例3.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5. 求:sin ∠ABC 的值. 对应训练 1.(2012?重庆)如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号) 2.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B . 类型四:利用网格构造直角三角形 对应练习: 1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______. 特殊角的三角函数值 例1.求下列各式的值 ?-?+?30cos 245sin 60tan 2=. 计算:3-1+(2π-1)0- 3 3 tan30°-tan45°= 0 30tan 2345sin 60cos 221 ??? ? ???-?+?+= ?-?+?60tan 45sin 230cos 2 tan 45sin 301cos 60?+? -? = B

三角函数题型学霸总结(含答案)-

三角函数题型学霸总结(含答案) 阳光老师:祝你学业有成 一、选择题(本大题共30小题,共150.0分) 1.点在函数的图象上,则m等于 A. 0 B. 1 C. D. 2 【答案】C 【解析】 【分析】本题主要考查了正弦函数的性质,属于基础题由题意知,求得m 的值. 【解答】解:由题意知, 所以, 所以. 2.用五点法画,的图象时,下列哪个点不是关键点 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的作法,属于基础题. 熟练掌握五点法作图即可. 【解答】 解:用“五点法”画,的简图时, 横坐标分别为, 纵坐标分别为0,1,0,,0, 故选A. 3.函数y x,x的大致图象是

A. B. C. D. 【答案】B 【解析】 【分析】 本题主要考查三角函数的图像,属于基础题利用“五点法”画出函数图像即可得出答案. 【解答】 解:“五点法”作图: x0 0100 10121 故选B. 4.用“五点法”作出函数的图象,下列点中不属于五点作图中的五个关 键点的是 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的画法以及余弦函数的性质,属于基础题. 分别令,,,,得,3,4,3,2,即可得到五点,再对照选项,即可得到答案. 【解答】 解:,分别令,,,,得,3,4,3,2,

所以五个关键点为,,,,, 可知A不属于. 故选A. 5.已知函数的图象与直线 恰有四个公共点,,,,其中,则 A. B. 0 C. 1 D. 【答案】A 【解析】 【分析】 本题考查了三角函数图象的作法及利用导数求函数图象的切线方程,属于较难题. 由三角函数图象及利用导数求函数图象的切线方程可得:切点坐标为,切线方程为:,又切线过点,则,即,得解. 【解答】 解:由 得 其图象如图所示,

初中三角函数知识点总结(中考复习)

初中三角函数知识点总结(中考复习)

锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。 2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余 A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A C

切值等于它的余角的正切值。 5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:2 2 2 c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 2、应用举例:

(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度 (坡比)。用字 母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α==。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 反比例函数知识点整理 一、 反比例函数的概念 :i h l =h l α

三角函数题型分类总结

专题 三角函数题型分类总结 三角函数公式一览表 ............................................................................................................... 错误!未定义书签。 一 求值问题 ........................................................................................................................................................... - 1 - 练习 ................................................................................................................................................................. - 1 - 二 最值问题 ........................................................................................................................................................... - 2 - 练习 ................................................................................................................................................................. - 3 - 三 单调性问题 ....................................................................................................................................................... - 3 - 练习 ................................................................................................................................................................. - 3 - 四.周期性问题 ........................................................................................................................................................ - 4 - 练习 ................................................................................................................................................................. - 4 - 五 对称性问题 ....................................................................................................................................................... - 5 - 练习 ................................................................................................................................................................. - 5 - 六.图象变换问题 .................................................................................................................................................... - 6 - 练习 ................................................................................................................................................................. - 7 - 七.识图问题 ......................................................................................................................................................... - 7 - 练习 ................................................................................................................................................................. - 9 - 一 求值问题 类型1 知一求二 即已知正余弦、正切中的一个,求另外两个 方法:根据三角函数的定义,注意角所在的范围(象限),确定符号; 例 4 s i n 5 θ=,θ是第二象限角,求cos ,tan θθ 类型2 给值求值 例1 已知2tan =θ,求(1) θ θθθsin cos sin cos -+;(2)θθθθ2 2cos 2cos .sin sin +-的值. 练习 1、sin 330?= tan 690° = o 585sin = 2、(1)α是第四象限角,12 cos 13 α=,则sin α= (2)若4 sin ,tan 05 θθ=- >,则cos θ= . (3)已知△ABC 中,12 cot 5 A =-,则cos A = . (4) α是第三象限角,2 1)sin(=-πα,则αcos = )25cos(απ += 3、(1) 已知5 sin ,5 α= 则44sin cos αα-= .

高一三角函数题型总结

1.已知角围和其中一个角的三角函数值求任意角三角函数值 方法:?画直角三角形 ?利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2.一个式子如果满足关于αsin 和αcos 的?分式 ?齐次式 可以实现αtan 之间的转化 例题:1.已知sin 2cos 5,tan 3sin 5cos αα ααα-=-+那么的值为_____________. 2.已知2tan =α,则1.α αα αcos sin cos sin -+=_____________. 2. α αα α2 2cos sin cos sin -=_____________. 3.1cos sin +αα=_____________.(“1”的代换) 3.已知三角函数αsin 和αcos 的和或差的形式求αsin .αcos 方法:等式两边完全平方(注意三角函数中判断正负利用角的围进行取舍) 例题:已知πα<∠<0,αsin +αcos =2 1 ,求?αsin .αcos ?αcos -αsin 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-23 6π)+cos 137π·tan4π -cos 133 π= ;

1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)4 3 (D)4 3- 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) (A)2 3 (B)4 3 (C) (D)± 2 3 3.设是第二象限角,则 sin cos αα ( ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ= 3 1,π<θ<3 2π,则sin θ·cos θ的值为 ( ) (A)±3 10 (B) 3 10 5.已知 sin cos 2sin 3cos αααα-+=5 1 ,则tan α的值是 ( ) (A)±83 (B)83 (C)83 - (D)无法确定 * 6.若α是三角形的一个角,且sin α+cos α= 3 2 ,则三角形为 ( ) (A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)等腰三角形

高中数学三角函数知识点总结(珍藏版)

高中数学三角函数知识点总结 1.特殊角的三角函数值: 2.角度制与弧度制的互化: ,23600π= ,1800 π= 1rad =π 180°≈57.30°=57°18ˊ 1°= 180 π≈0.01745(rad ) 3.弧长及扇形面积公式 (1)弧长公式:r l .α= α----是圆心角且为弧度制 (2)扇形面积公式:S=r l .2 1 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: 记忆口诀:一全正,二正弦,三两切,四余弦

sin α cos α tan α 5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1 (2)商数关系:ααcos sin =tan α(z k k ∈+≠,2 ππ α) 6.诱导公式: 记忆口诀:把2 k π α±的三角函数化为α的三角函数,概括为:奇变偶不变,符号看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2π αα??+= ???,cos sin 2παα?? +=- ??? . 口诀:正弦与余弦互换,符号看象限. x y O — + + — + y O — + + —

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

(推荐)高一三角函数题型总结

题型总结 1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:画直角三角形 利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2.一个式子如果满足关于αsin 和αcos 的分式 齐次式 可以实现αtan 之间的转化 例题:1.已知 sin 2cos 5,tan 3sin 5cos ααααα -=-+那么的值为_____________. 2.已知2tan =α,则1.α αα αcos sin cos sin -+=_____________. 2.α αα α22cos sin cos sin -=_____________. 3.1cos sin +αα=_____________.(“1”的代换)

3.已知三角函数αsin 和αcos 的和或差的形式求αsin .αcos 方法:等式两边完全平方(注意三角函数中判断正负利用角的范围进行取舍) 例题:已知πα<∠<0,αsin +αcos =2 1 ,求αsin .αcos αcos -αsin 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 13 3 π= ; 练习题 1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α= 8 1,且4π<α< 2π ,则cos α-sin α的值为 ( ) (A) 2 3 (B)4 3 (C)3 (D)± 2 3

高一三角函数知识点梳理总结

高一三角函数知识 §1.1任意角和弧度制 ?? ? ??零角负角:顺时针防线旋转正角:逆时针方向旋转 任意角..1 2.象限角:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3.. ①与α(0°≤α<360°)终边相同的角的集合:{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{ } Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:Z k k ∈-=,βα 360 ⑧若角α与角β的终边关于y 轴对称,则α与角β的关系:Z k k ∈-+=,βα 180360 ⑨若角α与角β的终边在一条直线上,则α与角β的关系:Z k k ∈+=,βα 180 ⑩角α与角β的终边互相垂直,则α与角β的关系:Z k k ∈++=, 90180βα 4. 弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角所对 的弧长为l ,则其弧度数的绝对值|r l = α,其中r 是圆的半径。 5. 弧度与角度互换公式: 1rad =(π 180)°≈57.30° 1°=180 π 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 6.. 第一象限的角:? ?? ? ??∈+<

三角函数总结经典例题

第三章 三角函数 3.1任意角三角函数 一、知识导学 1.角:角可以看成由一条射线绕着端点从一个位置旋转到另一个位置所形成的几何图形.角的三要素是:顶点、始边、终边.角可以任意大小,按旋转的方向分类有正角、负角、零角. 2.弧度制:任一已知角α的弧度数的绝对值r l = α,其中l 是以α作为圆心角时所对圆弧的长,r 为圆的半径.规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.用“弧度”做单位来度量角的制度叫做弧度制. 3.弧度与角度的换算:rad π2360=ο ;rad 1745.01801≈=π ο ;1ο ο 30.57180≈?? ? ??=πrad .用弧度为单位表示角的 大小时,弧度(rad )可以省略不写.度()ο 不可省略. 4.弧长公式、扇形面积公式:,r l α= 2||2 1 21r lr S α= =扇形,其中l 为弧长,r 为圆的半径.圆的周长、面积公式是弧长公式和扇形面积公式中当πα2=时的情形. 5.任意角的三角函数定义:设α是一个任意大小的角,角α终边上任意一点P 的坐标是()y x ,,它与原点的距离是 )0(>r r ,那么角α的正弦、余弦、正切、余切、正割、余割分别是 y r x r y x x y r x r y ====== ααααααcsc ,sec ,cot ,tan ,cos ,sin .这六个函数统称为三角函数. 三角函数 定义域 x y sin = R x y cos = R x y tan = ? ?????∈+≠Z k k x x ,2π π x y cot = {}Z k k x x ∈≠,π x y sec = ? ?????∈+≠Z k k x x ,2π π x y csc = {}Z k k x x ∈≠,π 7.三角函数值的符号:各三角函数值在第个象限的符号如图所示(各象限注明的函数为正,其余为负值) 可以简记为“一全、二正、三切、四余”为正. 二、疑难知识导析

三角函数知识点归纳

三角函数 一、任意角、弧度制及任意角的三角函数 1.任意角 (1)角的概念的推广 ①按旋转方向不同分为正角、负角、零角. ?? ??? 正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 ②按终边位置不同分为象限角和轴线角. 角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<

高考三角函数重要题型总结

1.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间[,]122ππ -上的值域。 2.已知函数2()sin sin()(0)2f x x x x πωωωω=+f 的最小正周期为π. (Ⅰ)求ω的值; (Ⅱ)求函数f (x )在区间[0,23 π]上的取值范围. 3.(本小题满分12分)已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n =g (Ⅰ)求tan A 的值; (Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域. 4..(本小题满分13分)已知函数()sin()(00π)f x A x A ??=+><<,,x ∈R 的最 大值是1,其图像经过点π1 32M ?? ???,. (1)求()f x 的解析式; (2)已知π02αβ??∈ ??? ,,,且3()5f α=,12()13f β= ,求()f αβ-的值. 5. 已知函数2()sin cos cos 2.222 x x x f x =+- (Ⅰ)将函数()f x 化简成sin()(0,0,[0,2))A x B A ω???π++>>∈的形式,并指出()f x 的周期; (Ⅱ)求函数17()[, ]12 f x ππ在上的最大值和最小值 6..已知函数x x x x f sin 2 sin 2cos )(22+-=. (I )求函数)(x f 的最小正周期; (II )当)4,0(0π ∈x 且524)(0=x f 时,求)6 (0π+x f 的值。 7.已知1tan 3 α=-,cos β=,(0,)αβπ∈ (1)求tan()αβ+的值; (2)求函数())cos()f x x x αβ=-++的最大值. 8.已知函数())cos()f x x x ω?ω?=+-+(0π?<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2 . (Ⅰ)求π8f ?? ???的值; (Ⅱ)将函数()y f x =的图象向右平移π 6 个单位后,得到函数()y g x =的图象,

高中三角函数知识点总结(人教版)

高中三角函数总结 1.任意角的三角函数定义: 设α为任意一个角,点),(y x P 是该角终边上的任意一点(异于原点),),(y x P 到原点的距离为22y x r += ,则: )(tan ),(cos ),(sin y x x y x r x y r y ?=== 正负看正负看正负看ααα 2.特殊角三角函数值: 3.同角三角函数公式: αααααααααα αtan 1 cot ,sin 1csc ,cos 1sec 1cos sin ,cos sin tan 22= ===+= 4.三角函数诱导公式: (1))(;tan )2tan(,cos )2cos( ,sin )2sin(Z k k k k ∈=+=+=+απααπααπα (2);tan )tan(,cos )cos(,sin )sin(απααπααπα=+-=+-=+ (3);tan )tan(,cos )cos(,sin )sin(αααααα-=-=--=- (函数名称不变,符号看象限) (4);cot )2 tan(,sin )2cos(,cos )2sin(απ ααπααπ α-=+-=+=+ (5);cot )2 tan(,sin )2cos(,cos )2sin( ααπ ααπααπ =-=-=- (正余互换,符号看象限) 注意:tan 的值,总为sin/cos ,便于记忆; 5.三角函数两角诱导公式:

(1)和差公式 βαβαβαsin cos cos sin )sin(±=±βαβαβαsin sin cos cos )cos( =± β αβ αβαtan tan 1tan tan )tan( ±= ± (2)倍角公式 令上面的βα=可得:αααcos sin 2)2sin(= α αααα2222sin 211cos 2sin cos )2cos(-=-=-= α α α2tan 1tan 2)2tan(-= 6.正弦定理: △ABC 中三边分别为c b a ,,,外接圆半径为R ,则有: R C c B b A a 2sin sin sin === 7.余弦定理: △ABC 中三边分别为c b a ,,,则有:ab c b a C 2cos 2 22-+= 8.面积公式: △ABC 中三边分别为c b a ,,,面积为S ,则有:)(sin 2 1 两边与夹角正弦值C ab S = 9.三角函数图象:

三角函数和三角恒等变换知识点及题型分类总结

三角函数知识点总结 1、任意角。 2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 3、与角α终边相同的角的集合为 4、 叫做1弧度. 5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 . 6、弧度制与角度制的换算公式 7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则L= . S= 8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是 () 220r r x y =+>,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限 余弦为正. 10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 11、同角三角函数的基本关系:(1) ;(2) 。 12、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ???.()6sin cos 2παα??+= ???,cos sin 2παα??+=- ???. 口诀:奇变偶不变,符号看象限. 重要公式 ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβ αβαβ ++= -(()()tan tan tan 1tan tan αβαβαβ+=+-).

相关文档
最新文档