必修四三角函数的图象与性质总结

2013年普通高考数学科一轮复习精品学案

第23讲 三角函数的图象与性质

1.正弦函数、余弦函数、正切函数的图像

2.三角函数的单调区间:

x y sin =的递增区间是?????

?

+-2222ππππk k ,)(Z k ∈,

递减区间是??

?

??

?+

+

2322

2πππ

πk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,

递减区间是[]πππ+k k 22,)(Z k ∈,

x y tan =的递增区间是??? ?

?

+-22ππππk k ,)(Z k ∈,

3.函数B x A y ++=)sin(?ω),(其中00>>ωA

最大值是B A +,最小值是A B -,周期是ω

π

2=

T ,频率是π

ω

2=

f ,相位是?ω+x ,

初相是?;其图象的对称轴是直线)(2

Z k k x ∈+

=+π

π?ω,凡是该图象与直线B y =的

交点都是该图象的对称中心。

4.由y =sin x 的图象变换出y =sin(ωx +?)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。

途径一:先平移变换再周期变换(伸缩变换)

先将y =sin x 的图象向左(?>0)或向右(?<0=平移|?|个单位,再将图象上各点的横坐标变为原来的

ω

1

倍(ω>0),便得y =sin(ωx +?)的图象。

途径二:先周期变换(伸缩变换)再平移变换。 先将y =sin x 的图象上各点的横坐标变为原来的ω

1

倍(ω>0),再沿x 轴向左(?>0)

或向右(?<0=平移

ω

?|

|个单位,便得y =sin(ωx +?)的图象。

5.由y =A sin(ωx +?)的图象求其函数式:

给出图象确定解析式y =A sin (ωx +?)的题型,有时从寻找“五点”中的第一零点(-ω

?

,0)作为突破口,要从图象的升降情况找准..

第一个零点的位置。 6.对称轴与对称中心:

sin y x =的对称轴为2

x k ππ=+,对称中心为(,0) k k Z π∈; cos y x =的对称轴为x k π=,对称中心为2(,0)

k ππ+; 对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最

值点联系。

7.求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A 、ω的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间;

8.求三角函数的周期的常用方法:

经过恒等变形化成“sin()y A x ωφ=+、cos()y A x ωφ=+”的形式,在利用周期公式,另外还有图像法和定义法。

9.五点法作y =A sin (ωx +?)的简图:

五点取法是设x =ωx +?,由x 取0、2π、π、2

π

3、2π来求相应的x 值及对应的y 值,再描点作图。 四.典例解析

题型1:三角函数的图象

例1.函数y =-xc os x 的部分图象是( )

解析:因为函数y =-xc os x 是奇函数,它的图象关于原点对称,所以排除A 、C ,当x ∈

(0,

2

π

)时,y =-xc os x <0。答案为D 。 例2.函数y =x +sin|x |,x ∈[-π,π]的大致图象是( )

解析:由奇偶性定义可知函数y =x +sin|x |,x ∈[-π,π]为非奇非偶函数。选

项A 、D 为奇函数,B 为偶函数,C 为非奇非偶函数。

点评:利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法。 题型2:三角函数图象的变换

例3.试述如何由y =31

sin (2x +3π)的图象得到y =sin x 的图象。

解析:y =3

1

sin (2x +3π)

(纵坐标不变倍

横坐标扩大为原来的3

πsin 312+=?????????→?x y x y sin 3

13π

=????????→?纵坐标不变个单位图象向右平移

x y sin 3=?????????→?横坐标不变

纵坐标扩大到原来的

另法答案:

(1)先将y =31sin (2x +3π)的图象向右平移6π个单位,得y =3

1

sin2x 的图象;

(2)再将y =31sin2x 上各点的横坐标扩大为原来的2倍(纵坐标不变),得y =3

1

sin x

的图象;

(3)再将y =3

1

sin x 图象上各点的纵坐标扩大为原来的3倍(横坐标不变),即可得到

y =sin x 的图象。

例4.把曲线yc os x +2y -1=0先沿x 轴向右平移2

π

个单位,再沿y 轴向下平移1个单

位,得到的曲线方程是( )

A .(1-y )sin x +2y -3=0

B .(y -1)sin x +2y -3=0

C .(y +1)sin x +2y +1=0

D .-(y +1)sin x +2y +1=0

解析:将原方程整理为:y =

x

cos 21+,因为要将原曲线向右、向下分别移动2π

个单

位和1个单位,因此可得y =

)

2

cos(21π

-+x -1为所求方程.整理得(y +1)sin x +2y +1=0.

点评:本题考查了曲线平移的基本方法及三角函数中的诱导公式。如果对平移有深刻理解,可直接化为:(y +1)c os (x -2

π

)+2(y +1)-1=0,即得C 选项。

题型3:三角函数图象的应用

例5.已知电流I 与时间t 的关系式为sin()I A t ω?=+。 (1)右图是sin()I A t ω?=+(ω>0,||2

π?<

) 在一个周期内的图象,根据图中数据求sin()I A t ω?=+ 的解析式;

(2)如果t 在任意一段

1

150

秒的时间内,电流sin()I A t ω?=+都能取得最大值和最小值,那么ω的最小正整数值是多少?

解析:本小题主要考查三角函数的图象与性质等基础知识,考查运算能力和逻辑推理能力.

(1)由图可知 A =300。

设t 1=-1900,t 2=1180

, 则周期T =2(t 2-t 1)=2(1180+1900)=1

75

∴ ω=2T π

=150π。

又当t =1180时,I =0,即sin (150π·1

180

+?)=0,

而||2π?<

, ∴ ?=6

π。 故所求的解析式为300sin(150)6

I t π

π=+。

(2)依题意,周期T ≤

1150,即2πω≤1

150

,(ω>0) ∴ ω≥300π>942,又ω∈N *

故最小正整数ω=943。

点评:本题解答的开窍点是将图形语言转化为符号语言.其中,读图、识图、用图是形数结合的有效途径。

例6.(1)已知函数f (x )=A sin (ωx +?)(A >0,ω>0,

x ∈R )在一个周期内的图象如图所示,求直线y =3与函数f (x )图象的所有交点的坐标。

解析:根据图象得A =2,T =

27π-(-2

π

)=4π, ∴ω=

21,∴y =2sin (2

x

+?), 又由图象可得相位移为-

2

π

,∴-

2

1?=-2π,∴?=

4

π

.即y =2sin (21x +4π)。

根据条件3=2sin (421π+x ),∴421π+x =2k π+3π(k ∈Z )或4

21π+x =2k π+32

π

(k ∈Z ),

∴x =4k π+

6

π

(k ∈Z )或x =4k π+

6

5

π(k ∈Z )。 ∴所有交点坐标为(4k π+

3,6

π

)或(4k π+

3,6

)(k ∈Z )。 点评:本题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力。 (2)在(0,2π)内,使sin x >c os x 成立的x 取值范围为( )

A .(

4π,2

π

)∪(π,

45π) B .(4

π

,π) C .(

4

π,

45π

) D .(

4

π

,π)∪(

45π,

2

) 解析:C ;

解法一:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4

π

4

5π,由图1可得C 答案。

图1 图2

解法二:在单位圆上作出一、三象限的对角线,由正弦线、余弦线知应选C 。(如图2) 题型4:三角函数的定义域、值域

例7.(1)已知f (x )的定义域为[0,1],求f (c os x )的定义域;

(2)求函数y =lgsin (c os x )的定义域; 分析:求函数的定义域:(1)要使0≤c os x ≤1,(2)要使sin (c os x )>0,这里的c os x 以它的值充当角。

解析:(1)0≤c os x <1?2k π-

2π≤x ≤2k π+2

π

,且x ≠2k π(k ∈Z )。 ∴所求函数的定义域为{x |x ∈[2k π-

2π,2k π+2

π

]且x ≠2k π,k ∈Z }。 (2)由sin (c os x )>0?2k π<c os x <2k π+π(k ∈Z )。 又∵-1≤c os x ≤1,∴0<c os x ≤1。 故所求定义域为{x |x ∈(2k π-

2π,2k π+2

π),k ∈Z }。 点评:求三角函数的定义域,要解三角不等式,常用的方法有二:一是图象,二是三角函数线。

例8.已知函数f (x )=x

x x 2cos 1

cos 5cos 624+-,求f (x )的定义域,判断它的奇偶

性,并求其值域。

解析:由c os2x ≠0得2x ≠k π+

2

π,解得x ≠

4

+k ,k ∈Z ,所以f (x )的定义域为{x |x ∈R 且x ≠

4

π+k ,k ∈Z }, 因为f (x )的定义域关于原点对称,

且f (-x )=x

x x x x x 2cos 1

cos 5cos 6)2cos(1)(cos 5)(cos 62424+-=

-+---=f (x )。 所以f (x )是偶函数。 又当x ≠

4

π+k (k ∈Z )时, f (x )=1cos 32cos )

1cos 3)(1cos 2(2cos 1cos 5cos 622224-=--=+-x x

x x x x x 。

所以f (x )的值域为{y |-1≤y <

21或2

1

例9.求下列函数的单调区间: (1)y =

21sin (4π-3

2x );(2)y =-|sin (x +4π)|。 分析:(1)要将原函数化为y =-

21sin (32x -4

π

)再求之。

(2)可画出y =-|sin (x +4

π

)|的图象。 解:(1)y =21sin (4π-32x )=-21sin (32x -4π)。 故由2k π-

2π≤3

2x -4π≤2k π+2π。 ?3k π-

8π3≤x ≤3k π+8

π9(k ∈Z ),为单调减区间; 由2k π+

2π≤3

2x -4π≤2k π+2π3。 ?3k π+

8π9≤x ≤3k π+8

π21(k ∈Z ),为单调增区间。 ∴递减区间为[3k π-8π3,3k π+8

π

9], 递增区间为[3k π+8π9,3k π+8

π21](k ∈Z )。 (2)y =-|sin (x +

4π)|的图象的增区间为[k π+4π,k π+4π3],减区间为[k π-4

π,k π+

4

π

]。

例10.函数y =2

sin x

的单调增区间是( )

A .[2k π-

2π,2k π+

2

π](k ∈Z )

B .[2k π+2

π,2k π+

2

](k ∈Z ) C .[2k π-π,2k π](k ∈Z ) D .[2k π,2k π+π](k ∈Z )

解析:A ;函数y =2x 为增函数,因此求函数y =2sin x

的单调增区间即求函数y =sin x 的单

调增区间。

题型6:三角函数的奇偶性

例11.判断下面函数的奇偶性:f (x )=lg (sin x +x 2sin 1+)。

分析:判断奇偶性首先应看定义域是否关于原点对称,然后再看f (x )与f (-x )的关系。 解析:定义域为R ,又f (x )+f (-x )=lg1=0, 即f (-x )=-f (x ),∴f (x )为奇函数。 点评:定义域关于原点对称是函数具有奇偶性的必要(但不充分)条件。 例12.关于x 的函数f (x )=sin (x +?)有以下命题:

①对任意的?,f (x )都是非奇非偶函数;

②不存在?,使f (x )既是奇函数,又是偶函数; ③存在?,使f (x )是奇函数;

④对任意的?,f (x )都不是偶函数。

其中一个假命题的序号是_____.因为当?=_____时,该命题的结论不成立。

答案:①,k π(k ∈Z );或者①,2π+k π(k ∈Z );或者④,2

π

+k π(k ∈Z ) 解析:当?=2k π,k ∈Z 时,f (x )=sin x 是奇函数。当?=2(k +1)π,k ∈Z 时f (x )

=-sin x 仍是奇函数。当?=2k π+

2

π

,k ∈Z 时,f (x )=c os x ,或当?=2k π-

2

π,k ∈Z

时,f (x )=-c os x ,f (x )都是偶函数.所以②和③都是正确的。无论?为何值都不能使f (x )恒等于零。所以f (x )不能既是奇函数又是偶函数。①和④都是假命题。

点评:本题考查三角函数的奇偶性、诱导公式以及分析问题的能力,注意k ∈Z 不能不写,否则不给分,本题的答案不惟一,两个空全答对才能得分。 题型7:三角函数的周期性

例13.求函数y =sin 6x +c os 6

x 的最小正周期,并求x 为何值时,y 有最大值。 分析:将原函数化成y =A sin (ωx +?)+B 的形式,即可求解。

解析:y =sin 6

x +c os 6

x =(sin 2

x +c os 2

x )(sin 4

x -sin 2

xc os 2

x +c os 4

x )

=1-3sin 2

xc os 2

x =1-43sin 2

2x =8

3c os4x +85。 ∴T =

2

π

。 当c os4x =1,即x =

2

π

k (k ∈Z )时,y m ax =1。 例14.设)0(cos sin )(>+=ωωωx b x a x f 的周期π=T ,最大值4)12

(

f ,

(1)求ω、a 、b 的值;

(2)的值终边不共线,求、、的两根,为方程、、若)tan(0)(βαβαβα+=x f 。

解析:(1) )sin()(22?ω++=x b a x f , π=∴T , 2=∴ω,

又 )(x f 的最大值。

4)12

(

f , 224b a +=∴ ① ,且 12

2cos b 122sin

a 4π+π=②, 由 ①、②解出 a =2 ,

b =3.

(2) )3

2sin(42cos 322sin 2)(π

+=+=x x x x f , 0)()(==∴βαf f ,

)3

2sin(4)3

2sin(4π

βπ

α+

=+

∴,

3

223

βππ

α+

+=+

∴k , 或 )3

2(23

βπππ

α+

-+=+

k ,

即 βπα+=k (βα、 共线,故舍去) , 或 6

π

πβα+

=+k ,

3

3

)6

tan()tan(=

+

=+∴π

πβαk )(Z k ∈。 点评:方程组的思想是解题时常用的基本思想方法;在解题时不要忘记三角函数的

周期性。

题型8:三角函数的最值

例15.设M 和m 分别表示函数y =

3

1

c os x -1的最大值和最小值,则M +m 等于( ) A .

32 B .-32

C .-3

4 D .-2 解析:D ;因为函数g (x )=c os x 的最大值、最小值分别为1和-1。所以y =

3

1

c os x -1的最大值、最小值为-

32

和-3

4。因此M +m =-2。 例16.函数y =

x

x cos sin 21

++的最大值是( )

A .

22

-1 B .

2

2

+1 C .1-

2

2

D .-1-

2

2 解析:B ;2

2

1221)4

sin(221cos sin 21+

=-≤+++++=

πx x x y 。 五.思维总结

1.数形结合是数学中重要的思想方法,在中学阶段,对各类函数的研究都离不开图象,很多函数的性质都是通过观察图象而得到的。

2.作函数的图象时,首先要确定函数的定义域。

3.对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象。

4.求定义域时,若需先把式子化简,一定要注意变形时x 的取值范围不能发生变化。 5.求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数,且三角函数的次数为1的形式,否则很容易出现错误。

6.函数的单调性是在定义域或定义域的某个子区间上考虑的,要比较两三角函数值的大小一般先将它们化归为同一单调区间的同名函数再由该函数的单调性来比较大小。

7.判断y =-A sin (ωx +?)(ω>0)的单调区间,只需求y =A sin (ωx +?)的相反区间即可,一般常用数形结合而求y =A sin (-ωx +?)(-ω<0=单调区间时,则需要先将x 的系数变为正的,再设法求之。

函数的基本性质知识点归纳与题型总结

函数的基本性质知识点归纳与题型总结 一、知识归纳 1.函数的奇偶性 2.函数的周期性 (1)周期函数 对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期. (2)最小正周期 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 解题提醒: ①判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. ②判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)

=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0). ③分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性. 题型一 函数奇偶性的判断 典型例题:判断下列函数的奇偶性: (1)f (x )=(x +1) 1-x 1+x ; (2)f (x )=? ???? -x 2+2x +1,x >0, x 2+2x -1,x <0; (3)f (x )=4-x 2 x 2; (4)f (x )=log a (x +x 2+1)(a >0且a ≠1). 解:(1)因为f (x )有意义,则满足1-x 1+x ≥0, 所以-1<x ≤1, 所以f (x )的定义域不关于原点对称, 所以f (x )为非奇非偶函数. (2)法一:(定义法) 当x >0时,f (x )=-x 2+2x +1, -x <0,f (-x )=(-x )2+2(-x )-1=x 2-2x -1=-f (x ); 当x <0时,f (x )=x 2+2x -1, -x >0,f (-x )=-(-x )2+2(-x )+1=-x 2-2x +1=-f (x ).

高中数学必修四1.2.1任意角的三角函数导学案

1.2.1任意角的三角函数(A层学案) 学习目标:1.能借助单位圆记住任意角的正弦、余弦、正切函数的定义; 2.记住诱导公式一并会应用。 学习重点:任意角三角函数的定义及诱导公式一的应用。 学习难点:任意角的三角函数的定义。 一、课前预习案 1.任意角三角函数 (1)在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么: ①y叫做α的________,记作______,即sinα=y; ②x叫做α的________,记作______,即cosα=x; ③y x 叫做α的________,记作______,即tanα= y x (x≠0). (2)在平面直角坐标系中,设α是一个任意角,它的终边上任意一点P(x,y),它到原点的距离r(r>0),r=,那么任意角α的三角函数的定义为: sinα= cosα= tanα= 2.正弦、余弦、正切函数值在各象限的符号 记忆口诀:。 3.诱导公式一 终边相同的角的同一三角函数的值________,即: sin(α+k·2π)=________,cos(α+k·2π)=________, tan(α+k·2π)=________,其中k∈Z. 角α0π 6 π 4 π 3 π 2 2 3 π 3 4 π 5 6 ππ 3 2 π2π sin αcos αtan α

二、课内探究案 知识点一利用定义求角的三角函数值 例1:已知角α的终边经过点P(-4,3),求sin α、cos α、tan α的值.变式训练1: (1)已知角α的终边过点 0(3,4) P--,求角α的正弦、余弦和正切值. (2)已知角α的终边经过点P(-4a,3a)(a≠0),求sinα、cosα、tanα的值. 知识点二:三角函数值的符号问题 例2. (1)α是第四象限角,则下列数值中一定是正值的是( ) A.sin α B.cos α C.tan α D.cos α或tan α (2)若sin θ·tan θ>0,cos θ·tan θ<0,则sin θ·cos θ______0 (填“>”“<”或“=”). (3)函数的值域是_______. 变式训练2:判断下列各式的符号. (1)sin 370°+cos 370°.

高一数学必修一和必修四的三角函数公式

三角函数公式 (一)同角三角函数的基本关系式 (1)平方形式:sin 2α+cos 2α=1 (2)倒数形式:sinα/cosα=tanα (二)诱导公式 (1)sin (2k π+α)=sin α cos (2k π+α)=cos α tan (2k π+α)=tan α (其中k ∈Z) (2)sin (2k π-α)=-sin α cos (2k π-α)=cos α tan (2k π-α)=-tan α (其中k ∈Z) (3)sin (-α)=-sin α cos (-α)=cosα tan (-α)=-tan α (4)sin (π-α)=sin α cos (π-α)=-cosα tan (π-α)=-tan α (5)sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α (6)sin (π/2-α)=cos α cos (π/2-α)=sin α (7)sin (π/2+α)=cos α cos (π/2+α)=-sin α (8)sin (3π/2+α)=-cos α cos (3π/2+α)=sin α (9)sin (3π/2-α)=-cos α cos (3π/2-α)=-sin α (三) 两角和与差的三角函数公式 (1)sin (α+β)=sin αcosβ+cos αsinβ (2)sin (α-β)=sin αcosβ-cos αsinβ (3)cos (α+β)=cos αcosβ-sin αsinβ (4)cos (α-β)=cos αcosβ+sin αsinβ (5)tan (α+β)= tanα+tanβ1-tanαtanβ (6) tan (α-β)=tanα-tanβ1+tanαtanβ (四)二倍角的正弦、余弦和正切公式 (1)sin2α=2sin αcos α (2)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α (3)tan2α= 2tan α/(1-tan 2α) (五)三角函数的降幂公式 (六)半角的正弦、余弦和正切公式 (七)(辅助角的三角函数的公式) (八)正、余弦定理公式及其变形 ● a sinA =b sinB =c sinC =2R (R 为△ABC 的外接圆的半径) ● a 2=b 2+c 2-2bccosA ● b 2= a 2+ c 2-2accosB ● c 2= b 2+ a 2-2abcosC (ⅰ) sinA=a 2R ,sinB=b 2R ,sinC=c 2R (ⅱ)a=2RsinA b=2RsinB c=2RsinC (ⅲ)a:b:c=sinA: sinB: sinC (ⅳ)asinB=bsinA bsinC=csinB asinC=csinA (九)常用的三角形面积公式 (ⅰ) S=12 absinC=12 acsinB=12 bcsinA (ⅱ)S =12 (a+b+c)r (r 为△ABC 的内切圆的半径) (ⅲ)S=abc 4R (R 为△ABC 的外接圆的半径) (十)利用余弦定理判断三角形的形状 (ⅰ)在△ABC 中,若a 2﹤b 2+c 2,则0°﹤A ﹤90°;反之,若0°﹤A ﹤90°,则a 2﹤b 2+c 2。 (ⅱ)在△ABC 中,若a 2=b 2+c 2,则A=90°;反之,若A=90°,则a 2=b 2+c 2。 (ⅲ)在△ABC 中,若a 2﹥b 2+c 2,则90°﹤A ﹤180°;反之,若90°﹤A ﹤180°,则a 2﹥b 2+c 2。

基本初等函数函数性质图象总结

常见函数的图象及性质 1.一次函数 一般地,形如)0(≠+=k b kx y ,此函数图象为直线,作图常用两点作图法,即图象过(0,b ),)0,(k b -。一次函数的函数图象和性质如下表所示。 例1:函数[),5,2,12∈+=x x y 函数的值域为 . 2.二次函数 一般地,形如)0(,2 ≠++=a c bx ax y ,此函数图象为抛物线,作图需找准对称轴方程 a b x 2-=,顶点坐标)44, 2(2a b ac a b --,开口放向(a>0开口向上,a<0开口向下),图 例2:函数[]4,2,22 -∈+=x x x y ,函数的值域为 . 例3: ,0,130 ,1)(2 ? ??≤++->+=x x x x x x f 求)1()2(-?f f = . 3.基本初等函数。 基本初等函数有指数函数,对数函数,幂函数。这些是我们高中所学习的内容,以下将分别对这几种函数的图象和性质加以归纳。

一般地,形如)1,0(,≠>=a a a y x 的函数,指数函数的自变量在指数上,它形式严格。指数函数的函数图象和性质如下表所示。 例4:求下列函数的定义域和值域。 4 12 .)1(-=x y 3 22)2 1(.)2(--=x x y x y 21.)3(-= 例5:解不等式 2)2 1.)(1(22≤-x ( 2.)e e x >+12 例6:如果)1,0(422≠>>+-a a a a x x x ,求x 的取值范围。

一般地,形如)1,0(,log ≠>=a a x y a 的函数,对数函数的自变量在真数上,它形式严格。指数函数的函数图象和性质如下表所示。 例7:比较下列值的大小。 π2 12 1log ;3log .)1( 2.0ln ;2.0lg .)2( (3.)2log ;3log 32 例8:解不等式。 1)1ln(.)1(>-x 03log ).)(log 2(22 122≥-+x x 例9:已知函数)2lg()(b x f x -=,(b 为常数),当[)+∞∈,1x 时,0)(≥x f 恒成立,求 实数b 的取值范围。

新人教版高中数学 三角函数的诱导公式导学案必修四-2019最新整理

新人教版高中数学 三角函数的诱导公式导学案必修四-2019最新 整理 【学习目标】 1、能推出诱导公式二~四; 2.记住诱导公式二~四,会用来求三角函数的值,并能进行简单三角函数 式的化简。 【学习重点】诱导公式二~四的推导及应用。 【学法指导】根据三角函数的定义,在单位圆中利用对称性进行探究;先 从特殊角出发再推广到任意角。 【知识链接】任意角三角函数的定义、诱导公式一、点的对称性。 【学习过程】 一、课前准备 (预习教材P23-27,找出疑惑之处,并作标记) Sin210°= (公式一能解决吗?) 二、新课导学 1、诱导公式二: (1)设210°、30°角的终边分别交单位圆于点p 、p ',则点p 与p ' 的 位置关系如何?(画图分析) 设点p (x ,y ),则点p '怎样表示? (2)将210°用(180°+)的形式表达为 α (3)sin210°与sin30°的值关系如何? 设为任意角 (1)设与(180°+)的终边分别交单位 )(点的终边与单位圆相交于已知任意角y x P ,α

圆于p ,p ′, 设点p (x,y ),那么点p ′坐标怎样表示?(画图分析) ααα (2)sin 与sin (180°+)、cos 与cos (180°+)以及tan 与tan (180° +) 关系分别如何? αααααα 经过探索,你能把上述结论归纳成公式吗?其公式特征如何? 书写诱导公式二: (记忆方法)结构特征:①函数名不变,符号看象限(把看作锐角时)α 作用:②把求(180°+)的三角函数值转化为求的三角函数值。αα 练习1:求下列各三角函数值: ①sin 225° ②cos225° ③tan π ④重新解决上 面练习(2)4 5 2、诱导公式三: 思考下列问题: (1)30°与(-30°)角的终边关系如何? (2)设30°与(-30°)的终边分别交单位圆于点p 、p ′,设点p (x,y ),则点p ′的坐标怎样表示?(画图分析) (3)sin (-30°)与sin30°的值关系如何? 小组合作分析:在求sin (-30°)值的过程中,我们利用(-30°) 与30°角的终边及其与单位圆交点p 与p ′关于原点对称的关系,借助三 角函数定义求sin (-30°)的值。 导入新问题:对于任意角, sin 与sin (-)的关系如何呢?试说出 你的猜想?ααα 设为任意角 类比上面过程思考: α sin 与sin (-)、 cos 与cos (-)以及tan 与tan (-)关系如何?αααααα 经过探索,你能把上述结论归纳成公式吗?其公式结构特征如何? 诱导公式三: sin (-)= α cos (-)= α tan (-)= α sin()______. cos()______. tan()______. πααπαπαπα++=+=+=与的三角函数关系

人教版数学必修四三角函数复习讲义

人教版数学必修四三角函数 复习讲义 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

第一讲 任意角与三角函数诱导公式 1. 知识要点 角的概念的推广: 平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 象限角的概念: 在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 终边相同的角的表示: α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z 。 注意:相等的角的终边一定相同,终边相同的角不一定相等. α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2 k k Z π απ=+∈; α终边在坐标轴上的角可表示为:,2 k k Z π α= ∈. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. α与2 α的终边关系: 任意角的三角函数的定义: 设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点), 它与原点的距离是0r =>,那么sin ,cos y x r r αα==,

()tan ,0y x x α= ≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 三角函数线的特征:正弦线MP“站在x 轴上(起点在x 轴上)”、余弦线 OM“躺在x 轴上(起点是原点)”、正切线AT“站在点(1,0)A 处(起点是A )” 同角三角函数的基本关系式: 1. 平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= 2. 倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, 3. 商数关系:sin cos tan ,cot cos sin αα αααα = = 注意:1.角α的任意性。 2.同角才可使用。 3.熟悉公式的变形形 式。 三角函数诱导公式:“ (2 k πα+)”记忆口诀: “奇变偶不变,符号看象限” 典型例题 例1.求下列三角函数值: (1)cos210o; (2)sin 4 5π 例2.求下列各式的值: (1)sin(-3 4π ); (2)cos(-60o)-sin(-210o) 例3.化简 ) 180sin()180cos() 1080cos()1440sin(?--?-?-?-?+?αααα 例4.已知cos(π+α)=-2 1,2 3π<α<2π,则sin(2π-α)的值是( ).

一次函数性质小结(经典总结)

一次函数的图像、性质总结(阅读+理解) 一、一次函数的图像 Name 1.正比例函数y=kx (k ≠0,k 是常数)的图像是经过O (0,0)和M (1,k )两点的一条直线(如图13-17).(1)当k >0时,图像经过原点和第一、三像限;(2)k <0时,图像经过原点和第二、四像限. 2.一次函数y=kx+b (k 是常数,k ≠0)的图像是经过A (0,b )和B (- k b ,0)两点的一条直线,当kb ≠0时,图像(即直线)的位置分4种不同情况: (1)k >0,b >0时,直线经过第一、二、三像限,如图13-18A (2)k >0,b <0时,直线经过第一、三、四像限,如图13-18B (3)k <0,b >0时,直线经过第一、二、四像限,如图13-18C (4)k <0,b <0时,直线经过第二、三、四像限,如图13-18D 3.一次函数的图像的两个特征 (1)对于直线y=kx+b(k ≠0),当x=0时,y=b 即直线与y 轴的交点为A (0,b ),因此b 叫直线在y 轴上的截距. (2)直线y=kx+b(k ≠0)与两直角标系中两坐标轴的交点分别为A (0,b )和B (-k b ,0). 4.一次函数的图像与直线方程 (1)一次函数y=kx+b(k ≠0)的图像是一条直线,因此y=kx+b(k ≠0)也叫直线方程.但直线方程不一定都是一次函数. (2)与坐标轴平行的直线的方程. ①与x 轴平行的直线方程形如:y=a (a 是常数).a >0时,直线在x 轴上方;a=0时,

直线与x轴重合;a<0时,直线在x轴下方.(如图13-19) ②与y轴平行的直线方程形如x=b(b是常数),b>0时,直线在y轴右方,b=0时,直线与y轴重合;b<0时,直线在y轴左方,(如图13-20). 二、两条直线的关系 1.与坐标轴不平行的两条直线l1:y1=k1x+b1,l2:y2=k2x+b, 若l1与l2相交,则k1≠k2,其交点是联立这两条直线的方程,求得的公共解; 若l1与l2平行,则k1= k 2. 三、一次函数的增减性 1.增减性如果函数当自变量在某一取范围内具有函数值随自变量的增加(或减少)而增加(或减少)的性质,称为该函数当自变量在这一取值范围内具有增减性,或称具有单调性. 2.一次函数的增减性 一次函数y=kx+b在x取全体实数时都具有如下性质: (1)k>0时,y随x的增加而增加; (2)k<0时,y随x的增加而减小. 3.用待定系数法求一次函数的解析式: 若已知一次函数的图像(即直线)经过两个已在点A(x1,y1)和B(x2,y2)求这个一次函数的解析式,其方法和步骤是: (1)设一次函数的解析式:y=kx+b(k≠0) (2)将A、B两点的坐标代入所设函数的解析式,得两个方程:y1=kx1+b① y2=kx2+b②(3)联立①②解方程组,从而求出k、b值. 这一先设系数k、b,从而通过解方程求系数的方法以称为待定系数法.

高中数学必修四1.2.1任意角的三角函数导学案

1.2.1任意角的三角函数(A 层学案) 学习目标:1.能借助单位圆记住任意角的正弦、余弦、正切函数的定义; 2.记住诱导公式一并会应用。 学习重点:任意角三角函数的定义及诱导公式一的应用。 学习难点:任意角的三角函数的定义。 一、课前预习案 1.任意角三角函数 (1)在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: ①y 叫做α的________,记作______,即sin α=y ; ②x 叫做α的________,记作______,即cos α=x ; ③ y x 叫做α的________,记作______,即tan α=y x (x ≠0). (2)在平面直角坐标系中,设α是一个任意角,它的终边上任意一点P (x ,y ),它到原点的距离r(r>0),r= ,那么任意角α的三角函数的定义为: sin α= cos α= tan α= 2.正弦、余弦、正切函数值在各象限的符号 记忆口诀: 。 3.诱导公式一 终边相同的角的同一三角函数的值________,即: sin(α+k ·2π)=________,cos(α+k ·2π)=________, tan(α+k ·2π)=________,其中k ∈Z . 4.利用任意角三角函数的定义推导特殊角的三角函数值. 角α 0 π6 π4 π3 π2 23π 34π 56π π 3 2 π 2π sin α cos α tan α

二、课内探究案 知识点一利用定义求角的三角函数值 例1:已知角α的终边经过点P(-4,3),求sin α、cos α、tan α的值.变式训练1: (1)已知角α的终边过点 0(3,4) P--,求角α的正弦、余弦和正切值. (2)已知角α的终边经过点P(-4a,3a)(a≠0),求sinα、cosα、tanα的值. 知识点二:三角函数值的符号问题 例2. (1)α是第四象限角,则下列数值中一定是正值的是( ) A.sin α B.cos α C.tan α D.cos α或tan α (2)若sin θ·tan θ>0,cos θ·tan θ<0,则sin θ·cos θ______0 (填“>”“<”或“=”). (3)函数的值域是_______. 变式训练2:判断下列各式的符号. (1)sin 370°+cos 370°.

必修4三角函数所有知识点归纳归纳

《三角函数》【知识网络】 一、任意角的概念与弧度制 1、将沿x轴正向的射线,围绕原点旋转所形成的图形称作角.

逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈ x 轴上角:{}()180k k Z αα=∈ y 轴上角:{}()90180k k Z αα=+∈ 3、第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈ 第二象限角:{}()90360180360k k k Z αα??+<<+∈ 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈ 第四象限角: {}()270 360360360k k k Z αα??+<<+∈ 4、区分第一象限角、锐角以及小于90的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈ 锐角: {}090αα<< 小于90的角:{}90αα< 5、若α为第二象限角,那么 2 α 为第几象限角? ππαππ k k 222 +≤≤+ ππ α ππ k k +≤ ≤ +2 2 4 ,24,0παπ≤≤=k ,2345,1παπ≤≤=k 所以2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 8、角度与弧度对应表: 9、弧长与面积计算公式

弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α 终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号 口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”)

指数函数图像与性质的教案

§3.指数函数图像和性质 一、教材分析 教材的地位和作用 函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图象与性质。一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。 重难点分析 教学重点:指数函数的图像、性质及其简单运用 教学难点:指数函数图象和性质的发现过程,及指数函数图像与底的关系。 二、教学目标分析 知识目标:理解指数函数的定义,掌握指数函数的图像、性质及其简单应用能力目标:通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想以及从特殊到一般等学习数学的方法,增强识图用图的能力情感目标:通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质。 三、教法学法分析 教法分析 采用梳理—探究—训练的教学方法,充分利用多媒体辅助教学,通过学生的互动探究,教师点拨,启发学生主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受 学法分析 学生思维活跃,求知欲强,但在思维习惯上还有待教师引导;从学生原有知识和能力出发,在教师的带领下创设疑问,通过合作交流,共同探索,逐步解决问题。 四、教学过程分析 1.创设情景,形成概念 2.发现问题,探究新知 3.深入探究,加深理解 4.强化训练,巩固双基 5.小结归纳,拓展深化 6.布置作业,升华提高

必修4三角函数公式大全(经典)

三角函数 公式大全 姓名: 1、两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) = tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 2、倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan( 3π+a)·tan(3 π-a) 4、半角公式 sin( 2A )=2cos 1A - cos( 2A )=2 cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 5、和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 6、积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 2 1 [sin(a+b)+sin(a-b)] cosasinb = 2 1 [sin(a+b)-sin(a-b)]

高中数学-函数的基本性质小结

函数的基本性质【教学目标】 【教学重点】

函数的基本性质及应用 【教学难点】 函数关系的建立、用函数的性质解决简单的实际问题与领悟数学思想方法。 【教学过程】: 一.知识整理 1.基本思想 (1)函数主要研究两个变量的相互联系,故涉及到两个变量的相互作用、相互影响的问题,大多可用函数的观点来解决。 (2)研究函数的主要途径是函数的图象和基本性质(以图象说明性质)。 2.主要问题: (1)函数图象的基本作法:a.分段 b.平移 c.对称 d.伸缩 (2)函数单调性的求法:a.图象 b.单调运算 c.复合函数 d.定义 (3)函数最值(或范围)的求法:a.图象 b.单调性 c.不等式 d.复合函数 e.换元 f.数形结合 (4)反函数求法:①解出x =φ(y),②调换x,y, ③写出反函数定义域 3.函数的基本性质 函数定义:在某个变化过程中有两个变量x,y,如果对于x在某个实数集合D内的每一个确定的值,按照某个对应法则f,y都有唯一确定的实数值与之对应,那么y就是x函数,记作y = f (x),x∈D,x叫做自变量,x的取值范围D叫做函数的定义域,和x 的值相对应的y的值叫做函数值,函数值的集合叫做函数的值域。 函数的相等:定义域相同,对应法则相同 函数图象:以自变量x的值为横坐标,与x的值对应的y的值为纵坐标所构成的点集,即{(x,y)|y = f (x), x∈D} a.定义域:自变量x的取值范围;亦为函数图象上点的横坐标的集合 b.值域:因变量y的取值范围;亦为函数图象上点的纵坐标的集合 c.奇偶性:如果对于函数f(x)的定义域D内的任意实数a,都有f(-a)= f(a),则称函数 f(x)为偶函数; 如果对于函数f(x)的定义域D内的任意实数a,都有f(-a)=-f(a),则称函数f(x) 为奇函数;

2019-2020学年高中数学 1.6《三角函数模型的简单应用》导学案 新人教A版必修4.doc

2019-2020学年高中数学 1.6《三角函数模型的简单应用》导学案 新人教 A 版必修4 【学习目标】 1、会用三角函数解决一些简单的问题,体会三角函数是描述周期变化现象的重要函数模型. 2通过对三角函数的应用,发展数学应用意识,求对现实世界中蕴涵的一些数学模型进行思考和作出判断. 【重点难点】 重点:精确模型的应用——由图象求解析式,由解析式研究图象及性质 难点:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型 【学法指导】 预习三角函数模型的简单问题,初步了解三角函数模型的简单应用 【知识链接】 1、三角函数可以作为描述现实世界中_________现象的一种数学模型. 2、|sin |y x =是以____________为周期的波浪型曲线. 【学习过程】 自主探究; 问题一、如图,某地一天从6~14时的温度变化曲线近似满足函数b x A y ++=)sin(?ω. (1)求这一天6~14时的最大温差; (2)写出这段曲线的函数解析式 问题二、画出函数x y sin =的图象并观察其周期. 问题三、如图,设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度,?为该地的纬度值,

那么这三个量之间的关系是δ?θ--= 90.当地夏半年δ取正值,冬半年δ取负值. 如果在北京地区(纬度数约为北纬 40)的一幢高为0h 的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少? 【基础达标】 1、以一年为一个周期调查某商品出厂价格及该商品在商店的销售价格时发现:该商品的出厂价格是在6元基础上按月份随正弦曲线波动的,已知3月份出厂价格最高为8元,7月份出厂价格最低为4元,而该商品在商店的销售价格是在8元基础上按月随正弦曲线波动的,并已知5月份销售价最高为10元,9月份销售价最低为6元,假设某商店每月购进这种商品m 件,且当月售完,请估计哪个月盈利最大?并说明理由. 【拓展提升】 1、设()y f t =是某港口水的深度关于时间t (时)的函数,其中024t ≤≤,下表是该港口某一天从0至24 θφφ-δδ 太阳光

指数函数及其性质教学设计

指数函数及其性质教案 一、教学目标: 1.通过观察、分析,归纳探究指数函数的概念,并能判断给出的具体函数是否是指数函数. 2. 会画指数函数的图象,从借助计算机画出的多个指数函数的图象中,能观察归纳出指数函数的的有关性质。至少能说出四条。 3.能根据图象或指数函数的性质判断两个具体的同底数的指数幂值的大小,以及具体的不同底数而同指数的两个指数幂值的大小. 4. 在学习的过程中,体会探究指数函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等. 二、教学重点、难点: 教学重点:指数函数的概念、图象和性质。 < 教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。 三、教学过程: (一)创设情景: 问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗学生回答:y与x之间的关系式,可以表示为y=2x 。 问题2:一根1米长的绳子,第1次剪去绳长的一半,第2次再剪去剩余绳子的一半,剪了x 次后,绳子的剩余长度y与x有怎样的关系学生回答:y与x之间的关系式,可以表示为y=1 x。 () 2 (二)导入新课: 引导学生观察,两个函数中,底数是常数,指数是自变量。

设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数 y=2x、y= 1 () 2 x分别以01的数为底,加深对定义的感性认识,为顺利引出指数函数 定义作铺垫。 · 1.指数函数的定义 一般地,函数叫做指数函数,其中x是自变量,函数的定义域是R。 的含义: 设计意图:为按两种情况得出指数函数性质作铺垫。若学生回答不合适,引导学生用区间表示:(0,1)∪(1,+∞) 问题:指数函数定义中,为什么规定“”如果不这样规定会出现什么情况 设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。 对于底数的分类,可将问题分解为: (1)若a<0会有什么问题(如,则在实数范围内相应的函数值不存在) ! (2)若a=0会有什么问题(对于,都无意义) (3)若a=1又会怎么样(1x无论x取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定a>0且. 在这里要注意生生之间、师生之间的对话。 设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。 教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。 1:判断下列函数哪些是指数函数

高中数学必修四三角函数重要公式

高中数学必修四三角函数重要公式 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα

数学人教A版高中必修1任意角的三角函数导学案

2.2.2任意角的三角函数(1) 【学习目标】 1.掌握任意角三角函数的定义,并能借助单位圆理解任意角三角函数的定义 2.会用三角函数线表示任意角三角函数的值 3.掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号 【学习重点、难点】 任意角的正弦、余弦、正切的定义 【自主学习】 一、复习旧知,导入新课 在初中,我们已经学过锐角三角函数: 角的范围已经推广,那么对任意角是否也能定义其三角函数呢? 二、建构数学 1.在平面直角坐标系中,设点是角终边上任意一点,坐标为,它与原点的距离,一般地,我们规定: ⑴比值___________叫做的正弦,记作___________,即___________=___________; ⑵比值___________叫做的余弦,记作___________,即___________=___________; ⑶比值___________叫做的正切,记作___________,即___________=___________. 2.当=___________________时, 的终边在轴上,这时点的横坐标等于____________,所以_____________无意义.除此之外,对于确定的角,上面三个值都是______________.所以, 正弦、余弦、正切都是以_________为自变量,以__________为函数值的函数,我们将它们统称为___________________. 3.由于________________________与________________________之间可以建立一一对应关系,三角函数可以看成是自变量为_________________的函数. 4.其中,和的定义域分别是________________;

《指数函数图像及其性质》教学设计

《指数函数的图像与性质》教学设计 一、教学目标 1.知识与技能 掌握指数函数的图像、性质及其简单应用. 2.过程与方法 通过学生自主探究,让学生总结指数函数的图像与性质. 3.情感、态度、价值观 通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问、善于探索的思维品质. 二、教学重难点 教学重点:指数函数的图像与性质 教学难点:用数形结合的方法,从具体到一般的探索、概括指数函数的性质. 三、教学方法:自主探究式 四、教学手段:多媒体教学 五、教学过程: (一)创设情境 1、复习: (1)指数函数的定义; (2)指数函数解析式的特征。 2、导入:一般来说,函数的图像与性质紧密联系,图像可反映函数的性质,所以我们今天学习指数函数的图像与性质。 (二)自主探究 1.画一画:用列表、描点、连线的作图步骤,画出指数函数x y 2=、x y ?? ? ??=21的

2.说一说:通过图像,分析x y 2=、x y ?? ? ??=21的性质; 3.比一比:x y 2=与y ??? ??=21的图像有哪些相同点,哪些不同点? 4.想一想:在平面直角坐标系中画出函数3x y =、13x y ?? = ??? 的图像,试分析性质。 5.议一议:通过以上四个函数的图像和性质,归纳指数函数x a y =(1,0≠>a a 且) 的图像和性质如下:

例2. (2 3例1.(1)

(四)当堂检测 1.课本第73页 练习1 1. 2.解下列不等式: 11 (1)3;81 x -> 1(2)4230.x x +--> (五)课堂小结 (1) 通过本节课的学习,你学到了哪些知识? (2) 你学会了哪些数学思想方法? (六)布置作业 必做题:课本77页,A 组.4,5,6 选做题:课本77页,B 组1,6. 六、教学反思

2014-2015学年高中数学人教A版必修四三角函数导学案加课后作业及答案

§1.1.1 任意角导学案 【学习要求】 1.理解正角、负角、零角与象限角的概念. 2.掌握终边相同角的表示方法. 【学法指导】 1.解答与任意角有关的问题的关键在于抓住角的四个“要素”:顶点、始边、终边和旋转方向. 2.确定任意角的大小要抓住旋转方向和旋转量. 3.学习象限角时,注意角在直角坐标系中的放法,在这个统一前提下,才能对终边落在坐标轴上的角、象限角进行定义. 【知识要点】 1.角的概念 (1)角的概念:角可以看成平面内绕着从一个位置到另一个位置所成的图形. (2 2.象限角 角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 3.终边相同的角 所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=},即任一与角α终边相同的角,都可以表示成角α与的和. 【问题探究】 探究点一角的概念的推广 我们在初中已经学习过角的概念,角可以看作从同一点出发的两条射线组成的平面图形.这种定义限制了角的范围,也不能表示具有相反意义的旋转量.因此,从“旋转”的角度,对角作重新定义如下:一条射线OA绕着端点O旋转到OB的位置所形成的图形叫作角,射线OA叫角的始边,OB叫角的终边,O叫角的顶点. 问题1正角、负角、零角是怎样规定的?问题2根据角的定义,图中角α=120°;β=;-α=;-β=;γ=. 问题3经过10小时,分别写出时针和分针各自旋转所形成的角. 问题4如果你的手表快了1.25小时,只需将分针旋转多少度就可以将它校准? 探究点二终边相同的角 今后我们常在直角坐标系内讨论角.为了讨论问题的方便,我们使角的顶点与原点重合,角的始边与x 轴的非负半轴重合.角的终边落在第几象限,我们就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.按照上述方法,在平面直角坐标系中,角的终边绕原点旋转360°后回到原来的位置.终边相同的角相差360°的整数倍.因此,所有与角α终边相同的角(连同角α在内)的集合S={β|β=α+k·360°,k∈Z}. 根据终边相同的角的概念,回答下列问题: 问题1已知集合S={θ|θ=k·360°+60°,k∈Z},则-240°S,300°S,-1 020°S.(用符号:∈或?填空).问题2集合S={α|α=k·360°-30°,k∈Z}表示与角终边相同的角,其中最小的正角是. 问题3已知集合S={α |α=45°+k·180°,k∈Z},则角α的终边落在上 探究点三象限角与终边落在坐标轴上的角 问题1 问题2 问题3写出终边落在x轴上的角的集合S. 问题4写出终边落在y轴上的角的集合T. 【典型例题】 例1在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角. (1)-150°;(2)650°;(3)-950°15′. 跟踪训练1判断下列角的终边落在第几象限内: (1)1 400°;(2)-2 010°. 例2写出终边落在直线y=x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来. 跟踪训练2求终边在直线y=-x上的角的集合S.

相关文档
最新文档