旋风除尘器工作原理

旋风除尘器工作原理
旋风除尘器工作原理

旋风除尘器工作原理

旋风式除尘器的组成及内部气流旋风除尘器是除尘装置的一类。除沉机理是使含尘气流作旋转运动,借助于离心力降尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。旋风除尘器于1885年开始使用,已发展成为多种型式。按其流进入方式,可分为切向进入式和轴向进入式两类。在相同压力损失下,后者能处理的气体约为前者的3倍,且气流分布均匀。普通旋风除尘器由简体、锥体和进、排气管等组成。旋风除尘器结构简单,易于制造、安装和维护管理,设备投资和操作费用都较低,已广泛用来从气流中分离固体和液体粒子,或从液体中分离固体粒子。在普通操作条件下,作用于粒子上的离心力是重力的5,2500倍,所以旋风除尘器的效率显著高于重力沉降室。大多用来去除0.3μm以上的粒子,并联的多管旋风除尘器装置对3μm的粒子也具有80,85%的除尘效率。选用耐高温、耐磨蚀和服饰的特种金属或陶瓷材料构造的旋风除尘器,可在温度高达1000?,压力达500×105Pa的条件下操作。从技术、经济诸方面考虑旋风除尘器压力损失控制范围一般为500,2000Pa。

优点

按照前面轴向速度对流通面积积分的方法,一并计算常规旋风除尘器安装了不同类型减阻杆后下降流量的变化,并将各种情况下不同断面处下降流量占除尘器总处理流量的百分比绘入,为表明上、下行流区过流量的平均值即下降流量与实际

上、下地流区过流量差别的大小。可看出各模型的短路流量及下降流量沿除尘器高度的变化。与常规旋风除尘器相比,安装全长减阻杆1#和4#后使短路流量增加但安装非全长减阻杆H1和H2后使短路流量减少。安装1#和4#后下降流量沿流程的变化规律与常规旋风除尘器基本相同,呈线性分布,三条线近科平行下降。但安装H1和H2后,分布呈折线而不是直线,其拐点恰是减阻杆从下向上插入所伸到的断面位置。由此还可以看到,非全长减阻杆使得其伸至断面以上各断面的下降流量增加,下降流量比常规除尘器还大,但接触减阻杆后,下降流量减少很快,至锥体底部达到或低于常规除尘器的量值。

短路流量的减少可提高除尘效率,增大断面的下降流量,又能使含尘空气在除尘器内的停留时间增长,为粉尘创造了更多的分离机会。因此,非全长减阻杆虽然减阻效果不如全长减阻杆,但更有利于提高旋风除尘器的除尘效率。常规旋风除尘器排气芯管入口断面附近存在高达24%的短路流量,这将严重影响整体除尘效果。如何减少这部分短路流量,将是提高效率的一个研究方向。非全长减阻杆减阻效果虽然不如全长减阻杆好,但由于其减小了常规旋风除尘器的短路流量及使断面下降流量增加、使旋风除尘器的除尘效率提高,将更具实际意义。

旋风除尘器是使含尘气流作高速旋转运动,借助离心力的作用将颗粒物从气流中分离并收集下来的除尘装置。进入旋风除尘器的含尘气流沿简体内壁边旋转边下降,同时有少量气体沿径向运动到中心区域中,当旋转气流的大部分到达锥体底部附近时,则开始转为向上运动,中心区域边旋转边上升,最后由出口管排出,同时也存在着离心的径向运动。通常将旋转向下的外圈气流称为外旋涡,而把锥体底部的区域称为回流区或者混流区。旋风除尘器烟气中所含颗粒物在旋转运动过程中,在离心力的作用下逐步沉降茁涂尘器的内壁上,并在外旋涡的推动和重力作用下,大部分颗粒物逐渐沿锥体内壁降落到灰斗中。此外,进口气流中的少部分气流沿简体内壁旋转向上,到达上顶端盖后又继续沿出口管外壁旋转下降,最后到达出

口管下端附近被上升的气流带走。通常把这部分气流称为上旋涡。随着上旋涡,将有少量细颗粒物被内旋涡向上带走。同样,在混流区内也有少部分细颗粒物被内旋涡向上带起,并被部分带走。旋风除尘器就是通过上述方式完成颗粒物的捕集的。捕集到的颗粒物位于除尘器底部的灰斗中,从除尘器排出是气体中仍会含有部分细小颗粒物。旋风除尘器的形式多。按气流进入的方式不同,可大致分为切向进入和轴向进入两大类。轴向进入式是靠导流叶片促使气流旋转的,因此也叫导流叶片旋转式。轴向进入式又可分为逆流式和直流式。切向进入式又分为直人式和蜗壳式等形式:直人式的入口管外壁与筒体相切;而蜗壳式的入口管内壁与筒体相切。我公司采用的是切向直入式旋风除尘器。旋风除尘器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、操作方便、耐高温、设备费用和阻力较高(80,160毫米水柱)的净化设备,旋风除尘器在净化设备中应用得最为广泛。

改进型的旋风分离器在部分装置中可以取代尾气过滤设备。

旋风除尘器的设计与计算

一、实习目的 1、进一步了解旋风除尘器的有关计算 2、熟悉用CAD画效果图 3、查阅和整理各方面资料,了解旋风除尘器各方面性能及影响因素; 二、设计题目 设计一台处在常温(20°C),常温下含尘空气的旋风除尘器。已知条件为:处理气量Q=1300m3/h,粉尘密度ρp=1960kg/m3,空气密度ρ=1.29 kg/m,空气粘度μ=1.8x10-5Pa.s,进入的粉尘粒度分布见下表: 设计要求:XLT旋风除尘器,最后实现污染物的达标排放,且除尘效率为85%,压力损失不高于2000Pa。 提交文件:设计说明+旋风除尘器图(CAD制图),图纸输出A4纸。 三、旋风除尘器的工作原理 1.1 工作原理 (1)气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。 (2)尘粒的运动:

切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2特点 (1)旋风除尘器与其他除尘器相比,具有结构简单、占地面积小、投资低、操作维修方便以及适用面宽的优点。 (2)旋风除尘器的除尘效率一般达85%左右,高效的旋风除尘器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可达95%-98%,对于燃煤炉窑产生烟气的除尘效率可以达到92%-95%。 (3)XLT 旋风除尘器的主要特点 (4)旋风除尘器捕集<5μm 颗粒的效率不高,一般可以作为高浓度除尘系统的预除尘器,与其他类型高效除尘器合用。可用于10μm 以上颗粒的去除,符合此题的题设条件。 1.3影响旋风除尘器除尘效率的因素 (1)入口风速 由临界计算式知,入口风速增大,c d 降低,因而除尘效率提高。但是风速过大,压力损失也明显增大 (2)除尘器的结构尺寸 其他条件相同,筒体直径愈小,尘粒所受的离心力愈大,除尘效率愈大。筒体高度对除尘效率影响不明显,适当增大锥体长度,有利于提高除尘效率。减小排气管直径,有利于提高除尘效率。 (3)粉尘粒径和密度 大粒子离心力大,捕集效率高,粒子密度愈小,越难分离,本题中<5m μ的粒子质量频率约25%,所以导致除尘效率变低,以至于达不到除尘标准。 (4)灰斗气密性 若气密性不好,漏入空气,会把已经落入灰斗的粉尘重新带走,降低了除尘效率。 四、设计计算 1旋风除尘器各部分尺寸的确定 1.1形式的选择 根据国家规定的粉尘排放标准、粉尘的性质、允许的阻力和制造条件、经济性合理选择旋风除尘器的形式,选通用型旋风除尘器。 1.2 确定进口风速 设:风速u=20m/s 1.3 确定旋风除尘器的尺寸 (1)进气口面积A 的确定 进气口截面一般为长方形,尺寸为高度H 和宽度B ,根据处理气量Q 和进气速度u 可得 u Q A =

旋风除尘器设计说明

旋风除尘器设计计算说明书 1、旋风除尘器简介 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。工业上已有100多年的历史。 特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。 优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。 旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种 1.1 工作原理 (1)气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。 图1 (2)尘粒的运动: 切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2 影响旋风器性能的因素 (2)二次效应-被捕集粒子的重新进入气流 在较小粒径区间,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率; 在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率; 通过环状雾化器将水喷淋在旋风除尘器壁上,能有效地控制二次效应;

临界入口速度。 (2)比例尺寸 在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降; 锥体适当加长,对提高除尘效率有利; 排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径d e =(0.6~0.8)D ; 特征长度(natural length )-亚历山大公式: 2 1/3e 2.3()=D l d A 排气管的下部至气流下降的最低点的距离 旋风除尘器排出管以下部分的长度应当接近或等于l ,筒体和锥体的总高度以不大于5倍的筒体直径为宜。 (3)运行系统的密闭性,尤其是除尘器下部的严密性:特别重要,运行中要特别注意。 在不漏风的情况下进行正常排灰 (4) 烟尘的物理性质 气体的密度和粘度、尘粒的大小和比重、烟气含尘浓度 (5)操作变量 提高烟气入口流速,旋风除尘器分割直径变小,除尘器性能改善 ;入口流速过大,已沉积的粒子有可能再次被吹起,重新卷入气流中,除尘效率下降;效率最高时的入口速度,一般在10~25m/s 围。 2、设计资料 (1)所处理的粉尘为某水泥干燥窑的排烟,主要成分为水泥粉尘; (2)平均烟气量为2300 m 3/h ,最大烟气量为3450 m 3/h (3)烟气日变化系数K 日=1.5 (4)气温293 K,大气压力为101325 Pa (5)烟气颗粒物特征: 粒径围: 5~80m μ 中位径:36.5m μ 主要粒径频数分布: 颗粒物浓度:3000 kg/m 3 空气密度:1.205 kg/m 3 空气粘度:1.81×10-5Pa ﹒s (6)作为后继处理的前处理器,要求颗粒物的总去除效率不低于90%。压力损失不高 于2500Pa. 3、旋风除尘器的选型设计

旋风除尘器课程设计

引言 随着人类社会的发展与进步,人们对生活质量和自身的健康越来越重视,对空气质量也越来越关注。然而人们在生产和生活中,不断的向大气中排放各种各样的污染物质,使大气遭到了严重的污染,有些地域环境质量不断恶化,甚至影响人类生存。在大气污染物中粉尘的污染占重要部分,可吸入颗粒物过多的进入人体,会威胁人们的健康。所以防治粉尘污染、保护大气环境是刻不容缓的重要任务[1]。 除尘器是大气污染控制应用最多的设备,其设计制造是否优良,应用维护是否得当直接影响投资费用、除尘效果、运行作业率。所以掌握除尘器工作机理,精心设计、制造和维护管理除尘器,对搞好环保工作具有重要作用[2]。 工业中目前常用的除尘器可分为:机械式除尘器、电除尘器、袋式除尘器、湿式除尘器等。 机械式除尘器包括重力沉降室、惯性除尘器、旋风除尘器等。重力沉降室是通过重力作用使尘粒从气流中沉降分离的除尘装置,主要用于高效除尘的预除尘装置,除去大于40μm以上的粒子。惯性除尘器是借助尘粒本身的惯性力作用使其与气流分离,主要用于净化密度和粒径较大的金属或矿物性粉尘。旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的装置,多用作小型燃煤锅炉消烟除尘和多级除尘、预除尘的设备[12]。 本次设计为旋风除尘器设计,设计的目的在于设计出符合要求的能够净化指定环境空气的除尘设备,为环保工作贡献一份力量。设计时力求层次分明、图文结合、内容详细。此设计主要由筒体、锥体、进气管、排气管、排灰口的设计计算以及风机的选择计算等组成,在获得符合条件的性能的同时力求达到加工工艺简单、经济美观、维护方便等特点。

第一章旋风除尘器的除尘机理及性能 旋风除尘器的基本工作原理 1.1.1 旋风除尘器的结构 旋风除尘器的结构如图2-1所示,当含尘气体由进气管进入旋风除尘器时,气流将由直线运动转变为圆周运动,旋转气流的绝大部分延器壁呈螺旋形向下,朝椎体流动。通常称为外旋气流,含尘气体在旋转过程中产生离心力,将重度大于气体的尘粒甩向器壁。尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和向下的重力延壁面下落,进入排灰管。旋转下降的外旋气流在到达椎体时,因椎体形状的收缩而向除尘器中心靠拢。根据“旋转矩”不变原理,其切向速度不断增加。当气流到达椎体下端某一位置时,即以同样的旋转方向从旋风除尘器中部,由下反转而上,继续做螺旋运动,即内旋气流。最后净化气体经排气管排除旋风除尘器外,一部分未被捕集的尘粒也由此遗失。 1—排气管2—顶盖3—排灰管 4—圆锥体5—圆筒体6—进气管 图1—1 旋风除尘器 1.1.2用途及压力分布 用途: 旋风除尘器适用于各种机械加工,冶金建材,矿山采掘的粉尘粗、中级净化。一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上。机械五金、铸造炉窖、家具木业、机械电子、化工涂料、冶金建材、矿山采掘等粉尘旋风分离、中央集尘净化和原材料回收设备。 旋风除尘器内的压力分布 一般旋风除尘器内的压力分布如图2—2所示。依据对旋风除尘器的工作原理、结构形式、尺寸以及气体的温度、湿度和压力等分析和试验测试,其压力损失的主要影响因素可归纳如下: (1)结构形式的影响

旋风除尘器电除尘器课程设计

旋风除尘器电除尘器课 程设计 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

目录一.设计内容 (3) 1.设计基础资料 (3) 2.设计要求 (3) 二.设计计算 (3) 1.集气罩设计 (3) 2.风量计算 (4) 3.旋风除尘器设计选型 (4) 4.旋风除尘器效率计算 (7) 5.二级除尘器设计选型 (8) 6.管道设计计算 (12) 7.风机和电机的选择 (17) 8.排气烟囱的设计 (18) 三.心得体会与总结 (19) 参考文献 (20) 附图 (21) 题目:水泥厂配料车间粉尘污染治理工程(课程)设计一.设计内容 1. 设计基础资料 ●计量皮带宽度:450mm ●配料皮带宽度:700mm ●皮带转换落差:500mm

●设粉尘收集后,粉尘浓度为2000mg/m3,粉尘的粒径分布如下表. 2. 设计要求 ●排放浓度小于50 mg/m3 ●设计二级除尘系统,第一级为旋风除尘器,第二级为电除尘器或者袋式除尘器. ●计算旋风除尘器的分级除尘效率和除尘系统的总效率. ●选择风机和电机 ●绘制除尘系统平面布置图 ●绘制除尘器本体结构图 ●编制设计说明书 二.设计计算 1.集气罩设计 集气罩的设计原则: ①改善排放粉尘有害物的工艺和环境,尽量减少粉尘排放及危害。 ②集气罩尽量靠近污染源并将其包围起来。 ③决定集气罩的安装位置和排气方向。 ④决定开口周围的环境条件。 ⑤防止集气罩周围的紊流。 ⑥决定控制风速。

本设计采用密闭集气罩,密闭罩设计的注意事项:密闭罩应力求密闭,尽量减少罩上的孔洞和缝隙;密闭罩的设置应不妨碍操作和便于检修;应注意罩内气流的运动特点。 搅拌机上方采用整体密闭集气罩,尺寸φ2000×500(高度)mm 。 传送带上方采用局部密闭集气罩,尺寸1210×1210mm 。 2.风量计算 对于整体集气罩,取断面风速为s 对于局部集气罩,取断面风速为s 总风量 /s 5.748m 0.73260.67826Q 2Q Q 3 21=?+?=+= 3.旋风除尘器的设计选型 1) 设计选型 一级除尘系统采用旋风除尘器,其特点是旋风除尘器没有运动部件,制作、管理十分方便;处理相同风量的情况下体积小,价格便宜;作为预除尘器使用时,可以立式安装,亦可以卧式安装,使用方便;处理大风量是便于多台联合使用,效率阻力不受影响,但是也存在着除尘效率不高,磨损严重的问题。 普通除尘器是由进风管、筒体、锥体和排气管组成。含尘气体进入除尘器后,沿外壁由上而下做旋转运动,同时少量气体沿径向运动到中心区域。当旋转气流的大部分到达锥体底部后,转而向上沿轴心旋转,最后经排出管排出。 旋风除尘器净化气量应与实际需要处理的含尘气体量一致。选择除尘器直径时应尽量小些;旋风除尘器入口风速要保持18—23m/s ;选择除尘器时,要根据工况考虑阻力损失及结构形式,尽可能减少动力消耗减少,便于制造维护;结构密闭要好,确保不漏风。

工程机械

第一章 1.四冲程汽油机和柴油机在工作原理上有何相异同? 答:相同点:1)基本构造与主要部件相似2)工作流程一样3)依靠飞轮储能 不同点:1)构造不同汽油机有火花塞,柴油机有喷油嘴2)进汽混合形式不同3)点火方式不同,汽油机为点燃方式,柴油机为压缩点燃方式 2.简述内燃机的组成和各组成的作用? 答:内燃机由两大系统和五大机构组成: 两大机构:曲柄连杆机构、机体组件和配气机构 五大系统:冷却系统、润滑系统、燃料系统、点火系统、起动系统。 作用:曲柄机构是实现工作循环、完成能量转换的传动机构以传递力和改变运动方式。机体构件是汽缸体与曲柄轴箱的连接件。 冷却系统:把受热机体的热量散发到大气中去,使其工作在合适温度 润滑系统:给相对运动的零件润滑减少摩擦 燃料供给系统:混合汽油和空气供入气缸排出废气 点火系统:在规定时刻点燃气体 起动系统:使静止的发动机起动、并正常运转 第二章 1.工程机械底盘由哪几部分组成? 答:一、传动系二、行驶系三、制动系四、转向系 2.用流程图分别表达液力机械式传动系和履带式底盘传动系的动力传动路线。 答:液力机械式传动系:发动机——液力变矩器——动力换挡变速箱——传动轴——驱动桥——差速器——轮边减速器——驱动链轮 履带式底盘传动系:发动机——主离合器——联轴节——变速箱——主传动器——转向离合器——终传动器——驱动链轮 3. 试用普通锥齿轮式差速器的运动特性方程来分析采用此种差速器的工程机械行驶中出现的下列现象: 1)当用中央制动器制动时(中央制动器装在传动轴上),出现的机械跑偏现象。 2)一侧驱动轮附着于好路面上不动,另一侧驱动轮陷到泥坑而飞速旋转;并且机械陷入泥坑不能前行的现象。 答:1)由于路面高低不平,左右轮所经过的实际路程不等,即L1不等于L2则N1不等于N2,所以机械跑偏 2)由于n1+n2=2n0,当n1=0时,n2=2n0>0,所以一侧轮飞速旋转,不能前行 4.转向轮定位参数有哪些?各起什么作用? 答:M—前轮主销之距;L—轴距。转向时各车轮必须作纯滚动而无侧向滑动,否则将会增加转向阻力,加速轮胎磨损。偏转轮应有统一的转向中心,以使车轮减磨,行驶阻力小。5.分析为什么刹车时,用力猛刹车使制动轮“抱死”比“不抱死”时反而停车停的慢?答:“抱死”状态时,车轮滑动附着系数小,而“不抱死”时,附着系数则比较大,Mt大,所以制动效果好,停车停的比“抱死”时快。 第三章 1、通常中小型推土机的运距为30~100m;大型推土机的运距一般不应超过150m。推土机的经济运距为50~80。

旋风除尘器设计计算

1.1、工作原理 ⑴气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成; 气流沿外壁由上向下旋转运动:外涡旋; 少量气体沿径向运动到中心区域; 旋转气流在锥体底部转而向上沿轴心旋转:内涡旋; 气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度 图1 ⑵尘粒的运动: 切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗; 上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2、影响旋风器性能的因素 ⑴二次效应-被捕集粒子的重新进入气流 在较小粒径区间内,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率; 在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率; 通过环状雾化器将水喷淋在旋风除尘器内壁上,能有效地控制二次效应;临界入口速度。 ⑵比例尺寸 在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降; 锥体适当加长,对提高除尘效率有利; 排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加, 一般取排出管直径d e= (0.6?0.8) D ;

特征长度(natural length)-亚历山大公式: D21/3 I = 2.3 d e ( ) A 排气管的下部至气流下降的最低点的距离 旋风除尘器排出管以下部分的长度应当接近或等于I,筒体和锥体的总高度以 不大于5倍的筒体直径为宜。 ⑶运行系统的密闭性,尤其是除尘器下部的严密性:特别重要,运行中要特别注意、。在不漏风的情况下进行正常排灰 ⑷烟尘的物理性质 气体的密度和粘度、尘粒的大小和比重、烟气含尘浓度 ⑸操作变量 提高烟气入口流速,旋风除尘器分割直径变小,除尘器性能改善; 入口流速过大,已沉积的粒子有可能再次被吹起,重新卷入气流中,除尘效率下降; 效率最高时的入口速度,一般在10-25m/s范围。 2、设计方案的确定 根据含尘浓度、粒度分布、密度等烟气特征及除尘要求、允许的阻力和制造条件等因素选择适宜的处理方式,然后进行计算,核对。如果所选的方式符合标准并且除尘效率高和阻力要求,就证明所选的方案是可行的,否则需要重新选取新的方案设计。直到符合标准为止。 3、工艺设计计算 3.1、选择旋风除尘器的型式 选XLP/B型旁路式旋风除尘器 3.2、选择旋风除尘器的入口风速 一般进口的气速为12 ~25m/s。取进口速度=15m/s。 3.3、计算入口面积A 已知烟气的流量Q=2000m3/h,v=l5m/s 则入口面积A= Q/3600v = 0.037m2 3.4、入口高度a、宽度b的计算 查几种旋风除尘器的主要尺寸比例表得: 入口宽度b=£=0.136m

实验一旋风除尘器

实验一旋风除尘器、袋式除尘性能实验 一旋风除尘器 1.1实验目的 1.了解旋风除尘器的常用结构型式和性能特点。 2.掌握旋风除尘器的基本原理及基本操作方法。 3.掌握用质量法计算除尘器的除尘效率。 1.2实验原理 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的装置。气流作旋转运动时,尘粒在离心力作用下逐步移向外壁,到达外壁的尘粒在气流和重力作用下沿壁面落入灰斗。 1.3设备及用具 1.旋风除尘器:湖南长沙长风教具厂生产; 2.托盘天平; 3.锯木屑或米糠; 4.电源插线板 实验装置如图所示 1.4实验步骤 1.用托盘天平称出发尘量(Gf); 2.同时启动风机和发尘搅拌器,进行除尘,记下除尘所需要的时间 (T); 3.除尘结束后,称出被捕集的粉尘量 (Gs);

4.计算除尘器的除尘效率: %100?=f s G G η 1.5思考题 1、画出旋风除尘器除尘原理示意图; 2、简述旋风除尘器主要应用领域及处理何种含尘废气。 二 袋式除尘器 2.1实验目的 1. 通过本实验,进一步提高对袋式除尘器的结构形式和除尘机理的认识。 2. 掌握袋式除尘器基本操作方法。 2.2实验原理 含尘气流从下部进入圆筒形滤袋,在通过滤料的孔隙时,粉尘被捕集于滤料上, 透过滤料的清洁气体由排出口排出。沉积在滤料上的粉尘,通过逆气流清灰的方式, 从滤料表面脱落,落入灰斗。 2.3设备及用具 1.袋式除尘器:湖南长沙长风教具厂生产 2.木屑或米糠 3.电源插线板 实验装置如图所示

2.4实验流程 1. 过滤除尘 关闭阀门T1、打开阀门T2,如下图所示,前后两个双开开关扭至双开位置,两布袋同时过滤,净化后的气体从上部管道排出。 2. 左清灰右过滤 关闭阀门T2、打开阀门T1,正面双开开关旋向右边关位置、后面的双开开关旋向左边关位置,则左边布袋清灰、右边布袋过滤,净化后的气体从上部管道排出。 3.左过滤右清灰 关闭阀门T2、打开阀门T1,正面双开开关旋向左边关位置、后面的双开开关旋向右边关位置,左边布袋过滤,右边布袋清灰,净化后气体从上部管道排出。 2.5实验报告要求 1.画出过滤除尘、左清灰右过滤和左过滤右清灰三个流程工作示意图。 2.影响袋式除尘效率的因素主要有哪些?

旋风除尘器设计

设计项目:旋风除尘器的设计 设计者姓名: 班级: 座号: 完成时间: 2013.11。06 一、设计题目 某工厂一台锅炉,风量10000立方米∕小时,烟气温度573℃,粉尘密度4。5克∕立方米,烟尘密度2000千克∕立方米,573K时空气粘度u=2。9*10—5pa经测试,粉尘粒径分布如表1所示。要求经除尘装置后粉尘排放浓度为0。8克∕立方米,压力损失ΔP不大于2000Pa,v=23m/s. 烟尘粒度分布 根据以上数据设计一旋风除尘器

二、选取旋风除尘器理由及选择的型号 1。其他除尘器的特点 (1)重力沉降室是使含尘气流中的尘粒借助重力作用自然沉降来达到净化气体的目的的装置。这种装置具有结构简单、造价低、施工容易(可以用砖砌或用钢板焊制)、维护管理方便、阻力小(一般50—150Pa)等优点,但由于它体积大,除尘效率低(一般只有40%—50%),适于捕集大于μ粉尘粒子,故一般只用于多级除尘系统中的第一级除尘。 50m (2)惯性除尘器是利用尘粒在运动中惯性力大于气体惯性力的作用,将尘粒从含尘气体中分离出来的设备.这种除尘器结构简单、阻力较小、但除尘效率较低,一般常用于一级除尘。惯性除尘器用于净化密度和粒径μ以上的粗尘粒)的金属或矿物性粉尘,具有较高的除较大(捕集10-20m 尘效率。对于黏结性和纤维性粉尘,因其易堵塞,故不宜采用。 (3)电除尘器是含尘气体在通过高压电场进行电离的过程中,是尘粒荷电,并在电场力的作用下使尘粒趁机在集尘板上,将尘粒从含尘气体中分离出来的一种除尘设备.其与其他除尘器的根本区别在于,分离力直接作用在粒子上,因此具有耗能小、气流阻力小的特点。其主要优点有压力损失小、处理烟气量大、耗能低、对粉尘具有很高的捕集效率和可在高温或强腐蚀性气体下操作。但其缺点为一次性投资大、安装精度要求高和需要调节比电阻。 (4)湿式除尘器是使含尘气体与液体密切接触,利用水滴和颗粒的惯性碰撞及其他作用捕集颗粒或使粒径增大的装置。它具有结构简单、造价低、占地面积小、操作及维修方便和净化效率高等优点,能处理高温、

XLT旋风除尘器_计算与CAD图

目录 一、旋风除尘器的基础知识 (1) 二、计算书 (4) 三、设计心得 (8)

一、旋风除尘器的基础知识 旋风除尘器是利用旋转气流产生的离心力从气流中分离,用来分离粒径大于5~15 以上的颗粒物。工业上已有100多年的历史。 特点:结构简单、占地面积小,投资低,操作维修乖、方便,压力损失中等,动力消耗不大,可用各种材料只、制造,能用于高温、高压及腐蚀性气体并可回收干颗粒物,效率可达80%左右。 1.1 旋风除尘器的工作原理 普通旋风除尘器由简体、锥体和进、排气管等组成。 含尘气体由进口切向进入后,沿筒体内壁由上向下做圆周运动,并有少量气体沿径向运动到中心区内。这股向下旋转的气流大部分到达锥体顶部附近时折转向上,在中心区域旋转上升,最后由排气管排出。这股气流做向上旋转运动时,也同时进行着径向离心运动。气流旋转运动时,尘粒在离心力作用下,逐渐向外壁移动。到达外壁的尘粒,在外旋流的推力和重力的共同作用下,沿器壁落至灰斗中,实现与气流的分离。 此外,当气流从除尘器顶向下高速旋转时,顶部压力下降,使一部分气流带着微细尘粒沿筒体内壁旋转向上,到达顶盖后再沿排气管外壁旋转向下,最后汇入排气管排走。 1.2 旋风除尘器的性能指标

除尘装置性能用技术指标和经济指标来评价。技术指标主要有处理能力、净化效率和压力损失等;经济指标主要有设备费、运行费和占地面积等。此外,还应考虑装置的安装、操作、检修的难易等因素。 (1)处理能力 除尘装置的处理能力是指除尘装置在单位时间内所能处理的含尘气体的流量,一般以体积流量Q表示。实际运行的净化装置,由于本体漏气等原因,往往装置进口和出口的气体流量不同,因此,用两者的平均值表示处理能力。 (2)净化效率 净化效率是表示除尘装置捕集粉尘效果的重要技术指标,可定义为被捕集的粉尘量与进入装置的总粉尘量之比。 总效率η:总效率是指同一时间内净化装置去除的污染物数量与进入装置的污染物数量之比。 通过率:当净化效率很高时,或为了说明污染物的排放率,有时采用通过率来表示除尘装置的性能。所谓通过率是指未被捕集的粉尘量占进入除尘装置的粉尘总量的百分数。 分级除尘效率:除尘装置的总除尘效率的高低,往往与粉尘粒径大小有很大关系。为了表示除尘效率与粉尘粒径的关系,提出分级除尘效率的概念。分级除尘效率是评定除尘装置性能的重要指标,系指除尘装置对某一粒径dpi或某一粒径间隔dpi至dpi+Δdpi 内粉尘的除尘效率,简称分级效率。

《旋风除尘器》课程设计要点

引言 引言 随着人类社会的发展与进步,人们对生活质量和自身的健康越来越重视,对空气质量也越来越关注。然而人们在生产和生活中,不断的向大气中排放各种各样的污染物质,使大气遭到了严重的污染,有些地域环境质量不断恶化,甚至影响人类生存。在大气污染物中粉尘的污染占重要部分,可吸入颗粒物过多的进入人体,会威胁人们的健康。所以防治粉尘污染、保护大气环境是刻不容缓的重要任务[1]。 除尘器是大气污染控制应用最多的设备,其设计制造是否优良,应用维护是否得当直接影响投资费用、除尘效果、运行作业率。所以掌握除尘器工作机理,精心设计、制造和维护管理除尘器,对搞好环保工作具有重要作用[2]。 工业中目前常用的除尘器可分为:机械式除尘器、电除尘器、袋式除尘器、湿式除尘器等。 机械式除尘器包括重力沉降室、惯性除尘器、旋风除尘器等。重力沉降室是通过重力作用使尘粒从气流中沉降分离的除尘装置,主要用于高效除尘的预除尘装置,除去大于40μm以上的粒子。惯性除尘器是借助尘粒本身的惯性力作用使其与气流分离,主要用于净化密度和粒径较大的金属或矿物性粉尘。旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的装置,多用作小型燃煤锅炉消烟除尘和多级除尘、预除尘的设备[12]。 本次设计为旋风除尘器设计,设计的目的在于设计出符合要求的能够净化指定环境空气的除尘设备,为环保工作贡献一份力量。设计时力求层次分明、图文结合、内容详细。此设计主要由筒体、锥体、进气管、排气管、排灰口的设计计算以及风机的选择计算等组成,在获得符合条件的性能的同时力求达到加工工艺简单、经济美观、维护方便等特点。 1

大气课程设计 2 第一章旋风除尘器的除尘机理及性能 1.1 旋风除尘器的基本工作原理 1.1.1 旋风除尘器的结构 旋风除尘器的结构如图2-1所示,当含尘气体由进气管进入旋风除尘器时,气流将由直线运动转变为圆周运动,旋转气流的绝大部分延器壁呈螺旋形向下,朝椎体流动。通常称为外旋气流,含尘气体在旋转过程中产生离心力,将重度大于气体的尘粒甩向器壁。尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和向下的重力延壁面下落,进入排灰管。旋转下降的外旋气流在到达椎体时,因椎体形状的收缩而向除尘器中心靠拢。根据“旋转矩”不变原理,其切向速度不断增加。当气流到达椎体下端某一位置时,即以同样的旋转方向从旋风除尘器中部,由下反转而上,继续做螺旋运动,即内旋气流。最后净化气体经排气管排除旋风除尘器外,一部分未被捕集的尘粒也由此遗失。 1—排气管2—顶盖3—排灰管 4—圆锥体5—圆筒体6—进气管 图1—1 旋风除尘器 1.1.2用途及压力分布 用途: 旋风除尘器适用于各种机械加工,冶金建材,矿山采掘的粉尘粗、中级净化。一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上。机械五金、铸造炉窖、家具木业、机械电子、化工涂料、冶金建材、矿山采掘等粉尘旋风分离、

旋风除尘器设计h

韶关学院 《大气污染控制工程》课程设计任务书 化学与环境工程学院 2011级环境工程专业 题目旋风除尘器系统的设计 起止日期:2014年5月21日至2014年5月28日学生姓名:学号: 指导教师:梁凯 教研室主任:年月日审查 系主任:年月日批准

设计题目(题目来自网络) 设计要求:根据设计参数设计出使用的旋风除尘器。

目录 1、前言 (5) 1.1、工作原理 (5) 1.2、影响旋风器性能的因素 (6) 2、旋风除尘器的特点 (7) 3、旋风除尘器型号选择 (7) 4、选择XLP/B型旋风除尘器的理由 (7) 5、工艺设计计算 (7) 5.1、除尘效率 (7) 5.2、压力损失 (7) 5.3、其他部件的尺寸 (7) 6、除尘效率计算及校核 (7) 6.1、除尘效率计算 (7) 6.2、除尘效率校核 (7) 7、课程设计心得 (10)

1、前言 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。工业上已有100多年的历史。 特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。 优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。 旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种 1.1、工作原理 旋风除尘器是利用旋转气流所产生的离心力将尘粒从合尘气流中分离出来的除尘装置。 旋风除尘器内气流与尘粒的运动概况: 旋转气流的绝大部分沿器壁自圆简体,呈螺旋状由上向下向圆锥体底部运动,形成下降的外旋含尘气流,在强烈旋转过程中所产生的离心力将密度远远大于气体的尘粒甩向器壁,尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和自身的重力沿壁面下落进入集灰斗。旋转下降的气流在到达圆锥体底部后.沿除尘器的轴心部位转而向上.形成上升的内旋气流,并由除尘器的排气管排出。 自进气口流人的另一小部分气流,则向旋风除尘器顶盖处流动,然后沿排气管外侧向下流动,当达到排气管下端时,即反转向上随上升的中心气流一同从诽气管排出,分散在其中的尘粒也随同被带走。 图1

旋风除尘器实验

旋风除尘器实验 仿真实验指导书 通风与大气污染 控制工程仿真系列实验 蔡建安林晓飞编著 安徽工业大学

实验6-旋风除尘器实验 一、实验目的 (1).了解除尘器性能试验台的结构及工作原理,掌握除尘器性能测试的基本方法。 (2).了解除尘器运行工况对其效率和阻力的影响。 (3).设定并测量除尘器的处理风量。 (4).测定除尘器阻力与处理风量的关系。 (5).测定除尘器效率与处理风量的关系。 二、实验装置和虚拟设备 除尘器性能测定试验台的结构如下图6-1所示,它主要由测试系统、实验除尘器和发尘装置等三个部分组成。 图6-1 除尘器性能实验装置结构图 1.测试系统 测试系统由进气段、出气段、静压孔、孔板流量计、风机和调节阀等组成。其中:

(1)两静压环分别设在进、出气段上,用以测量两管段的气流静压值和计算出除尘器的阻力(当进、出气管道直径不相等时应用全压进行计算)。为了保证测量的精确性,两静压环的精确性,两静压环离除尘器的进、出口均有一定的距离,并在计算除尘器阻力时还将这两段管路的压头损失扣除。 (2)孔板流量计设在气流比较洁净的出气段上,配以微压计后可测量系统的空气流量。 (3)风量调节阀设在风机出口处,用以调节系统的空气流量。 2.实验除尘器 实验除尘器为一小型离心式除尘器,在其底部设卸灰斗,每次实验结束时可从此处将收集的灰尘取出。取灰时应注意一下两点: (1)每次取灰时,应将灰斗中的灰尘清扫干净,以免剩留。 (2)每次取灰后,应将灰斗的盖板盖严,不得漏风以免使下次测试造成误差。 3.发尘装置 发尘装置为一振动式发尘器,其发尘量可通过调节漏斗的闸板开度进行控制,漏出的粉尘可通过进灰口进入系统。 实验用粉尘可采用滑石粉、双飞粉、煤粉等干燥、松散的颗粒状粉尘。 三、实验原理和工况点参数测量及计算方法 1.风量的设置和调定 根据除尘器的工作特性,本实验在测定除尘器的阻力、除尘效率与风量的关系时,采用的除尘器进口风速范围为10-20m/s ,分4-6个测定点,可根据除尘器中的进口尺寸,计算出不同进口风速下的实验风量Q ,在利用已标定的孔板流量计“压差”-空气流量曲线查出与Q 相对应的压差值,最后利用风量调节阀门调定孔板流量计所配微压计的指示达到该“压差”值。(当室温与标定时差别较大时应进行换算修正或重新标定)。 2.测定除尘器阻力与风量关系 (1)按上述方法调定除尘器某实验风量后,利用进、出口气管段上的静压环和所配的微压计测定并计算出两处之间的静压差f P ?: )(a f p h K P ??=? 式中:K ——微压计比例系数 h ?——微压计读值 )(a p (2)计算在该风量下进、出气管段内的风速d V V 21 、,动压头2 1 d d P P 、和动压差d P ?。

旋风除尘工艺流程设计

旋风除尘工艺流程设计 一、旋风除尘器原理 旋风除尘器是利用旋转气流所产生的离心力(由于物体旋转而产生脱离旋转中心的力,离心力是一种惯性的表现,实际是不存在的。为使物体做圆周运动,物体需要受到一个指向圆心的力即向心力。若以此物体为原点建立坐标,看起来就好像有一股与向心力大小相同方

向相反的力,使物体向远离圆周运动圆心的方向运动。(当物体受力不足以提供圆周运动所需向心力时,看起来就好像离心力大于向心力了,物体会做远离圆心的运动,这种现象叫做“离心现象”))将尘粒从合尘气流中分离出来的除尘装置。它具有结构简单,体积较小,不需特殊的附属设备,造价较低。阻力中等,器内无运动部件,操作维修方便等优点。旋风除尘器一般用于捕集5-15微米以上的颗粒、除尘效率可达80%以上,近年来经改进后的特制旋风除尘器、其除尘效率可达95%以上。旋风除尘器的缺点是捕集微粒小于5微米的效率不高。 旋风除尘器内气流与尘粒的运动概况: ①旋转气流的绝大部分沿器壁自圆简体,呈螺旋状由上向下向圆锥体底部运动,形成下降的外旋含尘气流,在强烈旋转过程中所产生的离心力将密度远远大于气体的尘粒甩向器壁,尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和自身的重力沿壁面下落进入集灰斗。旋转下降的气流在到达圆锥体底部后.沿除尘器的轴心部位转而向上。形成上升的内旋气流,并由除尘器的排气管排出。 ②自进气口流人的另一小部分气流,则向旋风除尘器顶盖处流动,然后沿排气管外侧向下流动,当达到排气管下端时,即反转向.上随上升的中心气流一同从排气管排出,分散在其中的尘粒也随同被带走。 二、旋风除尘器工作过程 如图所示,旋风式除尘器由筒体1、锥体2,进气管3、排气管4

旋风除尘器课程设计说明书

环境工程专业 课程设计说明书题目:(SZL4-13锅炉除尘系统设计) 姓名: 班级: 学号: 指导教师: 课程名称:大气污染控制 设计时间:

目录 任务书 (3) 摘要 (5) 除尘系统计算 (6) 一、烟气量、烟尘和二氧化硫浓度计算 (6) 二、除尘器选型 (7) 三、除尘器设计计算 (7) 四、烟囱设计 (8) 五、系统阻力计算 (10) 六、风机的计算与选用 (11) 七、系统中烟气温度的变化 (12) 结论 (12) 参考文献 (12)

颗粒污染物控制课程设计任务书 适用专业 环境工程 一、课程设计题目 某燃煤采暖锅炉房烟气除尘系统的设计 二、课程设计的目的 通过课程设计进一步消化和巩固本课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行除尘系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、CAD 绘制工程图、使用技术资料、编写 设计说明书的能力。 三、设计原始资料 锅炉型号:SZL4—13型,共4台(2.8MW ?4) 设计耗煤量:380Kg/h /台 排烟温度:160℃ 烟气密度(标准状态下):1.34 kg /m 3 空气过剩系数:α=1.4 排烟中飞灰占煤中不可燃成分的比例:16% 烟气在锅炉出口前的阻力:800 Pa 当地大气压力:97.86 Kpa 冬季室外温度:-20℃ 空气中含水(排标准状态下)10g/kg 烟气其它性质按近似空气计算 煤的工业分析值: Y C =68% Y H =4% Y S =1% Y O =5% Y N =1% Y W =6% Y A =15% Y V =13% 按锅炉大气污染物排放标准(GB13271—2001)中二类一时段标准执行。 四、计划安排 1、资料查询0.5天 2、及设计计算(4.5天) 3、说明书编制及绘图(5天) 五、设计内容和要求 1、燃煤锅炉排烟量及烟尘和二氧化硫浓度计算 2、净化系统设计方案的分析确定 3、除尘器的选择和比较 确定除尘器的类型、型号及规格,并确定其主要运行参数。 4、管布置及计算:确定各装置的位置及管道布置 并计算各管段的管径、长度、烟囱高度和出口内径以及系统总阻力 5、风机及电机的选择设计

旋风除尘器设计

学院班级:资环学院 环境工程 09-01班 学号:310913020127 姓名:张思凯 日期:2011-12-16

一、设计题目 设计要求:旋风除尘器+湿法脱硫除尘,最后实现污染物的达标排放,根据自己的设计,计算出最终污染物的排放浓度和年排放量 提交文件:设计+旋风除尘器图(专用纸手绘)

二、旋风除尘器理的工作原理(摘抄) 旋风除尘器是利用旋转气流所产生的离心力将尘粒从合尘气流中分离出来的除尘装置。 旋风除尘器内气流与尘粒的运动概况: 旋转气流的绝大部分沿器壁自圆简体,呈螺旋状由上向下向圆锥体底部运动,形成下降的外旋含尘气流,在强烈旋转过程中所产生的离心力将密度远远大于气体的尘粒甩向器壁,尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和自身的重力沿壁面下落进入集灰斗。旋转下降的气流在到达圆锥体底部后.沿除尘器的轴心部位转而向上.形成上升的内旋气流,并由除尘器的排气管排出。 自进气口流人的另一小部分气流,则向旋风除尘器顶盖处流动,然后沿排气管外侧向下流动,当达到排气管下端时,即反转向上随上升的中心气流一同从诽气管排出,分散在其中的尘粒也随同被带走 2. 旋风除尘器的特点 (1)旋风除尘器与其他除尘器相比,具有结构简单、占地面积小、投资低、操作维修方便以及适用面宽的优点。适用于工业炉窑烟气除尘和工业通风除尘;工业气力输送系统气固两相分离与物料气力烘干回收。(2)旋风除尘器的除尘效率一般达85%左右,高效的旋风除尘器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可达95%-98%,对于燃煤炉窑产生烟气的除尘效率可以达到92%-95%。(3)旋风除尘器捕集<5μm颗粒的效率不高,一般可以作为高浓度除尘

旋风除尘器设计方案.doc

设计原始资料: 锅炉型号:DLP2-13即,单锅筒纵置式抛煤机炉,蒸发量2t/h,出口蒸汽压力13MPa 设计耗煤量: 360kg/h( 按学号增加 5) Y Y Y Y Y Y Y 设计煤成分: C=60.5% H =3% O=4% N =1% S =1.5% A =18% W=12%; V Y = 15%;属于中硫烟煤 排烟温度: 165℃ 空气过剩系数= 1.4 飞灰率= 21% 烟气在锅炉出口前阻力650Pa 污染物排放按照锅炉大气污染物排放标准中 2 类区新建排污项目执行。 连接锅炉、净化设备及烟囱等净化系统的管道假设长度50m,90°弯头 10 个。 1.燃烧计算 1.1实际耗空气量的计算 在标准状况下,以1Kg应用煤为基准进行计算,结果见表1-1 。 1Kg 该煤完全燃烧时所需要标准状况下的氧气的体积V o为: V o=(50.4+7.5+0.47-1.25)× 22.4=1279.448 L(1-1) 假设空气中氮氧的摩尔数之比为N/O=3.78,则 1Kg 低硫煤完全燃烧时所需要的空气体积 V k为: V k =( 1+3.78 )× 1279.448=6115.953 L (1-2 )实际消耗的空气体积V k为: V k=1.4 V k=1.4×6115.953=8562.333 L ( 1-3 )

表 1-1 1Kg应用煤的相关计算 质量摩尔数燃烧耗氧量生成气体量生成气体体积成分 ( g)(mol )(mol )( mol)( L ) C 605 50.4 50.4 50.4 1128.96 H 30 15 7.5 15 336 O40 1.25————28 N100.36——0.367.84 S 15 0.47 0.47 0.47 10.528 水分120 6.67————149.408 灰分180———————— 1.2产生烟气量的计算 1Kg 该煤完全燃烧后生成的烟气量 V y =149.408+10.528+7.84+336+1128.96+8562.333=10195.069 L =10.195 m3 ( 1-4 )则,在 160℃时的实际烟气体积为V y为: V y=10.195 ×(160+273.15)=16.17 m3 ( 1-5 )273.15 该锅炉一小时产生的烟气流量Q 为:

xcx旋风除尘器设计说明书(李昊林毅费磊胡五钢)

xcx旋风除尘器设计说明书(李昊林毅费磊胡五钢)

XCX旋风除尘器 设计说明书 学院:环境科学与工程学院 专业:环境工程 姓名:李昊(0920169,前期计算) 林毅(0920179,CAD画图) 费磊(0920156,计划书制作) 胡五钢(0920164,后期整理)指导老师:万锐

目录 一.旋风除尘器简介···································· 二.XCX旋风除尘器的结构及特点··························· 三.XCX旋风除尘器原理及其优点··························· 四.选型依据········································· 五.影响XCX旋风除尘器效的因素··························· 六.影响XCX旋风除尘器压降的因素························· 七.结论与建议·······································八.参考文献········································

一、旋风除尘器简介 旋风除尘器是利用旋转的含尘气体所产生的离心力,将粉尘从气流中分离出来的一种干式气-固分离装置.旋风除尘器用于工业生产以来,已有百余年历史。该类分离设备机构简单、制造容易、造价和运行费用较低,对于捕集分离5μm以上的较粗颗粒粉尘,净化效率很高所以在矿山、冶金、耐火材料、建筑材料、煤炭、化工及电力工业部门应用极为普遍。但旋风除尘器对于5μm 以下的较细颗粒粉尘(尤其是密度小的细颗粒粉尘)净化效率极低所以旋风分离器通常用于粗颗粒粉尘的净化或用于多级净化时的初步处理 二、XCX旋风除尘器的结构及特点 旋风除尘器也称作旋风分离器,是利用器内旋转的寒碜气体所产生的离心力,将粉尘从气流中分离出来的一种干式气固分 离装置。它主要由排灰管、圆锥体、圆柱体、进气管、 排气管以及顶盖组成。 旋风除尘器具有以下特点: 1.结构简单,器身无运动部件,不需要特殊的附属 设备,占地面积小,制造,安装投资较少。 2.操作维护简便,压力损失中等,动力消耗不大, 运转,维护费用较低。 3.操作弹性较大,性能稳定,不受含尘气体的浓度, 温度限制。对于粉尘的物理性质无特殊的要求同时可根 据化工生产的不同要求,选用不同的材料制作或内衬不 同的耐磨,耐热的材料,以提高使用寿命。 旋风除尘器一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上,近年来经改进后的特制旋风除尘器,其除尘效率可达5%以上。旋风除尘器的缺点是捕集微粒小于5微米的效率不高。

相关文档
最新文档