《材料力学 一》第二章 拉伸、压缩与剪切

Engineering Mechanics

第二章

Engineering Mechanics

§2-1轴向拉压的概念及实例

(Concepts and examples of axial tension &第二章拉伸、压缩与剪切Chapter2Axial Tension and Compression §

(Calculation of internal force)

§

(Stress and strength condition)

Engineering Mechanics

§2-4 材料在拉伸和压缩时的力学性能(Material properties in axial tension and compression)

§2-5拉压杆的变形计算

(Calculation of axial deformation)

§

axially loaded members)

§

calculation for shear and bearing)Engineering Mechanics

§2-1轴向拉压的概念及实例(Concepts and example problems of axial tension & compression)

一、工程实例

(Engineering examples)

Engineering Mechanics Engineering Mechanics

Engineering Mechanics 三、变形特点(Character of deformation)

二、受力特点(Character of external force)

外力的合力作用线与杆的轴线重合。

F

轴向压缩(axial compression)

轴向拉伸(axial tension)

Engineering Mechanics

一、求内力(Calculating internal force)

§2–2内力计算

(Calculation of internal force)

Engineering Mechanics 在求内力的截面m -m 1.截面法(Method of sections)(1)截开

m

F

F

Engineering Mechanics

对研究对象列平衡方程F N = F

(3)平衡

m

m

F

F

Engineering Mechanics 若取右侧为研究对象,则在截开面上的轴m

m

F

F

m

Engineering Mechanics

2.轴力符号的规定

(Sign convention for axial force)m

F

F

m

Engineering Mechanics 二、轴力图(Axial force diagram)

用平行于杆轴线的坐标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上的轴力数值,从而绘出表示轴力与横截面位Engineering Mechanics

例题1 一等直杆其受力情况如图所示,作杆的轴力图.

A

Engineering Mechanics A

解:求支座反力

kN

100

202555400

R R ==+-+--=?A A x F F F Engineering Mechanics

求AB 段内的轴力

40kN 55kN 25kN 20kN F R A

Engineering Mechanics 求BC 段内的轴力

20kN C

A

B

D

E

40kN 55kN 25kN F R A

Engineering Mechanics

求CD 段内的轴力

40kN 55kN 25kN 20kN F R A

Engineering Mechanics 求DE 段内的轴力

40kN

55kN 25kN

20kN

F R A

Engineering Mechanics

F =10kN (拉力)C

A

B

D 600

300500

400

E

40kN

55kN 25kN 20kN Engineering Mechanics C

A

B

D E

40kN

55kN 25kN 20kN

F N1=10kN (拉力)F N2=50kN (拉力)F = -5kN (压力)轴力的计算规律:

Engineering Mechanics

§2-3应力及强度条件(Stress and strength condition)

一、横截面上的正应力(Normal stress on cross section)

Engineering Mechanics 2.平面假设(Plane assumption)

变形前原为平面的横截面,在变形后仍保持为平面,且仍垂直于轴线.

Engineering Mechanics

4.正应力公式(Formula for normal stress)

A

F N =

s

Engineering Mechanics A

F N

=

s 的适用条件:1、只适用于轴向拉伸与压缩杆件,杆件受力区域稍远处的横截面。即外力的合力作用线与杆件的轴线重合。

a /2

Engineering Mechanics

讨论:如图所示两根杆件的正应力分布情况。

F

F

()()

F x A x s =

Engineering Mechanics 圣维南原理:

力作用于杆端的方式不同,但只圣维南像

只适用于离杆件受力区域稍远处的横截面。Engineering Mechanics

力作用方式不同产生的影响

Engineering Mechanics F

k

F

二、斜截面上的应力(Stress on an inclined plane)

1. 斜截面上的应力(Stress on an inclined plane )

以p α表示斜截面k -k 上的Engineering Mechanics

沿截面法线方向的正应力s a

沿截面切线方向的切应力t a

a

将应力p α分解为两个分量:2cos cos p a a s a s a

=×=sin sin22

p a a s

a a

=×=p α

F

k

k

a

F

F

k

k

x

n

a

p α

s a

t a

Engineering Mechanics (1)α角2.符号的规定(Sign convention)F

k

k

a

F

逆时针时a 为正号自x 转向n

a

t a

Engineering Mechanics

讨论

2cos cos p a a s a s a

=×=s

Engineering Mechanics 例题1 杆OD 左端固定,受力如图,OC 段的横截面面积是CD 段横截面面积A 的2倍。求杆内最大轴力,最大正应力,最大切应力及其所在位置。

3F

4F

B C Engineering Mechanics

1、作轴力图

3F

2F

F

F

F N 3=\max (在OB 段)

O

3F

4F

2F

B C D +

-

+

Engineering Mechanics 2、分段求max

s ,OB N OB A

F

A F 232==

s F

F 23F

2F

F

F N

+

-

+

Engineering Mechanics

三、强度条件(Strength condition)

杆内的最大工作应力不超过材料的许用应力1.数学表达式(Mathematical formula)

max N

Engineering Mechanics 例题2 一横截面为正方形的砖柱分上、下两段,其受力情况、各段长度及横截面面积如图所示.已知F = 50kN ,F

A

C

F

F

3000

240

1

Engineering Mechanics

F A

B

C

F

F

3000240

1

50kN

(2)求应力

..N 24

024050000

111=′-==

A F s Engineering Mechanics 例题3 简易起重设备中,AC 杆由两根80′80′7等边角钢组成,A

B 杆由两根10号工字钢组成. 材料为Q235钢,许用应力[s ]=170MPa. 求许可荷载[F ].

B

Engineering Mechanics

B

C

m

y

F N1

Engineering Mechanics 结点A 的平衡方程为

A

x

y

F N1

03001=-=?F F F y o sin N 00

=-=?o

cos30F F F Engineering Mechanics

(2)许可轴力为

A

F ][max N s £F F 21N =kN .][][N 2436911==A F s s

Engineering Mechanics 例题4 刚性杆ACB 有圆杆CD 悬挂在C 点,B 端作用集中力F =25kN,已知CD 杆的直径d =20mm,许用应力[s ]=160MPa ,试校核CD 杆的强度,并求:

A

D

Engineering Mechanics

解:

(1)求CD 杆的内力

F

A

D

C

F F M CD

A 2

30

N ==?Engineering Mechanics [F ]=33.5kN

F

A

D

C

B

2

3F A F CD =

£][N s 得

(3)若F =50kN ,设计CD 杆的直径

Engineering Mechanics

§2-4材料在拉伸和压缩时的力学性能

材料的力学性能——材料在外力作用下表现出来的变形、破坏

等方面的特性。

Engineering Mechanics 实验试件:(a)圆截面标准试件:或d l 10=d l 5=矩形截面标准试件(截面积为A ):或A l 3.11=l .5=金属材料非金属材料

Engineering Mechanics

2.试验设备(Test instruments)(1)微机控制电子万能试验机(2)引伸计

Engineering Mechanics 3.实验原理

Engineering Mechanics

二、拉伸试验(Tensile tests)

1. 低碳钢拉伸时的力学性质——含炭量在0.25%以下的碳素钢。(Mechanical properties for a low -carbon steel in tension)d

l

标距

Engineering Mechanics (2)拉伸图( F -D l 曲线)

拉伸图与试样的尺寸有关.为了消除试样尺寸的影响,把拉力F 除以试样的原始面积A ,得正应力;同时把D l 除以标距的原始长度l ,得到应变.

表示F 和D l 关系的曲线,称为拉伸图(tension diagram )

F

O

e

f

h a

b c d d ′g

f ′Δl 0

Engineering Mechanics

(3)应力应变图

表示应力和应变关系的曲线,称为应力-应变图(stress -strain diagram)s

f

Engineering Mechanics b 点是弹性阶段的最高点.

弹性极限

(elastic limit)e

s s

f

a

b c 45

Engineering Mechanics

(c )强化阶段

过屈服阶段后,材料又恢复了抵抗变形的能力,要使它s

f

c e

Engineering Mechanics (d )局部变形阶段

过e 点后,试样在某一段内的横截面面积显箸地收缩,出现颈缩(necking)现象,一s s

f

c e

Engineering Mechanics

试样拉断后,弹性变形消失,塑性变形保留,试样的长度由l 变为l 1,横截面面积原为A ,断口处的最小横截面面积为A 1 .

(4)伸长率和断面收缩率

Engineering Mechanics b

f

d

e

s

Engineering Mechanics

(5)卸载定律

卸载定律(unloading law)

若加载到强化阶段的某一点d s

c

e

f

d Engineering Mechanics 实验表象

参考值

四个阶段1、同时存在塑性和弹性变形;

屈服极限:σs

1、只有弹性变形;

2、有符合胡克定律σ=E ε的线性阶段;

3、试样无明显表象。

比例极限:σp 弹性极限:σe 弹性阶段

(段)

oa 、变形多集中在横截面积迅速收缩的某一小强度极限:σb

滑移线颈缩

Engineering Mechanics

四个阶段试件的变化:

形状为杯锥状。

Engineering Mechanics 其它形状断面

Engineering Mechanics

三、材料压缩时的力学性能(Mechanical properties of materials in axial compression)

1.实验试样(Test specimen)

d

h

F

F

Engineering Mechanics s

压缩的实验结果表明

低碳钢压缩时的弹性模量E 屈服极限s s 都与拉Engineering Mechanics

3.铸铁压缩时的s -e 曲线(Stress -strain curve for cast iron in compression)

s 铸铁压缩时破坏断面与横截面大Engineering Mechanics 1. 极限应力(Ultimate stress)

四、安全因数和许用应力

(Factor of safety & allowable stress)

材料的两个强度指标s s 和s b 称作极限应力或危险应力,b

n Engineering Mechanics

五、应力集中(Stress concentrations)

应力集中(stress concentrations).

F s F

max

s

Engineering Mechanics Engineering Mechanics

?应力集中因数(stress -concentration factor )

max

s s max

=K Engineering Mechanics 几点说明:

(3)可以利用应力集中达到构件较易断裂的目的。(4)不同材料与受力情况对于应力集中的敏感程度不同。

(1)截面尺寸改变越急剧,角越尖,孔越小,应力

集中的程度越严重。

(2)在构件上开孔、开槽时采用圆形、椭圆或带圆

角的,避免或禁开方形及带尖角的孔槽,在截面改变处尽量采用光滑连接等。

Engineering Mechanics

(a )静载荷作用下:

塑性材料所制成的构件对应力集中的敏感程度较小;

s s s s s

s Engineering Mechanics 脆性材料所制成的构件必须要考虑应力集中的影响。即当达到时,该处首先产生破坏。

max s b s b

s Engineering Mechanics

§2-5拉压杆的变形计算

(Calculation of axial deformation)

F

b h

h 1

b 1

l

l 1

l

Engineering Mechanics

F F

b

h h1

b

1 l

l

1Engineering Mechanics

四、胡克定律(Hooke’s law)

实验表明工程上大多数材料都有一个弹性阶段,在此弹性范围内,正应力与线应变成正比.

Engineering Mechanics

§2-6拉压超静定问题

(Statically indeterminate problem of axially loaded members) Engineering Mechanics

1.超静定的次数(Degrees of statically indeterminate problem )未知力数超过独立平衡方程数的数目,称作超静定的次数.二、超静定问题求解方法(Solution methods for statically indeterminate problem)

(4)联立补充方程与静力平衡方程求解

Engineering Mechanics

例题8 设1,2,3 三杆用绞链连结如图所示,l

1= l

2

= l,A

1

= A

2

= A,E

1= E

2

= E,3杆的长度l

3

,横截面面积A

3

,弹性模量

C

B D

三、一般超静定问题举例

(Examples for general statically indeterminate problem)Engineering Mechanics

C

B D

a a

12

3

x

y

F

N2

F

N3

F

N1

a a

C

B D

a a

12

3

Engineering Mechanics a

a A

1

2

3

a C B D a a

1

2

3C B D a a

1

2

31

l Δ3

3Engineering Mechanics

(4)联立平衡方程与补充方程求解

C

B D a a

1

2

3A'

a

cos A E 2

1N N F F =0

321=-++F F F F N N N cos cos a a Engineering Mechanics 例题9 图示平行杆系1、2、3悬吊着刚性横梁AB ,在横梁上作用着荷载F 。各杆的截面积、长度、弹性模量均相同,分别为A ,l ,E .

试求三杆的轴力F , F , F .

F

Engineering Mechanics

A

B

C

3a

a

l

21解:(1)平衡方程

?=0x F 0

=x F ?=0F 0

Engineering Mechanics A

B

C

3a

a

l

21A ¢B ¢

C ¢

l D 3

l D 2

l D 1

A B

C 321Engineering Mechanics

A

B

C

3a

a

l

21A ¢

B ¢

C ¢

l D 3

l D 2

l D 1

A

B

C 321

Engineering Mechanics 四、装配应力(Initial stresses)(Statically indeterminate structure with a misfit)

B

C

D

2

1

3

Engineering Mechanics

B

C

D

a

a 2

1

3

l

3l Δ代表杆3的伸长

1Δl 代表杆1或杆2的缩短

D 代表装配后A 点的位移

3

31

1A E A E Engineering Mechanics (3)补充方程

B

C

D

a

a 2

1

3

l

d a

=+21133cos N1N3A E l

F A E l F (4)平衡方程

Engineering Mechanics

例题10 两铸件用两根钢杆1. 2 连接,其间距为l =200mm. 现要

将制造得过长了D e =0.11mm 的铜杆3 装入铸件之间,并保持三根杆的轴线平行且等间距a ,试计算各杆内的装配应力. 已知:钢杆

直径d =10mm,铜杆横截面积为20′30mm 的矩形,钢的弹性模量A

B C

B A

C 3

C 1

C'D e

Engineering Mechanics )变形几何方程为

C 1

C''

D l 3

B C 1

B 1

C 1A

D l 1D l 2

=Engineering Mechanics

(3)补充方程

EA

l F l 11N1Δ=

3

33A E l F l N3Δ=

(2)物理方程

C'A'

B'F N1即可得装配内力,进而求出

Engineering Mechanics 五、温度应力(Thermal stresses or temperature stresses)

温度变化将引起物体的膨胀或收缩.静定结构可以自由变形,不会引起构件的内力,但在超静定结构中变形将受到部分或全部约束,温度变化时往往就要引起内力,与之相对应的应力A

B

l

Engineering Mechanics

解:这是一次超静定问题

变形相容条件是杆的总长度不变.

A

D l T

A

B

l

B'0

=l ΔA B

F R B

Engineering Mechanics (1)变形几何方程

A

B

l

A

D l T

=-=F T l l l ΔΔΔl

F l B R Δ=l

T l ×=ΔΔa (2)物理方程

T

E A

l T ××==

B'

A B

Engineering Mechanics

一、基本概念和实例(Basic concepts and examples)

§2-7剪切和挤压的实用计算

(Practical calculation for shear and bearing)

F

Engineering Mechanics m

齿轮(gear)

(3)键块联接(Keyed connection)(4)销轴联接(Pinned connection)

F

B

Engineering Mechanics

(合力)

2.受力特点(Character of external force)以铆钉为例

构件受两组大小相等、方向

Engineering Mechanics 4.连接处破坏的几种形式:

(Several types of failure in connections)(1)剪切破坏沿铆钉的剪切面剪断,如沿n -n 面剪断.

n

n (合力)

F F

F

Engineering Mechanics

4.连接处破坏的几种形式:

(Several types of failure in connections)(2)挤压破坏铆钉与钢板在相互接触面上因挤压而使n

n (合力)

F

F

Engineering Mechanics 4.连接处破坏的几种形式:

(Several types of failure in connections)(3)拉伸破坏钢板在受铆钉孔削弱的截面处,应力增大,易在连接处拉断.

n

n (合力)

F F

Engineering Mechanics

4.连接处破坏的几种形式:

(Several types of failure in connections)(4)剪豁破坏当钢板或耳片的边距不够时,有时会n

n (合力)

F

F

Engineering Mechanics F S

二、剪切的应力分析(Analysis of shearing stress)

1.内力计算(Calculation of internal force)

F

m

m

S =-=?F F F x Engineering Mechanics

3.强度条件(Strength condition)

F

F

m

m

[]

t t £=

A

F S

Engineering Mechanics 螺栓与钢板相互接触的侧面上,发生的彼此间的局部承三、挤压的应力分析

(Analysis of bearing stress)

F

F

Engineering Mechanics

(1)螺栓压扁

(2)钢板在孔缘压成椭圆2.挤压破坏的两种形式(Two types of bearing failure)

F

F

[s bs ]-许用挤压应力(allowable bearing stress)

Engineering Mechanics (1)当接触面为圆柱面时, 挤压面积

A bs 为实际接触面在直径平面上的投影面积

h

实际接触面

挤压面的面积计算

Engineering Mechanics

四、强度条件的应用(Application of strength conditions)

[]

t t £[]

bs bs s s £(Check the intensity)

1.校核强度

u

Engineering Mechanics 例题12 齿轮与轴由平键连接,已知轴的直径d =70mm,键的尺寸为b ×h ×L =20 ×12 ×100mm,传递的扭转力偶矩M e =2kN ·m,键的许用切应力为[t ]= 60MPa ,许用挤压应力为[s bs ]= 100MPa.试校核键的强度.

b

M e

d

M e

h

2

1070′d Engineering Mechanics

(2)校核剪切强度

F

F =S M e

d

F

b

h l

A

Engineering Mechanics 例题13 一销钉连接如图所示,已知外力F =18kN,被连接的构件A 和B 的厚度分别为d =8mm 和

d =5mm ,销钉直径d =15mm ,F

Engineering Mechanics

F

解: (1)销钉受力如图b 所示

F

剪切面

Engineering Mechanics d

F

(2)校核剪切强度

2

S F F =

由截面法得两个面上的剪力

2

d p bs d d

A 剪切面

Engineering Mechanics

D

h

(1)销钉的剪切面面积A

(2)销钉的挤压面面积A bs

思考题

Engineering Mechanics 挤压面

D

h

挤压面

d

d

A =Engineering Mechanics

例14 冲床的最大冲压力F =400kN,冲头材料的许用压应力[s ]=440MPa,钢板的剪切强度极限t u =360MPa,试求冲头能冲剪的最小孔径d 和最大的钢板厚度d .

F

Engineering Mechanics

F

冲头

d

钢板

F

F

4

d

A p Engineering Mechanics

F

冲头

d

钢板

F

F

d

p d

A

Engineering Mechanics

例题15 一铆钉接头用四个铆钉连接两块钢板. 钢板与铆钉材料相同. 铆钉直径d=16mm,钢板的尺寸为b=100mm,

d=10mm,F= 90kN,铆钉的许用应力是[t] =120MPa,

[s] =120MPa,钢板的许用拉应力[s]=160MPa. 试校核铆钉Engineering Mechanics

F

F d

d

Engineering Mechanics

F F

b

F/4

F/4

4

d

A p Engineering Mechanics

(2)校核铆钉的挤压强度

每个铆钉受挤压力为F/4

F/4

F/4

挤压面

[]

===£

bs bs

bs

4

141MPa

s s

d

F F

A d

相关文档
最新文档