四川省成都市第七中学高一年级竞赛数学数论专题讲义:5.素因数分解

四川省成都市第七中学高一年级竞赛数学数论专题讲义:5.素因数分解
四川省成都市第七中学高一年级竞赛数学数论专题讲义:5.素因数分解

高一竞赛数论专题 5.素因数分解

算术基本定理:设整数1a >,那么12

.s a p p p =其中j p 是素数,在不计次序下唯一.把12

.s a p p p =中相

同的素数合并,则得到标准素因数分解式12121212, ,,,,0.n

n n n a p p p p p p αα

α

ααα=<<

<≥

正因数个数定理:设|()1d n

n τ=∑表示大于1的整数n 的所有正因数的个数,若1212s

s n p p p ααα=,其中j p 是

素数,则1

()(1).s

i

i n τα==+∏

正因数和定理:设|()d n

n d σ=

∑表示大于1的整数n 的所有正因数之和,若1

2

1

2s s n p

p p ααα=,其中j p 是素

数,则111

().1i s

i i i

p n p ασ+=-=-∏

1.设,a b 是非零的整数,证明:(,)[,].a b a b ab =

2.设n 是正整数,证明:!n 的素因数分解式为(,)

!,p n p n

n p

α≤=∏其中p 是素数,1(,).j j n p n p α∞

=??

=????

3.求2017!的十进制表示式中末尾的零的个数.

4.设n为正整数.证明:若n的所有正因数之和为2的整数次幂,则这些正因数的个数也为2的整数次幂.

n ,不超过n的素数共有k个.设A为集合{2,3,,}n的子集,A的元素个数小于,k且A中任意5.设整数3

一个数不是另一个数的倍数.证明存在集合{2,3,,}n的k元子集,B使得B中任意一个数也不是另一个数的倍数,且B包含.A

高一竞赛数论专题 5.素因数分解解答

算术基本定理:设整数1a >,那么12

.s a p p p =其中j p 是素数,在不计次序下唯一.把12

.s a p p p =中相

同的素数合并,则得到标准素因数分解式12121212, ,,,,0.n

n n n a p p p p p p αα

α

ααα=<<

<≥

正因数个数定理:设|()1d n

n τ=∑表示大于1的整数n 的所有正因数的个数,若1

2

1

2s s n p

p p ααα=,其中j p 是

素数,则1

()(1).s

i

i n τα==+∏

正因数和定理:设|()d n

n d σ=

∑表示大于1的整数n 的所有正因数之和,若1

2

1

2s s n p

p p ααα=,其中j p 是素

数,则11

1

().1i s

i i i p n p ασ+=-=-∏

1.设,a b 是非零的整数,证明:(,)[,].a b a b ab =

证明:设素因数分解式1212121212, ,,0.n n

n n n i i a p p p b p p p p p p αβαα

ββαβ==<<<≥

则11221122min{,}max{,}

min{,}

min{,}max{,}max{,}

1

2

12

(,),[,].n n n n n n a b p p p a b p p p αβαβαβαβαβαβ==

11112222min{,}max{,}min{,}max{,}min{,}max{,}

12(,)[,]n n n n n a b a b p p p αβαβαβαβαβαβ+++=

1122

12

12

121212.n n n n

n n n p p p p p p p p p ab αβαβαβαβααββ+++==?=

2.设n 是正整数,证明:!n 的素因数分解式为(,)

!,p n p n

n p

α≤=∏其中p 是素数,1(,).j j n p n p α∞

=??

=????

证明:一方面若素数|!,p n 则|,1.p k k n <≤另一方面,任一素数p n ≤,必有|!.p n 所以12121212!, 2 ,,,,0.s s n s n p p p p p p n ααα

ααα=≤<<<≤>

下面去确定.j α

设(,)p n α为整数!n 的素因数p 的次方. 因为必有整数k 满足1

,k

k p n p

+≤<所以11.k j j j j n n p p ∞

==????

=????????

∑∑

设j c 表示1,2,

,n 中能被j p 整除的数的个数,则.j j n c p ??

=????

j d 表示1,2,

,n 中恰能被j p 整除的数的个数.则11.j j j j j n n d c c p p ++????

=-=-????????

显然当j k >时,0.j d =及12(,)12.k p n d d k d α=?+?++?

于是1212231(,)121()2()()k k k p n d d k d c c c c k c c α+=?+?+

+?=?-+?-+

+?-

12112111.k

k

k k k k j j j j j n n c c c c c c c c p p ∞+===????

++

++=++

+===????????

∑∑∑

所以(,)

!.p n p n

n p α

≤=∏

3.求2017!的十进制表示式中末尾的零的个数.

解:这就是要求正整数k 使得10||2017!.k

因为1025=?,实际上是求2的最大方次与5的最大方次的最小值. 显然2的最大方次大于5的最大方次. 所以就是求5的最大方次(5,2017).α

注意到5

20175.< 所以2342017201720172017(5,2017)40380163502.5555α????????

=+++=+++=?

???????????????

所以2017!的十进制表示式中末尾的零的个数为502个.

4.设n 为正整数.证明:若n 的所有正因数之和为2的整数次幂,则这些正因数的个数也为2的整数次幂.

证明:设12

121212, ,,,

,0,s s s s i n p p p p p p p αα

α

ααα=<<

<>为素数.

则n 的所有正因数之和2

|1

()(1).i s

i

i

i d n

i n d p p

p ασ==

=+++

+∑∏

若()n σ为2的整数次幂,则()n σ的因数121

11

i i

i i i i

i i p f p p p p αα+-=++++=

-也是2的整数次幂. 显然2,i p ≠i α是奇数.

若1i α>, 则1123

24(1)()

()(1)(1).i i i i i i i i i i i i i f p p p p p p p p p ααα--=+++++=++++

+

由于i f 的素因数只有2,所以124

1i i i i p p p α-+++

+不含大于1的奇数因数.

于是

1

2

i α-是奇数.

所以1122

21

242462

2

1(1)()()i i i i

i

i

i i i

i

i

p p p p p p p p ααα--?

-?

-+++

+=++++

++

122

32482482

(1)(1)(1)(1)i i i

i

i

i

i i i i p p p p p p p p αα-?

--=++++

=++++

.

从而32

4

8

(1)(1)(1).i i i i i i i f p p p p p α-=+++++

于是2

1,1i i p p ++都是2的整数次幂,显然2

11i i p p +<+,于是2

1|1.i i p p ++

因为2

1(1)(1)2i i i p p p +=+-+,1|(1)(1).i i i p p p ++-所以1|2.i p +于是1i p =矛盾.

因此1,1,2,

,).i i s α==

n 的正因数的个数|1

1

()1(1)(11)2.s

s

s i d n

i i n τα====+=+=∑∏∏

故n 的正因数的个数也是2的整数次幂.

5.设整数3n ≥,不超过n 的素数共有k 个.设A 为集合{2,3,,}n 的子集,A 的元素个数小于,k 且A 中任意

一个数不是另一个数的倍数.证明存在集合{2,3,

,}n 的k 元子集,B 使得B 中任意一个数也不是另一个

数的倍数,且B 包含.A

证明:引理:若||,A k <则可在{2,3,

,}\n A 中找到一个数b ,其不整除集合A 中任意一个数,也不被集合

A 中任意一个数整除.

若引理得证,进而将数b 添入集合A 中,并重复这一过程,直到将A 扩充成一个k 元子集,B 则集合B 满足要求.

下面证明引理,对大于1的整数m ,设m 的标准素因数分解为1212.s

s m p p p ααα

=

定义1212()max{,,,}.s s f m p p p αα

α

=

由于||,A k <则()a A

N f a ∈=∏不同的素因子个数小于,k 又不超过n 的素数共有k 个,因此,存在素数,

p n ≤使得.p

N 于是().p

f a

设1

,p n p

α

α+≤<则p A α?(若不然,将有()f p p αα=,于是|,p N 与p N 矛盾).

对任意,a A ∈若|a p α

,则()f a a =为p 的方幂.于是|,p N 与p

N 矛盾.因此.a p α

若|,p a α

因为,p N 所以(),p f a 故(),f a q q β

=为不同于p 的素数,且.q p p β

α

>≥

从而1

,a p q p p p

n αβαα+≥>=>矛盾.因此.p a α

从而,不属于A 的元素p α

不整除集合A 中任意一个数,也不被集合A 中任意一个数整除.

法2 将不超过n 的所有k 个素数从下到大记为12,,,.k p p p

对1,2,

,i k =,取正整数i α满足1,i i i i p n p αα+≤<对这个i α,取正整数i λ满足(1),i i i i i i p n p ααλλ≤<+

其中,,i i αλ均唯一确定的,且.i i p λ<

令*

*

{|,},{|,}.i s

i i i i i i D p s s N M tp t t N ααλ=≤∈=≤∈ 则i D 为i i p α在{2,3,,}n 中的约数全体,i M 为i i p α在{2,3,

,}n 中的倍数全体.

考虑k 个集合(1,2,,}i i i A D M i k ==,注意到集合i A 中的每个数均以i p 为最大素因子,

从而12,,

,k A A A 为{2,3,

,}n 的两两不相交的k 个子集.

当||A k <时,必存在某个{1,2,

,}i k ∈,使得,i A

A =?即i i p α不整除集合A 中任意一个数,也不被集合

A 中任意一个数整除.

将i i p α

添入集合.A 重复这一过程,直到将A 扩充成一个k 元子集,B 则集合B 满足要求.

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

小学奥数数论专题

名校真题测试卷10 (数论篇一) 1、(05年人大附中考题)有_____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2、(05年101中学考题) 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数 是_____。 3 (05年首师附中考题) 1 21+ 202 2121 + 50513131313 21212121212121 =________。 4 (04年人大附中考题) 甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。 (02年人大附中考题) 下列数不是八进制数的是( ) A、125 B、126 C、127 D、128 【附答案】 1 【解】:6 2 【解】:设原来数为ab,这样后来的数为a0b,把数字展开我们可得:100a+b=9×(10a+b),所以我们可以知道5a=4b,所以a=4,b=5,所以原来的两位数为45。 3 【解】:周期性数字,每个数约分后为1 21 + 2 21 + 5 21 + 13 21 =1 4 【解】:题中要求丙与135的乘积为甲的平方数,而且是个偶数(乙+乙),这样我们分解135=5×3×3×3,所以丙最小应该是2×2×5×3,所以甲最小是:2×3×3×5=90。 5 【解】:八进制数是由除以8的余数得来的,不可能出现8,所以答案是D。 第十讲小升初专项训练数论篇(一) 一、小升初考试热点及命题方向 数论是历年小升初的考试难点,各学校都把数论当压轴题处理。由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。 二、考点预测 的小升初考试将继续以填空和大题形式考查数论,命题的方向可能偏向小题考察单方面的知识点,大题

七年级数学竞赛培优(含解析)专题24 相交线与平行线

专题24 相交线与平行线 阅读与思考 在同一平面内,两条不同直线有两种位置关系:相交或平行. 当两条直线相交或两条直线分别与第三条直线相交,就产生对顶角、同位角、内错角、同旁内角等位置关系角,善于从相交线中识别出以上不同名称的角是解相关问题的基础,把握对顶角有公共顶点,而同位角、内错角、同旁内角没有公共顶点且有一条边在截线上,这是识图的关键. 两直线平行的判定方法和重要性质是我们研究平行线问题的主要依据. 1.平行线的判定 (1)同位角相等、内错角相等,或同旁内角互补,两直线平行; (2)平行于同一直线的两条直线平行; (3)在同一平面内,垂直于同一直线的两条直线平行. 2.平行线的性质 (1)过直线外一点,有且只有一条直线和这条直线平行; (2)两直线平行,同位角相等、内错角相等、同旁内角互补; (3)如果一条直线和两条平行线中的一条垂直,那么它和另一条也垂直. 熟悉以下基本图形: 例题与求解 【例1】 (1) 如图①,AB ∥DE ,∠ABC =0 80,∠CDE =0 140,则∠BCD =__________. (安徽省中考试题) (2) 如图②,已知直线AB ∥CD ,∠C =0 115,∠A =0 25,则∠E =___________. (浙江省杭州市中考试题)

图② A 解题思路:作平行线,运用内错角、同旁内角的特征进行求解. 【例2】如图,平行直线AB ,CD 与相交直线EF ,GH 相交,图中的同旁内角共有( ). A .4对 B .8对 C .12对 D .16对 (“希望杯”邀请赛试题) 解题思路:每一个“三线八角”基本图形都有两对同旁内角,从对原图进行分解入手. C D B 例2题图 例3题图 【例3】 如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC //ED ,CE 是∠ACB 的平分线,求证:∠EDF =∠BDF . (天津市竞赛试题) 解题思路:综合运用垂直定义、角平分线、平行线的判定与性质,由于图形复杂,因此,证明前注意分解图形. 【例4】 如图,已知AB ∥CD ,∠EAF = 41∠EAB ,∠FCF =41∠ECD .求证:∠AFC =4 3 ∠AEC . (湖北省武汉市竞赛试题) D E C A B 图1

高中数学竞赛数论部分

高中数学竞赛数论部分文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

初等数论简介 绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。 1.请看下面的例子: (1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。(1894年首 届匈牙利 数学竞赛第一题) (2) ①设n Z ∈,证明2131n -是168的倍数。 ②具有什么性质的自然数n ,能使123n ++++能整除123n ???(1956年上海首 届数学竞赛第一题) (3) 证明:3231 122 n n n ++-对于任何正整数n 都是整数,且用3除时余2。(1956年 北京、天津市首届数学竞赛第一题) (4) 证明:对任何自然数n ,分数 214 143 n n ++不可约简。(1956年首届国际数学奥林匹 克竞赛第一题) (5) 令(,, ,)a b g 和[,, ,]a b g 分别表示正整数,,,a b g 的最大公因数和最小公倍数, 试证:[][][][]()()()() 2 2 ,,,,,,,,,,a b c a b c a b b c c a a b b c c a =??(1972年美国首届奥林匹克数学竞赛第一题) 这些例子说明历来数论题在命题者心目中首当其冲。 2.再看以下统计数字: (1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。 (2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占% 。

竞赛数学教程数论专题.doc

数论 数论素有“数学皇后”的美称。由于其形式简单,意义明确,所用知识不多而又富于技巧性,千姿百态,灵活多样。有人曾说:“用以发现数学天才,在初等数学中再也没有比数论更好的课程了。”因此在理念的国内外数学竞赛中,几乎都离不开数论问题,使之成为竞赛数学的一大重要内容。 1. 基本内容 竞赛数学中的数论问题主要有: (1)整除性问题; (2)数性的判断(如奇偶性、互质性、质数、合数、完全平方数等); (3)余数问题; (4)整数的分解与分拆; (5)不定方程问题; (6)与高斯函数[]x有关的问题。 有关的基本知识: 关于奇数和偶数有如下性质: 奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数. 两个数之和是奇(偶)数,则这两个数的奇偶性相反(同). 若干个整数之和为奇数,则这些数中必有奇数,且奇数的个数为奇数个;若干个整数之和为偶数,则这些数中若有奇数,奇数的个数必为偶数个. 奇数g奇数=奇数;奇数g偶数=偶数;偶数g偶数=偶数. 若干个整数之积为奇数,则这些数必为奇数;若干个整数之积为偶数,则这些数中至少有一个偶数. 若a是整数,则a与a有相同的奇偶性;若a、b是整数,则a b -奇偶性 +与a b 相同。 关于整数的整除性: 设,, a b c是整数,则○1a a;○2若, a b b c,则a c;○3若, a b b c,则对任意整数,m n, +. 有a bm cn

若在等式11m n i i i i a b ===∑∑中,除某一项外,其余各项都能被c 整除,则这一项也能被c 整除. 若(,)1a b =,且a bc ,则a c .若(,)1a b =,且,a b b c ,则ab c . 设p 是素数,若p ab ,则p a 或p b . 关于同余: 若0(mod )a m ≡,则m a . (mod )a b m ≡?,a b 分别被m 除,余数相同. 同余具有反身性:(mod )a a m ≡、对称性:若(mod )a b m ≡,则(mod )b a m ≡、传递性:若,(mod )a b b c m ≡≡,则(mod )a c m ≡. 2. 方法评析 数论问题综合性强,以极少的知识就可生出无穷的变化。因此数论问题的方法多样,技巧性高,富于创造性和灵活性。在竞赛数学中,解决数论问题的常用方法有因式分解法、估值法、调整法、构造法、反证法、奇偶分析法等等。 2.1 因式(数)分解 例1 证明无穷数列10001,100010001,……中没有素数。 证明:设1 1000100011n n a =L 1442443个,则 4484(1)41011101010=101 n n n a --=++++-L 当n 为偶数,设2n k =, 888484101(10)1101=101101101 k k n a ---=---g 所以n a 为合数。 当n 为奇数,设2+1n k =, 42+1221221422101101101==101101101 k k k n a ++--+--+g ()()()

七年级数学竞赛试题及答案

普定县城关镇第一中学2011——2012学年度第一学期 七年级数学竞赛试题 学校: 班级: 姓名: ★亲爱的同学,经过这段时间的中学数学学习,你的数学能力一定有了较大的提高,展示你才能的机会来了!祝你在这次数学竞赛中取得好成绩!别忘了要沉着冷静、细心答题哟! 一、选择题(每小题6分,共36分) 1、如果m 是大于1的偶数,那么m 一定小于它的……………………( ) A 、相反数 B 、倒数 C 、绝对值 D 、平方 2、当x=-2时, 37ax bx +-的值为9,则当x=2时,3 7ax bx +-的值是 ( ) A 、-23 B 、-17 C 、23 D 、17 3、255 ,344 ,533 ,622 这四个数中最小的数是………………………( ) A. 255 B. 344 C. 533 D. 622 4、把14个棱长为1的正方体,在地面上堆叠成如图1所示的立体,然后将露出的表面部分染成红色.那么红色部分的面积为 ( ). A 、21 B 、24 C 、33 D 、37 5、有理数的大小关系如图2所示,则下列式子 中一定成立的是…… ( ) A 、c b a ++>0 B 、c b a <+ C 、c a c a +=- D 、a c c b ->-

6、某动物园有老虎和狮子,老虎的数量是狮子的2倍。每只老虎每天吃肉4.5千克,每只狮子每天吃肉3.5千克,那么该动物园的虎、狮平均每天吃肉…… …… ( ) A 、 625千克 B 、 725千克 C 、825千克 D 、9 25千克 二、填空题(每小题6分,共36分) 7、定义a*b=ab+a+b,若3*x=27,则x 的值是_____ 8、三个有理数a、b、c之积是负数,其和是正数,当x = c c b b a a + + 时,则 ______29219=+-x x 。 9、当整数m =_________ 时,代数式 1 36 -m 的值是整数。 10、A 、B 、C 、D 、E 、F 六足球队进行单循环比赛,当比赛到某一天时,统计出A 、B 、C 、D 、E 、五队已分别比赛了5、4、3、2、1场球,则还没与B 队比赛的球队是______ 。 11、甲从A 地到B 地,去时步行,返回时坐车,共用x 小时,若他往返都座车,则全程 只需x 3 小时,,若他往返都步行,则需____________小时。 12、 ._______2007 20061431321211=?+?+?+?K 三、解答题(共28分) 13、现将连续自然数1至2009按图中的方式排列成一个长方形队列,再用正方形任意框出16个数。(14分) (1)设任意一个这样的正方形框中的最小数为n ,请用n 的代数式表示该框中的16个数,然后填入右表中相应的空格处,并求出这16个数中的最小数和最大数,然后填入右表中相应的空格处,并求出这16个数的和。(用n 的代数式表示) (2)在图中,要使一个正方形框出的16个数之和和分别等于832、2000、2008是否可能?若不可能,请说明理由;若可能,请求出该正方形框出的16个数中的最小数和最大数。 图1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 · · · · · · · 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 图2

高中数学竞赛资料-数论部分 (1)

初等数论简介 绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。 1. 请看下面的例子: (1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。(1894年首届匈牙利 数学竞 赛第一题) (2) ①设n Z ∈,证明213 1n -是168的倍数。 ②具有什么性质的自然数n ,能使123n ++++ 能整除123n ??? ?(1956年上海首届数学竞赛第一题) (3) 证明:3 231 122 n n n + +-对于任何正整数n 都是整数,且用3除时余2。(1956年北京、天津市首届数学竞赛第一题) (4) 证明:对任何自然数n ,分数 214 143 n n ++不可约简。(1956年首届国际数学奥林匹克竞赛第一题) (5) 令(,,,)a b g 和[,,,]a b g 分别表示正整数,,,a b g 的最大公因数和最小公倍数,试证: [][][][]()()()() 2 2 ,,,,,,,,,,a b c a b c a b b c c a a b b c c a =??(1972年美国首届奥林匹克数学竞赛第一题) 这些例子说明历来数论题在命题者心目中首当其冲。 2.再看以下统计数字: (1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。 (2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占10.8% 。 这说明:数论题在命题者心目中总是占有一定的分量。如果将有一定“数论味”的计数型题目统计在内,那么比例还会高很多。 3.请看近年来国内外重大竞赛中出现的数论题: (1)方程323652x x x y y ++=-+的整数解(,)x y 的个数是( ) A 、 0 B 、1 C 、3 D 、无穷多 (2007全国初中联赛5) (2)已知,a b 都是正整数,试问关于x 的方程()2 1 02 x abx a b -++=是否有两个整数解? 如果有,请把它们求出来;如果没有,请给出证明。 (2007全国初中联赛12)

2018年全国初中数学竞赛(初一组)初赛试题参考答案

第1页(共1页)一、1.A 2.C 3.B 4.D 5.B 6.D 二、7.-18.30°9.3或-110.221 三、11.(1)19×11=12×?è??19-111;………………………………………………………………………………5分(2)1()2n -1()2n +1;12×?è?? 12n -1-12n +1;…………………………………………………………………………………………………………10分 (3)a 1+a 2+a 3+…+a 100=12×?è??1-13+12×?è??13-15+12×?è??15-17+12×?è??17-19+?+12×?è?? 1199-1201=12×?è?? 1-13+13-15+15-17+17-19+?+1199-1201……………………………………………15分=12×?è??1-1201=12×200201=100201.…………………………………………………………………………………………………20分四、12.(1)130°.…………………………………………………………………………………………………5分 (2)∠APC =∠α+∠β. 理由:过点P 作PE ∥AB ,交AC 于点E .……………………………………………………………10分因为AB ∥CD , 所以AB ∥PE ∥CD . 所以∠α=∠APE , ∠β=∠CPE .所以∠APC =∠APE +∠CPE =∠α+∠β.…………………………………………………………15分 (3)当点P 在BD 延长线上时, ∠APC =∠α-∠β;……………………………………………………20分当点P 在DB 延长线上时, ∠APC =∠β-∠α.……………………………………………………25分五、13.(1)根据题意,得t =?è??120-12050×550+5×2+12050≈6.3()h .答:三人都到达B 地所需时间约为6.3h.………………………………………………………………5分 (2)有,设甲从A 地出发将乙载到点D 行驶x 千米,放下乙后骑摩托车返回,此时丙已经从A 地出发步行至点E ,继续前行后与甲在点F 处相遇,甲骑摩托车带丙径直驶向B,恰好与乙同时到达. …………………………………………………………………………………………………………10分 根据题意,得2?x -x 50?550+5+120-x 50=120-x 5.…………………………………………………………15分解得x ≈101.5.…………………………………………………………………………………………20分则所用总时间为t =101.550+120-101.55≈5.7()h .答:有,方案如下:甲从A 地出发载乙,同时丙步行前往B 地,甲载乙行驶101.5千米后放下乙,乙步行前往B 地,并甲骑摩托车返回,与一直步行的丙相遇.随后甲骑摩托车载丙径直驶向B 地,恰好与步行的乙同时到达,所需时间为5.7h.………………………………………………………………………25分

七年级数学竞赛讲座数论的方法与技巧(含答案详解)

数学竞赛讲座 数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。 小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得abq+r(0≤r

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为: d(n)(a1+1)(a2+1)…(ak+1)。 5.整数集的离散性:n与n+1之间不再有其他整数。因此,不等式x

竞赛数学中的初等数论(精华版)

《竞赛数学中的初等数论》 贾广素编著 2006-8-21

序 言 数论是竞赛数学中最重要的一部分,特别是在1991年,IMO 在中国举行,国际上戏称那一年为数论年,因为6道IMO 试题中有5道与数论有关。 数论的魅力在于它可以适合小孩到老头,只要有算术基础的人均可以研究数论――在前几年还盛传广东的一位农民数学爱好者证明了哥德巴赫猜想,当然,这一谣言最终被澄清了。可是这也说明了最难的数论问题,适合于任何人去研究。 初等数论最基础的理论在于整除,由它可以演化出许多数论定理。做数论题,其实只要整除理论即可,然而要很快地解决数论问题,则要我们多见识,以及学习大量的解题技巧。这里我们介绍一下数论中必需的一个内容:对于N r q N b a ∈?∈?,,,,满足r bq a +=,其中b r <≤0。 除了在题目上选择我们努力做到精挑细选,在内容的安排上我们也尽量做到讲解详尽,明白。相信通过对本书学习,您可以对数论有一个大致的了解。希望我们共同学习,相互交流,在学习交流中,共同提高。 编者:贾广素 2006-8-21于山东济宁

第一节 整数的p 进位制及其应用 正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制, 这是一种位值记数法。进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与 国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理 数列问题等等。在本节,我们着重介绍进位制及其广泛的应用。 基础知识 给定一个m 位的正整数A ,其各位上的数字分别记为021,,,a a a m m --,则此数可以简记为:021a a a A m m --=(其中01≠-m a )。 由于我们所研究的整数通常是十进制的,因此A 可以表示成10的1-m 次多项式,即 012211101010a a a a A m m m m +?++?+?=---- ,其中1,,2,1},9,,2,1,0{-=∈m i a i 且 01≠-m a ,像这种10的多项式表示的数常常简记为10021)(a a a A m m --=。在我们的日常 生活中,通常将下标10省略不写,并且连括号也不用,记作021a a a A m m --=,以后我们 所讲述的数字,若没有指明记数式的基,我们都认为它是十进制的数字。但是随着计算机的 普及,整数的表示除了用十进制外,还常常用二进制、八进制甚至十六进制来表示。特别是 现代社会人们越来越显示出对二进制的兴趣,究其原因,主要是二进制只使用0与1这两种 数学符号,可以分别表示两种对立状态、或对立的性质、或对立的判断,所以二进制除了是 一种记数方法以外,它还是一种十分有效的数学工具,可以用来解决许多数学问题。 为了具备一般性,我们给出正整数A 的p 进制表示: 012211a p a p a p a A m m m m +?++?+?=---- ,其中1,,2,1},1,,2,1,0{-=-∈m i p a i 且 01≠-m a 。而m 仍然为十进制数字,简记为p m m a a a A )(021 --=。 典例分析 例1.将一个十进制数字2004(若没有指明,我们也认为是十进制的数字)转化成二进制与 八进制,并将其表示成多项式形式。 分析与解答 分析:用2作为除数(若化为p 进位制就以p 作为除数),除2004商1002,余数为0;再 用2作为除数,除1002商501余数为0;如此继续下去,起到商为0为止。所得的各次余 数按从左到右的顺序排列出来,便得到所化出的二进位制的数。 解:

(完整版)小学奥数中的数论问题

小学奥数中的数论问题 在奥数竞赛中有一类题目叫做数论题,这一部分的题目具有抽象,思维难度大,综合运用知识点多的特点,基本上出现数论题目的时候大部分同学做得都不好。 一、小学数论究包括的主要内容 我们小学所学习到的数论内容主要包含以下几类: 整除问题:(1)整除的性质;(2)数的整除特征(小升初常考内容) 余数问题:(1)带余除式的运用被除数=除数×商+余数.(余数总比除数小) (2)同余的性质和运用 奇偶问题:(1)奇偶与加减运算;(2)奇偶与乘除运算质数合数:重点是质因数的分解(也称唯一分解定理)约数倍数:(1)最大公约最小公倍数两大定理 一、两个自然数分别除以它们的最大公约数,所得的商互质。 二、两个数的最大公约和最小公倍的乘积等于这两个数的乘积。 (2)约数个数决定法则(小升初常考内容) 整数及分数的分解与分拆:这一部分在难度较高竞赛中常

出现,属于较难的题型。二、数论部分在考试题型中的地位 在整个数学领域,数论被当之无愧的誉为“数学皇后”。翻开任何一本数学辅导书,数论的题型都占据了显著的位置。在小学各类数学竞赛和小升初考试中,系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。 出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定你是否可以在选拔考试中拿到满意的分数。三、孩子在学习数论部分常常会遇到的问题 数学课本上的数论简单,竞赛和小升初考试的数论不简单。 有些孩子错误地认为数论的题目很简单,因为他们习惯了数学课本上的简单数论题,比如:例1:求36有多少个约数? 这道题就经常在孩子们平时的作业里和单元测试里出现。可是小升初考题里则是:例2:求3600有多少个约数? 很多孩子就懵了,因为“平时考试里没有出过这么大的数!”(孩子语)于是乎也硬着头皮用课堂上求约数的方法去求,白白浪费了大把的时间,即使最后求出结果也并不划

高中数学竞赛数论

高中数学竞赛 数论 剩余类与剩余系 1.剩余类的定义与性质 (1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类(也叫同余类)。K 0,K 1,…,K m-1为模m 的全部剩余类. (2)性质(ⅰ)i m i K Z 1 0-≤≤=Y 且K i ∩K j =φ(i ≠j). (ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里. (ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ?a ≡b(modm). 2.剩余系的定义与性质 (1)定义2 设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系,简称完系. 特别地,0,1,2,…,m -1叫做模m 的最小非负完全剩余系.下述数组叫做模m 的绝对最小完全剩余系:当m 为奇数时,2 1 ,,1,0,1,,121,21--+----m m m ΛΛ;当m 为偶数时,12 ,,1,0,1,,12,2--+-- m m m ΛΛ或2,,1,0,1,,12m m ΛΛ-+-. (2)性质(ⅰ)m 个整数构成模m 的一完全剩余系?两两对模m 不同余. (ⅱ)若(a,m)=1,则x 与ax+b 同时遍历模m 的完全剩余系. 证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系, 因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm), 矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有 aa i +b ≡aa j +b(modm),也矛盾!

高一年级竞赛数学数论专题讲义:10.中国剩余定理

高一竞赛数论专题 10.中国剩余定理 1.(中国剩余定理)设12,,,k m m m 是k 个两两互素的正整数,证明对任意整数12,, ,k a a a ,一次同余方程组 (mod ),j j x a m ≡1.j k ≤≤必有解,在模1k j j m m ==∏的意义下解101 (mod )k j j j j x x M M a m - =≡=∑唯一. 其中1,j j j m M M m -= 是j M 关于模j m 的数论倒数即11(mod ).j j j M M m -≡ 2.解同余方程组1(mod 7)1(mod8)3(mod 9)x x x ≡??≡??≡? . 3.设*,n N ∈证明:存在* ,m N ∈使得同余方程21(mod )x m ≡在模m 的意义下至少有n 个根. (请对比拉格朗日定理). 4.证明:对任意给定的正整数n ,均有连续n 个正整数,其中每一个都有大于1的平方因子.

5.证明:对任意正整数n ,存在n 个连续正整数,它们中每一个数都不是素数的幂. 6.证明:存在任意长的由不同正整数组成的等差数列,它的项都是正整数的幂,幂指数是大于1的整数. 7.设,m n 是自然数,满足对任意自然数,k (,111)(,111)m k n k -=-.证明存在某个整数l 使得11.l m n =

高一竞赛数论专题 10.中国剩余定理解答 1.(中国剩余定理)设12,,,k m m m 是k 个两两互素的正整数,证明对任意整数12,, ,k a a a ,一次同余方程组 (mod ),j j x a m ≡1.j k ≤≤必有解,在模1k j j m m ==∏的意义下解101 (mod )k j j j j x x M M a m - =≡=∑唯一. 其中1,j j j m M M m -= 是j M 关于模j m 的数论倒数即11(mod ).j j j M M m -≡ 证明:因为(,)1,,i j m m i j =≠所以(,) 1.j j M m =由Bezout 定理知道存在整数,s t 使得 1.j j sM tm += 1(mod ).j j sM m ≡取1.j M s - =于是11(mod ).j j j M M m -≡另一方面,,j j m M m =所以|,.i j m M i j ≠ 于是111(mod )(1,2,,).k j j j i i i i i j M M a M M a a m i k --=≡≡=∑即11(mod )k j j j j x M M a m -=≡∑是一次同余方程组(mod ),j j x a m ≡1j k ≤≤的解. 若00 ,x x '是是一次同余方程组(mod ),j j x a m ≡1j k ≤≤的两个解. 则00 (mod ),(mod ).j j j j x a m x a m '≡≡于是00(mod ).j x x m '≡即00|j m x x '-.因为(,)1,.i j m m i j =≠ 所以00 |m x x '-,即00(mod ).x x m '≡ 所以中国剩余定理的得证. 2.解同余方程组1(mod 7)1(mod8)3(mod 9)x x x ≡??≡??≡? . 解:7,8,9两两互素,则由中国剩余定理知道有唯一解. 123789504,72,63,56.M M M M =??==== 1722(mod 7),M =≡取114(mod 7).M -≡ 2631(mod8),M =≡-取12 1(mod8).M -≡- 3562(mod 9),M =≡取135(mod 9).M -≡

七年级数学竞赛

七年级数学竞赛试题 1、下列命题中正确的是( ) A 、带根号的数都是无理数 B 、不带根号的数一定是有理数 C 、无限小数都是无理数 D 、无理数一定是无限不循环小数 2、下列说法和式子正确的是( ) A 、81的平方根是3± B 、1的立方根是1± C 、11±= D 、0>x 3、2 )3(-的平方根是( ) A 、3± B 、9± C 、3- D 、3 4、x 是任意实数,则2|x |+x 的值( ) A 、大于零 B 、不大于零 C 、小于零 D 、不小于零 5、如果0)(=-+a a ,则a 是( ) A 、正数 B 、负数 C 、非正数 D 、非负数 6、下列各对数中互为相反数的是( ) A 、2a 与2a - B 12-与12+、 C 、23与2)3(- D 、2a -与2)(a - 7、若代数式7322++y y 的值为8,则代数式9642 -+y y 的值是( ) A 、2 B 、17- C 、7- D 、7 8、某次数学测验,共有16道选择题,评分办法是答对一道题得6分,答错扣2分,不答得0分,某学生有一道题没有答,若要成绩在60分以上,他至少要答对( ) A 、10题 B 、11题 C 、12题 D 、13题 9n 为( ) A 、2 B 、3 C 、4 D 、5 10、如果11x x -=-,那么( ) A 、x <1 B 、x >1 C 、x≤1 D 、x≥1 11、比较53 12296,194,143----的大小是( ) A 、2961941435312->->->- B 、53 12143194296->->->- C 、2961431945312->->->- D 、29 65312143194->->->- 12、观察下列算式: ......2562,1282,642,322,162,82,42,2287654321========通过观察,用你所发现的规律写出11 8的末位数字是( ) A 、2 B 、4 C 、6 D 、8

高中数学竞赛专题讲座---竞赛中的数论问题

竞赛中的数论问题的思考方法 一. 条件的增设 对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。 1. 大小顺序条件 与实数范围不同,若整数x ,y 有大小顺序x m ,而令n =m +u 1,n >u 1≥1,得-2 (m -1mu 1)(22112=--u mu m 。同理,又可令m = u 1+ u 2,m >u 2≥1。如此继续下去将得u k+1= u k =1,而11+-+=i i i u u u ,i ≤k 。故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故m =987,n =1597。 例2. (匈牙利—1965)怎样的整数a ,b ,c 满足不等式?233222c b ab c b a ++<+++ @ 解:若直接移项配方,得01)1()12(3)2(222<--+-+-c b b a 。因为所求的都是整数,所以原不等 式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12 (3)2(222≤-+-+-c b b a ,从而只有a =1, b =2, c =1。 2. 整除性条件 对于整数x ,y 而言,我们可以讨论其整除关系:若x |y ,则可令y =tx ;若x ?y ,则可令y =tx +r ,0,则q a b +≥。结合高斯函数,设n 除以k ,余数为r ,则有r k k n n +?? ????=。还可以运用抽屉原理,为同余增设一些条件。整除性与大小顺序结合,就可有更多的特性。 例3. 试证两相继自然数的平方之间不存在自然数a q )由p ,q 的互素性易知必有q |a ,q |b 。这样,由b >a 即得q a b +≥。(有了三个不等式,就可对 q p 的范围进行估计),从而q n n q a d b d q p q q q ++<+≤=<+=+22)1(111。于是将导致矛盾的结果:0)(2<-q n 。这里,因为a ,b 被q 整除,我们由b >a 得到的不仅是b ≥a +1,而是更强的条件b ≥a +q 。 例4. (IMO-25)设奇数a ,b ,c ,d 满足0

最新:七年级数学竞赛讲义附练习及答案(12套)

七年级数学竞赛讲义附练习及答案(12套) 初一数学竞赛讲座 第1讲数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力. 数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”. 因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了. 任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作. ”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重. 数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆. 主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的. 特别地,如果r=0,那么a=bq. 这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数. 2.若a|c,b|c,且a,b互质,则ab|c. 3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即

其中p 1<p 2<…<p k 为质数,a 1,a 2,…,a k 为自然数,并且这种表示是唯一的. (1)式称为n 的质因数分解或标准分解. 4.约数个数定理:设n 的标准分解式为(1),则它的正约数个数为: d (n )=(a 1+1)(a 2+1)…(a k +1). 5.整数集的离散性:n 与n+1之间不再有其他整数. 因此,不等式x <y 与x ≤y-1是等价的. 下面,我们将按解数论题的方法技巧来分类讲解. 一、利用整数的各种表示法 对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决. 这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ; 4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数. 例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差. 结果小明发现,无论白色卡片上是什么数字,计算结果都是1998. 问:红、黄、蓝3张卡片上各是什么数字? 解:设红、黄、白、蓝色卡片上的数字分别是a 3,a 2,a 1,a 0,则这个四位 数可以写成:1000a 3+100a 2+10a 1+a 0,它的各位数字之和的10倍是10(a 3+a 2+a 1+a 0)=10a 3+10a 2+10a 1+10a 0,这个四位数与它的各位数字之和的10倍的差是: 990a 3+90a 2-9a 0=1998,110a 3+10a 2-a 0=222. 比较上式等号两边个位、十位和百位,可得a 0=8,a 2=1,a 3=2. 所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8. 例2 在一种室内游戏中,魔术师请一个人随意想一个三位数abc (a,b,c 依次是这个数的百位、十位、个位数字),并请这个人算出5个数cab bca bac acb ,,,与cba 的和N ,把N 告诉魔术师,于是魔术师就可以说出这个人所想的数abc . 现在设N=3194,请你当魔术师,求出数abc 来. 解:依题意,得

相关文档
最新文档