2012高考物理模拟试题汇编与解析专题十一 电磁感应2.27

2012高考物理模拟试题汇编与解析专题十一     电磁感应2.27
2012高考物理模拟试题汇编与解析专题十一     电磁感应2.27

2012年全国各地百套模拟试题精选分类解析

专题十一电磁感应

A.I

m

变大,T变小

B.I m变大,T不变

C.I m变小,T变小

D.I m不变,E变大

【答案】A

2.【2012?四川模拟】如图甲所示, MN左侧有一垂直纸面向里的匀强磁场。现将一边长为l、质量为m、电阻为R的正方形金属线框置于该磁场中,使线框平面与磁场垂直,且bc边与磁场边界MN重合。当t=0时,对线框施加一水平拉力F,使线框由静止开始向右做匀

加速直线运动;当t=t

时,线框的ad边与磁场边界MN重合。图乙为拉力F随时间变化

的图线。由以上条件可知,磁场的磁感应强度B

的大小为

A.B

=.B=

C.B

=.B=

【答案】B

【解析】由题述和题图,利用牛顿第二定律可知,F

0=ma,3F

-BIl=ma,I=Blv/R,v=at

,联立

解得B=B正确。

3.【2012?安徽期末】如右图所示,在匀强磁场B中放一电阻不计的平行金属导轨,导轨跟固定的大导体矩形环M

相连接,导轨上放一根

金属导体棒ab并与导轨紧密接触,磁感应线垂直于导轨所在平面。若导体

a

d

F0

3F

甲乙

××

××

××

B

××

×

×

棒匀速地向右做切割磁感线的运动,则在此过程中M所包围的固定闭合小矩形导体环N中电流表内()

(2)有自下而上的恒定电流

B.产生自上而下的恒定电流

C.电流方向周期性变化

D.没有感应电流

【答案】D

【解析】导体棒匀速向右运动的过程中,根据法拉第电磁感应定

律可知,M中产生稳定的电流,则通过N中的磁通量保持不变,故N中无感应电流产生,选项D正确。

4.【2012?广东模拟】北半球地磁场的竖直分量向下.如图所示,在北京某中学实验室的水平桌面上,放置边长为L的正方形闭合导体线圈abcd,线圈的ab边沿南北方向,ad边沿东西方向.下列说法中正确的是( )

A.若使线圈向东平动,则b点的电势比a点的电势低

B.若使线圈向北平动,则a点的电势比b点的电势低

C.若以ab为轴将线圈向上翻转,则线圈中感应电流方向为a→b→c→d→a

D.若以ab为轴将线圈向上翻转,则线圈中感应电流方向为a→d→c→d→a

【答案】C.

【解析】由右手定则知,若使线圈向东平动,线圈的ab边和cd边切割磁感线,c(b)点

电势高于d(a)点电势,故A错误;同理知B错.若

以ab为轴将线圈向上翻转,穿过线圈平面的磁通

量将变小,由楞次定律可判得线圈中感应电流方向

为a→b→c→d→a,C对.

5.【2012?湖南期末】如图所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭合的塑料线框,它们的正下方都放置一薄强磁铁,现将甲、乙、丙拿至相同高度H处同时释放(各线框下落过程中不翻转),则以下说法正确的是( )

A.三者同时落地

B.甲、乙同时落地,丙后落地

C.甲、丙同时落地,乙后落地

D.乙、丙同时落地,甲后落地

【答案】D.

【解析】甲是铜线框,在下落过程中产生感应电流,所受的安培力阻碍它的下落,故所需的时间长;乙是没有闭合的回路,丙是塑料线框,故都不会产生感应电流,它们做自由落体运动,故D 正确.

6.【2012?江苏苏北四市一模】如图所示,两个完全相同的矩形导线框A 、B 在靠得很近的竖直平面内,线框的对应边相互平行。线框A 固定且通有电流I ,线框B 从

图示位置由静止释放,在运动到A 下方的过程中( ) A .穿过线框B 的磁通量先变小后变大

B .线框B 中感应电流的方向先顺时针后逆时针

C .线框B 所受安培力的合力为零

D .线框B 的机械能一直减小 【答案】D

【解析】穿过线框B 的磁通量在A 的下方是由在变小,选项A 错;由楞次定律得选项B 错,因上下两边的安培力大小不同,所以线框B 所受安培力的合力为零;线框B 运动的过程中总是克服安培力做功,实现机械能向电能的转化,所以选项D 对. 7.【2012?辽宁丹东市四校协作摸底测试】如图所示,平行导轨置于磁感应强度为B 的匀强磁场中(方向向里),间距为L ,左端电阻为R ,其余电阻不计,导轨右端接一电容为C 的电容器。现有一长2L 的金属棒ab 放在导轨上,ab 以a 为轴顺时针以ω转过90°的过程中,通过R 的电量为 ( ) A .

Q=

2

2R

B .Q=2BL 2

ωC C .Q=

2

BL R

D .Q= BL 2

(

2R

+2ωC )

【答案】D 【解析】由E=

t

φ??,I=E/R ,q=I △t 联立解得ab 以a 为轴顺时针以ω转过60°的过程中,通过R

的电量为q=

R

φ?

=2

2R

;在这过程中金属棒ab 在回路中产生的感应电动势最大值为2ωL 2B ,

电容器C 充电q ’=2ωL 2BC ,以ω继续转过30°的过程中,电容器通过电阻R 放电,所以ab 以a 为轴顺时针以ω转过90°的过程中,通过R 的电量为Q= q+ q ’= BL 2

(

2R

+2ωC )。选项D 正确

B

A

8.【2012?云南摸底】一导线弯成如右图所示的闭合线圈,以速度v 向左匀速进入磁感应强度为B 的匀强磁场,磁场方向垂直平面向外。线圈总电阻为R ,从线圈进入磁场开始到完全进入磁场为止,下列结论正确的是 ( ) A .感应电流一直沿顺时针方向 B .线圈受到的安培力先增大,后减小 C .感应电动势的最大值E=Brv D .穿过线圈某个横截面的电荷量为R

r r B )(2

2

π+

【答案】AB

【解析】在闭合线圈进入磁场的过程中,通过闭合线圈的磁通量逐渐增大,根据楞次定律可知感应电流的方向一直为顺时针方向,A 正确;导体切割磁感线的有效长度先变大后变小,感应电流先变大后变小,安培力也先变大后变小,B 正确;导体切割磁感线的有效长度最大值为

2r ,感应电动势最大E=2Brv ,C 错误;穿过线圈某个横截面的电荷量为R

r r B R

Q ?

?

?

??+=

?Φ=222π,D

错误。

9.【2012?河北省五校联盟模拟】现代科学研究中常用到高速电子,电子感应加速器就是利用感生电场加速电子的设备。电子感应加速器主要有上、下电磁铁磁极和环形真空室组成。当电磁铁绕组通以变化的电流时,产生变化的磁场,穿过真空盒所包围的区域内的磁通量也随时间变化,这时真空盒空间内就产生感应涡旋电场,电子将在涡旋电场作用下得到加速。如图所示(上图为侧视图、下图为真空室的俯视图),若电子被“约束”在半径为R 的圆周上运动,当电磁铁绕组通有图中所示的电流时( ) A .电子在轨道上逆时针运动

B .保持电流的方向不变,当电流增大时,电子将加速

C .保持电流的方向不变,当电流减小时,电子将加速

D .被加速时电子做圆周运动的周期不变 【答案】AB

【解析】由楞次定律可知,产生的感应涡旋电场为顺时针方向,所以电子在轨道上逆时针运动,所以选项A 正确;保持电流的方向不变,当电流增大时,涡旋电场增强,电子将加速选项B 对

,

选项C 错;电子的速度变化,被加速时电子做圆周运动的周期也变,所以选项D 错. 10.【2012?广西期末】在如图5甲所示的电路中,螺线管匝数n = 1500匝,横截面积S = 20cm 2。螺线管导线电阻r= 1.0Ω,R 1 = 4.0Ω,R 2 = 5.0Ω,C=30μF 。在一段时间内,穿过螺线管的磁场的磁感应强度B 按如图5乙所示的规律变化.则下列说法中正确的是( )

A .螺线管中产生的感应电动势为1V

B .闭合S ,电路中的电流稳定后,电阻R 1的电功率为5×10-2 W

C .电路中的电流稳定后电容器下极板带正电

D .S 断开后,流经R 2的电量为1.8×10-5

C 【答案】CD

【解析】根据法拉第电磁感应定律t

B S

n t

Φn E ???=??=求出E = 1.2V ,选项A 错

根据全电路欧姆定律 A 12.021=++=

r

R R E I 根据 12

R I P =求出P

= 5.76×10-2

W 选项B 错;由楞次定律得选项C 对;S 断开后,流经R 2的电量即为S 闭合时C 板上所带的电量Q 电容器两端的电压 U = IR 2=0.6V ,流经R 2的电量 Q = CU = 1.8×10-5C 选项D 对

11.【2012?山东调考】如图甲所示,光滑平行金属导轨MN 、PQ 所在平面与水平面成θ角,M 、P 两端接一阻值为R 的定值电阻,阻值为r 的金属棒ab 垂直导轨放置,其他部分电阻不计.整个装置处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向上.t =0时对金属棒施一平行于导轨的外力F ,金属棒由静止开始沿导轨向上运动,通过R 的感应电流随时间t 变化的关系如图乙所示.下列关于穿过回路abPMa 的磁通量Φ和磁通量的瞬时变化率ΔΦ

Δt 以及a 、

b 两端的电势差U ab 和通过金属棒的电荷量q 随时间t 变化的图象中,正确的是(

)

【答案】C.

R 2

图甲

图乙

s

图4

【解析】设导轨间距为L ,通过R 的电流I =E R +r =BLv

R +r

,因通过R 的电流I 随时间均

匀增大,即金属棒ab 的速度v 随时间t 均匀增大,金属棒ab 的加速度a 为恒量,故金属棒ab 做匀加速运动.磁通量Φ=Φ0+BS =Φ0+BL×12at 2=Φ0+BLat 22,Φ∝t 2,A 错误;ΔΦ

Δt =

=12BLat ,ΔΦΔt t ,B 错误;因U ab =IR ,且I ∝t ,所以U ab ∝t ,C 正确;q=I Δt =ΔΦ

Δt R +r Δt =ΔΦR +r =BLat 22R +r ,q ∝t 2,所以选项D 错误

12.【2012?重庆摸底】两根相距为L 的足够长的金属弯角光滑导轨如图所示放置,它们各有一边在同一水平面内,另一边与水平面的夹角为37°,质量均为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,导轨的电阻不计,回路总电阻为2R ,整个装置处于磁感应强度大小为B ,方向竖直向上的匀强磁场中,当ab 杆在平行于水平导轨的拉力F 作用下以速度v 沿导轨匀速运动时,cd 杆恰好处于静止状态,重力加速度为g ,以下说法正确的是( )

A .ab 杆所受拉力F 的大小为mg tan37°

B .回路中电流为mg sin 37°BL

C .回路中电流的总功率为mgv sin37°

D .m 与v 大小的关系为m =B 2L 2v

2Rg tan37°

【答案】AD

【解析】采用“计算法”求解。对cd 杆,BILcos37°= mg sin37°,对ab 杆,F=BIL ,联立解出ab 杆所受拉力F 的大小为F=mg tan37°,故A 对;回路中电流为,故B 错;I=mg tan37°/BL,故B 错;回路中电流的总功率为Fv=mgv tan37° ,故C 错;I=BLv/2R ,又I=mg tan37°/BL,故m =B 2L 2v

2Rg tan37°

,故D 对。

13.【2012?安徽信息卷】如图4所示,足够长的光滑U 型导轨宽度为L ,其所在平面与水平面的夹角为α,上端连接一个阻值为R 的电阻,置于磁感应强度大小为B ,方向垂直于导轨平面向上的匀强磁场中,今有一质量为m 、有效电阻r 的金属杆沿框架由静止下滑,设磁场区域无限大,当金属杆下滑达到最大速度时,运动的位移为x ,则 A .金属杆下滑的最大速度22

sin m m g R v B l

α=

B .在此过程中电阻R 产生的焦耳热为

2

1(sin )2m

R

m gx m v R r

α-

+

C .在此过程中电阻R 产生的焦耳热为2

1(sin )2

m mgx mv α-

D .在此过程中流过电阻R 的电量为BLx R

【答案】B

【解析】感应电动势为 E Blv = ① 感应电流为 E I R r

=

+ ②

安培力为 2

2

B L v F BIL R r

==+ ③

根据平恒条件得 sin 0mg F α-= 解得: 22

()sin m mg r R v B l

α

+=

由能量守恒定律得: 2

1sin 2

m mgx mv Q α-=

又因R R Q Q R r =+ 所以2

1(sin )2R m R Q m gx m v R r

α=

-

+

由法拉第电磁感应定律得通过R 的电量为r R BLx r

R q +=

+?Φ=

所以选项B 正确

14.【2012?上海质检】“热磁振荡发电技术”是新能源研究领域的最新方向,当应用于汽车等可移动的动力设备领域时,会成为氢燃料电池的替代方案。它通过对处于磁路中的一段软磁体迅速加热并冷却,使其温度在其临界点上下周期性地振荡,引起磁路线圈中的磁通量周期性地增减,从而感应出连续的交流电。它的技术原理是物理原理。假设两足够长的光滑金属导轨竖直放置,相距为L ,如图6所示,一导线与两导轨相连,磁感应强度的大小为B 的匀强磁场与导轨平面垂直。一电阻为R 、质量为m 的导体棒在距磁场上边界h 处静止释放.导体棒进入磁场后速度减小,最终稳定时离磁场上边缘的距离为H .整个运动过程中,导体棒与

【答案】B

【解析】导体棒进入磁场后,先做变减速运动,安培力也逐浙减小,当减到与重力相等时导体棒稳定,所以导体棒进入磁场进入磁场时的速度最大,所产生的感应电动势最大,其感

应电流也最大,由自由落体运动规律,进入磁场时的速度大小为v =

产生的感应电动势为E BLv =,由闭合电路欧姆定律得m E BLv I R

R

R

=

=

=选项A 错;导体棒稳定后,产生的感应电动势为E BLv =,根据平衡条件,有mg BIL =,所以mg B IL

=

;由能量守恒定律可知,减少的机械能转化为回路的电能,电能又转化为内能

所以2

1()2

Q m H h g m v =+-

,有mg BIL =,E BLv I R

R

=

=

所以2

2

m gR v B L

=

3

2

24

4

()2m g R Q m H h g B L

=+-

,所以选项B 正确;克服安培力做功与产生的焦耳热查等,

所以选项C 错;回路中的电流开始的变化的,所以选项D 错.

15.【2012?江西调考】如图所示电路中,L 是一电阻可忽略不计的电感线圈,a 、b 为L 上的

左右两端点,A 、B 、C 为完全相同的三个灯泡,原来电键K 是闭合的,三个灯泡均在发光。某时刻将电键K 打开,则下列说法正确的是( ) A .a 点电势高于b 点,A 灯闪亮后缓慢熄灭

B .b 点电势高于a 点,B 、

C 灯闪亮后缓慢熄灭 C .a 点电势高于b 点,B 、C 灯闪亮后缓慢熄灭

D .b 点电势高于a 点,B 、C 灯不会闪亮只是缓慢熄灭 【答案】B

【解析】电键K 闭合稳定时,电感线圈支路的总电阻较B 、C 灯支路电阻小,故流过A 灯的电流I 1大于流过B 、C 灯的电流I 2。且电流方向由a 到b ,a 点电势高于b 点。当电键K 打开,由于与电源断开,但电感线圈会产生自感现象,相当于电源,b 点电势高于a 点,阻碍流过A 灯的电流减小,瞬间流过B 、C 灯支路的电流为I 1>I 2。故B 、C 灯闪亮一下后再缓慢熄灭,故B 正确。

16.【2012?武汉联考】A 、B 两闭合圆形导线环用相同规格的导线制成,它们的半径之比r A ∶r B =2∶1,在两导线环包围的空间内存在一正方形边界的匀强磁场区域,磁场方向垂直于两导线环的平面,如图所示.当磁场的磁感应强度随时间均匀增大的过程中,求两导线环内所产生的感应电动势之比和流过两导线环的感应电流的电流之比. A .

1=B

A I I

B .

2=B

A I I C .

4

1=B

A I I D .

2

1=

B

A I I

【答案】D

【解析】 匀强磁场的磁感应强度随时间均匀变化,设t 时刻的磁感应强度为B t ,则B t =B 0+kt ,其中B 0为t =0时的磁感应强度,k 为一常数,A 、B 两导线环的半径不同,它们所包围的面积不同,但某一时刻穿过它们的磁通量均为穿过磁场所在区域面积上的磁通量,设磁场区域的面积为S ,则Φt =B t ·S,即在任一时刻穿过两导线环包围面上的磁通量是相等的,所以两导线环上的磁通量变化率是相等的.

E =

t

??Φ得 E =

t

B ??·S(S 为磁场区域面积). 对A 、B 两导线环,由于

t

B ??及S 均

相同,得

B

A E

E =1 I =

R

E ,R =ρ

1

S

l

(S 1为导线的横截面积)

l =2πr 所以A

B B A B

A r E r E I I =

.代入数值得 2

1==A

B B

A r r I I

17.【2012?江苏常州水平监测】如图所示,水平的平行虚线间距为d ,其间有磁感应强度为B 的匀强磁场。一个长方形线圈的边长分别为L1、L2,且L2<d ,线圈质

量m ,电阻为R 。现将线圈由静止释放,测得当线圈的下边缘到磁场上边缘的距离为h 时,其下边缘刚进入磁场和下边缘刚穿出磁场时的速度恰好相等。求:

(1)线圈刚进入磁场时的感应电流的大小;

(2)线圈从下边缘刚进磁场到下边缘刚出磁场(图中两虚线框所示位置)的过程做何种运动,求出该过程最小速度v ;

(3)线圈进出磁场的全过程中产生的总焦耳热Q 总。

【答案】(1) R gh BL R E

I 21=

= (2) )(22d L h g v -+= (3)2mgd

【解析】?

2

2

1mv mgh =

,

gh

v 20=

1v BL E =,R

gh

BL R

E I 21=

=

?先做加速度减小的减速运动,后做加速度为g 的匀加速运动 3位置时线圈速度最小,而3到4线圈是自由落体运动因此有)

(222

2

0L d g v

v -=-,得

)

(22d L h g v -+=

(3)由于线圈完全处于磁场中时不产生电热,线圈进入磁场过程中产生的电热Q 就是线圈从图中2位置到4位置产生的电热,而2、4位置动能相同。 由能量守恒Q=mgd 由对称性可知:Q 总=2Q=2mgd

18.【2012?江苏苏北四市一模】两根足够长的光滑平行直导轨MN 、PQ 与水平面成θ角放置,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻。一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直于导轨平面向上,导轨和金属杆接触良好,它们的电阻不计。现让ab 杆由静止开始沿导轨下滑。 ?求ab 杆下滑的最大速度v m ;

?ab 杆由静止释放至达到最大速度的过程中,电阻R 产生的焦耳热为Q ,求该过程中ab 杆下滑的距离x 及通过电阻R 的电量q 。 【答案】(1) 2

2

sin L

B mgR v m θ= (2) 4

4

2

22L

B sin g R m sin mg Q x θθ

+

=

(3)3

3

2

2L

B sin Rg m sin mgR BLQ q θθ

+

=

【解析】? 根据法拉第电磁感应定律 欧姆定律 安培力公式和牛顿第二定律 有

BLv E = R

E I =

BIL F A =

P

ma F mg A =-θsin

即 ma R

v L B mg =-2

2

sin θ

当加速度a 为零时,速度v 达最大,速度最大值2

2

sin L

B mgR v m θ=

?根据能量守恒定律 有 Q mv mgx m +=

2

2

1sin θ

得4

4

2

2

2L

B sin g R m sin mg Q x θθ

+

=

? 根据电磁感应定律 有t

E ??=

φ 根据闭合电路欧姆定律 有 R

E I =

感应电量t I q ?=R

BLx R

=?=φ

3

3

2

2L

B sin Rg m sin mgR BLQ q θθ

+

=

19.【2012?山东模拟】如下图甲所示,两足够长平行光滑的金属导轨MN 、PQ 相距为L ,导轨平面与水平面夹角α,导轨电阻不计。匀强磁场垂直导轨平面向上,长为L 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨电接触良好,金属棒的质量为m 、电阻为R ,另有一条纸带固定金属棒ab 上,纸带另一端通过打点计时器(图中未画出),且能正常工作。在两金属导轨的上端连接右端电路,灯泡的电阻R L =4R ,定值电阻R 1=2R ,电阻箱电阻调到使R 2=12R ,重力加速度为g ,现将金属棒由静止释放,同时接通打点计时器的电源,打出一条清晰的纸带,已知相邻点迹的时间间隔为T ,如下图乙所示,试求:

(1)求磁感应强度为B 有多大?

(2)当金属棒下滑距离为S 0时速度恰达到最大,求金属棒由静止开始下滑2S 0的过程中,整个电路产生的电热。 【答案】(1

B =(2)

02

22sin ms Q mgs T

α=-

【解析】(1)根据图乙纸带上打出的点迹可看出,金属棒最终做匀速运动,且速度最大,最大值为v m =2s/T ,达到最大速度时,则有mgsin α=F 安 F 安=ILB 总

R BLv I m =

其中R 总=6R

所以mgsin α=

R v L B m

2

2

解得

B =(2)由能量守恒知,放出的电热Q=?mg 2S 0sin α-22

1

m mv

代入上面的v m 值,可得 0

2

22sin ms Q mgs

T

α=-

20.【2012?黑龙江省哈尔滨市期末】两根相距为L=1m 的足够长的金属导轨如图所示放置,一组导轨水平,另一组平行导轨与水平面成37°角,拐角处连接一阻值为R=1Ω的电阻。质量均为m=1kg 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ=0.5,导轨电阻不计,两杆的电阻均为R=1Ω。整个装置处于磁感应强度大小为B=1T ,方向竖直向上的匀强磁场中。当ab 杆在平行于水平导轨的拉力作用下沿导轨向右匀速运动时,静止的cd 杆所受摩擦力为最大静摩擦力,方向沿斜面向下。求此拉力的功率。(重力加速度g=10m/s 2. 可认为最大静摩擦力等于滑动摩擦力) 【答案】W Fv P 2700==

【解析】由平衡条件可得:N mg BIl μ+?=?37sin 37cos

?+?=37sin 37cos BIl mg N 解得I=20A

由闭合电路欧姆定律:2

2R R Blv I +

=

v=60m/s

所以N Il B mg F 452=+=μ 即W Fv P 2700==

2 5

(甲)

(乙)

21.【2012? 浙江台州市高期末质量评估】如图(甲)所示,M 1M 4、N 1N 4为平行放置的水平金属轨道,M 4P 、N 4Q 为相同半径,平行放置的竖直半圆形金属轨道,M 4、N 4为切点,P 、Q 为半圆轨道的最高点,轨道间距L=1.0m ,圆轨道半径r=0.32m ,整个装置

左端接有阻值R=0.5Ω的定值电阻。M 1M 2N 2N 1、M 3M 4N 4N 3为等大的长方

形区域Ⅰ、Ⅱ,两区域之间的距;区域Ⅰ内分布着均匀的变化的磁场B 1,变化规律如图(乙)所示,规定竖直向上为B 1的正方向;区域Ⅱ内分布着匀强磁 场B 2,方向竖直向上。两磁场间的轨道与导体棒CD 间的动摩擦因数为μ=0.2,M 3N 3右侧的直轨道及半圆形轨道均光滑。质量m=0.1kg ,电阻R 0=0.5Ω的导体棒CD 在垂直于棒的水平恒力F 拉动下,从M 2N 2处由静止开始运动,到达M 3N 3处撤去恒力F ,CD 棒匀速地穿过匀强磁场区,恰好通过半圆形轨道的最高点PQ 处。若轨道电阻、空气阻力不计,运动过程导棒与

轨道接触良好且始终与轨道垂直,g 取10m/s 2 求:

(1)水平恒力F 的大小;

(2)CD 棒在直轨道上运动过程中电阻R 上产生的热量Q ; (3)磁感应强度B 2的大小。

【答案】(1) F=1.0N (2) 01.0=R Q (3)B 2=0.05T-

【解析】(1)CD 棒在PQ 处:2

v P

m g m r

= -----------①

设CD 棒在匀强磁场区速度为v ,则

112

2

22

2

mv mg r mv P

=?+

----------②

CD 棒在恒力F 作用下:2

2

1mv mgs Fs =-μ----③

由①②③得:F=1.0N----④

(2) 棒在直轨道上运动,产生感应电流时间v

s t 21=

--------⑤

感应电动势t

Ld B t

E ??=??Φ=

11------⑥

10

E I R R =

+----⑦

12Rt I Q R =------⑧

由⑤⑥⑦⑧得 01.0=R Q J-------⑨

(3)由于CD 棒穿过匀强磁场区,此过程无感应电流,设CD 棒进入M 3N 3界后的任一短时间Δt 内 Ld B t Lv B 12?=?------ ⑩ 且t B ?=

?5

21----(11)

由①②得v=4m/s-------- -(12) 由⑩(11)(12)得 B 2=0.05T-

22.【2012? 北京市西城区期末】如图所示,光滑金属直轨道MN 和PQ 固定在同一水平面内,MN 、PQ 平行且足够长,两轨道间的宽度L =0.50m 。轨道左端接一阻值R=0.50Ω的电阻。轨道处于磁感应强度大小B =0.40T ,方向竖直向下的匀强磁场中。质量m=0.50kg 的导体棒ab 垂直于轨道放置。在沿着轨道方向向右的力F 作用下,导体棒由静止开始运动,导体棒与轨道始终接触良好并且相互垂直。不计轨道和导体棒的电阻,不计空气阻力。 (1)若力F 的大小保持不变,且F=1.0N 。求 a .导体棒能达到的最大速度大小v m ;

b .导体棒的速度v=5.0m/s 时,导体棒的加速度大小a 。 (2)若力F 的大小是变化的,在力F 作用下导体棒做初

速度为零的匀加速直线运动,加速度大小a=2.0m/s 2。从力F 作用于导体棒的瞬间开始计时,经过时间t=2.0s ,求力F 的冲量大小I 。

【答案】(1) m/s 5.12m =v 2m/s

2.1=-=m

F F a 安

(2)s N 32.21?=+=安I mv I 【解析】1)a .导体棒达到最大速度v m 时受力平衡

m 安F F = 此时,

L R

BLv B

F m

m =安

解得:m/s 5.12m =v

b .导体棒的速度v=5.0m/s 时,感应电动势 1.0V E B L v ==

导体棒上通过的感应电流 2.0A E I R

=

=

导体棒受到的安培力N 40.0==BIL F 安

根据牛顿第二定律,解得:2

m/s

2.1=-=

m

F F a 安

(2)t=2s 时,金属棒的速度m/s 0.41==at v

此时,导体棒所受的安培力0.32N

1

2

2

1==

R

v L B F 安

时间t=2s 内,导体棒所受的安培力随时间线性变化, 所以,时间t=2s 内,安培力的冲量大小s

0.32N 2

1?==t F I 安安

对导体棒,根据动量定理

1-=-mv I I 安

所以,力F 的冲量s

N 32.21?=+=安I mv I

23.【2012? 湖南模拟】如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距m 0.1,导轨平面与水平面成θ=37°角,下端连接阻值为Ω=5.1R 的电阻。匀强磁场大小T B 4.0=、方向与导轨平面垂直.质量为kg m 2.0=、电阻

Ω=5.0r 的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,

它们之间的动摩擦因数为0.25(已知6.037sin = ,8.037cos = ,取g =10m /s 2) 。

(1)求金属棒沿导轨由静止开始下滑时的加速度大小;

(2)求金属棒稳定下滑时的速度大小及此时ab 两端的电压U ab 为多少; (3)当金属棒下滑速度达到稳定时,机械能转化为电能的效率是多少(保留2位有效数字)。

【答案】(1) 4m /s 2 (2) s m v /10= V U ab 3= (3)%6767.03

2=≈=η

【解析】(1)金属棒开始下滑的初速为零,根据牛顿第二定律: ma mg mg =-θμθcos sin

由①式解得a =10×(0.6-0.25×0.8)m/s 2=4m /s 2

(2)设金属棒运动达到稳定时速度为v ,棒在沿导轨方向受力平衡

0cos sin =--BIL mg mg θμθ

由欧姆定律有:r

R BvL I +=

IR U ab = ⑤

由③④⑤代入数据解得: s m v /10= V U ab 3=

(3)当金属棒下滑速度达到稳定时,装置的电功率)(2r R I P +=电

装置的机械功率θsin mgv P =机 机械能转化为电能的效率机

电P P =

η

代入数据解得:%6767.03

2=≈=η

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

高中高考物理试卷试题分类汇编.doc

2019年高考物理试题分类汇编(热学部分) 全国卷 I 33. [物理—选修 3–3]( 15 分) (1)( 5 分)某容器中的空气被光滑活塞封住,容器和活塞绝热性能良好,空气可视 为理想气体。初始时容器中空气的温度与外界相同,压强大于外界。现使活塞缓慢移动,直 至容器中的空气压强与外界相同。此时,容器中空气的温度__________ (填“高于”“低于”或“等于”)外界温度,容器中空气的密度__________ (填“大于”“小于”或“等于”)外界空气 的密度。 (2)( 10分)热等静压设备广泛用于材料加工中。该设备工作时,先在室温下把惰性 气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔 中的材料加工处理,改善其性能。一台热等静压设备的炉腔中某次放入固体材料后剩余的 容积为 m3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中。已知每瓶氩气的 容积为×10-2 m3,使用前瓶中气体压强为×107Pa,使用后瓶中剩余气体压强为×106Pa;室温温度为 27 ℃。氩气可视为理想气体。 (i)求压入氩气后炉腔中气体在室温下的压强; (i i )将压入氩气后的炉腔加热到 1 227 ℃,求此时炉腔中气体的压强。 全国卷 II 33. [ 物理—选修 3-3] ( 15 分) (1)( 5分)如 p-V 图所示, 1、2、 3三个点代表某容器中一定量理想气体的三个不同 状态,对应的温度分别是 T1、T2、 T3。用 N1、N2、N3分别表示这三个状态下气体分子在单位 时间内撞击容器壁上单位面积的次数,则N1______N2, T1______T3, N2 ______N3。(填“大于”“小于”或“等于”)

2010年北京高考物理试题

2010年北京高考物理试题D

述正确的是 A.在相同介质中,绿光的折射率最大 B.红光的频率最高 C.在相同介质中,蓝光的波长最短 D.黄光光子的能量最小 15.太阳因核聚变释放出巨大的能量,同时其质量不断减少。太阳每秒钟辐射出的能量约为4×1026 J,根据爱因斯坦质能方程,太阳每秒钟减少的质量最接近 A.1036Kg B.1018Kg C.1013Kg D.109 Kg 16.一物体静置在平均密度为ρ的球形天体表面的赤道上。已知万有引力常量G,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为 A.1 24()3G πρ B. 1 23()4G πρ C. 12()G πρ D. 123()G πρ 17.一列横波沿x 轴正向传播,a,b,c,d为介质中的沿波传播方向上四个质点的平衡位置。某时刻的波形如图1所示,此后,若经过3/4周期开始计时,则图2描述的是

A.a处质点的振动图像B.b处质点的振动图像 C.c处质点的振动图像D.d处质点的振动图像 18.用控制变量法,可以研究影响平行板电容器的因素(如图)。设两极板正对面积为S,极板间的距离为d,静电计指针偏角为θ。实验中,极板所带电荷量不变,若 A.保持S不变,增大d, 则θ变大 B.保持S不变,增大d, 则θ变小 C.保持d不变,增大S,则θ变小 D.保持d不变,增大S,则θ不变

19.在如图所示的电路中,两个相同 的下灯泡L 1 和L 2 分别串联一个带铁 芯的电感线圈L和一个滑动变阻器 R。闭合开关S后,调整R,使L 1 和L 2 发光的亮度一样,此时流过两 个灯泡的电流为I。然后,断开S。若t'时刻再闭合S,则在t'前后的一小段时间内,正确反映流过 L 1 的电流i 1 、流过L 2 的电流i 2 随时间t的变化的图像是 20.如图,若x轴表示时间,y 轴表示位置,则该图像反映了某质 点做匀速直线运动时,位置与时间 的关系。若令x轴和y轴分别表示 其他的物理量,则该图像又可以反映在某种情况下,相应的物理量之间的关系。下列说法中正确的是

近十年年高考物理电磁感应压轴题

θ v 0 y M a B 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。工作时,在通道内沿z 轴正方 向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=0.22Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =5.0m /s 的速度匀速前进。若以船为参照物,海水以5.0m /s 的速率涌入进 水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以 转化为对船的推力。当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2R = 23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2R 由于I 恒定 R /=v 0rt ∝t

物理高考题分类汇编

2019高考物理题分类汇编 一、直线运动 18.(卷一)如图,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高 度为H 。上升第一个4H 所用的时间为t 1,第四个4H 所用的时间为t 2。不计空气阻力,则21 t t 满足() A .1<21t t <2 B .2<21 t t <3 C .3<21t t <4 D .4<21t t <5 25. (卷二)(2)汽车以某一速度在平直公路上匀速行驶司机忽然发现前方有一警示牌立即刹车。从刹车系统稳定工作开始计时,已知汽车第1s 内的位移为24m ,第4s 内的位移为1m 。求汽车刹车系统稳定工开始计时的速度大小及此后的加速度大小。 二、力与平衡 16.(卷二)物块在轻绳的拉动下沿倾角为30°的固定斜面向上匀速运动,轻绳与斜面平行。已知物块与斜面之间的动摩擦因数为3,重力加速度取10m/s 2。若轻绳能承受的最大张力为1500N ,则物块的质量最大为() A .150kg B .1003kg C .200kg D .2003kg 16.(卷三)用卡车运输质量为m 的匀质圆筒状工件,为使工件保持固定,将其置于 两光滑斜面之间,如图所示。两斜面I 、Ⅱ固定在车上,倾角分别为30°和60°。重力加速度为g 。当卡车沿平直公路匀速行驶时,圆筒对斜面I 、Ⅱ压力的大小分别为F 1、F 2,则() A .1233= =F mg F mg , B .1233==F mg F mg , C .121 3== 2F mg F mg , D .1231==2 F mg F mg ,

19.(卷一)如图,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮。一细绳跨过滑轮,其一端悬挂物块N。另一端与斜面上的物 块M相连,系统处于静止状态。现用水平向左的拉力 缓慢拉动N,直至悬挂N的细绳与竖直方向成45°。已 知M始终保持静止,则在此过程中() A.水平拉力的大小可能保持不变 B.M所受细绳的拉力大小一定一直增加 C.M所受斜面的摩擦力大小一定一直增加 D.M所受斜面的摩擦力大小可能先减小后增加 三、牛顿运动定律 20.(卷三)如图(a),物块和木板叠放在实验台上,木板与实验台之间的摩擦可以忽略。物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。t=0时,木板开始受到水平外力F的作用,在t=4s时 撤去外力。细绳对物块的拉力f随时间t变化的关 系如图(b)所示,木板的速度v与时间t的关系如 图(c)所示。重力加速度取g=10m/s2。由题给数 据可以得出() A.木板的质量为1kgB.2s~4s内,力F的大小为 C.0~2s内,力F的大小保持不变D.物块与木板之间的动摩擦因数为 四、曲线与天体 19.(卷二)如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离。某运动员先后两次从同一跳台 起跳,每次都从离开跳台开始计时,用v表示他在竖直方向 的速度,其v-t图像如图(b)所示,t1和t2是他落在倾斜雪 道上的时刻。() A.第二次滑翔过程中在竖直方向上的位移比第一次的小 B.第二次滑翔过程中在水平方向上的位移比第一次的大 C.第一次滑翔过程中在竖直方向上的平均加速度比第一次 的大 D.竖直方向速度大小为v1时,第二次滑翔在竖直方向上所受阻力比第一次的大

2012年北京市高考物理试卷与解析

2012年北京市高考物理试卷 参考答案与试题解析 一、选择题 1.(3分)(2012?北京)一个氢原子从n=3能级跃迁到n=2能级,该氢原子()A.放出光子,能量增加B.放出光子,能量减少 C.吸收光子,能量增加D.吸收光子,能量减少 2.(3分)(2012?北京)一束单色光经由空气射入玻璃,这束光的() A.速度变慢,波长变短B.速度不变,波长变短 C.频率增高,波长变长D.频率不变,波长变长 3.(3分)(2012?北京)一个小型电热器若接在输出电压为10V的直流电源上,消耗电功率为P;若把它接在某个正弦交流电源上,其消耗的电功率为0.5P,如果电热器电阻不变,则此交流电源输出电压的最大值为() A.5V B.C.10V D. 4.(3分)(2012?北京)处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圈周运动.将该粒子的运动等效为环形电流,那么此电流值() A.与粒子电荷量成正比B.与粒子速率成正比 C.与粒子质量成正比 D.与磁感应强度成正比 5.(3分)(2012?北京)一个弹簧振子沿x轴做简谐运动,取平衡位置O为x轴坐标原点.从某时刻开始计时,经过四分之一的周期,振子具有沿x轴正方向的最大加速度.能正确反映振子位移x与时间,关系的图象是() A.B. C.D. 6.(3分)(2012?北京)关于环绕地球运动的卫星,下列说法中正确的是() A.分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期 B.沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率 C.在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同 D.沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合 7.(3分)(2012?北京)物理课上,老师做了一个奇妙的“跳环实验”.如图所示,她把一个带铁芯的线圈、开关和电源用导线连接起来后,将一金属套环置于线圈上,且使铁芯穿过套环.闭合开关的瞬间,套环立刻跳起.某同学另找来器材再探究此实验.他连接好电路,经重复试验,线圈上的套环均未动.对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是()

高考物理专题物理学史知识点难题汇编含答案

高考物理专题物理学史知识点难题汇编含答案 一、选择题 1.万有引力的发现实现了物理学史上第一次大统一:“地上物理学”和“天上物理学”的统一.它表明天体运动和地面上物体的运动遵从相同的规律.牛顿发现万有引力定律的过程中将行星的椭圆轨道简化为圆轨道,还应用到了其他的规律和结论.下面的规律和结论没有被用到的是( ) A.开普勒的研究成果 B.卡文迪许通过扭秤实验得出的引力常量 C.牛顿第二定律 D.牛顿第三定律 2.在物理学的发展过程中,许多物理学家都做出了重要的贡献,他们也创造出了许多物理学研究方法。下列关于物理学史与物理学研究方法的叙述中正确的是() A.物理学中所有物理量都是采用比值法定义的 B.元电荷、点电荷都是理想化模型 C.奥斯特首先发现了电磁感应现象 D.法拉第最早提出了“电场”的概念 3.电闪雷鸣是自然界常见的现象,古人认为那是“天神之火”,是天神对罪恶的惩罚,下面哪位科学家()冒着生命危险在美国费城进行了著名的风筝实验,把天电引了下来,才使人类摆脱了对雷电现象的迷信。 A.库仑 B.安培 C.富兰克林 D.伏打 4.在物理学发展过程中,许多科学家做出了贡献,下列说法正确的是() A.自然界的电荷只有两种,美国科学家密立根将其命名为正电荷和负电荷,美国物理学家富兰克林通过油滴实验比较精确地测定了电荷量e的数值 B.卡文迪许用扭秤实验测定了引力常量G和静电力常量k的数值 C.奥斯特发现了电流间的相互作用规律,同时找到了带电粒子在磁场中的受力规律D.开普勒提出了三大行星运动定律后,牛顿发现了万有引力定律 5.发明白炽灯的科学家是() A.伏打 B.法拉第 C.爱迪生 D.西门子 6.在物理学发展的历程中,许多物理学家的科学研究推动了人类文明的进程。以下对几位物理学家所作科学贡献的叙述中,正确的是 A.牛顿运用理想实验法得出“力不是维持物体运动的原因” B.安培总结出了真空中两个静止点电荷之间的作用规律 C.爱因斯坦创立相对论,提出了一种崭新的时空观 D.第谷通过大量的观测数据,归纳得到了行星的运行规律 7.自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献。下列说法不.正确的是() A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系 B.欧姆发现了欧姆定律,说明了热现象和电现象之间存在联系

2018年高考物理试题分类解析电磁感应

2018年高考物理试题分类解析:电磁感应 全国1卷 17.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆。M端位于PQS上,O M与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则 B B ' 等于 A. 5 4 B. 3 2 C. 7 4 D.2 【解析】在过程Ⅰ中 R r B R t R E t I q 2 __4 1 π ? = ?Φ = = =,在过程Ⅱ中 2 2 1 ) ' (r B B R q π ? - = ?Φ =二者相等,解得 B B ' = 3 2 。 【答案】17.B 全国1卷 19.如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向

D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【解析】A .开关闭合后的瞬间,铁芯内磁通量向右并增加,根据楞次定律,左线圈感应电流方向在直导线从南向北,其磁场在其上方向里,所以小磁针的N 极朝垂直纸面向里的方向转动,A 正确; B 、 C 直导线无电流,小磁针恢复图中方向。 D .开关闭合并保持一段时间再断开后的瞬间,电流方向与A 相反,小磁针的N 极朝垂直纸面向外的方向转动,D 正确。 【答案】19.AD 全国2卷 18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域, 区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。一边长为 3 2 l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是 【解析】如图情况下,电流方向为顺时针,当前边在向里的磁场时,电流方向为逆时针,但因为两导体棒之间距离为磁场宽度的 2 3 倍,所以有一段时间两个导体棒都在同一方向的磁场中,感应电流方向相反,总电流为0,所以选D. 【答案】18.D 全国3卷 20.如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。导线 PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。导线框R 中的感应电动势

历年高考物理试题分类汇编

历年高考物理试题分类汇编 牛顿运动定律选择题 08年高考全国I理综 15.如图,一辆有动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连,设在某一段时间内小球与小车相对静 止且弹簧处于压缩状态,若忽略小球与小车间的 摩擦力,则在此段时间内小车可能是AD A.向右做加速运动 B.向右做减速运动 C.向左做加速运动 D.向左做减速运动 08年高考全国II理综 16.如图,一固定斜面上两个质量相同的小物块A和B紧 挨着匀速下滑,A与B的接触面光滑。已知A与斜面之间 的动摩擦因数是B与斜面之间动摩擦因数的2倍,斜面倾 角为α。B与斜面之间的动摩擦因数是A A. 2 tan 3 α B. 2 cot .3 α C. tanαD.cotα 08年高考全国II理综 18.如图,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳 两端各系一小球a和b。a球质量为m,静置于地面;b球质量为 3m,用手托往,高度为h,此时轻绳刚好拉紧。从静止开始释放 b后,a可能达到的最大高度为B A.h B.1.5h C.2h D.2.5h 08年高考北京卷理综 20.有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断。例如从解的物理量单位,解随某些已知量变化的趋势,解在一跸特殊条件下的结果等方面进

行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性。 举例如下:如图所示。质量为M 、倾角为θ的滑块A 放于水平地面上。把质量为m 的滑块 B 放在A 的斜面上。忽略一切摩擦,有人求得B 相对地面的加 速度a=2 sin sin M m g M m θθ++,式中g 为重力加速度。 对于上述解,某同学首先分析了等号右侧量的单位,没发现问题。他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都是“解可能是对的”。但是,其中有一项是错误的。请你指出该项。D A. 当θ?时,该解给出a=0,这符合常识,说明该解可能是对的 B. 当θ=90?时,该解给出a=g,这符合实验结论,说明该解可能是对的 C. 当M ≥m 时,该解给出a=gsin θ,这符合预期的结果,说明该解可能是对的 D. 当m ≥M 时,该解给出a=sin B θ,这符合预期的结果,说明该解可能是对的 08年高考山东卷理综 19.直升机悬停在空中向地面投放装有救灾物资的箱子,如图所 示。设投放初速度为零.箱子所受的空气阻力与箱子下落速度的平方成正比,且运动过程中箱子始终保持图示姿态。在箱子下落过程中.下列说法正确的是C A.箱内物体对箱子底部始终没有压力 B.箱子刚从飞机上投下时,箱内物体受到的支持力最大 C.箱子接近地面时,箱内物体受到的支持力比刚投下时大 D.若下落距离足够长,箱内物体有可能不受底部支持力而“飘起来” 08年高考宁夏卷理综 20.一有固定斜面的小车在水平面上做直线运动,小球通 过细绳与车顶相连。小球某时刻正处于图示状态。设斜面对小球的支持力为N ,细绳对小球的拉力为T ,关于此时刻小球的受力情况,下列说法正确的是AB

2012年高考北京卷理综物理精编版(含答案).

2012年普通高等学校招生全国统一考试(北京卷) 理科综合能力测试 物理试题 一、选择题(每个小题都只有一个选项是正确的) 13.一氢原子从n=3能级跃迁到n=2能级,该氢原子( ) A .放出光子,能量增加 B .放出光子,能量减少 C .吸收光子,能量增加 D .吸收光子,能量减少 14.一束单色光经由空气射入玻璃,这束光的( ) A .速度变慢,波长变短 B .速度不变,波长变短 C .频率增高,波长变长 D .频率不变,波长变长 15.一个小型电热器若接在输出电压为10V 的直流电源上,消耗电功率为P ;若把它接在某个正弦交流电源上,其消耗的功率为2/P 。如果电热器电阻不变,则此交流电源输出电压的最大值为( ) A .5V B .25V C .10V D .210V 16.处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动。将该粒子的运动等效为环形电流,那么此电流值( ) A .与粒子电荷量成正比 B .与粒子速率成正比 C .与粒子质量成正比 D .与磁感应强度成正比 17.一弹簧振子沿x 轴做简谐运动,取平衡位置O 为x 轴坐标原点。从某时刻开始计时,经过四分之一周期,振子具有沿x 轴正方向的最大加速度。能正确反映振子位移x 与时间t 关系的图像是( )

18.关于环绕地球的卫星,下列说法正确的是( ) A .分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期 B .沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速度 C .在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同 D .沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合 19.物理课上,老师做了一个奇妙的“跳环实验。”如图,她把一个带铁芯的线圈L 、开关S 盒电源用导线连接起来后,将一个金属套环置于线圈L 上,且使铁芯穿过套环。闭合开关S 的瞬间,套环立刻跳起。 某同学另找来器材在探究此实验。他连接好电路,经重复试验,线圈上的套环均为动。对比老师的演示实验,下列四个选项中,导致套环未动的原因可能是( ) A .线圈接在了直流电源上 B .电源电压过高 C .所选线圈的匝数过多 D .所用套环的材料与老师的不同 20.“约瑟夫森结”由超导体和绝缘体制成。若在结两加恒定电压U ,则它会辐射频率为υ的电磁波,且υ与U 成正比,即kU =υ。已知比例系数k 仅与元电荷e 的2倍和普朗克常量h 有关。你可能不了解此现象的机理,但仍可运用物理学中常用的方法,在下列选项中,推理判断比例系数k 的值可能为( ) A . e h 2 B . h e 2 C .he 2 D . he 21 21.(18分)在“测量金属的电阻率”实验中,所用测量仪器均已校准、待测金属丝接入电路部分的长度约为50cm 。 (1)用螺旋测微器测量金属丝的直径,其中某一次测量结果如图1所示,其读数为 mm (该值接近多次测量的平均值)。 (2)用伏安法测金属丝的电阻x R 。实验所用器材为:电池组(电动势3V ,内阻约1Ω)、电流表(内阻约0.1Ω)、电压表(内阻约3KΩ)、滑动变阻器(0~20Ω,额定电流2A ),开关、导线

高考物理试题专题汇编3

普通高校招生考试试题汇编-选修3-5 18 (全国卷1).已知氢原子的基态能量为E ,激发态能量2 1/n E E n =,其中n=2,3…。用 h 表示普朗克常量,c 表示真空中的光速。能使氢原子从第一激发态电离的光子的最大波长为 A. 143hc E - B.12hc E - C.14hc E - D. 1 9hc E - 解析:原子从n=2跃迁到+∞所以 1 24 E hc E E λ +∞=-=- 故:14hc E λ=-选C 19(海南).模块3-5试题(12分) (1)(4分)3月11日,日本发生九级大地震,造成福岛核电站的核泄漏事故。在泄露的污染物中含有131I 和137Cs 两种放射性核素,它们通过一系列衰变产生对人体有危害的辐射。在下列四个式子中,有两个能分别反映 131I 和137Cs 衰变过程,它们分别是_______和 __________(填入正确选项前的字母)。131I 和137Cs 原子核中的中子数分别是________和 _______. A.X 1→ 137 156 0Ba n + B.X 2→1310541Xe e -+ C.X 3→137 56Ba + 1 e - D.X 4→13154Xe +1 1p 解析:由质量数和核电荷数守恒可以得出正确选项 B C 78 82 (2)(8分)一质量为2m 的物体P 静止于光滑水平地面上,其截面如图所示。图中ab 为粗糙的水平面,长度为L ;bc 为一光滑斜面,斜面和水平面通过与ab 和bc 均相切的长度可忽略的光滑圆弧连接。现有一质量为m 的木块以大小为v 0的水平初速度从a 点向左运动,在斜面上上升的最大高度为h ,返回后在到达a 点前与物体P 相对静止。重力加速度为g 。求 (i )木块在ab 段受到的摩擦力f ; (ii )木块最后距a 点的距离s 。 解析:(i )设木块和物体P 共同速度为v,两物体从开始到第一次到达共同速度过程由动量和能量守恒得:0(2)mv m m v =+ ① 22011 (2)22 mv m m v mgh fL =+++② 由①②得:20(3) 3m v gh f L -=③ (ii )木块返回与物体P 第二次达到共同速度与第一次相同(动量守恒)全过程能量守恒

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

高考物理真题分类汇编(详解)

高中物理学习材料 (马鸣风萧萧**整理制作) 2011年高考物理真题分类汇编(详解) 功和能 1.(2011年高考·江苏理综卷)如图所示,演员正在进行杂技表演。由图可估算出他将一只鸡蛋抛出的过程中对鸡蛋所做的功最接近于 A .0.3J B .3J C .30J D .300J 1.A 解析:生活经验告诉我们:10个鸡蛋大约1斤即0.5kg ,则一个鸡蛋的质量约为 0.5 0.0510 m kg = =,鸡蛋大约能抛高度h =0.6m ,则做功约为W=mgh =0.05×10×0.6J=0.3J ,A 正确。 2.(2011年高考·海南理综卷)一物体自t =0时开始做直线运动,其速度图线如图所示。下列选项正确的是( ) A .在0~6s 内,物体离出发点最远为30m B .在0~6s 内,物体经过的路程为40m C .在0~4s 内,物体的平均速率为7.5m/s D .在5~6s 内,物体所受的合外力做负功 v/m ·s -1 10

2.BC 解析:在0~5s,物体向正向运动,5~6s向负向运动,故5s末离出发点最远,A错;由面积法求出0~5s的位移s1=35m, 5~6s的位移s2=-5m,总路程为:40m,B对;由面积法求出0~4s的位移s=30m,平度速度为:v=s/t=7.5m/s C对;由图像知5~6s过程物体加速,合力和位移同向,合力做正功,D错 3.(2011年高考·四川理综卷)如图是“神舟”系列航天飞船返回舱返回地面的示意图,假定其过程可简化为:打开降落伞一段时间后,整个装置匀速下降,为确保安全着陆,需点燃返回舱的缓冲火箭,在火箭喷气过程中返回舱做减速直线运动,则 A.火箭开始喷气瞬间伞绳对返回舱的拉力变小B.返回舱在喷气过程中减速的主要原因是空气阻力 C.返回舱在喷气过程中所受合外力可能做正功D.返回舱在喷气过程中处于失重状态 3.A 解析:在火箭喷气过程中返回舱做减速直线运动,加速度方向向上,返回舱处于超重状态,动能减小,返回舱所受合外力做负功,返回舱在喷气过程中减速的主要原因是缓冲火箭向下喷气而获得向上的反冲力。火箭开始喷气前匀速下降拉力等于重力减去返回舱受到的空气阻力,火箭开始喷气瞬间反冲力直接对返回舱作用因而伞绳对返回舱的拉力变小。 4.(2011年高考·全国卷新课标版)一质点开始时做匀速直线运动,从某时刻起受到一恒力作用。此后,该质点的动能可能 A.一直增大 B.先逐渐减小至零,再逐渐增大 C.先逐渐增大至某一最大值,再逐渐减小 D.先逐渐减小至某一非零的最小值,再逐渐增大 4.ABD 解析:当恒力方向与速度在一条直线上,质点的动能可能一直增大,也可能先逐渐减小至零,再逐渐增大。当恒力方向与速度不在一条直线上,质点的动能可能一直增大,也可能先逐渐减小至某一非零的最小值,再逐渐增大。所以正确答案是ABD。

2013年北京高考理综物理试题及答案(word高清版)

2013年北京高考理综物理试题及答案 13.下列说法正确的是 A.液体中悬浮微粒的无规则运动称为布朗运动 B.液体分子的无规则运动称为布朗运动 C.物体从外界吸收热量,其内能一定增加 D.物体对外界做功,其内能一定减少 14.如图所示,一束可见光射向半圆形玻璃砖的圆心O ,经折射后分为两束单色光a 和b ,下列判断正确的是 A.玻璃对a 光的折射率小于对b 光的折射率 B.a 光的频率大于b 光的频率 C.在真空中a 光的波长大于b 光的波长 D.a 光光子能量小于b 光光子的能量 15.一列沿x 轴正方向传播的简谐机械横波,波速为4m/s 。某时刻波形如图所示,下列说法 正确的是 A. 这列波的振幅为4cm B. 这列波的周期为1s C.此时x =4m 处质点沿y 轴负方向运动 D.此时x =4m 处质点的加速度为0 16.倾角为α、质量为M 的斜面体静止在水平桌面上,质量为m 的木块静止在斜面体上。下列结论正确的是 A.木块受到的摩擦力大小是αcos mg B.木块对斜面体的压力大小是αsin mg C.桌面对斜面体的摩擦力大小是ααcos sin mg D.桌面对斜面体的支持力大小是g m M )+( 17.如图,在磁感应强度为B 、方向垂直纸面向里的匀强磁场中,金属杆MN 在平行金属导轨上以速度v 向右匀速滑动, MN 中产生的感应电动势为E 1;若磁感应强度增为2B ,其他条件不变,MN 中产生的感应电动势变为E 2.则通过电阻R 的电流方向及E 1与E 2.之比分别为 A. c →a ,2:1 B.a →c ,2:1 C.a →c ,1:2 D.c →a ,1:2 v 8 2 0 y/c x / m 10 4 6 2 -2 12 v M N R a b c d m M α a b O

高考物理专题汇编物理带电粒子在电场中的运动(一)

高考物理专题汇编物理带电粒子在电场中的运动(一) 一、高考物理精讲专题带电粒子在电场中的运动 1.在如图甲所示的直角坐标系中,两平行极板MN 垂直于y 轴,N 板在x 轴上且其左端与坐标原点O 重合,极板长度l =0.08m ,板间距离d =0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上(0,d /2)处有一粒子源,垂直于y 轴连续不断向x 轴正方向发射相同的带正电的粒子,粒子比荷为 q m =5×107C /kg ,速度为v 0=8×105m/s .t =0时刻射入板间的粒子恰好经N 板右边缘打在x 轴上.不计粒子重力及粒子间的相互作用,求: (1)电压U 0的大小; (2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =23 T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围. 【答案】(1)4 0 2.1610V U =? (2)0.04m x ?= (3)0.1425m x ≥ 【解析】 【分析】 【详解】 (1)对于t =0时刻射入极板间的粒子: 0l v T = 7110T s -=? 211()22T y a = 2y T v a = 22 y T y v = 122 d y y =+ Eq ma =

U E d = 解得:4 0 2.1610V U =? (2)2T t nT =+ 时刻射出的粒子打在x 轴上水平位移最大:032 A T x v = 所放荧光屏的最小长度A x x l ?=-即:0.04x m ?= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y . 速度偏转角的正切值均为:0 tan y v v β= 37β=o cos37v v = o 6110m/s v =? 即:所有的粒子射出极板时速度的大小和方向均相同. 2 v qvB m R = 0.03m R r == 由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场. 由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A R x x ? =+ 0.1425m C x =. 由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥ 2.如图所示,在空间坐标系x <0区域中有竖直向上的匀强电场E 1,在一、四象限的正方形区域CDEF 内有方向如图所示的正交的匀强电场E 2和匀强磁场B ,已知CD =2L ,OC =L ,E 2

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

2020年高考物理试题分类汇编 普通高校招生考试 精品

θ F 2020普通高校招生考试试题汇编-相互作用 1(2020安徽第1题).一质量为m 的物块恰好静止在倾角为θ的斜面上。现对物块施加一个竖直向下的恒力F ,如图所示。则物块 A .仍处于静止状态 B .沿斜面加速下滑 C .受到的摩擦力不便 D .受到的合外力增大 答案:A 解析:由于质量为m 的物块恰好静止在倾角为θ的斜面上,说明斜面对物块的作用力与物块的重力平衡,斜面与物块的动摩擦因数μ=tan θ。对物块施加一个竖直向下的恒力F ,使得合力仍然为零,故物块仍处于静止状态,A 正确,B 、D 错误。摩擦力由mg sin θ增大到(F +mg )sin θ,C 错误。 2(2020海南第4题).如图,墙上有两个钉子a 和b,它们的连 线与水平方向的夹角为45°,两者的高度差为l 。一条不可伸长 的轻质细绳一端固定于a 点,另一端跨过光滑钉子b 悬挂一质量 为m1的重物。在绳子距a 端2 l 得c 点有一固定绳圈。若绳圈上悬挂质量为m2的钩码,平衡后绳的ac 段正好水平,则重物和钩 码的质量比12 m m 为 A.5 B. 2 C. 52 D.2 解析:平衡后设绳的BC 段与水平方向成α角,则:tan 2,sin 5 αα== 对节点C 分析三力平衡,在竖直方向上有:21sin m g m g α=得:1215sin 2 m m α==,选C 3 (广东第16题).如图5所示的水平面上,橡皮绳一端固定,另一端连 接两根弹簧,连接点P 在F 1、F 2和F 3三力作用下保持静止。下列判断正 确的是 A. F 1 > F 2> F 3 B. F 3 > F 1> F 2 C. F 2> F 3 > F 1 D. F 3> F 2 > F 1 4(北京理综第18题).“蹦极”就是跳跃者把一 端固定的长弹性绳绑在踝关节等处,从几十米高 处跳下的一种极限运动。某人做蹦极运动,所受 绳子拉力F 的大小随时间t 变化的情况如图所示。 将蹦极过程近似为在竖直方向的运动,重力加速 度为g 。据图可知,此人在蹦极过程中最大加速

相关文档
最新文档