SMV型静态混合器的三维数值模拟研究

SMV型静态混合器的三维数值模拟研究
SMV型静态混合器的三维数值模拟研究

静态混合器

全世界经济发展的同时,我们周围的环境在不断恶化。在我国尤其如此,近二十年经济的迅猛发展给环境带来严重影响。我国境内的河流受污染情况十分严重,大多数河流的水质都出现了不同程度的下降。地球上的淡水资源是有限的,在我国的北方大部分地区水资源是缺乏的,因此我国实施了南水北调工程。日益严重的水污染与水资源短缺,使得有效的水处理技术变得越来越重要,人们从不同的方向改进着水技术。其中,混凝技术是一种常见的水处理技术,得到广泛的认可和推广。水的混凝机理十分复杂,一直得到广大学者的关注。一般认为:混凝过程中包含凝聚和絮凝两个步骤,其中凝聚是在瞬间内完成的,它是指化学药剂与水接触形成小颗粒的过程,在水处理过程中表现为使用各种混合设备将药剂与水均匀地混合,其均匀的程度关系着混凝效果优劣;絮凝是指凝聚过程中形成较小颗粒后,它们之间相互碰撞形成较大颗粒并沉降的过程。 影响混合效果的因素主要有三方面:一、废水水质,包括废水中浊度、PH值、水温及共存杂质等;二、混凝剂,包括混凝剂种类、投加量和投加顺序等;三、水利条件,主要指混合的方式。混合方式有:管式混合、水力混合、机械搅拌混合以及水泵混合等。其中管式混合主要形式有管式静态混合器、孔板式、文氏管道混合器、扩散混合器等;机械搅拌混合是在池内安装搅拌装置,以电动机驱动搅拌器将水与药剂混合;水泵混合是将药剂投放在水泵吸水管或吸水喇叭口处,利用水泵叶片的高速旋转来达到快速混合。 在水处理过程中,管式静态混合器具有高效混合、节约用药、设备小等特点,它是由一组组混合元件组成,而混合元件组数的确定应根据水质、混合效果而定。 在不需外动力情况下,水流通过混合元件时可以产生较大范围对流、返流和漩涡等运动,这些均能促使药剂均匀的分布(图1-1所示)。在选择管式静态混合器时,其管内流速应控制在经济流速范围内,当水流量较大所选管径大于500毫米时速度范围可以适当地放宽。混凝剂的入口方式以较大的速度,射流进入混合器管道内为佳。实际应用中管式静态混合器的水头损失一般在0.4-0.6米范围内,条件允许时可将管径放大50-100毫米,可以减少水头损失。本文的主要研究对象即为管式静态混合器。 2静态混合器 静态混合器(static mixer)是一种没有运动部件的高效混合设备,它在管道内加入静止元件,其主要包括三类:一类对流体起切割作用、二是使流体发生旋转、三是使流道形状与截面积变化(图1-2至1-6),然后依靠流体自身的动力(压力降),在流经元件的时候实现对流体的混合,被誊为是一种“虽然非常简单,却能发挥巧妙的作用”的工业元件。它可以在很大的流体粘度范围内,不同的流动状态下应用,既可间歇的又可连续的操作。其能使不同的流体达到均匀混合,根本原因在于混合元件使流体产生分流、拉伸、旋转、合流等运动,过程中增强了湍动,这些均极大地促进了对流扩散和紊动扩散,从而造成完善的径向混合效果。静态混合器有许多优点,与动态混合器相比,其结构简单、能耗低、安装维修简便、混合性

静态混合器的设置

静态混合器的设置HG/T 20570.20—95

1 应用范围和类型 1.0.1应用范围 静态混合器应用于液-液、液-气、液-固、气-气的混合、乳化、中和、吸收、萃取反应和强化传热等工艺过程,可以在很宽的流体粘度范围(约106mPa·s)以内,在不同的流型(层流、过渡流、湍流、完全湍流)状态下应用,既可间歇操作,也可连续操作,且容易直接放大。以下分类简述。 1.0.1.1 液-液混合:从层流至湍流或粘度比大到1:106mPa·s的流体都能达到良好混合,分散液滴最小直径可达到1~2μm,且大小分布均匀。 1.0.1.2 液-气混合:液-气两相组份可以造成相界面的连续更新和充分接触,从而可以代替鼓泡塔或部分筛板塔。 1.0.1.3 液-固混合:少量固体颗粒或粉未(固体占液体体积的5%左右)与液体在湍流条件下,强制固体颗粒或粉未充分分散,达到液体的萃取或脱色作用。 1.0.1.4 气-气混合:冷、热气体掺混,不同组份气体的混合。 1.0.1.5 强化传热:静态混合器的给热系数与空管相比,对于给热系数很小的热气体冷却或冷气体加热,气体的给热系数提高8倍;对于粘性流体加热提高5倍;对于大量不凝性气体存在下的冷凝提高到8.5倍;对于高分子熔融体可以减少管截面上熔融体的温度和粘度梯度。 1.0.2静态混合器类型和结构 1.0. 2.1 本规定以SV型、SX型、SL型、SH型和SK型(注①)五种类型的静态混合器系列产品为例编制。 1.0. 2.2 由于混合单元内件结构各有不同,应用场合和效果亦各有差异,选用时应根据不同应用场合和技术要求进行选择。 1.0. 2.3 五种类型静态混合器产品用途和性能比较见表1.0.2-1和表1.0.2-2,结构示意图见图1.0.2。静态混合器由外壳、混合单元内件和连接法兰三部分组成。

sk型静态混合器

7.静态混合器

静态混合器上尽量不安装流量、温度、压力等指示仪表和检测点,特殊要求时在订货时出图说明。 对于需要在混合器外壳设置换热夹套管时,要在订货时说明。 对于SH系列产品,由于其加工精度高,维修困难,要求使用的介质清洁或能用溶剂倒置清洗,要不就是介质在高温对于SV系列产品,若因流体不清洁而堵塞,可拆卸设备、用水(蒸汽)或溶剂倒置清洗,也可拆掉单元,取对于SK系列的活络单元产品,可将整个单元抽出清洗,但拉出时切忌敲击,以免单元变形。 A、SV型静态混合器 1.产品特性 单元是由一定规格的波纹板组装而成的圆柱体,它的技术性能:最高的分散程度为1-2μm,液-液相的不均匀度为Δ 2.产品型号 规格DN dh Q规格DN dh SV-2.3/2020 2.30.5-1.2SV-5-20/2002005-20 SV-2.3/2525 2.30.9-1.8SV-5-20/2502505-20 SV-3.5/3232 3.5 1.4-2.9SV-5-30/3003007-30 SV-3.5/4040 3.5 2.2-4.5SV-7-30/3503507-30 SV-3.5/5050 3.5 3.5-7SV-7-30/4004007-30 SV-3.5/6565 3.55-12SV-7-30/4504507-30 SV-5/808059-18SV-7-30/5005007-30 SV-5/100100514-28SV-7-30/6006007-30 SV-5-7/1251255-724-34SV-7-30/100010007-30 SV-5-7/1501505-730-60SV-15-30/1200120015-30 SV型外形图

Kenics型静态混合器在高雷诺数下的压力降研究_陈立波

第26卷第12期2009年12月 机 电 工 程 M echan ical&E l ectrical Eng i nee ri ng M agazi ne V o.l 26N o .12D ec .2009 收稿日期:2009-06-22 基金项目:浙江省自然科学基金资助项目(Y5080271) 作者简介:陈立波(1985-),男,浙江台州人,主要从事混合器、流体机械等数值计算方面的研究.E-m ai:l hzcl b100@yahoo .co https://www.360docs.net/doc/ae17048071.html, 通信联系人:潘华辰,男,教授.E-m ai:l huac h en-pan @yahoo .co m K enics 型静态混合器在高雷诺数下的压力降研究 * 陈立波,聂 欣,潘华辰 (杭州电子科技大学机械工程学院,浙江杭州310018) 摘 要:为了获得Ken ics 型静态混合器在高雷诺数下的压力降规律,在雷诺数R e =4100~4000000范 围内,采用计算流体力学(CFD)方法,通过对5种不同长径比的Ken ics 静态混合器的内部流动进行数值模拟来获取数据。量纲分析表明了Ken ics 静态混合器的压力降特性可以通过3个无量纲参数:摩擦因数C f 、混合器单元长径比AR 、雷诺数R e 来描述。根据数值模拟结果作出了这3个参数的关系曲线,提出了一个新的无量纲压力降关系式。研究结果表明,在雷诺数大于200000时,C f 值趋于恒定,与R e 值无关,同时通过和文献中的实验、计算数据进行比较,证实了压力降曲线和关系式的准确性。关键词:Kenics 型静态混合器;计算流体力学;压力降关系式;无量纲参数中图分类号:TQ 051.7 文献标识码:A 文章编号:1001-4551(2009)12-0108-04 P ressure drop researches for Kenics static m ixer at high R eynol d s num ber C HEN L -i bo ,N I E X in ,P AN H ua -chen (College of M echanical Eng ineering,H angzhou D i anz i Un i vers it y,H angzhou 310018,China) Abstrac t :In order to obta i n t urbu l ent flo w pressure drop rule i n SK static m ixer ,computati onal fl u i d dyna m ics(CFD )me t hod w as app lied t o nu m erica ll y si m u late flo w i n fi ve K en ics static m i xers w ith d iffe rent aspect ra ti o o f a m i x i ng e l em ent(AR )over a w i de range of 4100t o 4000000to get pressure drop datas .D i m ens i ona l analysis revea led tha t t he pressure drop character i stic of the K enics static m i x er can be descr i bed by three d i m ensi onless param eters ,such as t he fr i c tion facto r ,R eyno l ds nu mber ,and aspect rati o o f a m i x i ng e l e m ent .A ccord i ng to the nu m erical si m ulati on datas ,a graph ical su mm ary w as m ade to descri be the re -lati on of the t hree di m ensi onless para m ete rs ,a ne w di m ensi onless pressure drop co rre l a ti on was deve l oped .The resu lts i nd i cate tha t the value o f C f beco m es constant and has no co rre l a ti on w ith the va l ue of Re when t he R eno lds nu m be r i s l a rger t han 200000.T he re liab ility o f the propo sed pressure drop rule and correlati on i s va lida ted by the co m parison w it h various expe ri m en -tal and co m puta ti ona l da ta reported i n t he litera t ure . K ey word s :K enics static m i x er ;co m putationa l fl u i d dyna m i cs(CFD );pressure drop correlati on ;d i m ension l ess param eters 0 引 言 K enics 型静态混合器是一种高效的管式混合设备,内部混合元件为扭曲的螺旋叶片,按左、右旋交错 90 排列。这种特殊的混合元件能实现对单相及两相流体的良好混合,且加工制造相对简单,被广泛应用于食品、化工以及水处理等多个领域 [1] 。 早期研究表明Ken ics 静态混合器压力降( P )为 摩擦因数C f 、雷诺数R e 、混合器总长径比(L P /D )和 u 2 /2的关系式,其中摩擦因数为雷诺数的函数。如W il k i n son 和C liff(R e <50) [2] 、Grace (R e <1000) [3] 、M orr 和M issi o n(Re <100)[4]、Sir(R e <2300)[5] 等各 自总结出了在一定雷诺数范围内的压力降经验公式。H yun -seob song 等 [6] 对该混合器的压力降问题进行了 量纲分析,发现作为无量纲参数的摩擦因数和雷诺数、单元长径比(AR )有关,并通过数值模拟研究总结了这三者之间的关系式,在Re <2000区域和其他文献的 数据吻合良好。V i m a lKum ar 等[7] 通过实验和CFD 模拟详细研究了长径比AR =1.5时,K en i c s 静态混合器在1000

静态混合器的种类和用途

静态混合器的种类和用途 静态混合器 静态混合器是一种没有运动部件的高效混合设备,其基本工作机理是利用固定在管内的混合单元体改变流体在管内的流动状态,以达到不同流体之间良好分散和充分混合的目的。 目录 简介 原理 分类 编辑本段简介 静态混合器是20世纪70年代初开始发展的一种先进混合器,1970年美国凯尼斯公司首次推出其研制开发的静态混合器,20世纪80后,国内相关企业也纷纷投入研究生产,其中在乳化燃料生产方面也得到了很好的应用。

自20世纪70年代以来,静态混合器就已开始在化学工业、食品工业、纺织轻工等行业得到应用,并取得良好的成果。但静态混合器作为一种专 利产品,国内、国外都对此结构不但保密,而且制成一次性不可拆卸结构。同时,固化剂和环氧树脂粘度相差很大(环氧树脂粘度是固化剂粘度的20~80倍),两流体在管路中流速又非常低,造成它们难以混合均匀。 静态混合器是一种先进的单元设备,和搅拌器不同的是,它的内部没有运动部件,主要运用流体流动和内部单元实现各种流全的混合以及结构特殊的设计合理性。静态混合器与孔板柱、文氏管、搅拌器、均质器等其它设备相比较具有效率高、能耗低、体积小、投资省、易于连续化生产。静态混合器中,流体的运动遵循着“分割-移位-重叠”的规律,混合过程的中起主要作用的是移位。移位的方式可分为两大类:“同一截面流速分布引起的相对移位和“多通道相对移位”,不同型号混合器的移位方式也有所不同。海泰美信HICHINE静态混合器不仅应用于混合过程,而且可以应用于与混合-传递有关的过程,包括气/气混合、液/液萃取、气/液反应、强化传热及液/液反应等过程。静态混合器广泛应用于塑料、化工、医药、矿冶、食品、日化、农药、电缆、石油、造纸、化纤、生物、环保等多个行业。由于该产品耗能低、投资省、效果好、见效快,为用户带来了可观的经济效益。 编辑本段原理

静态混合器要如何选型

静态混合器要如何选型? 【字体:大中小】点击数: 一、静态混合器选型: 静态混合器选型一般取决于所用混合介质的物性(如粘度、颗粒大小、含固量、反应速度和工作温度压力等)。S V型比较常用,因混合性能好,广泛应用于汽-液、液-液、液-固等状态的混合,如调和油、轻质油混合、香料乳化、化学反应等。但SV型系统有压降,所需动力相对较大。而SK型静态混合器,因系统阻力降小、混合性能较好等特点,较多地应用于重质油与水、颗粒大小及含固量多等物系的混合。- 由于各工艺过程的不同,要求也会有所不同。因此在选型上,则根据不同的要求,灵活选用。例如:对于介质粘度较高的物系,一般采用SK型;而对混合性能有一定的要求,则可在选择SV型时并适当放大一些尺寸(管径)。- 当然,您也可通过计算软件来进行计算选型。 二、快速选型如下: SH型静态混合器---混合效果好,常用于粘度较高且清洁的介质。 SL型静态混合器---混合效果较好,常用于粘度较高或伴有高聚物介质的混合物系。 SX型静态混合器---混合效果较好,常用于中等粘度或生产高聚物流体的混合和反应过程。 SK型静态混合器---混合效果较好,常用于粘度较高通常粘度≥500厘泊且伴有杂质颗粒的小流量混合物系。 SV型静态混合器---混合效果好,常用于混合,乳化等要求较高的并且粘度≤100厘泊的各种物系。但因水力直径较小,相应阻力降ΔP 也就较大,要提高处理量,除增大公称直径外,所需动力也大。动力粘度换算:1泊(P)=0.1帕·秒(Pa·s)1厘泊(cP)=0.001帕·秒(Pa·s)三、分配器:分配器的作用是将两股或两股以上的流体汇合成一股,然后进入静态混合器进行混合。分配器的型式通常分为两种,即三通管式和射流器式。其中三通管式的分配器适用的流体流量和压力相差不多;而射流器式的分配器适用流量比或压力比很大的混合介质。 分配器可以自己制作(如三通管式的要求不高),也可以委托定制。

水质工程学课程设计说明书

水质工程学(一)课程设计说明书 1设计任务 此课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规X等基本技能上得到初步训练和提高。 1.1设计要求 根据所给资料,设计一座城市自来水厂,确定水厂的规模、位置,对水厂工艺方案进行可行性研究,计算主要处理构筑物的工艺尺寸,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2基本资料 1.2.1城市用水量资料 1.2.2原水水质及水文地质资料

(1) 原水水质情况:水源为河流地面水 ⑵水文地质及气象资料 ①河流水位特征 最高水位-1m,,最低水位-5m,常年水位-3m ②气象资料 历年平均气温16.00C,年最高平均气温390C,年最低平均气温-30C,年平均降水量1954.1mm,年最高降水量2634.5mm,年最低降水量1178.7mm。常年主导风向为东南风,频率为78%,历年最大冰冻深度:20cm。 ③地质资料 第一层:回填、松土层,承载力8kg/cm2, 深1~1.5m 第一层:粘土层,承载力10kg/cm2, 深3~4m 第一层:粉土层,承载力8kg/cm2, 深3~4m 地下水位平均在粘土层下0.5m 2水厂选址

厂址选择应在整个给水系统设计方案中全面规划,综合考虑,通过技术经济比较确定。在选择厂址时,一般应考虑以下几个方面: ⑴厂址应选择在工程地质条件较好的地方。一般选在地下水位低、承载力较大、湿陷性等级不高、岩石较少的地层,以降低工程造价和便于施工。 ⑵水厂应尽可能选择在不受洪水威胁的地方。否则应考虑防洪措施。 ⑶水厂应尽量设置在交通方便、靠近电源的地方,以利于施工管理和降低输电线路的造价。并考虑沉淀池排泥及滤池冲洗水排除方便。 ⑷当取水地点距离用水区较近时,水厂一般设置在取水构筑物附近,通常与取水构筑物建在一起;当取水地点距离用水区较远时,厂址选择有两种方案,一是将水厂设置在取水构筑物附近;另一是将水厂设置在离用水区较近的地方。 根据综合因素考虑,将水厂设置在取水构筑物附近,水厂和构筑物可集中管理,节省水厂自用水的输水费用并便于沉淀池排泥和滤池冲洗水排除。 3水厂规模及水量确定 Q生活=240×52000×10-3=12480m3/d Q工业=12480×1.78=22214.4m3/d Q三产=12960×0.82=10233.6m3/d Q工厂=0.5+0.8+0.6+1.1=30000m3/d

基于FLUENT软件的混合器内部流场数值模拟

基于FLUENT的混合器内部流场数值模拟 摘要:本文通过使用FLUENT软件的标准k-ε湍流模型对冷热水混合器进行三维 数值模拟,分析其内部流场变化情况。通过对液体分布器内部流场的分析模拟,能真实反映混合器内部的复杂流动,准确反映混合器内部温度、速度流场,对混合器的设计有很好的指导作用,为混合器的设计提供理论依据。 关键词: CFD;FLUENT;冷热水混合器;三维数值模拟 1.引言: 1.1 混合器应用背景 工程热水恒温混合器,是为适应中央热水工程向大型化、自动化个人性化发展的技术要求而研发的,是为太阳能热水工程和各种生活热水器供水系统专门配套的一种全自动洗浴水恒温控制设备。广泛适用于宾馆、饭店、学校、医院、厂矿、机关及洗浴中心、游泳池等大中小型生活热水系统。由于混合器的广泛使用,混合器内的各个流场也受到内流研究者的广泛关注。 1.2 FLUENT软件背景 FLUENT是美国FLUENT公司开发的集流场、燃烧和热、质量传输以及化学反应于一体的商业CFD软件,也是目前国内外使用最多、最流行的商业软件之一。FLUENT软件的最大特点是具有专门的几何模型制作软件Gambit模块,并可以与CAD连接使用,同时备用很多附加方程添加接口,使用了目前较先进的离散技术和计算精度控制技术,如多层网络法、快速收敛准则以及光滑残差法等,数学模型的离散化合软件计算方法处理较为得当。实际应用中发现,该软件在模拟单相流动或进出口同向或方向流动时,可以得到较好的模拟结果,且具有一定的计算精度。FLUENT软件包主要具有常用的6种湍流数学模型、辐射数学模型、化学物质反应和传递流动模型、污染物质形成模型、相变模型、多相模型、流团移动模型、多孔介质、多孔泵模型等。 FLUENT软件的核心部分是纳维—斯托克斯(Navier-Stokes)方程的求解模块。用压力校正法作为低速不可压流动的计算方法,包括SIMPLE、SIMPLEC、PISO 三种算法,采用有限体积法离散方程,其计算精度和稳定性都要优于传统编程中使用的有限差分法。而对于可压流动采用耦合法,即将连续性方程、动量方程以及能量联立求解。FLUENT软件主要由前处理、求解器以及后处理3大模块组成。采用自行研发的GAMBIT前处理软件来建立几何形状及生成网格,然后由FLUENT 进行求解。 2.控制方程和数值模拟 2.1 控制方程与标准k-ε湍流模型 本文主要分析冷水和热水分别在混合器的两侧沿水平切线方向流入,在容器混合后经过下部渐缩管道流入等径的出流管,然后流入大气。

管式静态混合器流量怎么计算

管式静态混合器流量怎么计算 根据静态混合器连续操作的特点, 定义描述其混合效果的混合度表达式, 并利用不相溶的两相流体混合后的 体积等于它们各自体积之和的原理, 建立动态求取各组分体积分数和流量分数的计算方法和实验装置. 结果表明:利用该方法测定静态混合器的混合效果避免了多点取样,提高了测量的准确性并减少了实验时间,可以用于混合产品质量的在线检测,并为静态混合器的结构设计和工艺设计提供参考依据. 2 管式混合器 混合设备的基本要求是,药剂与水的混合必须均匀,混合设备种类较多,常用的有水泵混合,管式混合,机械混合。水泵混合效果较好,不需要另外建设混合设施,节省动力,大中小型水厂均可以使用,但是采用三氯化铁作为混凝剂时,若投药量较大,药剂对水泵叶轮有轻微的腐蚀作用。当水泵距离反应池较远时,不宜采用水泵混合。机械混合是在池子内安装搅拌设备,以电动机驱动搅拌器使水与药剂混合,机械搅拌的优点是混合效果好,且不受水量变化的影响,适用于各种规模的水厂,缺点是增加机械设备并且相应增加维修费用,目前广泛采用的是管式混合器。 方式优缺点适用条件 管式混合优点: 1.设备简单 2.不占地缺点: 1.当流量减小时可能在中反应混凝 2.一般管道混合效果较差, 但采用静态管式混合器效果好,但水头损失大. 适用于流量变化不大的水厂 混合池混合优点:1.混合效果好 2.某些池型能调节水头高低,适应流量变化缺点:1.占地面积大 2.某些进水方式要带入大量气体适用于大中型水厂 水泵混合优点:1.设备简单 2.混合充分,混合效果好 3.不消耗动能缺点:吸水管较多时投药设备要增加,安装管理复杂适用于一级泵房距离处理构筑物120 米以内的各种规模的水厂 浆板式机械混合优点:1.混合效果好 2.水头损失小缺点:1.需要动能设备 2.管理维护比较复杂适用于各种规模的水厂 杭州西区水厂设计采用静态管式混合器,静态管式混合器混合效果好,主要由混合组件构成,将它放入絮凝 池进水管道中即可,混合组件可以用钢板剪切成椭圆形,在轴线处上下弯折成26.5 度的夹角,各个组件相互垂 直交叉,在端点处焊接既为一节组件。 设计使用要求如下: 混合组件数目为1-4 节,流速小时采用上限 水头损失等于 Q-流量 d-进水管管径m n-混合单元数 一般静态管式混合器的水头损失为0.5 米 混凝剂采用聚合硫酸铁(PFS),混凝工艺采用管式混合器,采用2节混合单元,流速为(在之间取值),进水管两根,投药设备混凝剂为PAC,混凝工艺采用管式静态混合器,混合元件数可为1-4节,取 2 节。 水头损失 一般水头损失要小于0.5m d=880mm,取0.9m 加药点设在混合器进口处,并增加药液扩散器,使混凝剂在管道内很好扩散。 药剂投配设备的设计 药剂采用PAC,混凝剂最大投加量阿a=20mg/l 溶液池 溶解池药剂用泵投加

静态混合器 (NXPowerLite)

1、概念 静态混合器是一种新型先进的化工单元设备,自70年代开始应用后,迅速在国内外各个领域得到推广应用。众所周知,对于二股流体的混合,一般用搅拌的方法。这是一种动态的混合设备,设备中有运动部件。而静态混合器内主要构件静态混合单元在混合过程中自身并不运动,而是凭借流体本身的能量并借助静态混合单元的作用使流体得到分散混合,设备内无一运动部件。 2、流体的混合机理 对于层流和湍流等不同的场合,静态混合器内流体混合的机理差别很大。层流时是“分割---位置移动---重新汇合”的三要素对流体进行有规则的反复作用,从而达到混合;湍流时,除以上三要素外,由于流体在流动的断面方向产生剧烈的涡流,有很强的剪切力作用于流体,使流体的细微部分进一步被分割而混合。 3、静态混合器的混合形态 静态混合器在基本工艺流程中的组合方法见下图所示的两种类型。在实际应用中往往将多种基本流程组合在一起使用。两种液体汇合部位的结构,应根据液体的粘度、密度、混合比、互溶性等来确定。尤其当两种液体一接触就反应或凝胶而相变时,更要注意汇合部位的结构、流速以及混合器的选择。 3.1层流的混合 经静态混合器混合后的流体的混合形态,与经具有传动部件的混合机或搅拌机混合的混合形态有明显的差别。图二表示采用静态混合器混合两种流体是产生的典型层流混合状态。混合状态由条带状变为连续的或不连续的线状及粒子状,而状态的变化取决于流体混合时的雷诺数和韦伯数。例如:当流速、粘度、混合器直径一定时,如果流体间表面张力大,流体的混合形态则从条带状转向线状,进而变化到粒子状。 混合器单元数、管径和流速的选定 混合器的单元数和直径随流体的性质(粘度、互溶性、密度)、混合比、希望达到的混合状态、接触面上液体的结构变化等而不同,可通过试验和经验来确定。通常基于雷诺数并经试验确定混合器的放大倍数。但当雷诺数R e<100(严格地说在1以下)时,混合程度、混合状态与雷诺数无关,只取决于混合器的单元数。

静态混合器的种类和用途

静态混合器 百科名片 静态混合器 静态混合器是一种没有运动部件的高效混合设备,其基本工作机理是利用固定在管内的混合单元体改变流体在管内的流动状态,以达到不同流体之间良好分散和充分混合的目的。 目录 简介 静态混合器是20世纪70年代初开始发展的一种先进混合器,1970年美国凯尼斯公司首次推出其研制开发的静态混合器,20世纪80后,国内相关企业也纷纷投入研究生产,其中在乳化燃料生产方面也得到了很好的应用。 自20世纪70年代以来,静态混合器就已开始在化学工业、食品工业、纺织轻工等行业得到应用,并取得良好的成果。但静态混合器作为一种专 利产品,国内、国外都对此结构不但保密,而且制成一次性不可拆卸结构。同时,固化剂和粘度相差很大(环氧树脂粘度是固化剂粘度的20~80倍),两流体在管路中流速又非常低,造成它们难以混合均匀。

静态混合器是一种先进的单元设备,和搅拌器不同的是,它的内部没有运动部件,主要运用流体流动和内部单元实现各种流全的混合以及结构特殊的设计合理性。静态混合器与孔板柱、文氏管、搅拌器、均质器等其它设备相比较具有效率高、能耗低、体积小、投资省、易于连续化生产。静态混合器中,流体的运动遵循着“分割-移位-重叠”的规律,混合过程的中起主要作用的是移位。移位的方式可分为两大类:“同一截面流速分布引起的相对移位和“多通道相对移位”,不同型号混合器的移位方式也有所不同。海泰美信HICHINE静态混合器不仅应用于混合过程,而且可以应用于与混合-传递有关的过程,包括气/气混合、液/液萃取、气/液反应、强化传热及液/液反应等过程。静态混合器广泛应用于塑料、化工、医药、矿冶、食品、日化、农药、电缆、石油、造纸、化纤、生物、环保等多个行业。由于该产品耗能低、投资省、效果好、见效快,为用户带来了可观的经济效益。 原理 静态混合器 静态混合器的工作原理,就是让流体在管线中流动冲击各种类型板元件, 增加流体层流运动的速度梯度或形成湍流,层流时是“分割-位置移动-重 新汇合”,湍流时,流体除上述三种情况外,还会在断面方向产生剧烈的涡流,有很强的剪切力作用于流体,使流体进一步分割混合,最终混合形成所需要的乳状液。之所以称之为“静态”混合器,是指管道内没有运动部件,只有静止元件。 静态混合器的混合过程是由一系列安装在空心管道中的不同规格的混合单元进行的。由于混合单元的作用,使流体时而左旋,时而右转旋,不断

静态混合器

静态混合器_(NXPowerLite) 1、概念 静态混合器是一种新型先进的化工单元设备,自70年代开始应用后,迅速在国内外各个领域得到推广应用。众所周知,对于二股流体的混合,一般用搅拌的方法。这是一种动态的混合设备,设备中有运动部件。而静态混合器内主要构件静态混合单元在混合过程中自身并不运动,而是凭借流体本身的能量并借助静态混合单元的作用使流体得到分散混合,设备内无一运动部件。 2、流体的混合机理 对于层流和湍流等不同的场合,静态混合器内流体混合的机理差别很大。层流时是“分割---位置移动---重新汇合”的三要素对流体进行有规则的反复作用,从而达到混合;湍流时,除以上三要素外,由于流体在流动的断面方向产生剧烈的涡流,有很强的剪切力作用于流体,使流体的细微部分进一步被分割而混合。 3、静态混合器的混合形态 静态混合器在基本工艺流程中的组合方法见下图所示的两种类型。在实际应用中往往将多种基本流程组合在一起使用。两种液体汇合部位的结构,应根据液体的粘度、密度、混合比、互溶性等来确定。尤其当两种液体一接触就反应或凝胶而相变时,更要注意汇合部位的结构、流速以及混合器的选择。 3.1层流的混合 经静态混合器混合后的流体的混合形态,与经具有传动部件的混合机或搅拌机混合的混合形态有明显的差别。图二表示采用静态混合器混合两种流体是产生的典型层流混合状态。混合状态由条带状变为连续的或不连续的线状及粒子状,而状态的变化取决于流体混合时的雷诺数和韦伯数。例如:当流速、粘度、混合器直径一定时,如果流体间表面张力大,流体的混合形态则从条带状转向线状,进而变化到粒子状。 混合器单元数、管径和流速的选定 混合器的单元数和直径随流体的性质(粘度、互溶性、密度)、混合比、希望达到的混合状态、接触面上液体的结构变化等而不同,可通过试验和经验来确定。

给水水厂设计说明书

一.设计资料 1.1.1 供水要求 1)给水厂水量为30000m3/d。 2)水厂自用水量系数为5~8%,时变化系数1.5~1.4。 3)水厂出水水压为45~50m。 4)出厂水质达到国家饮用水水质标准。 5)水厂自用水取5%。 6)时变化系数取1.5。 1.1.2 原水水质 某河流原水水质分析结果(见表1) 表1 某河流的原水水质分析结果

1.3 饮用水水质标准 生活饮用水水质标准(见表2) 表2 生活饮用水水质非常规检验项目及限值(62项)

1.2 设计任务 1)根据水质、水量、地区条件、施工条件和一些水厂运转情况选定处理方案和确定处理工艺流程。 2)拟定各种构筑物的设计流量及工艺参数。 3)选择各构筑物的形式和数目,初步进行水厂的平面布置和高程布置。在此基础上确定构筑物的形式、有关尺寸安装位置等。 4)进行各构筑物的设计和计算,定出各构筑物和主要构件的尺寸,设计时要考虑到构筑物及其构造、施工上的可能性。 5)根据各构筑物的确切尺寸,确定各构筑物在平面布置上的确切位置,并最后完成平面布置。确定各构筑物间连接管道、检查井的位置。 6)水厂厂区主体构筑物(生产工艺)和附属构筑物的布置,厂区道路、绿化等总体布置。 二.设计说明 2.1 选择方案 2.1.1 絮凝工艺: 方案:采用机械絮凝池和往复式隔板絮凝池组合使用 机械絮凝池 优点:絮凝效果好,节省药剂;水头损失小;可适应水质水量的变化。 缺点:需机械设备和经常维修。 往复式隔板絮凝池 优点:絮凝效果好;构造简单;施工方便。

缺点:容积较大;水头损失较大;转弯处絮粒容易破碎;出水流量不易分配均 匀;出口处易积泥,适用于流量每日大于3万立方米且水量变化较小的水厂。 两种形式絮凝池组合使用有如下优点:当水质水量发生变化时,可以调节机械 搅拌速度以弥补隔板往复式絮凝池的不足;当机械搅拌装置需要维修时,隔板 往复式絮凝池仍可继续运行。此外,若设计流量较小,采用往复式隔板絮凝池 往往前端廊道宽度不足0.5m,不利于施工,则前端采用机械絮凝池可弥补此不 足。 2.1.2 沉淀工艺: 方案:采用平流沉淀池 优点:造价较低;操作管理方便;施工简单;对源水浊度适应性较强;处理效果稳定;采用机械排泥设施时,排泥效果好。 缺点:需要维护机械排泥设备;占地面积较大;水力排泥时排泥困难;一般使用于中小型水厂。 2.1.3 过滤工艺: 方案:V型滤池 优点:可以采用均质滤料,截污能力大,反冲洗干净,过滤周期长,处理水质稳定,节省反冲洗水量。 缺点:对施工的精度和操作管理水平要求甚严,否则会产生如下问题:反冲洗不均匀,有较严重的短流现象发生;跑砂;滤板接缝不平、滤头套管处 密封不严,滤头堵塞甚至发生开裂;阀门启闭不畅等现象时有发生。2.2 水厂设计说明 2.2.1 设计规模 Q=30000 3m d,水厂自用水系数按5%计,设计任务书已给出最高日用水量为: d

静态混合器计算

静态混合器计算 1.1 选类型 选型依据:HG/T 20570.20-95 静态混合器设计 已知:在工作温度为35℃,系统压力为1.8MPa 下,静态混合器各股物流的物料 质量流率 kg/h 密度 kg/m3 体积流率 m3/h 粘度 mPa·s 直馏柴油 27777.8 810.4 34.28 2.03 液氨 116.0 587.4 0.20 10.5 乙二醇 3472.2 1102.0 3.15 0.0136 Σ 31366.0 37.63 根据表1.1,三股物料粘度均小于100mP·s ,选择SV 型静态混合器较合适。 1.2 流速 总体积流量: h /m 63.374 .5870 .116110210472.34.8101078.27333321=+?+?= ++=V V V V 根据表1.2,选择静态混合器管径为:mm 150=D 流体流速: m/s 589.0360015.04 468 .373600422=??=?=ππD V u 对于低、中粘度流体的混合、萃取、中和、传热、中速反应,适宜于过渡流或湍流条件下工作,流体流速控制在m/s 8.0~3.0,m/s 589.0=u 符合情况。 1.3 具体型号 选长径比为10=D L ,则 mm 150015010=?=L ,且设计压力为P=2.0MPa ,查表1.2,水力直径h d 取6mm ,所以该静态混合器型号规格为: SV-6/150-4.0-1500。 1.4 反应时间 [] ? -=Af X 0 A A A0)(X R dX c t

由于环烷酸与液氨的反应为1.5级反应,所以: ( )5 .1A f 5 .1A 01X kc r -= []() ?? -=-=Af Af 05.1Af 5.1A0A A00 A A A01)(X X X kc dX c X R dX c t 积分得: ()5 .0A0 5.0 Af 5.011kc X t ?--= - 式中:k —为反应速率常数,-0.5-11.5kmol s m 89.49??=k ; Af X —环烷酸转化率,由设计要求可得%3.99Af =X ; A0c —环烷酸浓度。 30A0m /kmol 012.063 .37260 /06.118/==== V M m V n c A 所以: ()s 4012 .089.495.01 993.015.0=??--= -t 单个静态混合器的反应体积: 3 22m 0265.05.115.044=??=?=π πL D V r 则空时: s 53.23600 63.370265 .0=÷== Q V r τ 选用两个静态混合器串联,则空时:τ=2×2.53=5.06s 由于是该反应是在液相中进行,可视为等容均相反应过程,故反应物料在静态混合器中的平均停留时间T=5.06s 由此可见,选择两个SV-6/150-4.0-1500静态混合器串联即可满足工艺要求。 1.5 压力降计算 查表1.2,空隙率0.1=ε,则: 8.14100 .11003.2589 .04.810006.03c h =????= = -με ρεu d R e 查表1.3,当150≥εe R 时,摩擦系数:0.1≈f 静态混合器压力降:

给水厂混凝沉淀过滤消毒设计计算书详解

第二章:总体设计 2.1水厂规模的确定 水厂的设计生产量Q 包括以下两项:供应用户的出厂量Q 1和水厂的自用水量Q 2,一般Q 2只占Q 1的5-10%,所以水厂设计生产量可按下式计算: Q=KQ 1 (式中K=1.05-1.10 ) 水厂设计计算水量Q 1=50000m 3/d 即 Q=KQ 1=50000 1.0552500?= m 3/d=2187.5 m 3/h=0.61 m 3/s 根据水厂设计水量2万m 3/d 以下为小型水厂,2万~10万m 3/d 为中型水厂,10万m 3/d 以上为大型水厂的标准可知水厂为中型水厂。 2.2净水工艺流程的确定 玉川集聚区是以工业项目为主,从目前情况看用户对水质的要求不高,完全可以靠供给原水满足企业需求。但从长远来看,一方面不同的企业对水质的要求不同,尤其是夏季的洪水季节,当源水水质发生较大的变化时,可能会因为水质的变化影响企业的生产。 所以水厂以地表水作为水源,且水量充沛水质较好,则主要以取出水中的悬浮物 和杀灭致病细菌为目标,经过比较后采用地面水的常规处理工艺系统。工艺流程如图1所示。 原水 混 合 絮凝沉淀池 滤 池 混凝剂消毒剂清水池 二级泵房 用户 图1 水处理工艺流程 2.3处理构筑物及设备型式选择 (1) 药剂溶解池 设计药剂溶解池时,为便于投置药剂,溶解池的设计高度一般以在地平面以下或半地下为宜,池顶宜高出地面0.20m 左右,以减轻劳动强度,改善操作条件。

溶解池的底坡不小于0.02,池底应有直径不小于100mm的排渣管,池壁需设超高,防止搅拌溶液时溢出。 由于药液一般都具有腐蚀性,所以盛放药液的池子和管道及配件都应采取防腐措施。溶解池一般采用钢筋混凝土池体,若其容量较小,可用耐酸陶土缸作溶解池。 投药设备采用计量泵投加的方式。采用计量泵(柱塞泵或隔膜泵),不必另备计量设备,泵上有计量标志,可通过改变计量泵行程或变频调速改变药液投量,最适合用于混凝剂自动控制系统。 (2)混合设备 根据快速混合的原理,实际生产中设计开发了各种各样的混合设施,主要可以分为以下四类:水力混合、水泵混合、管式混合和机械混合。 在本次设计采用管式混合器对药剂与水进行混合。管式混合是利用原水泵后到絮凝反映设施之间的这一段压水管使药剂和原水混合的一种混合设施。主要原理是在管道中增加一些各种结构的能改变水流水力条件的附件,从而产生不同的效果。 在混合方式上,由于混合池占地大,基建投资高;水泵混合设备复杂,管理麻烦,机械搅拌混合耗能大,管理复杂,相比之下,管式混合具有占地极小、投资省、设备简单、混合效果好和管理方便等优点而具有较大的优越性。管式混合器采用管式静态混合器。 (3)反应池 反应作用在于使凝聚微粒通过絮凝形成具有良好沉淀性能的大的絮凝体。 目前国内使用较多的是各种形式的水力絮凝及其各种组合形式,主要有栅条(网格)絮凝、折板絮凝和波纹板絮凝。这三种形式的絮凝池在大、中型水厂中均有使用,都具有絮凝效果好、水头损失小、絮凝时间短、投资小、便于管理等优点,并且都能达到良好的絮凝条件,从工程造价来说,栅条造价为折板的1/2,为波纹板的1/3,因此采用栅条(网格)絮凝。 (4)沉淀池 原水经投药、混合与絮凝后,水中悬浮杂质已形成粗大的絮凝体,要在沉淀

SK型静态混合器停留时间分布特性研究_孟辉波

第21卷 第2期 石油化工高等学校学报 V ol.21 No.2 2008年6月 JO U RN A L O F P ET ROCH EM ICA L UN IV ERSIT IES Jun.2008 文章编号:1006-396X(2008)02-0059-04 SK型静态混合器停留时间分布特性研究 孟辉波1, 吴剑华2, 禹言芳2 (1.天津大学化工学院,天津300072; 2.沈阳化工学院,辽宁沈阳110142) 摘 要: 结合脉冲示踪法利用计算流体力学方法的雷诺时均方程(RN A S)和重整化群的k-ε湍流模型计算SK型静态混合器内的浓度响应曲线。基于正交实验原理分析流体在不同混合元件长径比、不同监测位置及不同的进口流速下的停留时间分布特性,并计算了平均停留时间和方差来研究各因素之间影响顺序。结果表明,SK型静态混合器内的液体单相流动的轴向返混系数较小且数量级均为10-2,流动状态接近活塞流;平均停留时间随流体流速的增大而减小,随混合器长度和混合元件长径比的增加而增大。 关键词: 静态混合器; 停留时间分布; 数值模拟; 长径比 中图分类号: T Q051.7 文献标识码:A N umerical Sim ulation of Residence Time Dist ribution in Kenics Static M ixer M ENG H ui-bo1,WU Jian-hua2,YU Yan-fang2 (1.School of Chemical Engineering&Technolog y,T ian jin University,T ianj in300072,P.R.China; 2.Sheny ang I nstitute o f Chemical Technology,S heny ang Liaoning110142,P.R.China) Received12J une2007;rev ised25December2007;accep ted5March2008 A bstract: T he concentr ation re sponse cur ves were calculated based o n pulse tracer input technique by means of CF D method ado pted RA NS equa tions and reno rmalization g ro up k-εturbule nce mo del.T he char acte ristic of r esidence time distribution mea sured a t diffe rent o utlet with different inle t velo cities and a spect ra tios w ere ealeula ted and a naly zed by o r tho go nal e xperiment,and the order s o f facto rs w ere ranked by the r ang e analysis of mean value and square devia tion.The re sults show tha t the o rder of a xia l back mixing co efficient is10-2,and the flo wing state o f the fluid in the ke nics static mix er approaches plug flow s.T he mean residence time decreases with increasing flo w rate o f the fluid and increase s with the increa sing leng th and aspect ra tio o f the sta tic mixe rs. Key words: S ta tic mix er;Residence time distributio n(RT D);N umerical simulatio n;A spect ra tio Co rr esponding author.T el.:+86-24-89385408;fax:+86-24-89381016;e-mail:mhb vip@https://www.360docs.net/doc/ae17048071.html, 静态混合器由于流程简单、结构紧凑、投资少、能耗省、易于实现连续操作等优点广泛应用于石油化工、生物化工、制药、高分子材料、环保等工业过程,这些过程往往伴随有化学反应及传热,化学反应进行的完全程度与反应物料在反应器内的停留时间的长短有关[1-4]。停留时间分布能够反映混合器内流动过程的混合状况,为了解流动特性提供参考。 赵秋月等[1]用NaCl溶液做示踪剂测定带搅拌装置的管式反应器停留时间分布曲线特性,刘春江等[2]利用计算流体力学的方法并结合脉冲示踪法研 收稿日期:2007-06-12 作者简介:孟辉波(1981-),男,河北赵县,博士研究生。 基金项目:国家“十五”科技攻关项目(2004BA319B1);辽宁省重大重点科技项目(2006223001)。究M ellapak350Y型规整填料特征单元内的返混程度,杨忠保等[3]以饱和食盐水为示踪剂测定苏尔士静态混合器出口处示踪剂的应答曲线。SK型静态混合器是石油化工领域中应用最为广泛的一种先进的静态混合反应器[4],其不需要设计移动部件就可以达到混合效果且适用于层流和湍流状态。国内外的学者对其研究主要集中在流体力学特性和传热性能方面[5-7],而对停留时间分布特性的研究报道主要集中在层流状态下[8],而工业生产中的流体混合大部分处于湍流状态,为了揭示其分布特性,本工作以Na2SO4做示踪剂,结合脉冲示踪剂法,利用计算流体力学方法获得各种操作参数条件下SK型静态混合器的停留时间分布曲线,并对其进行了初步分析研究。

相关文档
最新文档