21ABAQUS用户材料子程序_1502407

21ABAQUS用户材料子程序_1502407
21ABAQUS用户材料子程序_1502407

21 ABAQUS用户材料子程序(UMAT)

虽然ABAQUS为用户提供了大量的单元库和求解模型,使用户能够利用这些模型处理绝大多数的问题;但是实际问题毕竟非常复杂,ABAQUS不可能直接求解所有可能出现的问题。所以ABAQUS提供了大量的用户自定义子程序(User Subroutine),允许用户在找不到合适模型的情况下自行定义符合自己问题的模型。这些用户子程序涵盖了建模、载荷到单元的几乎各个部分。

用户子程序具有以下的功能和特点:(1)如果ABAQUS的一些固有选项模型功能有限,用户子程序可以提高ABAQUS中这些选项的功能;(2)通常用户子程序是用FORTRAN语言的代码写成;(3)它可以以几种不同的方式包含在模型中;(4)由于它们没有存储在restart文件中,如果需要的话,可以在重新开始运行时修改它;(5)在某些情况下它可以利用ABAQUS允许的已有程序。

要在模型中包含用户子程序,可以利用ABAQUS执行程序,在执行程序中应用user 选项指明包含这些子程序的FORTRAN源程序或者目标程序的名字。

提示:ABAQUS的输入文件除了可以通过ABAQUS/CAE的作业模块中提交运行外,还可以在ABAQUS Command窗口中输入ABAQUS执行程序直接运行:

ABAQUS job=输入文件名 user=用户子程序的Fortran文件名

ABAQUS/Standard和ABAQUS/Explicit都支持用户子程序功能,但是他们所支持的用户子程序种类不尽相同,读者在需要使用时请注意查询手册。

在接下来的两章里,我们将讨论两种常用的用户子程序——用户材料子程序和用户

单元子程序。

本章将通过在ABAQUS/Standard中创建Johnson-Cook的材料模型,介绍编写ABAQUS/Standard的用户材料子程序UMAT。在ABAQUS/Explicit中编写用户材料子程序VUMAT与之相似,但是由于隐式和显式两种方法本身的差异,它们之间也有一些不同,请读者在具体使用前仔细查阅ABAQUS手册中的相关内容。

21.1 引言

用户材料子程序是ABAQUS提供给用户自定义材料属性的Fortran程序接口,它使用户能使用ABAQUS材料库中没有的材料模型。ABAQUS中自有的Johnson-Cook模型只能应用于显式ABAQUS/Explicit程序中,而我们希望能在隐式ABAQUS/Standard程序中更精确地实现本构积分,而且应用Johnson-Cook模型的修正形式。这就需要通过ABAQUS/Standard的用户材料子程序UMAT编程实现。在UMAT编程中使用了率相关塑性理论以及完全隐式的应力更新算法。

21.2 模型的数学描述

21.2.1 Johnson-Cook强化模型简介

Johnson-Cook模型用来模拟在冲击载荷作用下的变形。Johnson-Cook强化模型(JC)表示为三项的乘积,分别反映了应变硬化、应变率硬化和温度软化。这里使用JC模型的修正形式:

()()*01ln 11n m

A B C T εσεε???

?=+++

-?? ????

??

?

(21-1)

模型中包含,,,,A B n C m 五个参数,需要通过实验来确定。使参考应变率01ε=,这样公式中的A 即为材料的静态屈服应力。公式中的*T 为无量纲化的温度

*r m r

T T T T T -=

- 其中r T 为室温,m T 为材料的熔点。Johnson-Cook 模型在温度从室温到材料熔点温度的范围内都是有效的。

高应变率的变形经常伴有温升现象,这是因为材料变形过程中塑性功转化为热量。对于大多数金属,90-100%的塑性变形将耗散为热量。所以JC 模型中温度的变化可以用如下的公式计算:

()T d c

α

σεερ?=

? (21-2)

其中,T ?为温度的增量,α为塑性耗散比,表示塑性功转化为热量的比例,c 为材料的比热,ρ为材料的密度。公式(21-2)考虑的是一个绝热过程,即认为温度的升高完全起因于塑性耗散。

21.2.2 率相关塑性的基本公式

Johnson-Cook 本构模型考虑率相关塑性,塑性变形是关联的,即塑性流动沿着屈服面的法线方向,并采用Mises 屈服面。

将应变的增量分解为弹性部分和塑性部分:

p e d d d εεε+=

(21-3)

将上式两端同时对时间的增量dt 微分得到率形式:

p e εεε

+= (21-4)

在率相关塑性中,材料的塑性反应取决于加载率,以率的形式给出材料的弹性反应:

)(p e E E εεεσ

-== (21-5)

为了发生塑性变形,率相关塑性必须满足或者超过屈服条件,塑性应变率为:

p ελ

σ

=?,λε=,σσα'=-,σ'ψ= (21-6)

上式即为流动法则,其中ψ为塑性流动势能,λ为塑性率参数,α为运动硬化时的背应力。

对于各项同性硬化,不存在背应力,因此有0α=,此时有: ()sign σσσψ==

(21-7)

()p

sign σελλεσσσ

??ψ

===??

(21-8)

与率无关塑性不同的是,率相关塑性中等效塑性应变率不能通过一致性条件获得,而是直接通过经验定律给出,成为过应力模型:

η

αεσφε

)

,,(= (21-9)

式中φ是过应力,η为粘性。在过应力模型中,等效塑性应变率取决于超过了多少屈服应力。

上面一维的率相关塑性公式可以很方便地推广到三维情况。对于小应变的情形,应

力度量之间无需区分,这里采用Cauchy 应力σ,塑性率参数由应力和内变量的经验函数给出。对照一维情况,三维情况下分解应变率为弹性和塑性部分:

e p =+εεε

(21-10)

应力率和弹性应变率之间的关系为:

()::e p ==-σC εC εε

(21-11)

塑性流动法则和内变量的演化方程为:

(),p λ=εr σq ,λ=q h

(21-12)

塑性率参数为:

()

,φλη

=

σq (21-13)

对于J 2流动理论,Perzyna (1971)中提出了典型的过应力模型为:

()

()

1n

Y Y σφσεσε=-

(21-14)

式中

为Macualay 括号,如果0f >

,则f f =;如果0f ≤,则0f =。σ为

Mises 等效应力,ε为等效应变,n 为率敏感系数。

对于Johnson-Cook 模型,可以得到等效塑性应变率的表达式为:

()01exp 11C σεσε??

??=--?? ? ?

?????

? (21-15)

其中0σ为静态屈服应力。

0n A B σε=+

(21-16)

21.2.3 完全隐式的应力更新算法

对率形式的本构方程进行积分的算法称为应力更新算法。在完全隐式的算法中,在步骤结束时计算塑性应变和内变量的增量,同时强化屈服条件。积分算法写为:

1n n +=+?εεε

(21-17a)

111

p p

n n n n λ+++=+?r εε (21-17b) 111p p

n n n n λ+++=+?q q h

(21-17c) ()111:p n n n +++=-σC εε

(21-17d)

()111,0n n n f f +++==σq

(21-17e)

在时刻n 给出一组()

,,p

n n n εεq 和应变增量?ε,公式(21-17)是一组关于求解

()111,,p

n n n +++εεq 的非线性代数方程。

将公式(21-17b )代入(21-17d )得到:

()

()()()111111

11111

:::::::::p p

n n n n p p p p

n n n n n n p n n trail p trail n n n n n λ+++++++++++=--?=+?--?=-+?-?=+?-?=-?=-?σC εεεC εεεεC εεC εC εσC εC εσC εσC r (21-18)

式中1:trail

n n +=+?σσC ε是弹性预测的试应力,而数值11:n n λ++-?C r 是塑性修正量,它

沿着结束点塑性流动的方向。对于J 2流动理论,塑性流动的方向为:

32dev σ

=σr

(21-19)

它是屈服面的法向,即f =σr 。在偏应力空间,von Mises 屈服面为环状,所以屈服面的法向通过圆心,如图21-1所示。

图21-1 径向返回算法

从图21-1可以看出,在弹性预测阶段,塑性应变和内变量保持固定;而在塑性修正阶段,总体应变保持不变。

在迭代开始时,程序对应力和应变设初始值为:

()

0p p

n

ε,()0n εε=,()00λ?=,()()()

001:p n +=-σC εε (21-20)

应力在第k 次迭代时为:

()()()()0:k k k λ=-?σσC r

(21-21)

定义屈服面的单位法向矢量为:

()

()

0000//dev

dev

==^

n r

r

σ

σ

,(

)

0=^

r

(21-22)

且在整个算法的塑性修正状态过程中始终保持不变,因此塑性应变的更新是λ?的线性函数。

在k 次迭代时将检查屈服条件:

()()()()()()(

)()()

03k k k k k Y Y f σσεσμλσε=-=-?-

(21-23)

若收敛,则迭代完毕,增量步结束。否则将计算塑性参数的增量:

()

()()()()()()

33k

k

Y

k

k H σμλσεδλμ-?-=+

(21-24)

并对塑性应变和内变量进一步更新: 00/dev

dev

=^

n σ

σ

,()

(

p k k δλ

?=-^

ε

,()()k k εδλ?= (21-25a)

()()()1p k p k p k +=+?εεε

(21-25b)

()

()

(

)()

()

()

(

111:2k p k k k k k n μδλ

+++=-=+?=-^

σ

C εε

σ

σ

σ (21-25c)

()()()1k k k εεδλ+=+

(21-25d)

()()()1k k k λλδλ+?=?+

(21-25e)

然后将更新的变量返回屈服条件进行检查,整个过程将重复直至收敛为止。这就是增量步中应力更新的过程。

21.3 ABAQUS用户材料子程序

用户材料子程序(User-defined Material Mechanical Behavior,简称UMAT)通过与ABAQUS主求解程序的接口实现与ABAQUS的数据交流。在输入文件中,使用关键字“*USER MATERIAL”表示定义用户材料属性。

21.3.1 子程序概况与接口

UMAT子程序具有强大的功能,使用UMAT子程序:

(1)可以定义材料的本构关系,使用ABAQUS材料库中没有包含的材料进行计

算,扩充程序功能;

(2)几乎可以用于力学行为分析的任何分析过程,几乎可以把用户材料属性赋予

ABAQUS中的任何单元;

(3)必须在UMAT中提供材料本构模型的雅可比(Jacobian)矩阵,即应力增量

对应变增量的变化率;

(4)可以和用户子程序“USDFLD”联合使用,通过“USDFLD”重新定义单元

每一物质点上传递到UMAT中场变量的数值。

由于主程序与UMAT之间存在数据传递,甚至共用一些变量,因此必须遵守有关UMAT的书写格式,UMAT中常用的变量在文件开头予以定义,通常格式为:

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,

1 RPL,DDSDDT,DRPLDE,DRPLDT,

2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,

3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,

4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) C

INCLUDE 'ABA_PARAM.INC' C

CHARACTER*80 CMNAME

DIMENSION STRESS(NTENS),STATEV(NSTATV),

1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),

2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),

3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3)

user coding to define DDSDDE, STRESS, STATEV, SSE, SPD, SCD and, if necessary, RPL, DDSDDT, DRPLDE, DRPLDT, PNEWDT

RETURN

END

UMAT 中的应力矩阵、应变矩阵以及矩阵DDSDDE ,DDSDDT ,DRPLDE 等,都是直接分量存储在前,剪切分量存储在后。直接分量有NDI 个,剪切分量有NSHR 个。各分量之间的顺序根据单元自由度的不同有一些差异,所以编写UMAT 时要考虑到所使用单元的类别。下面对UMAT 中用到的一些变量进行说明:

(),DDSDDE NTENS NTENS

是一个NTENS 维的方阵,称作雅可比矩阵,即/????σε,?σ是应力的增量,?ε是应变的增量,(),DDSDDE I J 表示增量步结束时第J 个应变分量的改变引起的第I 个应力分量的变化。通常雅可比是一个对称矩阵,除非在“*USER MATERIAL ”语句

中加入了“UNSYMM”参数。

()

STRESS NTENS

应力张量矩阵,对应NDI个直接分量和NSHR个剪切分量。在增量步的开始,应力张量矩阵中的数值通过UMAT和主程序之间的接口传递到UMAT中;在增量步的结束,UMAT将对应力张量矩阵更新。对于包含刚体转动的有限应变问题,一个增量步调用UMAT之前就已经对应力张量进行了刚体转动,因此在UMAT中只需处理应力张量的共旋部分。UMAT中应力张量的度量为柯西(真实)应力。

()

STATEV NSTATEV

用于存储状态变量的矩阵,在增量步开始时将数值传递到UMAT中。也可在子程序USDFLD或UEXPAN中先更新数据,然后在增量步开始时将更新后的数据传递到UMAT中。在增量步结束时必须更新状态变量矩阵中的数据。

和应力张量矩阵不同的是:对于有限应变问题,除了材料本构行为引起的数据更新以外,状态变量矩阵中的任何矢量或者张量都必须通过旋转来考虑材料的刚体运动。NSTATEV

状态变量矩阵的维数,等于关键字“*DEPVAR”中定义的数值。状态变量矩阵的维数通过ABAQUS输入文件中的关键字“*DEPVAR”定义,关键字下面数据行的数值即为状态变量矩阵的维数。

NPROPS

材料常数的个数,等于关键字“*USER MATERIAL”中“CONSTANTS”常数设定的值。

()

PROPS NPROPS

材料常数矩阵,矩阵中元素的数值对应于关键字“*USER MATERIAL”下面的数据行。

SSE,SPD,SCD

分别定义每一增量步的弹性应变能,塑性耗散和蠕变耗散。它们对计算结果没有影响,仅仅作为能量输出。

其他变量:

()

STRAN NTENS:应变矩阵

()

DSTRAN NTENS:应变增量矩阵

DTIME:增量步的时间增量

NDI:直接应力分量的个数

NSHR:剪切应力分量的个数

=+

NTENS:总应力分量的个数,NTENS NDI NSHR

使用UMAT时需要注意单元的沙漏控制刚度和横向剪切刚度。通常减缩积分单元的沙漏控制刚度和板、壳、梁单元的横向剪切刚度是通过材料属性中的弹性性质定义的。这些刚度基于材料初始剪切模量的值,通常在材料定义中通过“*ELASTIC”选项定义。

但是使用UMAT时,ABAQUS对程序输入文件进行预处理的时候得不到剪切模量的数值。所以这时候用户必须使用“*HOURGLASS STIFFNESS”选项来定义具有沙漏模式的单元的沙漏控制刚度,使用“*TRANSVERSE SHEAR STIFFNESS”选项来定义板、壳、梁单元的横向剪切刚度。

21.3.2 编程

基于上面所述的率相关材料公式和应力更新算法,参照ABAQUS用户材料子程序的接口规范,进行UMAT的编程。有限元模拟结果将在下一节给出,在最后一节中还给出了相应的程序源代码。

由于UMAT在单元的积分点上调用,增量步开始时,主程序路径将通过UMAT的接口进入UMAT,单元当前积分点必要变量的初始值将随之传递给UMAT的相应变量。在UMAT结束时,变量的更新值将通过接口返回主程序。整个UMAT的流程如图21-2所示。

图21-2 UMAT流程图

一共有8个材料常数需要给定,并申请了一个13维的状态变量矩阵,它们表示的物理含义如表21-1所示。

表21-1 UMAT材料常数

下一步将使用建立的UMAT结合ABAQUS/Standard进行分离式Hopkinson压杆(SHPB)实验的有限元模拟,并对结果进行比较。

21.4 SHPB实验的有限元模拟

下面将建立SHPB实验的有限元模型,并把前面所建立的UMAT接入ABAQUS/Standard进行有限元模拟。进行有限元模拟的目的不仅是为了再现SHPB实验的过程,同时也是为了对选择的数值模型和建立的UMAT进行评价。

21.4.1 分离式Hopkinson压杆(SHPB)实验

分离式Hopkinson压杆(Split Hopkinson Pressure Bar,简称SHPB)实验是从经典Hopkinson实验基础之上发展而来的一种实验技术,用来测量材料的动态应力-应变行为。该实验技术的理论基础是一维应力波理论,通过测量两根压杆上的应变来推导试件上的应力-应变关系。

分离式Hopkinson压杆实验示意图见图21-3。

图21-3 分离式Hopkinson压杆装置

21.4.2 有限元建模

有限元模型主要是参照前面介绍的SHPB实验装置,通过载荷、边界条件等的定义在有限元中模拟SHPB实验的环境,尽量在较少的机时耗费下达到更高的精度。

模型的简化与有限元网格

为了不使模型过于庞大,对模型进行了一些简化。首先,改变入力杆和出力杆的尺寸,长度由原来的3040mm减小为1000mm,直径增加到25mm,试件的长度和直径也分别变化为22mm和18mm。这样不仅优化了网格的质量,还成倍地减小了模型的规模,其带来的负面影响就是试件能达到的应变将降低。另外,由于撞击杆仅仅起到产生应力脉冲的作用,在数值模型中没必要考虑撞击杆,取代的方法是直接在入力杆的输入端施加均布的应力脉冲。

考虑到实验装置的对称性,也做了一些简化。整个实验装置以及载荷等都是关于杆的中心线轴对称的,所以可以使用轴对称单元进行二维分析。另外也建立了四分之一横截面的三维模型作为补充。

二维轴对称模型和三维模型分别如图21-4和图21-5所示。在模型中,对试件以及入力杆,出力杆和试件接触的部分进行了局部网格加密,这样的网格划分可以取得比较经济的结果。

图21-4 二维轴对称有限元模型

图21-5 三维有限元模型

单元类型上,选择一阶常规单元,由于没有使用减缩积分单元,所以使用UMAT 时无需指定单元的沙漏控制刚度。最后的模型中,二维网格单元总数为1220,三维模型网格的单元总数为17160。关于单元的详细信息如表21-2所示。

表21-2 模型信息

在二维模型局部网格存在疏密连接的部位,一个单元边要同时和两个单元连接,这在通常的有限元网格中是不好实现的。本例在这里使用了ABAQUS的多点约束技术(Multi-Points Constrain,简称MPC)来解决,线性多点约束方式如图21-6所示。

图21-6 线性多点约束技术

图中p点使用线性多点约束后,其节点自由度均由旁边的节点a和b线性插值得到。所以使用多点约束方式可以很好连接模型中网格疏密不同的部位,划分出比较精练的网格。

材料定义

入力杆和出力杆使用线弹性材料,弹性模量和泊松比分别为200GPa和0.3,密度为7.85×103 kg/m3。试件采用用户在UMAT中的自定义材料,材料参数如表21-3所示,其中Johnson-Cook模型中参数的数值来源于对实验数据的拟合。

表21-3 试件的材料定义

边界条件

为了保证SHPB 实验的要求,在二维模型和三维模型中均施加了必要的边界条件。在对称轴或对称面上施加了对称性边界条件,同时保证压杆和试件可以沿轴线方向自由无约束的运动。压杆和试件之间的接触为硬接触,光滑无摩擦。

为了确定输入应力脉冲的时间,进行了简单的计算。弹性材料中纵波波速的计算公式为:

d C =

(21-26)

其中E 为材料弹性模量,ρ为材料密度。由此可以计算输入应力波在压杆中的传播速度为5048d C =m/s 。

要求在入力杆应力波的输入端不能出现入射波和反射波的重叠,也就是说在输入应力脉冲的时间内,应力波的传播距离不应超过两倍的杆长,即:

422

4.010()5048

s d L T s C -<

=

?

(21-27)

根据这一估计,选择输入应力脉冲的持续时间4

2.010s T -=?s ,上升时间

53.010r t -=?s 。

经过若干次试算,对输入应力脉冲的波形进行了适当的调整,使试件中产生较均匀的应变率。最后输入应力脉冲的波形如图21-7所示:

为了确定增量步的最大时间步长,需要先简单计算一下单元的稳定极限。基于一个

ABAQUS子程序

Home 浅谈ABAQUS用户子程序 李青清华大学工程力学系 摘要本文首先概要介绍了ABAQUS的用户子程序和应用程序,然后从参数,功能两方面详细论述了DLOAD, UEXTERNALDB, URDFIL三个用户子程序和GETENVVAR,POSFIL,DBFILE三个应用程序,并详细介绍了ABAQUS的结果文件(.FIL)存储格式。 关键字ABAQUS,用户子程序,应用程序,结果文件 一、前言: ABAQUS为用户提供了强大而又灵活的用户子程序接口(USER SUBROUTINE)和应用程序接口(UTILITY ROUTINE)。ABAQUS 6.2.5一共有42个用户子程序接口,13个应用程序接口,用户可以定义包括边界条件、荷载条件、接触条件、材料特性以及利用用户子程序和其它应用软件进行数据交换等等。这些用户子程序接口使用户解决一些问题时有很大的灵活性,同时大大的扩充了ABAQUS的功能。例如:如果荷载条件是时间的函数,这在ABAQUS/CAE 和INPUT 文件中是难以实现的,但在用户子程序DLOAD中就很容易实现。 二.在ABAQUS中使用用户子程序 ABAQUS的用户子程序是根据ABAQUS提供的相应接口,按照FORTRAN语法用户自己编写的代码。在一个算例中,用户可以用到多个用户子程序,但必须把它们放在一个以.FOR为扩展名的文件中。运行带有用户子程序的算例时有两种方法,一是在CAE中运行,在EDIT JOB菜单的GENERAL子菜单的USER SUBROUTINE FILE对话框中选择用户子程序所在的文件即可;另外是在ABABQUS COMMAND用运行,语法如下: ABAQUS JOB=[JOB] USER?[.FOR]?C 用户在编写用户子程序时,要注意以下几点: 1.用户子程序不能嵌套。即任何用户子程序都不能调用任何其他用户子程

ABAQUS中Fortran子程序调用方法

第一种方法: / o/ J5 @6 U/ ^- o$ 1. 建立工作目录/ ]" 2. 将Abaqus安装目录\6.4-pr11\site下的aba_param_dp.inc或aba_param_sp.inc拷贝到工作目录,并改名为aba_param.inc; # ~/ |0 I0 E6 {, @4 X3 q: W3. 将编译的fortran程序拷贝到工作目录; 4. 将.obj文件拷贝到工作目录; 5. 建立好输入文件.inp; 6. 运行abaqusjob=inp_name user=fortran name即可。 第二种方法: 在Job模块里,创建工作,在EditJob对话框中选择General选项卡,在Usersubroutine file中点击Select 按钮,从弹出对话框中选择你要调用的子程序文件(后缀为.for或.f)。 , D8 i7 d/r c6 @" | 以下是网上摘录的资料,供参考:. |$ t/ }$W7 Y6 m4 h6 D6 j 用户进行二次开发时,要在命令行窗口执行下面的命令: 4 O. R+ ^,@( ? abaqus job=job_name user=sub_name ABAQUS会把用户的源程序编译成obj文件,然后临时生成一个静态库standardU.lib和动态库standardU.dll,还有其它一些临时文件,而它的主程序(如standard.exe和explicit.exe等)则没有任何改变,由此看来ABAQUS是通过加载上述2个库文件来实现对用户程序的连接,而一旦运行结束则删除所有的临时文件。这种运行机制与ANSYS、LS-DYNA、marc等都不同。 : j6 g' R-o( {0 [* N2 J3 X这些生成的临时文件要到文件夹C:\Documentsand Settings\Administrator\Local Settings\Temp\中才能找到,这也是6楼所说的藏了一些工作吧,大家不妨试一下。 1子程序格式(程序后缀是.f; .f90; .for;.obj??) 答:我试过,.for格是应该是不可以的,至少6.2和6.3版本应该是不行,其他的没用过,没有发言权。在Abaqus中,运行abaqusj=jobname user=username时,默认的用户子程序后缀名是.for(.f,.f90应该都不行的,手册上也有讲过),只有在username.for文件没有找到的情况下,才会去搜索username.obj,如果两者都没有,就会报错误信息。 如果username包括扩展名for或obj,那么就根据各自的扩展名ABAQUS会自动选择进行操作。 2CAE中如何调用?Command下如何调用? 答:CAE中在creat job的jobmanager中的general中可以指定子程序; Command下用命令:abaqus j=jobnameuser=userfilename (无后缀); 3若有多个子程序同时存在,如何处理 答:将其写在一个文件中即可,然后用一个总的子程序调用(具体参见手册) 4我对VF不是很熟,是否可以用VC,C++编写子程序? A: 若要在vf中调试,那么应该根据需要把SITE文件夹中的ABA_PARAM_DP.INC(双精度)或ABA_PARAM_SP.INC(单精度)拷到相应的位置,并改名为ABA_PARAM.INC即可。 据说6.4的将可以,6.3的你可以尝试着将VC,C++程序编译为obj文件,没试过。在你的工作目录下应该已经存在ufield.obj和uvarm.obj这两个文件(这两个文件应该是你分别单独调试ufield.FOR和uvarm.FOR时自动编译生成的,你可以将他们删掉试试看),但是由于你的FOR文件中已经有了UV ARM 和UFIELD这两个subroutine,显然会造成重复定义,请查实。 用户子程序的使用 假设你的输入文件为:a.inp b.for 那么在ABAQUS Command 中的命令应该是这样的: abaqusjob=a user=b

abaqus UAMP用户子程序

Overview User subroutine UAMP: ?allows you to define the current value of an amplitude definition as a function of time; ?can be used to model control engineering aspects of your system when sensors are used (sensor values are from the beginning of the increment); ?can use a predefined number of state variables in their definition; and ?can optionally compute the derivatives and integrals of the amplitude function. Explicit solution dependence The solution dependence introduced in this user subroutine is explicit: all data passed in the subroutine for information or to be updated are values at the beginning of that increment. User subroutine interface SUBROUTINE UAMP( * ampName, time, ampValueOld, dt, nProps, props, nSvars, * svars, lFlagsInfo, * nSensor, sensorValues, sensorNames, jSensorLookUpTable, * AmpValueNew, * lFlagsDefine, * AmpDerivative, AmpSecDerivative, AmpIncIntegral, * AmpDoubleIntegral) C INCLUDE 'ABA_PARAM.INC' C time indices parameter (iStepTime = 1, * iTotalTime = 2, * nTime = 2) C flags passed in for information parameter (iInitialization = 1, * iRegularInc = 2, * iCuts = 3

abaqus简单umat子程序

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,RPL,DDSDDT, 1 DRPLDE,DRPLDT,STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED, 2 CMNAME,NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT, 3 PNEWDT,CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) include 'aba_param.inc' CHARACTER*8 CMNAME DIMENSION STRESS(NTENS),STATEV(NSTATV),DDSDDE(NTENS,NTENS), 1 DDSDDT(NTENS),DRPLDE(NTENS),STRAN(NTENS),DSTRAN(NTENS), 2 TIME(2),PREDEF(1),DPRED(1),PROPS(NPROPS),COORDS(3),DROT(3,3), 3 DFGRD0(3,3),DFGRD1(3,3) C UMAT FOR ISOTROPIC ELASTICITY C CANNOT BE USE D FOR PLAN E STRESS C ---------------------------------------------------------------- C PROPS(1) - E C PROPS(2) - NU C ---------------------------------------------------------------- C IF (NDI.NE.3) THEN WRITE (*,*) 'THIS UMAT MAY ONLY BE USED FOR ELEMENTS 1 WITH THREE DIRECT STRESS COMPONENTS' CALL XIT ENDIF open(400,file='D:\test.txt') C ELASTIC PROPERTIES EMOD=PROPS(1) ENU=PROPS(2) EBULK3=EMOD/(1-2*ENU) EG2=EMOD/(1+ENU) EG=EG2/2 EG3=3*EG ELAM=(EBULK3-EG2)/3 write(400,*) 'temp=',temp C ELASTIC STIFFNESS C DO K1=1, NDI DO K2=1, NDI DDSDDE(K2, K1)=ELAM END DO DDSDDE(K1, K1)=EG2+ELAM

ABAQUS子程序UMAT里弹塑本构的实现

前言 有限元法是工程中广泛使用的一种数值计算方法。它是力学、计算方法和计算机技术相结合的产物。在工程应用中,有限元法比其它数值分析方法更流行的一个重要原因在于:相对与其它数值分析方法,有限元法对边界的模拟更灵活,近似程度更高。所以,伴随着有限元理论以及计算机技术的发展,大有限元软件的应用证变得越来越普及。 ABAQUS软件一直以非线性有限元分析软件而闻名,这也是它和ANSYS,Nastran等软件的区别所在。非线性有限元分析的用处越来越大,因为在所用材料非常复杂很多情况下,用线性分析来近似已不再有效。比方说,一个复合材料就不能用传统的线性分析软件包进行分析。任何与时间有关联,有较大位移量的情况都不能用线性分析法来处理。多年前,虽然非线性分析能更适合、更准确的处理问题,但是由于当时计算设备的能力不够强大、非线性分析软件包线性分析功能不够健全,所以通常采用线性处理的方法。 这种情况已经得到了极大的改善,计算设备的能力变得更加强大、类似ABAQUS这样的产品功能日臻完善,应用日益广泛。 非线性有限元分析在各个制造行业得到了广泛应用,有不少大型用户。航空航天业一直是非线性有限元分析的大客户,一个重要原因是大量使用复合材料。新一代波音 787客机将全部采用复合材料。只有像 ABAQUS这样的软件,才能分析包括多个子系统的产品耐久性能。在汽车业,用线性有限元分析来做四轮耐久性分析不可能得到足够准确的结果。分析汽车的整体和各个子系统的性能要求(如悬挂系统等)需要进行非线性分析。在土木工程业, ABAQUS能处理包括混凝土静动力开裂分析以及沥青混凝土方面的静动力分析,还能处理高度复杂非线性材料的损伤和断裂问题,这对于大型桥梁结构,高层建筑的结构分析非常有效。 瞬态、大变形、高级材料的碰撞问题必须用非线性有限元分析来计算。线性分析在这种情况下是不适用的。以往有一些专门的软件来分析碰撞问题,但现在ABAQUS在通用有限元软件包就能解决这些问题。所以,ABAQUS可以在一个软件完成线性和非线性分析。 ABAQUS给用户提供了强大二次开发接口,尤其是在材料本构方面,给用户开发符合实际工程的材料本构模型提供了强大帮助,本文将针对其用户材料子程序展开研究,总结常用材料模型的开发方法。

ABAQUS用户子程序

当用到某个用户子程序时,用户所关心的主要有两方面:一是ABAQUS提供的用户子程序的接口参数。有些参数是ABAQUS传到用户子程序中的,例如SUBROUTINE DLOAD中的KSTEP,KINC,COORDS;有些是需要用户自己定义的,例如F。二是ABAQUS何时调用该用户子程序,对于不同的用户子程序ABAQUS调用的时间是不同的。有些是在每个STEP的开始,有的是STEP结尾,有的是在每个INCREMENT的开始等等。当ABAQUS 调用用户子程序是,都会把当前的STEP和INCREMENT利用用户子程序的两个实参KSTEP和KINC传给用户子程序,用户可编个小程序把它们输出到外部文件中,这样对ABAQUS何时调用该用户子程序就会有更深的了解。 (子程序中很重要的就是要知道由abaqus提供的那些参量的意义,如下) 首先介绍几个子程序: 一.SUBROUTINE DLOAD(F,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, JLTYP,SNAME) 参数: 1.F为用户定义的是每个积分点所作用的荷载的大小; 2.KSTEP,KINC为ABAQUS传到用户子程序当前的STEP和INCREMENT值;3.TIME(1),TIME(2)为当前STEP TIME和INCREMENT TIME的值;4.NOEL,NPT为积分点所在单元的编号和积分点的编号; 5.COORDS为当前积分点的坐标; 6.除F外,所有参数的值都是ABAQUS传到用户子程序中的。 功能: 1.荷载可以被定义为积分点坐标、时间、单元编号和单元节点编号的函数。 2.用户可以从其他程序的结果文件中进行相关操作来定义积分点F的大小。 例1:这个例子在每个积分点施加的荷载不仅是坐标的函数,而且是随STEP变化而变化的。SUBROUTINE DLOAD(P,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, 1 JLTYP,SNAME) INCLUDE 'ABA_PARAM.INC' C DIMENSION TIME(2),COORDS(3) CHARACTER*80 SNAME PARAMETER (PLOAD=100.E4) IF (KSTEP.EQ.1) THEN !当STEP=1时的荷载大小 P=PLOAD ELSE IF (KSTEP.EQ.2) THEN !当STEP=2时的荷载大小 P=COORDS(1)*PLOAD !施加在积分点的荷载P是坐标的函数 ELSE IF (KSTEP.EQ.3) THEN !当STEP=3时的荷载大小 P=COORDS(1)**2*PLOAD ELSE IF (KSTEP.EQ.4) THEN !当STEP=4时的荷载大小 P=COORDS(1)**3*PLOAD ELSE IF (KSTEP.EQ.5) THEN !当STEP=5时的荷载大小 P=COORDS(1)**4*PLOAD END IF RETURN END UMAT 子程序具有强大的功能,使用UMAT 子程序: (1) 可以定义材料的本构关系,使用ABAQUS 材料库中没有包含的材料进行计算,扩

Abaqus材料用户子程序UMAT基础知识与手册例子完整解释

1、为何需要使用用户材料子程序(User-Defined Material, UMAT )? 很简单,当ABAQUS 没有提供我们需要的材料模型时。所以,在决定自己定义一种新的材料模型之前,最好对ABAQUS 已经提供的模型心中有数,并且尽量使用现有的模型,因为这些模型已经经过详细的验证,并被广泛接受。 UMAT 子程序具有强大的功能,使用UMAT 子程序: (1)可以定义材料的本构关系,使用ABAQUS 材料库中没有包含的材料进行计算,扩充程序功能。 (2) 几乎可以用于力学行为分析的任何分析过程,几乎可以把用户材料属性赋予ABAQU S 中的任何单元。 (3) 必须在UMAT 中提供材料本构模型的雅可比(Jacobian )矩阵,即应力增量对应变增量的变化率。 (4) 可以和用户子程序“USDFLD ”联合使用,通过“USDFLD ”重新定义单元每一物质点上传递到UMAT 中场变量的数值。 2、需要哪些基础知识? 先看一下ABAQUS 手册(ABAQUS Analysis User's Manual )里的一段话: Warning: The use of this option generally requires considerable expertise(一定的专业知识). The user is cautioned that the implementation (实现) of any realistic constitutive (基本) model requires extensive (广泛的) development and testing. Initial testing on a single eleme nt model with prescribed traction loading (指定拉伸载荷) is strongly recommended. 但这并不意味着非力学专业,或者力学基础知识不很丰富者就只能望洋兴叹,因为我们的任务不是开发一套完整的有限元软件,而只是提供一个描述材料力学性能的本构方程(Constitutive equation )而已。当然,最基本的一些概念和知识还是要具备的,比如: 应力(stress),应变(strain )及其分量; volumetric part 和deviatoric part ;模量(modul us )、泊松比(Poisson’s ratio)、拉梅常数(Lame constant);矩阵的加减乘除甚至求逆;还有一些高等数学知识如积分、微分等。 3、UMAT 的基本任务? 我们知道,有限元计算(增量方法)的基本问题是: 已知第n 步的结果(应力,应变等)n σ,n ε,然后给出一个应变增量1+n d ε,计算新的应力1+n σ。UMAT 要完成这一计算,并要计算Jacobian 矩阵DDSDDE(I,J) =εσΔ?Δ?/。σΔ是应力增量矩阵(张量或许更合适),εΔ是应变增量矩阵。DDSDDE(I,J) 定义了第J 个应变分量的微小变化对

ABAQUS用户子程序

ABAQUS用户子程序 ABAQUS/Standard subroutines: 1.CREEP: Define time-dependent, viscoplastic behavior (creep and swelling). 定义和时间相关的、粘塑性的运动(蠕变和膨胀) 2. DFLOW: Define nonuniform pore fluid velocity in a consolidation analysis. 在压实分析中,定义非均匀孔隙流速度 3. DFLUX: Define nonuniform distributed flux in a heat transfer or mass diffusion analysis. 在热传递和质量扩散分析中,定义非均匀的分布流量 4. DISP: Specify prescribed boundary conditions. 指定规定的边界条件 5. DLOAD: Specify nonuniform distributed loads. 指定非均匀的分布荷载 6. FILM: Define nonuniform film coefficient and associated sink temperatures for heat transfer analysis. 对热传递分析指定非均匀的膜层散热系数和联合的散热器温度 7. FLOW: Define nonuniform seepage coefficient and associated sink pore pressure for consolidation analysis. 对压实分析定义非均匀的渗流系数和渗入孔隙压力 8. FRIC: Define frictional behavior for contact surfaces. 对接触面定义摩擦 9. GAPCON: Define conductance between contact surfaces or nodes in a fully coupled temperature-displacement analysis or pure heat transfer analysis. 在一个完全耦合的温度—置换分析或者是纯热传递分析中,定义接触面或节点间的导热系数。 10. GAPELECTR: Define electrical conductance between surfaces in a coupled thermal-electrical analysis. 在耦合热电分析中,定义表面间的导电系数 11. HARDINI: Define initial equivalent plastic strain and initial backstress tensor. 定义初始等效应变和初始反应力张量 12. HETVAL: Provide internal heat generation in heat transfer analysis. 在热传递分析中提供初始热 13. MPC: Define multi-point constraints. 定义多点约束 14. ORIENT: Provide an orientation for defining local material directions or local directions for kinematic coupling constraints or local rigid body directions for inertia relief. 为定义局部材料方向提供定位;运动学耦合约束的局部方向;惯性释放的局部刚体方向。 15. RSURFU: Define a rigid surface. 定义一个刚性面 16. SDVINI: Define initial solution-dependent state variable fields. 定义初始和结果相关的变量场 17. SIGINI: Define an initial stress field.

ABAQUS用户子程序

ABAQUS用户子程序 转自https://www.360docs.net/doc/a115052813.html, 当用到某个用户子程序时,用户所关心的主要有两方面:一是ABAQUS提供的用户子程序的接口参数。有些参数是ABAQUS传到用户子程序中的,例如SUBROUTINE DLOAD中的KSTEP,KINC,COORDS;有些是需要用户自己定义的,例如F。二是ABAQUS何时调用该用户子程序,对于不同的用户子程序ABAQUS调用的时间是不同的。有些是在每个STEP的开始,有的是STEP结尾,有的是在每个INCREMENT的开始等等。当ABAQUS调用用户子程序是,都会把当前的STEP和INCREMENT利用用户子程序的两个实参KSTEP和KINC传给用户子程序,用户可编个小程序把它们输出到外部文件中,这样对ABAQUS何时调用该用户子程序就会有更深的了解。 (子程序中很重要的就是要知道由abaqus提供的那些参量的意义,如下) 首先介绍几个子程序: 一.SUBROUTINE DLOAD(F,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, JLTYP,SNAME) 参数: 1. F为用户定义的是每个积分点所作用的荷载的大小; 2. KSTEP,KINC为ABAQUS传到用户子程序当前的STEP和INCREMENT值; 3. TIME(1),TIME(2)为当前STEP TIME和INCREMENT TIME的值; 4. NOEL,NPT为积分点所在单元的编号和积分点的编号; 5. COORDS为当前积分点的坐标; 6.除F外,所有参数的值都是ABAQUS传到用户子程序中的。 功能: 1.荷载可以被定义为积分点坐标、时间、单元编号和单元节点编号的函数。 2.用户可以从其他程序的结果文件中进行相关操作来定义积分点F的大小。 例1:这个例子在每个积分点施加的荷载不仅是坐标的函数,而且是随STEP变化而变化的。SUBROUTINE DLOAD(P,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, 1 JLTYP,SNAME) INCLUDE 'ABA_PARAM.INC' C DIMENSION TIME(2),COORDS(3) CHARACTER80 SNAME PARAMETER (PLOAD=100.E4) IF (KSTEP.EQ.1) THEN !当STEP=1时的荷载大小 P=PLOAD ELSE IF (KSTEP.EQ.2) THEN !当STEP=2时的荷载大小 P=COORDS(1)PLOAD !施加在积分点的荷载P是坐标的函数 ELSE IF (KSTEP.EQ.3) THEN !当STEP=3时的荷载大小 P=COORDS(1)2PLOAD ELSE IF (KSTEP.EQ.4) THEN !当STEP=4时的荷载大小 P=COORDS(1)3PLOAD ELSE IF (KSTEP.EQ.5) THEN !当STEP=5时的荷载大小 P=COORDS(1)4PLOAD

ABAQUS子程序UMAT的应用

A B A Q U S子程序U M A T 的应用 This model paper was revised by the Standardization Office on December 10, 2020

目录

摘要 ABAQUS软件功能强大,特别是能够模拟复杂的非线性问题,它包括了多种材料本构关系及失效准则模型,并具有良好的开放性,提供了若干个用户子程序接口,允许用户以代码的形式来扩展主程序的功能。 本文主要研究了ABAQUS用户子程序UMAT的开发方法,采用FORTRAN语言编制了各向同性硬化材料模型的接口程序,研究该类材料的弹塑性本构关系极其实现方法。 本文紧紧围绕UMAT的二次开发技术,首先对其接口原理做了详细介绍,然后针 对非线性有限元增量理论中的常刚度法和切线刚度法的算法理论做了深入的剖析,推导出了常刚度法和切线刚度法的算法理论的具体表达式,然后分别编制了两种算法的UMAT程序,最后建立了一个具体的验算模型,通过与ABAQUS自带弹塑性本构关系的计算结果相比较,验证两者的正确性。 本文还对常刚度法和切线刚度法得算法效率做了对比,得出了在非线性程度较高 时切线刚度法效率高于常刚度法的结论。 关键字: ABAQUS、UMAT、有限元、材料非线性、FORTRAN、切线刚度 ABSTRACT ABAQUS software powerful, especially to simulate complex non-linear problem, which includes a wide range of material constitutive model and failure criteria, and has a good open, providing a number of user subroutine interface that allows users to code form to expand the functions of the main program.

浅谈ABAQUS用户子程序

李青清华大学工程力学系 摘要本文首先概要介绍了ABAQUS的用户子程序和应用程序,然后从参数,功能两方面详细论述了DLOAD, UEXTERNALDB, URDFIL三个用户子程序和GETENVVAR,POSFIL,DBFILE三个应用程序,并详细介绍了ABAQUS的结果文件(.FIL)存储格式。 关键字ABAQUS,用户子程序,应用程序,结果文件 一、前言: ABAQUS为用户提供了强大而又灵活的用户子程序接口(USER SUBROUTINE)和应用程序接口(UTILITY ROUTINE)。ABAQUS 6.2.5一共有42个用户子程序接口,13个应用程序接口,用户可以定义包括边界条件、荷载条件、接触条件、材料特性以及利用用户子程序和其它应用软件进行数据交换等等。这些用户子程序接口使用户解决一些问题时有很大的灵活性,同时大大的扩充了ABAQUS的功能。例如:如果荷载条件是时间的函数,这在ABAQUS/CAE 和INPUT 文件中是难以实现的,但在用户子程序DLOAD中就很容易实现。 二.在ABAQUS中使用用户子程序 ABAQUS的用户子程序是根据ABAQUS提供的相应接口,按照FORTRAN语法用户自己编写的代码。在一个算例中,用户可以用到多个用户子程序,但必须把它们放在一个以.FOR为扩展名的文件中。运行带有用户子程序的算例时有两种方法,一是在CAE中运行,在EDIT JOB菜单的GENERAL子菜单的USER SUBROUTINE FILE对话框中选择用户子程序所在的文件即可;另外是在ABABQUS COMMAND用运行,语法如下: Home 序,但可以调用用户自己编写的FORTRAN子程序和ABAQUS应用程序。当用户编写FORTRAN子程序时,建议子程序名以K开头,以免和ABAQUS内部程序冲突。 2.当用户在用户子程序中利用OPEN打开外部文件时,要注意以下两点:一是设备号的选择是有限制的,只能取15-18和大于100的设备号,其余的都已被ABAQUS占用。二是用户需提供外部文件的绝对路径而不是相对路径。3.ABAQUS 应用程序必须由用户子程序调用。 当用到某个用户子程序时,用户所关心的主要有两方面:一是ABAQUS提供的用户子程序的接口参数。有些参数是ABAQUS传到用户子程序中的,例如SUBROUTINE DLOAD中的KSTEP,KINC,COORDS;有些是需要用户自己定义的,例如F。二是ABAQUS何时调用该用户子程序,对于不同的用户子程序ABAQUS调用的时间是不同的。有些是在每个STEP的开始,有的是STEP结尾,有的是在每个INCREMENT的开始等等。当ABAQUS调用用户子程序是,都会把当前的STEP和INCREMENT利用用户子程序的两个实参KSTEP和KINC传给用户子程序,用户可编个小程序把它们输出到外部文件中,这样对ABAQUS何时调用该用户子程序就会有更深的了解。 下面就选出几个常用的用户子程序和应用程序进行详细解释:一.SUBROUTINE DLOAD(F,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS,

ABAQUS用户子程序复习进程

A B A Q U S用户子程序

ABAQUS用户子程序 ABAQUS/Standard subroutines: 1.CREEP: Define time-dependent, viscoplastic behavior (creep and swelling). 定义和时间相关的、粘塑性的运动(蠕变和膨胀) 2. DFLOW: Define nonuniform pore fluid velocity in a consolidation analysis. 在压实分析中,定义非均匀孔隙流速度 3. DFLUX: Define nonuniform distributed flux in a heat transfer or mass diffusion analysis. 在热传递和质量扩散分析中,定义非均匀的分布流量 4. DISP: Specify prescribed boundary conditions. 指定规定的边界条件 5. DLOAD: Specify nonuniform distributed loads. 指定非均匀的分布荷载 6. FILM: Define nonuniform film coefficient and associated sink temperatures for heat transfer analysis. 对热传递分析指定非均匀的膜层散热系数和联合的散热器温度 7. FLOW: Define nonuniform seepage coefficient and associated sink pore pressure for consolidation analysis. 对压实分析定义非均匀的渗流系数和渗入孔隙压力 8. FRIC: Define frictional behavior for contact surfaces. 对接触面定义摩擦 9. GAPCON: Define conductance between contact surfaces or nodes in a fully coupled temperature-displacement analysis or pure heat transfer analysis. 在一个完全耦合的温度—置换分析或者是纯热传递分析中,定义接触面或节点间的导热系数。 10. GAPELECTR: Define electrical conductance between surfaces in a coupled thermal-electrical analysis. 在耦合热电分析中,定义表面间的导电系数 11. HARDINI: Define initial equivalent plastic strain and initial backstress tensor. 定义初始等效应变和初始反应力张量 12. HETVAL: Provide internal heat generation in heat transfer analysis. 在热传递分析中提供初始热 13. MPC: Define multi-point constraints. 定义多点约束 14. ORIENT: Provide an orientation for defining local material directions or local directions for kinematic coupling constraints or local rigid body directions for inertia relief. 为定义局部材料方向提供定位;运动学耦合约束的局部方向;惯性释放的局部刚体方向。 15. RSURFU: Define a rigid surface. 定义一个刚性面 16. SDVINI: Define initial solution-dependent state variable fields. 定义初始和结果相关的变量场 17. SIGINI: Define an initial stress field.

ABAQUS子程序USDFLD

Abaqus/CAE User's Manual 12.8.5 Defining field variables at a material point (在一个材料点定义场变量) In Abaqus/Standard you can introduce dependence on solution variables with user subroutine USDFLD. This subroutine allows you to define field variables at a material point as functions of time, of any of the available material point quantities listed in “Abaqus/Standard output variable identifiers,” Section 4.2.1 of the Abaqus Analysis User's Manual, and of material directions. Material properties defined as functions of these field variables may, thus, be dependent on the solution. User subroutine USDFLD is called at each point for which the material definition includes a reference to the user subroutine. (在ABAQUS里面,你能够用子程序USDFLD来求解变量。USDFLD允许你将一个材料点上的场变量定义为时间函数,能够使用到的材料点在用户使用手册4.2.1节中“abaqus输出变量的标识码”中被提及到。材料的特性被定义作为场变量的函数,因此依赖于求解方法。) (在每个被定义材料性能的点USDFLD能够被调用) To include a reference to user subroutine USDFLD in a material definition: 1.From the menu bar in the Edit Material dialog box, select General User Defined Field. (For information on displaying the Edit Material dialog box, see “Creating or editing a material,” Section 12.7.1.) 2.Click OK to close the Edit Material dialog box. Alternatively, you can select another material behavior to define from the menus in the Edit Material dialog box (see “Browsing and modifying material behaviors,” Section 12.7.2, for more information). Abaqus/CAE User's Manual (子程序USDFLD在材料中的定义过程可参考下面:

abaqus材料子程序

各向同性材料损伤本构模型 SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, + RPL,DDSDDT,DRPLDE,DRPLDT, + STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, + NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, + CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) INCLUDE 'ABA_PARAM.INC' CHARACTER*80 CMNAME DIMENSION STRESS(NTENS),STATEV(NSTATV), + DDSDDE(NTENS,NTENS),DDSDDT(NTENS), + DRPLDE(NTENS),STRAN(NTENS),DSTRAN(NTENS), + TIME(2),PREDEF(1),DPRED(1),PROPS(NPROPS), + COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) DIMENSION STRANT(6),TSTRANT(4),PT(1) DIMENSION OLD_STRESS(6) DIMENSION DOLD_STRESS(6),D_STRESS(6) DIMENSION C(6,6),CD(6,6),DSTRESS(6),BSTRESS(6),ROOT(3), + DFMNDE(6),DDMDE(6),DCDDM(6,6),ATEMP1(6), ATEMP2(6) PARAMETER (ZERO=0.D0,ONE=1.D0,TWO=2.D0,FOUR=4.D0,HALF = 0.5D0) C start C IF (NPROPS.LT.2) THEN C WRITE(7,*) '** ERROR: UMAT REQUIRES *NPROPS=2' C STOP C EN D IF E11 =PROPS(1) V12 =PROPS(2) G12 =PROPS(1)/TWO/(ONE+PROPS(2)) C Critical values of stresses XT=PROPS(3) XC=PROPS(4) XS=PROPS(5) GX=PROPS(6) !Fracture energy in matrix ETA=0.001 C Current strain DO I = 1, NTENS STRANT(I) = STRAN(I) + DSTRAN(I) END DO C Stiffness DO I = 1, 6 DO J = 1, 6 C(I,J)=ZERO END DO END DO ATEMP = (1+V12)*(1-TWO*V12) C(1,1) = E11*(1-V12)/ATEMP C(2,2) = E11*(1-V12)/ATEMP C(3,3) = E11*(1-V12)/ATEMP C(1,2) = E11*V12/ATEMP

相关文档
最新文档