循环肿瘤DNA检测细节:采血管的选择

循环肿瘤DNA检测细节:采血管的选择
循环肿瘤DNA检测细节:采血管的选择

Comparison of cell stabilizing blood collection tubes for circulating plasma tumor DNA Patricia Valda Toro 1, Bracha Erlanger 1, Julia A. Beaver 1, Rory L. Cochran 1, Dustin A. VanDenBerg 1, Elizabeth Yakim 1, Karen Cravero 1, David Chu 1, Daniel J. Zabransky 1, Hong Yuen Wong 1, Sarah Croessmann 1, Heather Parsons 1, Paula J. Hurley 1,2, Josh Lauring 1, and Ben Ho Park 1,31The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 2The Brady Urologic Institute, Department of Urology 3The Whiting School of Engineering, Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD Abstract Objectives—Circulating plasma DNA is being increasingly used for biomedical and clinical research as a substrate for genetic testing. However, cell lysis can occur hours after venipuncture when using standard tubes for blood collection, leading to an increase in contaminating cellular DNA that may hinder analysis of circulating plasma DNA. Cell stabilization agents can prevent cellular lysis for several days, reducing the need for immediate plasma preparation after venipuncture, thereby facilitating the ease of blood collection and sample preparation for clinical research. However, the majority of cell stabilizing reagents have not been formally tested for their ability to preserve circulating plasma tumor DNA.Design & Methods—In this study, we compared the properties of two cell stabilizing reagents, the cell-free DNA BCT tube and the PAXgene tube, by collecting blood samples from metastatic

Address correspondence to: Ben Ho Park MD, PhD, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins, University, 1650 Orleans Street, Room 151, Baltimore, MD, 21287, USA, Tel: 410-502-7399; FAX:

410-614-4073, bpark2@https://www.360docs.net/doc/a215116585.html,.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Disclosure of Potential Conflicts of Interest

B.H.P. is a paid member of the scientific advisory boards of Horizon Discovery, LTD and Loxo Oncology and has a research contract with Genomic Health, Inc. Under separate licensing agreements between Horizon Discovery, LTD and The Johns Hopkins University,

B.H.P. is entitled to a share of royalties received by the University on sales of products. The terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest policies. All other authors declare no potential conflicts.

Author contributions

Conception and design: PVT, BE, JAB, BHP

Development of methodology: PVT, JAB, BE, RLC, DJZ, DC, BHP

Acquisition of data: PVT, JAB, BE, DAV, EY

Analysis and interpretation of data: All authors Writing, review, and/or revision of the manuscript: All authors

Published in final edited form as:

Clin Biochem . 2015 October ; 48(15): 993–998. doi:10.1016/j.clinbiochem.2015.07.097.

We compared wild type PIK3CA genome equivalents and also assayed for two PIK3CA hotspot

mutations, E545K and H1047R.

Results—Our results demonstrate that blood stored for 7 days in BCT tubes did not show

evidence of cell lysis, whereas PAXgene tubes showed an order of magnitude increase in genome equivalents, indicative of considerable cellular lysis.

Conclusions—We conclude that BCT tubes can prevent lysis and cellular release of genomic

DNA of blood samples from cancer patients when stored at room temperature, and could therefore be of benefit for blood specimen collections in clinical trials.

Keywords

droplet digital PCR; circulating tumor DNA; plasma tumor DNA; cell stabilizing tube Introduction

An emerging area of cancer research is the use of circulating cell-free DNA for the purpose

of detecting mutations as a “liquid biopsy”, and as cancer specific biomarkers for early and

late stage disease [1]. It has been known for several decades that cells, both normal and

cancerous, shed DNA into the circulation, but only recently have technologies such as next

generation sequencing (NGS) and digital PCR allowed for the sensitive and specific

detection of individual molecules, which is needed to discriminate mutant cancer DNA from

the large amount of wild type DNA present in plasma and other circulating fluids. Indeed,

the use of plasma DNA for diagnostic purposes has already been extensively studied and

implemented in maternal fetal medicine, where maternal blood harboring fetal DNA can

now be used to diagnose genetic disorders in utero [2]. An inherent and often

underappreciated problem with the use of plasma DNA for clinical medicine is the rapid

lysis of white blood cells after venipuncture leading to cellular genomic contamination of

plasma DNA. Prior studies have demonstrated that cell lysis after venipuncture can release

genomic DNA from peripheral lymphocytes and other cells [3], leading to inaccuracies and

potentially decreased sensitivity when assaying for rare mutant DNA molecules.

Additionally, nucleases present in blood may also affect the integrity of plasma DNA. Thus,

most studies have incorporated protocols that require preparation of plasma from whole

blood within 1 to 2 hours after venipuncture [4], to ensure high quality plasma DNA and

consistency in results. Unfortunately, such rigorous requirements greatly impede the ability

to perform multi-institutional trials evaluating plasma DNA in various clinical settings due

to pragmatic issues of sample handling and plasma extraction after blood draw in a timely

manner.

Cell-free DNA BCT tubes (Streck, La Vista, NE) have been extensively tested and shown to

stabilize cell membranes in whole blood and minimize cell lysis and subsequent release of

cellular DNA into plasma. Although tested mostly for circulating fetal DNA in maternal

blood [3, 5] a recent report demonstrates the ability of BCT tubes to prevent lysis of spiked

breast cancer cells in blood samples, providing potential additional utility for this reagent in

collecting circulating tumor cells (CTCs) [6]. However, to our knowledge, the use of BCT

addition, other specialty tubes as well as standard reagents such as formaldehyde [7] are

currently being used as cell stabilizing agents, but without analytic validation for plasma

tumor DNA. Indeed, one report suggests that formaldehyde can hinder molecular analysis of

plasma DNA [8]. Nevertheless, the validation and use of cell stabilizing reagents would

greatly enhance current and future trials evaluating ptDNA as biomarkers of cancer burden,

response to therapy and mutational status of tumors. Our laboratory has been evaluating the

use of digital PCR for mutation detection in breast cancer patients with metastatic disease

[9] and more recently in early stage breast cancers for use as biomarkers of minimal residual

disease [10]. In order to expand our studies to multiple sites for future trials, we have

evaluated BCT tubes in patient samples collected prospectively from metastatic breast

cancer patients. We also tested another collection tube with a proprietary cell stabilizing

reagent, the PAXgene Blood DNA tubes (Qiagen), used for preserving genomic DNA in

lymphocytes by stabilizing cell membranes, though these tubes are not indicated for plasma

DNA isolation. Our results suggest that BCT tubes can be used to preserve plasma DNA

integrity for several days at room temperature, but that PAXgene tubes had inconsistent

results with sample lysis as measured by total genome equivalents for a given locus using

droplet digital PCR (ddPCR). The studies presented here suggest that BCT tubes can be used

for transport of blood specimens to a central site for processing of plasma DNA, greatly

facilitating analysis of ptDNA for clinical trials in oncology.

Materials and Methods

Ethics Statement

All human subjects research was performed under an IRB approved study, “Johns Hopkins

Breast Cancer Program Longitudinal Repository”, by the Johns Hopkins Medicine

Institutional Review Board #6 committee. Patients provided written informed consent to

participate in the study, and the Johns Hopkins Medicine Institutional Review Board #6

approved the consent procedure.

Patients and Sample Collection

Patients diagnosed with metastatic breast cancer (n=10) were enrolled in an IRB approved

repository study at The Johns Hopkins Sidney Kimmel Comprehensive Cancer Center. The

protocol is approved to allow all patients with any breast anomaly to participate including

those without a diagnosis of breast malignancy. To enrich for PIK3CA mutations, all breast

cancer patients were diagnosed with estrogen receptor (ER)-positive breast cancer but had

unknown PIK3CA mutational status of their tumor at the time of consent. Five 10 ml plasma

samples were obtained per patient. Three blood samples were processed within 2 hours of

phlebotomy: one collected in EDTA tubes (as a baseline control), one in PAXgene tubes,

and one in BCT tubes. The two additional blood samples, one collected in PAXgene tubes

and one in BCT tubes, were then stored at room temperature and processed seven days after

phlebotomy. Plasma was prepared from tubes using a double spin procedure as previously

described [9]. Cell-free DNA was extracted and purified from patient samples using the

QIAamp Circulating Nucleic Acid kit (Qiagen), per the manufacturer’s protocol.

Dual labeled (FAM or HEX) fluorescent-quencher hydrolysis probes were designed for

PIK3CA hotspot mutations (E545K, H1047R) and their respective wild type loci as

previously described [10]. The E1F1AY primer/probe set was purchased from Life

Technologies (Cat. # 4400291) as a FAM labeled enumeration probe for the Y chromosome.

Droplet digital PCR (Bio-Rad) was then performed as per the manufacturer’s

recommendation. Total DNA molecules, or genome equivalents, for each amplicon was

quantified by the QX200? Droplet Reader software according to the sum of FAM and HEX

positive droplets. Results for each mutation analysis were recorded as the summation of

eight replicates, creating a single meta-well for each sample. Although the QuantaSoft

software can perform statistical analysis including fractional abundance and confidence

intervals based upon Poisson statistics, for this study we did not utilize these parameters as

we wished to show all raw data for comparison between samples (Table S1). Additionally,

no pre-amplification was performed and only a limited number of genome equivalents were

assayed per sample since we did not assess limits of sensitivity for this study, but solely

differences between collecting tubes at varying time points.

Statistical analysis

All statistical analyses were performed using GraphPad InStat software (La Jolla, CA). A

two-tailed paired t test was performed for each sample set. A p-value of less than 0.05 was

considered significant.

Results

We initially sought to confirm prior studies demonstrating the ability of BCT tubes to

preserve the integrity of circulating fetal DNA in maternal blood when kept at room

temperature several days after venipuncture. As seen in Fig.1A, blood obtained from a 7

month pregnant female with a male fetus was used to evaluate the ability of BCT tubes to

preserve plasma DNA integrity after 7 days storage at room temperature. Using ddPCR with

probes specific for the E1F1AY gene (on the Y chromosome) and a reference gene (wild

type PIK3CA, exon 9), the number of genome equivalents as measured by wild type

PIK3CA were roughly equivalent for plasma DNA extracted immediately after blood draw

in EDTA tubes and in BCT tubes when blood was taken concurrently, but stored at room

temperature for 2 and 7 days, being 59, 57, and 87 genome equivalents, respectively. In

contrast, genome equivalents were an order of magnitude increased (669 genome

equivalents) in plasma DNA samples from blood drawn in EDTA tubes that were left at

room temperature for 7 days, consistent with lysis of lymphocytes and release of genomic

DNA. However, the number of genome equivalents for E1F1AY were approximately equal

between all 4 samples, indicating that for circulating fetal DNA, DNA stability was not

adversely affected, though this could also represent compensation by release of genomic

DNA from circulating fetal cells. These values demonstrate that in the absence of lysis, fetal

DNA comprises approximately 6% to 10% of total maternal plasma DNA, which is

consistent with the percentage of fetal DNA previously reported in maternal blood [11]. In

addition, the ratio of E1F1AY to PIK3CA DNA was greatly altered due to the increase in

The PAXgene tube is used as a cell stabilizing agent, but specifically to extract gDNA from lymphocytes and not for circulating plasma DNA. In principle, this tube could also be utilized for plasma DNA analysis, but to our knowledge they have never been tested for this application. We therefore tested whether these tubes could also be used for circulating fetal DNA analysis. We compared PAXgene tubes and BCT tubes from a separate volunteer, to obtain maternally derived circulating fetal DNA that was isolated from plasma prepared 7 days after blood collection, as well as EDTA tubes prepared within 1 hour of venipuncture. As seen in Fig.1B, plasma DNA from BCT tubes processed at day 7 had comparable genome equivalents to plasma from EDTA tubes harvested within 1 hour of venipuncture. In contrast, plasma DNA from PAXgene tubes processed at day 7 had an order of magnitude increase in reference genome equivalents (wild type PIK3CA, exon 9), though similar to EDTA tubes at day 7, genome equivalents of E1F1AY remained intact.

To determine if these results were also reproducible in cancer patients, we collected blood and completed analysis on 9 patients with metastatic breast cancer using ddPCR to assess for PIK3CA mutations and wild type genome equivalents. A tenth patient was enrolled, but the blood samples were unusable due to hemolysis, likely from needle shearing at the time of venipuncture. We analyzed plasma DNA derived from standard EDTA, BCT and PAXgene tubes prepared immediately post blood draw, and after one week’s storage at room temperature for BCT and PAXgene tubes. Because this collection required a large (5 × 10 ml=50 ml) volume of blood at a single time point, we did not obtain additional blood samples per patient. We then assessed genome equivalents, including PIK3CA mutations, using ddPCR as previously described [10]. Similar to the results with circulating fetal DNA, we found that the total amount of DNA in plasma stored one week at room temperature in PAXgene tubes was greatly increased, showing on average a 37.14 ± 11.44 (mean and standard error) -fold increase in genome equivalents (Table 1). In contrast, the genome equivalents in plasma stored for one week in BCT tubes increased by 1.17 ± 0.14 (mean and standard error) -fold. Comparison of these means was statistically significant with p<0.0059. At the extreme end, two patient samples demonstrated genome equivalents in day 7 plasma DNA collected in PAXgene tubes that were increased ~80 to 100-fold compared to the corresponding day 1 plasma DNA collected in the same reference tube (Fig.2). Comparison of average genome equivalents for each tube and time point to the corresponding day 1 timepoint revealed that only PAXgene tubes processed on day 7 had statistically significant increases in genome equivalents (Table 2).

Similar to NGS, the sensitivity of ddPCR for mutation detection is dictated by the “depth” of coverage or number of genome equivalents that is assayed for a given mutation, as well as the fidelity of thermostabile polymerases. Therefore, lysis of white blood cells with subsequent release of genomic DNA could hinder the sensitivity of ddPCR since more genome equivalents would need to be analyzed. As with circulating fetal cells in maternal blood, lysis of CTCs may mitigate some of these concerns, though this adds even greater uncertainty and complexity in detection and quantification of ptDNA. Because the goal of

this study was to compare cell membrane stabilization and not limits of sensitivity, we

any pre-amplification steps. As shown in Table 1, four of nine patients in our study were

found to have PIK3CA mutations in their ptDNA, with two E545K and two H1047R

mutations identified. Because we did not perform “deep” ddPCR on patient samples, we

only scored samples as positive for a given mutation if mutation positive droplets were

found in all five collection tubes.

In patients with definitive PIK3CA mutations, day 7 BCT tubes consistently showed

approximately equivalent genome equivalents to their baseline day 1 controls. Although

PAXgene tubes did show preservation of genome equivalents in some patient samples

(patients 2 and 4 for PIK3CA exon 9 genome equivalents, Fig.3), the two other patients with

PIK3CA exon 20 mutation positive samples demonstrated significantly increased genome

equivalents in their plasma DNA relative to baseline (patients 7 and 8, Fig.3), with most

samples showing an order of magnitude increase. This was not due to technical issues with

incubating DNA for several days in PAXgene tubes, as incubation of pure cell line genomic

DNA inoculated into PAXgene tubes and processed at days 1 and 7 showed no difference in

genome equivalents for exon 9 and exon 20 probes used for ddPCR (Table S2). Cell line

genomic DNA was sheared per manufacturer’s instructions since small fragments are

required for optimal incorporation into droplets, and more accurately reflects plasma DNA.

Interestingly, and similar to our results with circulating fetal DNA, samples from PAXgene

tubes that were lysed still had detectable levels of ptDNA similar to corresponding samples

collected in EDTA or BCT tubes as determined by the presence of tumor-specific PIK3CA

mutant DNA (Table S1). As mentioned above, this potentially represents DNA from lysed

CTCs, though this cannot be definitively proven or disproven with the current analysis.

It should also be noted that there were instances of one or two mutant genome equivalents

present in isolated tube specimens from either EDTA, BCT or PAXgene tubes (Table S1,

patients 3, 5, 6, 7 and 8). These isolated events generally represent either extremely low

percentages of mutant alleles or cross contamination/PCR artifacts, which can be

distinguished by repeated sampling, and increasing the number of genome equivalents

analyzed for each queried mutation. As stated previously, the purpose of this study was

simply to compare plasma DNA integrity of cell-stabilizing reagents, and thus further

analysis of these samples was not performed and was limited in some patients by the

relatively small amount of plasma (per each sample tube) collected.

Discussion

The results presented in this study validate the use of BCT tubes for analyzing plasma DNA

obtained from cancer patients’ blood samples stored for 1 week at room temperature.

Although there was some variability with the use of BCT tubes, the vast majority of our

assays still retained genome equivalents for a given amplicon that was similar to baseline

controls. In contrast, our initial results with both EDTA and PAXgene tubes generally led to

an order of magnitude or higher increase in genome equivalents after incubation of blood at

room temperature for 7 days. These results strongly suggest that BCT tubes can be used for

preserving plasma DNA integrity when blood is kept at room temperature. Although we

validated the use of BCT tubes for only 7 days, the manufacturer’s specifications indicate

Although BCT tubes can clearly prevent lysis and release of cellular DNA, lysis of samples from either EDTA or PAXgene tubes did not appear to hinder the ability to detect circulating fetal DNA or ptDNA in our study. Whether this is broadly applicable is currently unknown due to the small sample size of our analysis, but it suggests that degradation of plasma DNA is not appreciable, for at least one week in room temperature when stored as whole blood. Alternatively, as mentioned above, the detection of circulating fetal DNA and ptDNA in lysed tubes may result in part from lysed circulating fetal and tumor cells, respectively, with subsequent release of genomic DNA into the plasma, which theoretically could compensate for any degraded DNA. This explanation seems less plausible, though we cannot prove or disprove this in the current study. Since the presence of CTCs is quite variable in patients with cancer [13], positive results from plasma samples obtained under conditions of possible cell lysis need to be interpreted with caution. Importantly, the fractional abundance of ptDNA (i.e. percentage of mutant DNA to total DNA for a given amplicon) becomes greatly altered when lysis occurs given the order of magnitude increase in wildtype genome equivalents as seen in our study. Given the uncertainty of CTC lysis and the potential for skewing of genome equivalents possibly affecting quantification and sensitivity of detection, we believe that EDTA tubes should only be used for plasma DNA analysis when samples can be prepared within 1 to 2 hours after venipuncture.

Our study also cautions against the use of general cell stabilizing agents for use in plasma DNA preservation. The PAXgene tube is specifically formulated for harvesting nucleic acids within cells kept at room temperature for up to 14 days after blood collection. The manufacturer’s specifications also state that tubes can be kept refrigerated or frozen after venipuncture, followed by extraction of genomic DNA or RNA. Thus, lysis from cells and release of DNA into plasma may not be problematic for these applications, as the preservative used does not seem to adversely affect the quality of nucleic acids obtained and its use in downstream applications. On the other hand, the release of genomic DNA from cells can artifactually increase the number of cell free plasma genome equivalents, which may adversely affect absolute quantification of plasma DNA molecules. In theory, this could also affect sensitivity of a given assay, since more genome equivalents may have to be assayed to detect rare molecules found in plasma such as ptDNA. It is interesting to note however, that in our two patients with PIK3CA exon 9 mutations, genome equivalents at this locus were not increased in PAXgene tubes prepared at day 7, yet the same day 7 samples had increases in genome equivalents for the PIK3CA exon 20 locus. In fact, there was a general trend with PAXgene tubes of increased genome equivalents for the PIK3CA exon 20

locus compared to the PIK3CA exon 9 locus (Table 1). This was not a technical artifact as

assay [10]. In addition, our results with cell line genomic DNA (Table S2), argue against a

technical artifact. Thus, the reasons for this are unclear, but suggest that the amount of

genome equivalents released from cells can vary in a locus specific manner, which could in

turn lead to inconsistent results when quantifying DNA. Although this is not likely to be as

problematic for ddPCR, allelic imbalances due to cell lysis could hinder analysis of DNA

copy numbers for detecting cancer and fetal genetic anomalies.

In sum, our results confirm the analytic validation of Streck cell-free DNA BCT tubes for

plasma DNA analysis of circulating fetal DNA and ptDNA. We also demonstrated that

depending on the application, cell stabilizing products may not be suited for preserving the

integrity of plasma DNA, noting the significant cell lysis that was observed in blood samples

collected and analyzed in parallel with BCT tubes. These results provide the foundation for

using BCT tubes to obtain blood samples for clinical trials in oncology that will facilitate the

central collection and processing of specimens for plasma DNA analysis. Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by: The Avon Foundation (B.H.P.), NIH CA088843 (B.H.P.), GM007309 (D.J.Z.),

CA168180 (R.L.C.), CA167939 (S.C.), and CA09071 (H.P.). We would also like to thank and acknowledge the

support of the NIH Cancer Center Support Grant (P30 CA006973), the Sandy Garcia Charitable Foundation, the

Commonwealth Foundation, the Santa Fe Foundation, the Breast Cancer Research Foundation, the Health Network

Foundation, the ME Foundation and The Robin Page/Lebor Foundation. None of the funding sources influenced the

design, interpretation or submission of this manuscript.

References

1. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: Monitoring cancer-genetics

in the blood. Nat Rev Clin Oncol. 2013; 10:472–84. [PubMed: 23836314]

2. Lo YM, Chiu RW. Genomic analysis of fetal nucleic acids in maternal blood. Annual review of

genomics and human genetics. 2012; 13:285–306.

3. Fernando MR, Chen K, Norton S, Krzyzanowski G, Bourne D, Hunsley B, et al. A new

methodology to preserve the original proportion and integrity of cell-free fetal DNA in maternal

plasma during sample processing and storage. Prenatal diagnosis. 2010; 30:418–24. [PubMed:

20306459]

4. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to

assess tumor dynamics. Nat Med. 2008; 14:985–90. [PubMed: 18670422]

5. Wong D, Moturi S, Angkachatchai V, Mueller R, DeSantis G, van den Boom D, et al. Optimizing

blood collection, transport and storage conditions for cell free DNA increases access to prenatal

testing. Clinical biochemistry. 2013; 46:1099–104. [PubMed: 23643886]

6. Qin J, Alt JR, Hunsley BA, Williams TL, Fernando MR. Stabilization of circulating tumor cells in

blood using a collection device with a preservative reagent. Cancer cell international. 2014; 14:23.

[PubMed: 24602297]

7. Heitzer E, Auer M, Hoffmann EM, Pichler M, Gasch C, Ulz P, et al. Establishment of tumor-

specific copy number alterations from plasma DNA of patients with cancer. Int J Cancer. 2013;

133:346–56. [PubMed: 23319339]

8. Das K, Fernando MR, Basiaga S, Wigginton SM, Williams T. Effects of a novel cell stabilizing

reagent on DNA amplification by pcr as compared to traditional stabilizing reagents. Acta

Histochem. 2013

9. Higgins MJ, Jelovac D, Barnathan E, Blair B, Slater S, Powers P, et al. Detection of tumor pik3ca

status in metastatic breast cancer using peripheral blood. Clin Cancer Res. 2012; 18:3462–9.

[PubMed: 22421194]

10. Beaver JA, Jelovac D, Balukrishna S, Cochran RL, Croessmann S, Zabransky DJ, et al. Detection

of cancer DNA in plasma of patients with early-stage breast cancer. Clin Cancer Res. 2014;

20:2643–50. [PubMed: 24504125]

11. Lo YM, Tein MS, Lau TK, Haines CJ, Leung TN, Poon PM, et al. Quantitative analysis of fetal

DNA in maternal plasma and serum: Implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998; 62:768–75. [PubMed: 9529358]

12. Norton SE, Lechner JM, Williams T, Fernando MR. A stabilizing reagent prevents cell-free DNA

contamination by cellular DNA in plasma during blood sample storage and shipping as determined by digital pcr. Clinical biochemistry. 2013; 46:1561–5. [PubMed: 23769817]

13. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells,

disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004; 351:781–91.

[PubMed: 15317891]

14. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, et al. Absolute

quantification by droplet digital pcr versus analog real-time pcr. Nat Methods. 2013; 10:1003–5.

[PubMed: 23995387]

Figure 1. BCT tubes preserve circulating fetal DNA after 7 days storage at room temperature Droplet digital PCR was performed as described in the text using copy number probes for circulating fetal DNA with a probe for the Y chromosome (E1F1AY gene) and a reference locus (PIK3CA exon 9 wild type probe) using A) plasma DNA collected from a patient under standard conditions (EDTA), and after incubation of blood at room temperature in EDTA after 7 days and BCT tubes after 2 and 7 days as indicated, and B) from a separate patient under standard conditions (EDTA), and after incubation of blood at room temperature in BCT and PAXgene tubes after 7 days as indicated. Events refer to positive droplets for either E1F1AY or PIK3CA as indicated.

Figure 2. Genome equivalents in plasma DNA from BCT and PAXgene tubes processed after 7 days at room temperature Genome equivalents were measured by ddPCR as per the text using probes for mutant and wild type PIK3CA for either exon 9 E545K or exon 20 H1047R mutations. Genome equivalents are shown for A) patient 6, assayed for the PIK3CA exon 9 locus, and B) for patient 9, assayed for the PIK3CA exon 20 locus. Events refer to positive droplets for either mutant or wild type PIK3CA exon 9 (E545 vs E545K) or exon 20 (H1047 vs H1047R) as indicated. DNA was extracted from 2 ml of plasma for each condition. Sheared cell line genomic DNA diluted at varying mutant to wild type ratios (1:1 shown) were used as positive controls.

Figure 3. Genome equivalents in plasma DNA from BCT and PAXgene tubes processed after 7 days at room temperature from patients with PIK3CA mutations Genome equivalents were measured by ddPCR as per the text using probes for mutant and wild type PIK3CA for exon 9 E545K and exon 20 H1047R mutations. Genome equivalents are shown for A) patient 2, assayed for the PIK3CA exon 9 locus, B) patient 4, assayed for the PIK3CA exon 9 locus, C) patient 7, assayed for the PIK3CA exon 20 locus, and D) patient 8, assayed for the PIK3CA exon 20 locus. Events refer to positive droplets for either mutant or wild type PIK3CA exon 9 (E545 vs E545K) or exon 20 (H1047 vs H1047R) as indicated. DNA was extracted from 2 ml of plasma for each condition. Sheared cell line genomic DNA diluted at varying mutant to wild type ratios (2:1 and 10:1 shown) were used as positive controls.

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Table 1

Mutational results and genome equivalent ratios for patients’ plasma DNA.

Patient Exon Status PAXgene tube Day 7 to

Day 1 ratio

BCT tube Day 7 to

Day 1 ratio 1

9Wild type11.82 2.07

20Wild type26.96 2.59

2

9E545K0.87 1.45

20Wild type25.940.81

3

9Wild type 6.07 1.40

20Wild type13.290.97

4

9E545K 1.630.86

20Wild type 1.91 1.07

5

9Wild type16.530.74

20Wild type22.600.86

6

9Wild type80.190.38

20Wild type191.60 1.05

7

9Wild type23.930.46

20H1047R33.220.48

8

9Wild type9.00 1.21

20H1047R22.790.95

9

9Wild type70.81 1.80

20Wild type109.33 1.86

Average ± SE M37.14 + 11.44 1.17 + 0.14

Two tailed p-value0.0059

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Table 2

Statistical comparison of average genome equivalents for patients plasma DNA in various collection tubes and time points.

Exon 9

Tube EDTA Day 1BCT Day 1PAXgene Day 1BCT Day 7PAXgene Day 7

Mean294.89305.00244.78297.334442.89

SD305.74355.01270.85303.815243.78

SEM101.91118.3490.28101.271747.93

n99999

Exon 9

EDTA vs

BCT Day 1

EDTA vs

PAXgene Day 1

BCT Day 1 vs

BCT Day 7

PAXgene Day 1 vs

PAXgene Day 7

p-value0.780.090.870.04

Exon 20

Tube EDTA Day 1BCT Day 1PAXgene Day 1BCT Day 7PAXgene Day 7

Mean127.78136.00134.67151.113248.44

SD114.55175.55165.44188.402857.19

SEM38.1858.5255.1562.80952.40

n99999

Exon 20

EDTA vs

BCT Day 1

EDTA vs

PAXgene Day 1

BCT Day 1 vs

BCT Day 7

PAXgene Day 1 vs

PAXgene Day 7

p-value0.770.760.320.01

Maspin与肿瘤血管生成及转移关系的研究进展

Maspin与肿瘤血管生成及转移关系的研究进展1 达春丽,辛彦 中国医科大学附属第一医院肿瘤研究所第四研究室,普通外科研究所,肿瘤病理研究室, 辽宁沈阳(110001) E-mail:yxin@https://www.360docs.net/doc/a215116585.html, 摘要:肿瘤生长,侵袭及远处转移离不开血管生成对其营养支持,同时提供肿瘤细胞离开原位和发生远处转移的脉管途径。maspin(Mammary Serine Protease Inhibitor)基因是一种丝氨酸蛋白酶抑制剂(serpin)基因。大量研究证实其编码的蛋白对肿瘤具有多方面的抑制作用:抑制新生血管的生成,增加细胞间的黏附性,抑制肿瘤细胞的侵袭和转移能力,诱导肿瘤细胞凋亡。在一些肿瘤组织,如,乳腺癌,前列腺癌中,Maspin随肿瘤的发展表达水平逐渐降低,而在另一些肿瘤组织,如,胰腺癌,胃肠道癌中呈高表达。Maspin在不同组织中的表达情况及生物学功能,仍需进一步研究。 关键词:maspin;血管生成;转移;肿瘤 中图分类号: R730.2 1. 引言 蛋白酶和蛋白酶抑制剂在肿瘤发生发展中发挥着重要作用。现今,研究较多的两种蛋白酶及抑制剂为丝氨酸蛋白酶和基质金属蛋白酶及其抑制剂。maspin蛋白是1994年ZOU[1]等用消减杂交技术对正常乳腺组织和乳腺癌组织进行比较时发现的一种特殊的丝氨酸蛋白酶抑制剂。maspin的表达随肿瘤的发展逐渐消失,恢复肿瘤细胞中maspin的表达,能够抑制肿瘤细胞的生长、运动、转移能力,将其定位为肿瘤抑制基因。然而,随着对maspin 生物学功能及不同肿瘤类型中表达情况的深入研究,研究者逐渐发现在不同类型的肿瘤细胞中,maspin表达水平不同,生物学功能也可能不同,具有复杂性。 2. Maspin的结构和定位 Maspin定位于18q21.3-23,cDNA,由2584个核苷酸组成,编码42kDa的蛋白(375 个氨基酸残基),该蛋白包括一个与氨基结合的终末蛋氨酸和一个与羧基结合的终末缬氨酸,包括有8个内在的半胱氨酸残基,可组成两个或更多的二硫键以稳定该蛋白的三级结构。maspin蛋白属于丝氨酸蛋白酶抑制剂(serpin)超家族、卵清蛋白亚族,与其它serpin有30%-40%的同源性[2]。 Maspin蛋白的--COO H端附近有一活性位点环(reactive site loop,RSL),该区域在serpin 家族中高度保守,活性中心的--NH2端有一绞链区(hinge region2),serpin通过裸露的RSL 与特异蛋白酶(丝氨酸或半胱氨酸蛋白酶)结合,结合后RSL的结构断裂,经过大规模构象转化形成蛋白酶与serpin的复合物而发挥作用[2]。因此,RSL对于serpin有重要作用,其变异可影响serpin作用的发挥。 Pemberton[4]等研究证实 maspin 或 maspin 样蛋白是与分泌囊泡有关的可溶性胞浆蛋白,表达于细胞表面,这种亚细胞定位可能在细胞迁移、运动和增殖中起重要作用。Maass[5]等证实maspin还表达于一些肌上皮细胞和肿瘤细胞核中。定位不同,生物学功能和临床意义也不同,Solomon[6]等研究卵巢癌指出,胞浆内出现 maspin提示预后不良,胞核内出现预后较好。在肺癌的研究中也得出类似结论[7]。近年也有研究发现胞浆内出现maspin相对胞核出 1本课题得到教育部博士点学科专项科研基金(项目编号:20040159021)的资助。

肿瘤血管生成和抗血管生成治疗癌症的机制

肿瘤血管生成和抗血管生成治疗癌症的机制 主要研究者 Yihai Cao MTC 卡罗林斯卡学院 总目标: 我们研究项目的目标是研究肿瘤血管生成的复杂机制。通过了解病理性肿瘤血管生成的机制,我们希望能攻克血管来明确新的治疗靶点,优化当前治疗癌症的抗血管生成疗法,确定可靠的生物标记来指导这些新药的临床意义。因此,我们的研究目的本质上是翻译性质的并且与临床相关,如果成功,这个项目将造福数百万癌症患者。 具体目标: 1.研究在肿瘤生长与转移过程中血管和淋巴管生成的机制 2.研究抗血管生成药物的耐药机制和优化抗血管生成疗法 3.确定脱靶肿瘤为抗血管生成治疗的潜在有利部位 4.研究肿瘤血管和促进肿瘤生长转移的间质组织之间的作用 背景和理由 血管生成,就是新血管从现有的血管生长的过程,它对胚胎发育、女性生殖、伤口愈合、肿瘤生长和转移、慢性炎症、肥胖、糖尿病并发症和眼科疾病都至关重要[1]。1971年,Judah Folkman提出一个新概念,将抑制肿瘤血管生成作为治疗癌症的新策略[2]。经过40年该领域的研究后,临床前和临床数据提供了可靠的证据,证明抗血管生成疗法是治疗恶性和非恶性肿瘤有效合理的方法。如今,一些基于抗血管生成原理的靶向药物主要包括贝伐单抗,舒尼替尼,和索拉非尼,它们已结合传统疗法如化疗,成为人类肿瘤一线治疗手段的关键部分[3] 。此外,抗血管生成药物已被成功用于眼科疾病的治疗,比如老年性黄斑变性[ 4 ]。在癌症领域,尽管抗血管生成药物结合化疗的联合疗法能显著的提高各类癌症患者的生存率,但是抗血管生成疗法治疗大多数类型的癌症包括直肠癌、肺癌和乳腺癌的临床效果仍然不理想,只有少数癌症患者(大约30%)受益[5]。大量临床相

循环肿瘤细胞(CTC)检测

循环肿瘤细胞(CTC)检测 一、什么是循环肿瘤细胞(CTC)? 循环肿瘤细胞(Circulating Tumor Cell,CTC)是存在于外周血中的各类肿瘤细胞的统称,因自发或诊疗操作从实体瘤病灶(原发灶、转移灶)脱落,进入外周血循环的肿瘤细胞。 CTC非常稀少,每毫升血液中109血细胞只有几个CTC。大部分CTC在进入外周血后会发生凋亡或被吞噬,少数能够逃逸并发展成为转移灶,增加恶性肿瘤患者的死亡风险。 二、肿瘤的发生及检测诊断 全国肿瘤登记中心发布的2015年年报显示,2011年我国新增癌症病例约337万例,比2010年增加28万例——这相当于每分钟有6人被诊断为癌症。然而,令人担忧的是这样的情势似乎仍未到达峰顶,未来可能还会不断增加。 美国约翰-霍普金斯大学Kinmel 癌症中心的Bert-Vogelstein 等专家在2013年3月份的一篇综述文章中写道:在今年将死于癌症的一百万人里,绝大部分是因为他们的癌症没有在发生、发展的前90%的时间内被发现。因此,我们需要明确一点:癌症是一种慢性病,它只是被突然发现,并非是突然发生的。我们需要尽可能早的发现它,从而提高治愈率。 伴随肿瘤的发生过程,肿瘤细胞的大小也随之增大。传统方法诊断出癌症的时候,大部分已经是晚期。晚期癌症的治愈率极低,其五年生存率也很低。在肿瘤的发生过程中,早期到中期之间是最佳治疗期,因此,如果在早期就可以发现肿瘤的存在,必然可以提高治愈率。临床癌症研究(Clinical Cancer Research)杂志上发表的荟萃分析(Meta-analysis)证实CTC

在乳腺癌预测中的价值,结果表明早期和转移性乳腺癌患者的循环肿瘤细胞CTC检测是一个稳定的预测和预后工具。 如果将肿瘤易感性基因检测和循环肿瘤细胞检测完美结合,那么能够将肿瘤的早期发现率提高数倍。肿瘤易感性检测是对未来可能患有癌症的一种风险预测。如果风险等级高,除了改变生活方式外,还可以定期做循环肿瘤细胞检测,即CTC检测,而且检查频率可以适当增加,每2-3个月检查一次,从而达到实时监控的目的。 三、CTC 检测临床意义有哪些? CTC 检查的临床意义主要表现在体外早期诊断,血液中肿瘤在1mm时,即可检出CTC,抓住最佳治疗期;另外还可以进行预后判断,根据治疗前后CTC个数判断预后与存活时间,制定最佳治疗方案;此外,还有肿瘤复发检测、耐药性检测、化疗药物的疗效评价以及新药的研发等。 四、哪些人需要做CTC检测? 1. 普通健康人:通过检查血液中是否存在循环肿瘤细胞来早期检测肿瘤的发生,建议每年检测一次,以期在肿瘤萌芽阶段就能检测到,从而保证早期治愈率。 2. 肿瘤易感人群:有癌症家族史人群,患有HPV阳性、慢性肝炎、慢性胃炎、慢性肠炎等人群,长期吸烟者,经常接触有毒有害物质者,生活压力大、精神高度紧张的亚健康人群,以及基因检测肿瘤易感性风险等级高者,建议每3个月或者半年检测一次。 3. 癌症患者:已经确诊的癌症患者,通过CTC计数,用于预后判断、疗效评价、复发检测等;通过CTC单细胞基因组分析,选择精准治疗方案,实现真正的液体活检。

循环肿瘤细胞检测系统(CTC)仪器购买可行性报告

循环肿瘤细胞检测系统(CTC)设备购置 可行性报告 一、制造商基本情况 美国强生(Johnson & Johnson)成立于1886年,是世界上规模最大,产品多元化的医疗卫生保健品及消费者护理产品公司。1999年全球营业额高达275亿美元。强生在全球60个国家建立了250多家分公司,拥有约11万5千余名员工, 产品销售于175个国家和地区。 强生公司是世界上最具综合性、分布范围最广的卫生保健产品制造商、健康服务提供商,产品畅销于175个国家地区,生产及销售产品涉及护理产品、医药产品和医疗器材及诊断产品市场等多个领域。 美国强生公司研发的循环肿瘤细胞检测系统(CTC)2012年进入中国市场,立即被运用于肿瘤科研和临床检测,并受到业界好评。二、项目意义 随着循环肿瘤细胞检测技术的不断发展,循环肿瘤细胞(CTC)在肿瘤临床实践以及肿瘤基础科学研究领域得到了越来越多的重视。CTC数目已经被证实与晚期转移性乳腺癌,结直肠癌,前列腺癌等各种患者的无进展生存期和总生存期密切相关,CTC已经成为转移性乳腺癌等癌种的一种全新的,独立的预后因子,并被作为一种新的肿瘤生物标志物而广泛应用于新药开发,癌症机制研究等不同的领域。三、国内外研究 CTC是指存在于外周血循环中的肿瘤细胞,其含量非常稀少(1ml血液中可能只能检出1个CTC)。CellSearch系统是目前为止唯一获得FDA批准的可以应用于病人管理的自动化循环肿瘤细胞检测系统。检测技术的不断进步CTC越来越成为国内外癌症领域研究的热点。2004年,Cristofanilli等完成的前瞻性多中心临床研究表明治疗前

(基线期)和首次随访时的CTC水平对于转移性乳腺癌患者的无进展生存期和总生存期都是独立的预测指标。在177例转移性乳腺癌患者中,CTC水平较高者(≥5个/7.5ml全血)的平均无进展生存期只有2.7个月,总生存期只有10.1个月;CTC水平较低者则分别为7.0个月(P<0.001)和超过18个月(P<0.001)。随后又有多个研究证明治疗期间任何时间点CTC水平的升高都提示着疾病的快速进展和较差的预后。同时也出现了越来越多的不同癌种的关于CTC的研究,其结果也提示了CTC在前列腺癌,结直肠癌中也发挥了相同的预后作用。由于FDA 的批准,在美国CTC已经可以与传统肿瘤诊断检测方法相结合用于临床实践。国外也有较多的研究集中在了CTC的生物特性上,例如研究CTC表面的Her2抗体表达情况,进行CTC与原发肿瘤的抗体表达对照研究等。 此前,国内也有一些实验室开展了关于CTC的研究,但局限于手工磁珠法,PCR法等方法学问题,并没有取得国际认可的结果。不过随着CellSearch方法逐渐进入中国,越来越多的学者已经开始了关于CTC的研究。国内正在进行CellSearch的注册临床研究,将会验证CellSearch系统在中国人群中的有效性及安全性。同时一些国内的实验室也已经开始在CellSearch这一平台上进行不同的基础科学研究,包括CTC表面多重生物标志物分析,CTC分子生物学分析,CTC细胞FISH检测等,希望通过CTC这个全新的肿瘤标志物得到更多关于癌症发病机制,癌症转移机制等问题的答案。 四、国内开展现状 基于CellSearch平台的CTC检测技术是一种安全可靠的被美国FDA批准的癌症临床辅助诊断技术,随着中国注册临床试验的进行,CTC检测将会在中国得到越来越多的重视并迎来更加广阔的临床及科研应用前景。目前国内已有解放军307医院,复旦大学附属肿瘤医院,

cellsearch循环肿瘤细胞ctc)试剂盒说明书自译中文版

7900001 16人份试剂盒 Cell Search 循环肿瘤细胞检测试剂盒 (上皮细胞) IVD 使用须知 本试剂盒仅用于体外诊断 CellSearch循环肿瘤细胞检测试剂盒用于外周血中循环肿瘤细胞(CTC)的计数,这些细胞来源于上皮细胞,即表现为CD45阴性(CD45-),EpCAM阳性(EpCAM+),细胞角蛋白8,18阳性(CK8,18+)和(或者)CK19阳性(CK19+)的细胞。 用CellSearch循环肿瘤细胞检测试剂盒检测的CTC,存在于外周血中,这类细胞与乳腺癌、结直肠癌和前列腺癌*转移患者的无进展生存期和总生存期相关。因此,CTC可以用来监控乳腺癌、结直肠癌和前列腺癌患者的肿瘤细胞是否发生转移。CTC应该进行持续检测,并与其他临床诊断方式联合起来监控上述肿瘤细胞的转移。在肿瘤发生过程中的任何时间段,对CTC数量进行评估,可以预估肿瘤患者治疗后的无进展生存期和总生存期。 *在该研究中,转移性前列腺癌患者定义为血清标志物PSA在标准激素基准上,高于参考水平具有两次连续增加。这些患者通常描述为具有非雄激素依赖性,激素抗性,或去势抗性的前列腺癌。 摘要说明 肿瘤转移是指当肿瘤细胞从原发灶或转移灶剥落后,这些肿瘤细胞进入循环系统并在机体的远端定植生长的情况。血液循环中的肿瘤细胞源自于上皮细胞,而这

类细胞在血液循环系统中是极罕见的。基于此,本公司推出的细胞自动化捕获仪(CELLTRACKS○R AUTOPREP○R System)通过预设程序并配合使用CellSearch循环肿瘤细胞检测试剂盒(CELLSEARCH○R Kit)可以对样本进行标准化和自动化检测。用CELLTRACKS II分析仪或者CellSpotter分析仪,一种半自动荧光显微镜,可以对肿瘤细胞进行分析和计数。这种方法只计具有上皮细胞特性(EpCAM+, CK8,18+,和/或者CK19+)的细胞数量。 检测原理 CellSearch循环肿瘤细胞检测试剂盒包括磁流体捕获试剂和荧光免疫试剂。磁流体试剂是一种具有磁芯的颗粒。其表面包被识别EpCAM抗原的抗体,EpCAM是CTC特异性抗原。因此,该磁微粒可以捕获CTC。经过免疫捕获和富集后,荧光试剂用来鉴定CTC和CTC计数。荧光试剂包括以下组成:抗CK-藻红蛋白(PE)的特异于细胞内蛋白质的细胞角蛋白抗体(上皮细胞特性);DAPI,用于细胞核染色;和抗CD45-别藻蓝蛋白(APC)白细胞特异性抗体。 试剂/样品混合物被CELLTRACKS○R AUTOPREP○R系统分配到一个插入在MAGNEST?细胞呈现装置的暗盒中。所述MAGNEST?装置具有强磁场,能吸引磁微粒标记的上皮细胞在暗盒的表面上。CELLTRACKS ANALYZERII?分析仪,或者CellSpotter?分析仪自动扫描暗盒的整个表面,获取图像并向用户显示所有事件,其中CK-PE和DAPI荧光染料进行共定位。图像进行最终分类,并以画廊格式呈现给用户。所检测分析的事件当其形态学特征与肿瘤细胞一致并表现出EpCAM+,CK+,DAPI+和CD45-表型时,才被分类为肿瘤细胞。 试剂盒提供的材料 试剂说明 1. 3ml 包被抗EpCAM抗体的磁流体:含有浓度为0.022%的磁微粒,这些磁微

循环肿瘤细胞检测及临床应用的研究进展

?450?肿瘤2008年5月第28卷第5期TumorV01.28,No.5,May,2008 DOI:10.3781/j.issn.1000-7431.2008.05.021 循环肿瘤细胞检测及临床应用的研究进展 Review?综述 黄同海1,王正‘,李富荣2 (暨南大学第二临床医学院深圳市人民医院1.胸外科;2.临床医学研究中心,深圳518020) [摘要]研究发现,实体瘤患者外周血中存在循环肿瘤细胞。循环肿瘤细胞的检测有助于发现早期肿瘤患者的微转移,重新确定临床分期,监测患者术后肿瘤是否复发与转移,评估预后,选择个体化的治疗策略。由于存在循环肿瘤细胞检测方法、原发肿瘤细胞的不连续脱落、基因组的不稳定性及无效转移等诸多问题,循环肿瘤细胞检测的生物学意义和临床意义仍存在很大争议。本文综述了对实体瘤患者循环肿瘤细胞检测的方法和结果,并探讨当前肿瘤研究领域面临的问题和潜在的进展。【关键词]肿瘤循环细胞;肿瘤转移;诊断技术和方法 [中图分类号]R73-37;R730.43[文献标志码]A[文章编号]1000-7431(2008)05-0450-03 肿瘤转移是一个涉及多步骤多因素的复杂过程。肿瘤细胞的脱落、侵袭并进入血液循环是实现肿瘤转移的最初阶段,并为最终形成肿瘤转移灶提供了可能。深入研究循环肿瘤细胞(circulatingtumorcells,CTCs)有助于对肿瘤转移机制的了解,为抗转移治疗提供依据。随着检测技术的小断改进,研究者们对CTCs的生物学特性的认识得到不断更新和完善。这可能为肿瘤患者的预后评估、抗肿瘤药物的开发和肿瘤的个体化治疗提供强有力的工具。 CTCs是指自发或因诊疗操作进入外周血循环的肿瘤细胞。由于宿主的免疫识别和机械杀伤作用以及肿瘤细胞自身因素,进入循环的肿瘤细胞很大一部分发生凋亡,不能形成转移灶,这种现象称之为“无效转移”¨o。只有极少数具有高度转移潜能的肿瘤细胞在循环系统中存活下来,相互聚集形成微小癌栓,并在一定条件下发展为转移灶。因此,在外周血中检测到肿瘤细胞预示着有可能发生肿瘤转移。 1CTCs的检测方法 1.1细胞计数法细胞计数法是最早应用于检测外周血CTCs的方法并且是当前鉴定骨髓中微转移的标准方法。细胞计数法的优点是,可在形态学上鉴别恶性表型并在单个细胞水平上进一步检测特定分子,但标准的光学显微镜和免疫细胞化学法存在敏感性低、检测繁琐、费时、易误诊等缺点。随着细胞自动成像和细胞富集方法等的产生,重新激起了研究者对应用细胞汁数法检测CTCs的兴趣。…。数字显微镜能自动扫描以核特征和细胞表面特征为摹础的血标本,而操作者只需确定分选的细胞即可。新近应用的上皮肿瘤细胞容量分离法(isolationbysizeofepithelialtumorcells,ISET),不仅能计数肿瘤细胞,而且能进行免疫形态学和分子特征的分析¨J。FCM广泛应用于血液领域,不仅能鉴定特定标本中细胞抗原性和形态学特征,还能使富集的目的细胞维持细胞形态并保持细胞活力,进一步扩大在体外的功能研究。 [基金项目]国家科技攻关计划项目(编号:2003BA310A23) [作者简介】黄同海(1982一),男(汉族),硕士,住院医师 Correspondenceto:WANGZheng(王正) E—mail:Wangzn0503@163.tom1.2PCR方法PCR方法是检测CTCs最普遍的一种方法。该方法通过设汁获得与目的基因特异性互补的寡核苷酸引物而具有较高的特异性。应用PCR方法可在106一lO7个正常细胞中检测出1个肿瘤细胞,相当于1~10mL血中可发现1个肿瘤细胞,与光学显微镜检测(102一103个正常细胞中发现1个肿瘤细胞)和免疫组织化学方法(104—105个正常细胞中发现1个肿瘤细胞)相比具有更高的敏感性“。然而,由于该方法的高度敏感性,极易产生假阳性的结果。这是冈为外周血白细胞的非法转录、静脉穿刺时血标本的污染及假基因的干扰等造成,但随着实时定量PCR技术的出现,使精确定量靶序列成为可能。 以DNA作为PCR的模板,其优势是它的稳定性和肿瘤细胞异常转录的独立性。但是它的缺点是敏感性低,并且不能鉴别目的基因DNA来源于活细胞还是死细胞。 以mRNA作为模板进行RT—PCR也是CTCs检测最常用的一种方法。首先将mRNA反转录为cDNA,随后用特异性的引物扩增获得日的基因。引物设计时可以跨越2个不同的外显子,为避免整个基因组的扩增,有利于消除假阳性结果。RT—PCR的优点是可以检测原代活细胞,缺点是在某个特定肿瘤细胞内一个基因mRNA的拷贝数量在细胞周期中是不断变化的,并且存在去分化的现象,这可能影响标准PCR的阳性率和实时定量PCR检测的标志物水平,从而较难区别肿瘤细胞数量与mRNA表达水平之I’日J的变化。然而用多位点PCR分别检测来自不同基因家族的mRNA标志物即可解决这个问题一-。 1.3细胞富集方法密度梯度离心法足目前实验室常用的一种收集肿瘤细胞的方法,但该方法缺乏特异性,因而易导致缺乏相应密度的肿瘤细胞丢失。新近发展起来的免疫磁性细胞富集法则具有较高的特异性和富集效率。其基本原理即采用均匀、球形具有超顺磁性及保护壳的纳米微粒制备成免疫磁珠,使之成为既能被磁铁所吸引,又能结合抗体的载体。磁珠上的抗体与含有特异性抗原物质的细胞结合后,则形成细胞抗原.抗体一磁珠免疫复合物,在磁力作用下发生力学移动,使复合物与其他物质分离,达到分离特异性细胞的目的。目前商业化的磁珠包括阳性分选磁珠和阴性分选 万方数据

循环肿瘤细胞检测的现状及发展

循环肿瘤细胞检测的现状及发展 作者:上海市第一人民医院检验科李莉教授 https://https://www.360docs.net/doc/a215116585.html,/news/9/2802534.htm 恶性肿瘤远处转移是临床上实体恶性肿瘤治疗失败或复发的主要原因之一。而循环肿瘤细胞的存在正是实体恶性肿瘤远处转移的根源。肿瘤远处转移的最经典依据是1889年Paget[1]提出的“种子和土壤”学说,该学说认为肿瘤转移的发生和发展,是处于活跃或活化状态的肿瘤细胞作为“种子”,当遇到适合的器官、组织的基质环境,即“土壤”时,就会在此定居、生长即发生肿瘤的转移,从而部分解释了肿瘤原发灶与转移灶之间的关系。但原发部位的肿瘤(种子)是如何到达远处器官或组织(土壤)的这一问题一直困扰着人们。直到1869年,托马斯?阿什沃思(Thomas Ashworth)[2]在1例转移性癌症患者血液中观察到了外周血循环肿瘤细胞(Circulating Tumor Cells,CTCs)—从实体瘤中脱离出来并进入血液循环的肿 瘤细胞。他推测,这些细胞在癌症转移过程中发挥了非常重要的作用,并可能提供疾病进展的相关信息,CTCs的概念初步形成。据统计,90%以上的肿瘤病人死于肿瘤的转移和复发,实体肿瘤或转移灶的肿瘤细胞在特定条件下,通过上皮-间质转化(epithelial-mesenchymal transition,EMT),从形态上发生向间充质细胞表型的转变并获得迁移的能力。间充质细 胞与上皮细胞相邻,只是其结构松散,缺乏细胞连接(cell adhesion)和细胞极性,并且具有转移和侵袭能力。因此,脱落的CTCs得以进入外周血液循环,这是肿瘤发生转移的必要前提。脱离原发灶入血的CTCs至少面临着血流剪应力、失巢凋亡、免疫细胞识别杀伤等三重致命考验,进入循环的大部分肿瘤细胞都会失去活性,只有不足0.01%可到达远端器官,通过迁移、粘附、相互聚集形成微小癌栓,并在适合的微环境条件下,CTCs又发生间质- 上皮转化(mesenchymal-epithelial transition,MET),生成新的肿瘤,从而导至肿瘤转移的发生。 从提出CTCs概念近一个多世纪的时间里,由于初期实验条件、技术的限制以及学者对CTCs 的认识的局限性,CTCs检测及临床应用进展不大。直至上世纪末尤其是本世纪初,随着分 子生物学、计算机技术的发展,免疫标记技术以及分子生物学技术的突飞猛进,CTCs分离 及分析鉴定技术得以迅速发展,CTCs检测和临床应用取得了重大进步,为早期发现肿瘤的 复发转移、评估手术、放疗、化学等疗效、判断预后、确定肿瘤分子特征、选择合适的个体化治疗等方面提供了重要的实验室依据。目前,学者所共识的循环肿瘤细胞的概念是:自发或受外界因素作用(如诊疗操作等)由原发灶或转移灶进入外周血循环的肿瘤细胞。肿瘤细胞的脱落、侵袭并进入血液循环是肿瘤转移的最初阶段,并为最终形成肿瘤转移灶提供了可能。进入循环系统的肿瘤细胞大部分在机体免疫识别及杀伤等作用下发生凋亡,有极少数肿瘤细胞在循环系统中存活下来,在一定条件下,进入血液循环而未被清除的肿瘤细胞通过迁移、黏附、相互聚集形成微小癌栓,并在一定条件下发展为转移灶[3]。本文拟就CTCs分离技术、分析鉴定技术、临床应用、CTCs主要分析仪器作一介绍。 1 循环肿瘤细胞分离富集技术 越来越多的分子生物学和临床研究结果表明,肿瘤转移很可能在肿瘤发生的早期就已经出现,在外周血中检到CTCs是预示肿瘤转移最直接、重要的方法,在肿瘤早期转移的临床诊断、预后判断、监测疗效等方面具有重要意义。CTCs的发现有望改变临床上仍依赖于影像学检

肿瘤血管生成与肿瘤发生发展评述

肿瘤血管生成与肿瘤发生发展评述 发表时间:2011-12-21T09:01:15.547Z 来源:《中外健康文摘》2011年第35期供稿作者:张晴 [导读] 当前,肿瘤仍然是我们人类面临挑战的一类疾病。 张晴(南京中医药大学附属徐州市中医院江苏南京 221000) 【中图分类号】R730.5【文献标识码】A【文章编号】1672-5085(2011)35-0187-02 【关键词】肿瘤血管生成 VEGF 肿瘤血管生成因子 当前,肿瘤仍然是我们人类面临挑战的一类疾病。目前国内外都在研究肿瘤的病因、发生发展机制、和应对的治疗方法,但仍然对于肿瘤的发生发展的机制并不十分清楚,“基因突变学说”、“二次打击学说”,“癌基因与抑癌基因之间的失衡”的观点,到现在比较热门的“干细胞学说”,都没有完全解释肿瘤的发生发展。肿瘤的发生发展是一个多因素参与、多基因改变、多步骤演进的复杂过程。近年来关于新的血管生成与肿瘤发展、转移和预后关系的研究进展迅速,证明新的血管生成是肿瘤生长、转移和转移灶生长的必要条件。从此肿瘤血管生成假说成为最近研究热点。 1 肿瘤血管生成与肿瘤发生发展的机理 1971年Folkman提出肿瘤生长依赖血管生成假说。肿瘤血管生成是一个涉及内皮细胞增殖、迁移、基底膜与细胞外基质降解、内皮细胞重塑及与周围细胞相互作用而形成管腔样结构的复杂过程;是由肿瘤血管生成因子的正向调节和抗肿瘤血管生成因子的负向调节共同来调控的。目前已发现20多种肿瘤血管生成因子和抗肿瘤血管生成因子,已分离确认了多种重要的血管生成因子, 主要包括血管内皮生长因子(VEGF)、组织因子(TF)、基质金属蛋白酶(MMP)、成纤维细胞生长因子(FGF)、肿瘤坏死因子(TNF)等,尤其是血管内皮细胞生长因子(VEGF),起到了诱导和促进血管生成的关键作用因此成为目前研究最多最受重视的肿瘤血管生成因子。血管内皮生长因子又称血管通透因子(vascular endothelial growth factor,VEGF),肿瘤组织中VEGF的分泌及其作用具有持续性,可以满足肿瘤组织无限生长的需要。VEGF 及其受体在生理状态下能特异地作用于血管内皮细胞,具有促进血管分裂增殖及新生血管的形成,并增加血管通透性;在肿瘤发生过程中除通过旁分泌影响肿瘤管的生成外,还可能通过自分泌方式调节肿瘤细胞本身的增殖、分化、迁移及凋亡等。目前研究还发现的VEGF 可能通过VEGF/NRP21自分泌信号途径增强肿瘤的存活能力和侵袭活性,并与定向转移有关,已成为最近研究的新热点。它有助于我们重新认识VEGF,为肿瘤的治疗提供新思路。 2 抗肿瘤血管生成与肿瘤治疗关系 抗肿瘤血管生成研究主要集中在寻找肿瘤血管特异性靶点和与此靶点相关的药物研究上。以抑制血管外基质的降解,抑制促血管生成因子,抑制促血管生成因子的细胞受体,抑制肿瘤血管内皮细胞这四类为主要靶点。例如,采用异种促血管生成因子的基因疫苗,在实验动物体内诱导出抗促血管生成因子的抗体,并抑制动物体内实体肿瘤的生长;通过基因转染的方法将内皮抑素导入动物的血管内皮细胞,使其连续不断地生成内源性内皮抑素,干扰血管生成;利用免疫缺陷小鼠以肿瘤细胞与人肿瘤内皮细胞共移植的方法建立了人源化的肿瘤血管生成模型,应用这种模型筛选出了针对肿瘤血管内皮细胞特异靶点的单克隆抗体,并获得了明显的抗肿瘤生长疗效。 3 肿瘤血管生成假说存在的问题 尽管肿瘤血管生成与肿瘤发生发展的关系治疗已逐渐被接受,但仍然有些疑问未被解决:(1)肿瘤血管生成的机制是一个涉及多种细胞多种生物因子和多个环节的病理生理过程,他们是如何相处作用的?(2)肿瘤血管生成具有许多特殊靶点,如何寻找特殊靶点?(3)肿瘤细胞自分泌VEGF的机理是什么以及如何和其他血管生长因子相互作用?(4)大多数肿瘤血管生成实验是在肿瘤快速生长的动物模型上进行的,而人体内肿瘤处于相对缓慢生长状态,动物模型实验是否适合临床上的研究? 总之,血管形成的分子机制、细胞间和细胞因子之间的作用方式是很复杂的, 随着对肿瘤血管生成及其发展的不断研究,有助于充分了解肿瘤的发生发展机理,从而对肿瘤治疗起指导作用。目前血管生长抑制剂与放射治疗的结合可以降低肿瘤对放射的抗拒性的研究,为肿瘤治疗提供了广阔的前景,成为综合治疗肿瘤的新的模式,但其最终的疗效还需要大量临床研究的长期证实。 参考文献 [1] Folkman J Tumor angiogenesis:Therapentic implications 1971. [2] Napoleone F,Robert S.K..Angiogenesis as a therapeutic target.Nature,2005,438:967—974. [3] 张文健,杨治华,娄晋宁抗肿瘤血管生成研究的现状与有待解决的问题Chin Med Biotechnol, June 2007, Vol. 2, No. 3.

循环肿瘤细胞(CTC)的富集与检测

循环肿瘤细胞(CTC)的富集与检测 上海优宁维生物科技有限公司 1896年,澳大利亚学者Ashworth在一例转移性肿瘤患者血液中首次观察到从实体肿瘤中脱离并进入血液循环的肿瘤细胞,率先提出了循环肿瘤细胞(CTC)的概念。多数肿瘤几乎都会通过血液传播到身体的其他器官,癌细胞远端转移是导致肿瘤患者死亡的主要原因,因此早期发现血液中的肿瘤细胞,对于患者预后判断、疗效评价和个体化治疗有着重要的指导作用。 随着研究的深入,研究人员鉴定出了更多的癌细胞生物标记物,如人类表皮生长因子受体2(HER2+)、表皮生长因子受体(EGFR)、类肝素酶(HPSE)和Notch1等。之前报道称这四种生物标记物与癌细胞迁移相关,结合这四种标记物就能够特异的标记扩散的癌细胞,并确定最终这些癌细胞所转移的位置。 大量实验证明循环肿瘤细胞的出现与乳腺癌患者的临床分期、及预后均密切相关。循环肿瘤细胞检测作为一种简单的血液检测,可随时捕捉并评估循环肿瘤细胞以确定转移性乳腺癌患者的预后。大量研究已经证实,CTCs检测将有助于乳腺癌复发转移监控、判断患者预后、指导术后辅助治疗等。与淋巴结、骨髓相比,外周血标本易获得、创伤性小、可反复采集,是临床上常规检测较为理想的标本来源,大大提高了这一方法的应用价值。 而且CTCs不仅是肿瘤预后和预测指标,也有可能成为药效学的生物标志物。比如在药物治疗后1-2周,通过CTC的检测,临床医师就可以观察循环细胞数量

的改变即可预测治疗效果,效果不好的以及时调整方案,不必让患者停留在无效治疗中甚至死亡。 目前,美天旎公司为您提供富集和检测CTC的多种产品,如autoMACS Pro全自动磁性细胞分选仪、手动磁珠分选设备及CTC富集磁珠,让您的CTC研究更便利和高效。 MACS分选用于肿瘤细胞的富集,有两种策略: ?阳性分选:CK/CD326、ErbB-2、CD30或其它肿瘤特异性标志优点:特异,受操作和其它非特异性颗粒影响小 缺点:不同类型的肿瘤细胞表达不同的标记物,选择某种标志时 不是所有肿瘤均表达 ?去除分选:CD45磁珠去除白细胞,富集肿瘤细胞 优点:覆盖面广,可以函概所有肿瘤 缺点:阴性成分中含有多种其它细胞和颗粒 针对不同类型的肿瘤细胞,我们提供各种肿瘤细胞富集和检测试剂盒:

循环肿瘤细胞CTC检测及临床应用

循环肿瘤细胞检测及临床应用 中文摘要:循环肿瘤细胞是从原发肿瘤扩散,进入到血液或淋巴系统的肿瘤细胞。循环肿瘤细胞在血液中含量稀少,一般先将循环肿瘤细胞富集,然后再进行检测,现在已经开发了多种细胞富集和检测技术。本文主要对CTCs的富集和检测技术研究进展,以及CTCs在临床分析和研究上的应用进行了综述。 关键词:循环肿瘤细胞富集检测临床 Abstract: Circulating tumor cells come from the primary tumor proliferation,andproliferation, and then enter into the blood or lymphatic system. Circulating tumor cells are rare in the blood. Generally, circulating tumor cells should be enriched first, and then detected. A variety of cell enrichment and detection technologies have been developed. This paper reviews the research progress in CTCs enrichment and detection techniques, as well as analysis of CTCs in clinical and research. Key words: Circulating tumor cells enrichmentcells detectionenrichment detection clinical 癌症转移的过程是循环肿瘤细胞(Circulating Tumor Cells,CTCs)从原发肿瘤分离,通过循环系统扩散,进入血液或者淋巴系统,在远处形成新的肿瘤,最终导致大多数的癌症病人死亡[1]。1869年,Ashworth在一例癌症死亡患者的外周血中发现了类似肿瘤的细胞,并首次提出了CTCs的概念[2]。从此,越来越多的研究表明,CTCs的出现与癌症密切相关。通过上皮-间质转化(EMT),实体瘤的上皮细胞进行细胞的变化,使他们通过增加流动性和侵袭性脱离组织,进入到血液中,附着,、发展成远端转移[3]。由于CTCs能够代表原发肿瘤的表型和遗传组成,并能够作为任何转移性肿瘤的”液体活检”,CTCs的富集分离和特征研究,十分具有吸引力。CTCs的富集和计数技术已经建立,其中CTCs的计数可以成为预测指标,当其大于已知的阈值时,就预示着病人就患有转移性乳腺癌[4],、前列腺癌[5],、结直肠癌等[6]。 基于临床试验,美国FDA批准了一种临床检测CTCs的Cell Search技术,用于上述癌症的CTCs的富集和计数。Cell Search技术成功的证明了CTCs确实表征了疾病的活跃,CTCs 数量的增加预示着病情的恶化,可以通过CTCs了解原发性和转移性肿瘤,以CTCs为基础的分析,可以帮助人们实时诊断和预测,对病情做出决定,并取样检测耐药性。大多数常规的癌症治疗方法在治疗转移性癌症方面难以成功,CTCs的可能促进肿瘤的临床研究。 CTCs在血液中极其稀少,数十亿的外周血细胞也阻碍了对CTCs的分离和分子鉴定。现在已经开发了大量的技术用于富集和检测CTCs,其中有些已经成功的用于测试或者临床评估。本文主要综述CTCs的富集和检测技术的研究进展,以及对CTCs的在临床分析和研究上应用。 1CTCs富集技术 为了从大量血液细胞中捕获数量稀少的CTCs,富集分离技术必须足够敏感性,可重复性,可靠,、快速,、便宜,并且所需获取血液量要尽量少,方便实现过程自动化,方便下游分析。此外,富集分离的CTCs要能够保持他们的活性,在富集分离的过程受到的干扰要尽量小,因为这可能改变CTCs的状态和表型[7]。 CTCs富集的技术有很多种,这些技术使用多个性能参数评估(即捕获效率,纯度,细胞活力,富集速度,血液样本容量等),然后通过检测临床样本进行验证。最佳的富集分离方

循环肿瘤细胞检测的优势是什么

如对您有帮助,可购买打赏,谢谢 循环肿瘤细胞检测的优势是什么 导语:对于肿瘤的了解,一般人大多是一知半解,只知道它是一种可怕的疾病,在专业层次上并不了解。肿瘤细胞里有一种英文简称CTC 的,叫做循环肿瘤 对于肿瘤的了解,一般人大多是一知半解,只知道它是一种可怕的疾病,在专业层次上并不了解。肿瘤细胞里有一种英文简称CTC的,叫做循环肿瘤细胞,它是把存在于外周血里的所有肿瘤细胞统称为循环肿瘤细胞。循环肿瘤细胞检测就是通过技术手段来检测外周血所存在的循环肿瘤细胞,从而进行监测和预设治疗手段,当前循环肿瘤细胞检测的优势是什么呢,下面就来讲一讲。 CTC(循环肿瘤细胞,CirculatingTumorCell)是存在于外周血中的各类肿瘤细胞的统称。CTC检测通过捕捉检测外周血中痕量存在的CTC,监测CTC类型和数量变化的趋势,以便实时监测肿瘤动态、评估治疗效果,实现实时个体治疗。 CTC检测由于只需抽取5-10毫升血液,检测方便、无创、没有副作用,被看作“液体活检”。CTC检测是一种非侵入性的新型诊断工具,通过对外周血循环系统中的肿瘤细胞进行精确的计数以及分型,为肿瘤患者的预后判断、疗效评价以及个体化治疗提供重要的指导作用。其中益善生物原创的循环肿瘤细胞分离与分型技术处于国际领先水平,为肿瘤无创实时监测和实时个体化治疗提供了技术保障。 CanpatrolCTC检测技术: CanpatrolCTC检测技术只需采集5-10ml外周血,是益善生物历时六年独立研发的拥有自主知识产权和完全核心技术的CTC检测产品,它结合了纳米技术与多重RNA原位分析技术的优势,无须依赖特定生物标志物,对所有CTC进行分离与分型,是目前国际上唯一能同步实现 预防疾病常识分享,对您有帮助可购买打赏

相关文档
最新文档