锂离子蓄电池铝塑复合膜包装材料设计与应用

锂离子蓄电池铝塑复合膜包装材料设计与应用
锂离子蓄电池铝塑复合膜包装材料设计与应用

锂离子电池设计原理教材

锂离子电池原理及设计教材 原理篇 电池原材料 化工类材料:正极:钴酸锂、锰酸锂、镍酸锂、磷酸铁锂、三元材料 负极:人造石墨、中间相碳微球(沥青基)、针状焦、改性天然石墨 其他:隔膜、电解液、导电剂、PVDF、NMP、草酸、SBR、CMC、高温胶纸、铜箔、铝箔等 五金类材料:钢壳、铝壳、盖帽、隔圈、铝带、镍带、铝镍复合带等、铝塑膜等电池原材料是决定电池性能的最重要的因素,电池性能的提升归根结底来自于电池材料的优化及更新。 锂离子电池反应机理 锂离子电芯的反应机理是随着充放电的进行,锂离子在正负极之间嵌入脱出,往返穿梭电芯内部而没有金属锂的存在,因此锂离子电芯更加安全稳其反应示意图如下所示: 电芯的正极是LiCoO2加导电剂和粘合剂,涂在铝箔上形成正极板,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,目前比较先进的负极层状石墨颗粒已采用纳米碳。 根据上述的反应机理,正极采用LiCoO2、LiNiO2、LiMn2O2等,其中LiCoO2是一种层状结构很稳定的晶型,但当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。通过研究发现当X>0.5时Li(1-X)CoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的电压及安全性能。所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X值,一般充电电压不大于4.2V。那么X小于0.5 ,这时Li1-XCoO2的晶型仍是稳定的。负极C6其本身有自己的特点,当第一次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有一部分Li 留在负极C6中,以保证下次充放电Li的正常嵌入,否则电芯的寿命很短,为了保证有一部分Li留在负极C6中,一般通过限制放电下限电压来实现。所以锂电芯的安全充电上限电压≤4 .2V,放电下限电压≥2.5V。 锂离子电池的主要制造过程 Li-ion电池的工艺技术比较严格、复杂,这里只能简单介绍一下其中的几个主要工序。

铝塑膜技术资料

成型工艺参考资料 一、昭和ALF的历史及优势 1.历史:99年和Sony共同研制出ALF第一代 01年推出第二代(现我公司主推产品),03年于大陆推广。现在在中国市场占有率为80%〈ATL、TCL、精进能源等客户〉,日本市场占有率为95% 〈Sony使用100%,三洋≥80%,NEC……〉 2.优势<与DNP(大日本印刷)相比> 1)所有原料都由昭和集团各子公司协作完成。进料品质绝对保证DNP(用的主要原材料是一样的)<如:CPP(树脂)和铝箔都是在昭和进的> 2)研发是和Sony共同研发,技术绝对领先 〈举例:ALF研制出第三代,厚度更薄,冲深更深(Song可以冲15mm),昭和已经开发出开发出燃料电池关键原材料,太阳能电池的关键性材料〉3)昭和是全世界作为锂电池原材料最全的公司〈负极、VGCF、ALF、Tablead (机耳)、AL箔、Cu箔、胶体电解质等〉 3.昭和的ALF和DNP对比 1)历史对比:昭和自99年开始和Snoy共同研发 DNP是2001年后开始研发 2)品种对比:①昭和从制作上分为两种:一为干法、二为热法(热合品)。干法已推出三代产品,而热合品从2001年才开始量产。 ②DNP只有一种热合品,其技术水平不足以做出干法品。 3)结构对比:

4)制作方法对比: ①干法:AL和CPP之间用接着剂粘结后,直接压合而成。工 艺相对简洁,制作过程成本较低。 ②热合:AL和MPP之间用MPP接着,然后再缓慢升温升压的 条件热合成,制作过程较长,成本高。并且由于长时间高 温烘烤作用,使ALF脆化,从而导致冲深性能劣化。 5)性能对比: ①干发的优势在于冲深成型性能,防短路性能,外观(杂质、 针孔、鱼眼少),裁切性能以及成本上。另外耐电解液,隔水性良好。 ②热法的优势只在于耐电解液和抗水性方面,而其冲深成型 性能差,防短路性能差,外观差,裁切性能差,成本高。 6)应用方向对比:

聚合物锂离子电池软包装铝塑膜的研究进展_张学建

聚合物锂离子电池软包装铝塑膜的研究进展 张学建,张艳,胡亚召 摘要:软包装铝塑膜是聚合物锂离子电池的重要原材料, 随着聚合物锂离子电池市场的广泛推广,软包装铝塑膜成为了软包装行业的热点之一。 本文概况了聚合物锂电池软包装材料铝塑膜现阶段技术研究和市场应用的情况,包括5部分:技术研究、竞品分析、专利分析、市场动态和应用前景。从技术角度解析了铝塑膜开发的要求和难点;检索专利了解产品专利保护范围;剖析竞品分析其结构及性能;了解市场情况,展望了发展前景。 关键词:聚合物锂离子电池; 软包装铝塑膜;发展前景中图分类号:TQ31 文献标识码:A 文章编号:1009-5624-(2013 )06-0042-071引言 聚合物锂离子电池软包装材料是由铝箔、多种塑 料膜和粘合剂(包括粘接性树脂)组成的复合软包装材料。由于它对腐蚀性的酸、碱、盐或有机溶剂等液态化学物质具有较高的稳定性,它的设计、制造及其应用技术是聚合物锂电池行业要解决的三大技术难题之一 [1-3] 。 据高工锂电产业研究所(GBII)调查,2012年中国锂电池铝塑膜的需求量为1600万平方米,同比增长23%;市场规模为6.2亿元,同比增长21%。由于中国铝塑膜基本上被日本企业垄断,所以价格保持比较稳定的态势;韩国栗村铝塑膜逐渐被聚合物锂电池生产厂家认可,市场份额上升,但总量还是难以与日本DNP和昭和抗衡。国内企业推出的铝塑膜产品市场 评价不高,不少国内企业也在积极研发中,预计未来3~5年国产化率将会有一定的提升,而价格也将随之下降[4]。 2聚合物锂离子电池软包装铝塑膜 的技术研究 液态锂离子电池和聚合物锂离子电池所用的正负极材料是相同的,电池的工作原理也基本一致。它们的主要区别在于电解质的不同,锂离子电池使用的是液体电解质,而聚合物锂离子电池则以聚合物电解质来代替,这种聚合物可以是“干态”的,也可以是“胶态”的,目前大部分采用聚合物胶体电解质[5-8]。 表1液态锂离子电池与聚合物锂离子电池结构差异 Table1thedifferenceofstructuresbetweenTheliquidlithiumion batteryandthePolymerlithiumionbattery 由于聚合物锂离子电池使用了胶体电解质不会 收稿日期:2013-09-30 作者简介:张学建(1974-),男,河北保定人,工程师,现在中国乐凯 胶片股份有限公司研究开发部水性氟涂层背板项目经理。 (中国乐凯股份有限公司,保定071054 )

锂离子电池设计总结

锂离子电池设计总结 (一)液锂电池设计 (1)根据壳子推算卷芯 1、核算容量:(设计最低容量= average * 0.935) 2、极片宽度: 隔膜宽度= 壳子高- 0.6 - 2 - 0.3 - 0.5 图纸高壳子底厚盖板厚绝缘垫厚余量 负极片宽度= 隔膜纸宽度- 2mm 正极片宽度= 负极片宽度- (1~2mm) 注:核算后正负极片宽度要去查找分切刀,最好有对应分切刀;箔材的选择也要依分切刀而定。比如:40mm的分切刀,可以一次分裁8片,则箔材尺寸应该为40*8+(10~15余量)=330~335mm,若没有合适的也可以选择40*7+(10~15mm)的箔材。 3、卷芯宽度: 卷芯设计宽度= 壳子宽度- 0.6 -(0.5~1.5) 图纸宽度两层壳壁厚余量 4、卷芯厚度: (1)卷芯设计厚度= 壳子厚度- 0.6 - 0.6 图纸厚度两层壳壁厚余量 (2)卷芯设计厚度= (规格厚度–0.2 –0.6)/ 1.08 规格书厚度max 余量两层壳壁厚膨胀系数 5、卷尺宽度: 卷尺= 卷芯宽–卷芯厚–卷尺厚(0.5mm)–(1.5~2.5)余量 6、最后根据(2、3、4)进行调整、确认。 7、估算卷芯/电芯最终尺寸 卷芯厚度= 正极片厚+ 负极片厚+ (隔膜厚*2) 卷芯宽度= 卷尺宽+ 卷尺厚+ 卷芯厚+(1~2.5)余量 最终电芯厚度= 卷芯厚度* 1.08 + 壳子厚度+(0.2~0.5) 层数单层厚度卷芯厚卷芯厚* 1.08 +(0.3~0.4)≤规格要求 (二)电池设计注意事项: 1、极耳距极片底部≤极片宽度*1/4 2、极耳外露≥12mm~15mm 负极耳外露:6~10mm 3、小隔膜= 加垫隔膜处光泊区尺寸+(2~3mm) 4、壳子底部铝镍复合带尺寸: 4mm * 13mm * 0.1mm (当壳子底部宽w ≥7mm时) 3mm * 13mm * 0.1mm (当壳子底部宽w <7mm时) 5、极片称重按涂布时箔材和敷料计算

锂电池铝塑膜及其冲压成型工艺

锂电池铝塑膜及其冲压成型工艺 铝塑膜的是由外层尼龙层(ON)、粘合剂、中间层铝箔(Al)、粘合剂、内层热封层(CPP)构成的多层膜,是软包锂电池的封装材料。电池用铝塑膜被要求具备如下特点: (1)具备极高的阻隔性; (2)具有良好的热封性能; (3)材料耐电解液及强酸腐蚀; (4)具有良好的延展性、柔韧性和机械强度。 铝塑膜主要成分是ON/AL/CPP三层物质,每层之间以粘结剂粘合。根据复合工艺的不同,可以将铝塑膜分为干法和热法两种,如图1所示。干法工艺是铝和聚丙烯用粘合剂粘结后直接压合而成,热法工艺是铝和聚丙烯之间用MPP粘结着,在缓慢升温升压热压合而成。干法工艺铝塑膜主要优势有冲深成型效果好,外观一致性好,不易出现针孔、鱼眼、杂质等不良,但其耐电解液性较差。热法工艺可以提高Al层与PP 层之间的粘附力,使内表层防电解液溶胀脱落能力大大提升,但是这种特殊处理的MPP 需要较高的温度将其熔化才能起到粘结作用,冷却后,因与PP的收缩系数存在较大差异,很容易出现向内卷曲的情况。 图1 两种铝塑膜示意图 1 各部分作用

Nylon :可以有效阻止空气尤其是氧的渗透,维持电芯内部的环境,同时可以保证包装铝箔具备良好的形变能力。 Al :可以有效阻止空气中水分的渗透,维持电芯内部的环境,具有一定的厚度强度能够防止外部对电芯的损伤。 PP :不会被电芯内有机溶剂溶解、溶胀等,是电芯内部环境的最直接的包装保护,绝缘,有效阻止内部电解质等与Al layer 接触,避免Al layer 被腐蚀。 2 评价方法 为了全面了解锂电池铝塑膜的各项性能,建立铝塑膜的性能评价标准,筛选出性价比良好的铝塑膜产品,对铝塑膜的性能评价方法进行简单总结。 (1)铝塑膜材料的外观 目测铝塑膜表面是否有坑点、划痕等,各复合层间是否有杂物、气泡等。使用千分尺取不少于10个点测量铝塑膜的厚度和宽度,并判断其均匀性。 (2)热封强度 在一定的温度、时间、压力的封装条件下,将两片铝塑膜或与极耳粘合,取一定宽度封口裁切成条,使用拉力测试设备测试剥离强度。观察剥离后的铝塑膜内表层是否呈均匀乳白色,要求Al层与内表层不分层。软包装材料的热封工艺参数主要有热封时间、热封压力和热封温度,一般情况下,需要重优化调整这3个参数,使热封效果达到最佳。 (3)冲深能力 铝塑膜用良好的成型模具冲深,在一定取值范围内调整成型深度,直至铝塑膜边角出现破裂,记录出现破裂前的深度最大值。铝塑膜的冲深后必须满足以下条件:冲坑的

叠片式聚合物锂离子电池设计规范

一、叠片式聚合物锂离子电池设计规范 1. 设计容量 为保证电池设计的可靠性和使用寿命,根据客户需要的最小容量来确定设计容量。 设计容量(mAh)= 要求的最小容量×设计系数(1) 设计系数一般取1.03~1.10。 2. 极片尺寸设计 根据所要设计电池的尺寸,确定单个极片的长度、宽度。 极片长度Lp: Lp = 电池长度-A-B (2) 极片宽度Wp: Wp = 电池宽度-C (3) 包尾极片的长度Lp′: Lp′= 2Lp+ T'-1.0 (4) 包尾极片的宽度Wp′: Wp′= Wp-0.5 (5) 其中: A —系数,取值由电池的厚度T决定,当 (1)T≤3mm时,对于常规电芯A一般取值4.5mm,大电芯一般取值4.8mm; (2) 3mm<T≤4mm时,对于常规电芯A一般取值4.8mm,大电芯一般取值5.0mm; (3) 4mm<T≤5mm时,对于常规电芯A一般取值5.0mm,大电芯一般取值5.2~6.0mm; (4) 5mm<T≤6mm时,对于常规电芯A一般取值5.2mm, 大电芯一般取值5.4~6.0mm。

B —间隙系数,一般取值范围为3.6~4.0mm; C —取值范围一般为2.5~2.6mm(适用于双折边); T'—电芯的理论叠片厚度,T'的确定见6.1节. 图1.双面极片、单面正极包尾极片示意图 3. 极片数、面密度的确定: 确定极片的数量N,并根据电池的设计容量来确定电极的面密度,电池的设计容量一般由正极容量决定,负极容量过剩。在进行理论计算时,一般正极活性物质的质量比容量取140mAh/g,负极活性物质的质量比容量取300mAh/g。 N =(T-0.2)/0.35±1(6) 注:计算时N取整,并根据面密度的值来调整N。 S 极片 = Lp×Wp(7) C 设 = C 正比 ×S 极片 ×N×ρ 正 ×η 正 (8) C 负 = C 设 ×υ(9) = C 负比×S 极片 ×N×ρ 负 ×η 负 (10) 其中: S 极片 —单个极片的面积; C 正比 —正极活性物质的质量比容量,一般取值140mAh/g; η正—正极活性物质的百分含量; ρ正—正极极片的双面面密度(g/m2); C 负 —负极的设计容量; υ—负极容量过剩系数,一般常规电池取值1.00~1.06;DVD电池以及容量大于2000mAh的取值1.05~1.12; C 负比 —负极活性物质的质量比容量,一般取值300mAh/g;

电芯正负极的容量匹配设计是个难题,讲明白可不是件容易的事

电芯正负极的容量匹配设计是个难题,讲明白可不是件容易的事 锂电前沿原创作品:网上已有较多的N/P的文章,内容非常不错,也非常有深度。比如:锂圈人的《锂电池设计的N/P比》(见文末延伸阅读)的文章和锂想生活的《Overhang设计对锂电池性能的影响》(见文末延伸阅读)的文章。但是,从业新手普遍对文章中提到的传统石墨负极锂离子电池的N/P设计的实例运用和钛酸锂负极锂电池的N/P比两个问题感到迷茫。本文着重讲述这两个问题,当然由于水平所限,讲述不足的地方,请大牛多多指教。 正文:在设计锂电池时,正确计算正负极容量合理的配比系数非常重要。对于传统石墨负极锂离子电池,电池充放电循环失效短板主要在于负极侧发生析锂、死区等,因此通常采用负极过量的方案。在这种情况下,电池的容量是由正极容量限制,负极容量/正极容量比大于1.0(即N/P 比>1.0)。如果正极过量,在充电时,正极中出来的多余的锂离子无法进入负极,会在负极表面形成锂的沉积以致生成枝晶,使电池循环性能变差,也会造成电池内部短路,引发电池安全问题。因此一般石墨负极锂电池中负极都会略多于正极,但也不能过量太多,过量太多会消耗正极中的锂;另外也会造成负极浪费,降低电池能量密度,提高电池成本。

对于钛酸锂负极电池,由于LTO负极结构较稳定,具有高的电压平台,循环性能优异且不会发生析锂现象,循环失效原因主要发在正极端,电池体系设计可取的方案是采用正极过量,负极限容(N/P 比<1.0),这样可以缓解当电池接近或处于完全充电状态时在高电位区域正极电位较高导致电解质分解。 图1、石墨负极不足和负极过量时电池性能趋势图 传统石墨负极锂离子电池 N/P比的计算实例 N/P比(Negative/Positive)是指负极容量和正极容量的比值,其实也有另外一种说法叫CB(cell Balance)。 一般情况下,电池中的正负极配比主要由以下因素决定: ①正负极材料的首次效率:要考虑所有存在反应的物质,包括导电剂,粘接剂,集流体,隔膜,电解液。 ②设备的涂布精度:现在理想的涂布精度可以做到100%,如果涂布精度差,要加以考虑。 ③正负极循环的衰减速率:如果正极衰减快,那么N/P比设计低些,让正极处于浅充放状态,反之如果负极衰减快,那么N/P比高些,让负极处于浅充放状态 ④电池所要达到的倍率性能。

18650锂电池生产工艺设计2

18650锂电芯诞生全过程揭秘(图) 2014-12-01 10:47:42来源:充电头 导读: 18650是目前最常见的锂电封装方式,无论是当下最流行的三元材料,还是国家力推的磷酸铁锂,以及尚未普及的钛酸锂,均有18650的规格。18650型电芯,采用Cylindrical圆柱形封装方式,这种电芯直径18mm,长度65mm,广泛应用于充电宝、电动车、笔记本、强光手电筒等领域。 OFweek锂电网讯:锂电池是目前数码领域使用最多的电池。其最突出的优点是能量密度高,适用于非常注重体积、便携的数码产品。同时,相对于以往的干电池,锂离子电池可以循环利用,在环保方面也有优势。锂离子电池的正负极材料都可以吸收、释放锂离子。但是锂离子在正极和负极中的化学势能有所不同。负极中的锂离子化学势能高,正极中的锂离子化学势能低。锂离子放电时,负极中存储的锂离子释放出来,被正极所吸收。由于负极中锂离子的化学势能高于正极,这部分势能差就以电能的形式释放出来。充电过程则是上述过程的逆转,将正极中的锂离子释放到负极中。由于这种锂离子在正负极中的来回迁移,锂离子电池又被称为摇椅电池。 18650是目前最常见的锂电封装方式,无论是当下最流行的三元材料,还是国家力推的磷酸铁锂,以及尚未普及的钛酸锂,均有18650的规格。18650型电芯,采用Cylindrical圆柱形封装方式,这种电芯直径18mm,长度65mm,广泛应用于充电宝、电动车、笔记本、强光手电筒等领域,这类封装的好处是规格统一,方便自动化、规模化生产,具有机械强度高、耐冲击性强、良品率高等特点;此外还有Prismatic方形软包封装,常见于手机和平板电脑,这类封装最直接的好处是轻薄,体积小,便携。 在笔记本电脑时代,18650电芯还只是数码产品的幕后英雄。随着智能手机和平板等智能设备的普及,移动电源成为了人们出行必不可少的装备,18650也得以开始从幕后走向前台,被大众所熟知。那么,看似简单的18650电芯是如何诞生?它有什么秘密呢?接下来,让我们一起去探索它的诞生过程。近日笔者有幸进入东莞一家电芯厂拜访学习,将从涂布、组装、测试三方面图文并茂,为大家介绍18650电芯的诞生过程。 电芯的生产过程一:涂布

锂电池铝塑膜项目实施方案

锂电池铝塑膜项目实施方案 xxx有限责任公司

摘要 报告目的是对项目进行技术可靠性、经济合理性及实施可能性的方案 分析和论证,在此基础上选用科学合理、技术先进、投资费用省、运行成 本低的建设方案,最终使得项目承办单位建设项目所产生的经济效益和社 会效益达到协调、和谐统一。 该锂电池铝塑膜项目计划总投资3725.45万元,其中:固定资产投资2950.80万元,占项目总投资的79.21%;流动资金774.65万元,占项目总 投资的20.79%。 达产年营业收入6208.00万元,总成本费用4728.21万元,税金及附 加69.40万元,利润总额1479.79万元,利税总额1753.30万元,税后净 利润1109.84万元,达产年纳税总额643.46万元;达产年投资利润率 39.72%,投资利税率47.06%,投资回报率29.79%,全部投资回收期4.86年,提供就业职位126个。 铝塑膜是软包装锂电池电芯封装的关键材料。铝塑膜即铝塑复合膜, 可以将组装后的单片电池密封形成一个电池,起保护内容物的作用,铝塑 膜对电池的性能有重要影响,因此用于锂电池电芯封装材料的铝塑膜必须 具有极高的阻隔性、良好的热封性、耐电解液与强酸、和延展性、柔韧性、高机械强度等特点。 概论、项目建设背景、项目市场分析、项目方案分析、项目选址评价、项目土建工程、工艺技术分析、项目环境保护分析、安全管理、项目风险、

节能方案分析、进度方案、项目投资分析、项目经营效益分析、综合评价等。

锂电池铝塑膜项目实施方案目录 第一章概论 第二章项目承办单位基本情况第三章项目建设背景 第四章项目选址评价 第五章项目土建工程 第六章工艺技术分析 第七章项目环境保护分析 第八章项目风险 第九章节能方案分析 第十章实施进度及招标方案第十一章人力资源 第十二章项目投资分析 第十三章项目经营效益分析 第十四章综合评价

锂离子电池设计公式

锂离子电池设计公式 一、叠片式聚合物锂离子电池设计规范 1.设计容量 为保证电池设计的可靠性和使用寿命,根据客户需要的最小容量来确定设计容量。 设计容量(mAh)=要求的最小容量 x设计系数(1) 设计系数一般取 1.03?1.10。 2.极片尺寸设计 根据所要设计电池的尺寸,确定单个极片的长度、宽度。 极片长度Lp : Lp =电池长度—A -B (2) 极片宽度Wp : Wp =电池宽度—C (3) 包尾极片的长度 Lp': Lp ' = 2Lp+ T1.0 (4) 包尾极片的宽度 Wp : Wp = Wp0.5 (5) 其中: A —系数,取值由电池的厚度T决定,当 (1) T<3mm时,对于常规电芯 A 一般取值4.5mm,大电芯一般取值 4.8mm; (2) 3mm < T<4mm时,对于常规电芯 A 一般取值 4.8mm,大电芯一般取值 5.0mm ; (3) 4mm < T<5mm时,对于常规电芯 A 一般取值 5.0mm,大电芯一般取值 5.2~6.0mm ; (4) 5mm < T<6mm时,对于常规电芯 A 一般取值 5.2mm, 大电芯一般取值 5.4~6.0mm。 B —间隙系数,一般取值范围为 3.6?4.0mm ; C —取值范围一般为 2.5?2.6mm (适用于双折边); T'—电芯的理论叠片厚度,T'的确定见6.1节. 图1.双面极片、单面正极包尾极片示意图 3.极片数、面密度的确定: 确定极片的数量 N,并根据电池的设计容量来确定电极的面密度,电池的设计容量一般由正极容量决定,负极容量过剩。在进行理论计算时,一般正极活性物质的质量比容量取140mAh/g,负极活性物质的质量比容量取 300mAh/g。 N = (T-0.2 ) /0.35 ± (6) 注:计算时N取整,并根据面密度的值来调整N。 S 极片=Lp XWp ( 7) C 设=C 正比xS 极片x NXpE X TJE ( 8)

锂离子电池充放电安全检测设计

锂离子电池充放电安全检测设计 手机的锂离子电池充电安全性日益受到消费者重视,因此充电器制造商在设计产品时,须掌握锂离子电池的相关规格和特性,并使用具备完善电池检测及保护功能的充电芯片,以降低过电流、过电压或过温等状况所造成的危险。 随着科技进步、生活质量提升,电子产品的踪迹到处可见,其中又以手机为人类生活中不可或缺的必需品。不论是早期黑金刚手机或现今功能强大的智能手机,皆需要电源才能运作。 早期手机的电池主要有二种,一是镍氢、镍镉电池,二是锂离子电池,但现在使用镍氢、镍镉电池来做为电源的手机,已经是非常的少见,绝大部分都是使用锂离子电池,尤其消费者希望手机待机时间更长,且体积要更小,所以镍氢、镍镉电池已经慢慢不能符合消费者的期望而被淘汰。虽然镍氢、镍镉电池在价格以及替代电池取得的便利性优于锂离子电池,在其他电子产品上仍旧可看到镍氢、镍镉电池的踪迹;但是,在体积、重量及容量方面,镍氢、镍镉电池皆不如锂离子电池,所以现今标榜着轻薄短小的电子产品,几乎都是使用锂离子电池。 智能型手机因其功能强大、屏幕耗电量大,更是需要电池容量大及电力更耐久的锂离子电池。当手机电池电量不足时,使用者通常会以充电器或搭配一组移动电源随时对电池进行充电。 体积/容量兼具锂离子电池为电子产品首选 充电电池依其材质的不同可分为四类:铅酸电池、镍镉电池、镍氢电池和锂离子电池。

表1 充电电池比较表 由表1优缺点看来,镍镉、镍氢及锂离子电池较适合使用在电子产品上;而锂离子电池无论是在体积、重量及容量(电子产品的使用时间)较优于镍镉、镍氢电池,也无记忆效应的问题,所以锂离子电池在电子产品使用上似乎方便许多。 延长使用寿命锂离子电池充/放电压成关键 一般来说,锂离子电池会有电性安全的范围限制。由于锂离子电池的特性,当电池电压在充电时上升到最高设定电压后,要立即停止充电,避免电池因过充电造成电池损毁而产生危险;电池供电(放电)时,电池电压如果降至最低设定电压以下便要停止放电,避免因过放电而降低使用寿命。 此外,为确保电池使用上的安全,锂离子电池还必须要加装短路保护,以避免发生危险;即使大多数的锂离子电池都有加装保护电路,然而在选择优质的充电器或移动电源时,这仍然是一项重要的考量因素。

卷绕式锂离子电池设计规范

卷绕式锂离子电池设计规范 一、观察给定型号和客户需求 1、型号制定了电池的尺寸(以063048为例,尺寸为6.0×30×48mm) 2、客户要求的容量和电池的放电类别(动力型、高温型、普通型),通常而言电 池所能达到的容量一般为普通型>高温型>动力型(以便确定所需要的材料) 3、材料的选用: 3.1容量≥1000mAh的型号,如果客户无容量或高温要求的用正极CN55系列 3.2有高温要求的型号,正极材料必须使用Co系列,电解液必须用高温电解液 二、卷芯设计 1、容量设计 根据客户要求的最小容量来确定设计容量。 设计容量(mAh)= 要求的最小容量×设计系数=(长×2-刮粉)×宽÷10000×面密度×理论克容量 注:设计系数: 标称容量≤200mAh设计系数一般取1.10~1.20; 标称容量200<C≤350mAh设计系数一般取1.08±0.02; 标称容量C>350mAh设计系数一般取1.07±0.02。 2、卷针的设计 2.1 卷针的宽度 Wj=电芯的宽度-卷针厚度-电芯的厚度-1.7(根据实际情况而定) 2.2 卷针厚度 Tj由卷针的宽度决定,具体见卷针统计表。

3、包装膜尺寸设计 3.1包装膜膜腔长度的确定: 膜腔长度=成品高-顶封宽度(5mm) 3.2包装膜膜腔长度的确定: 膜腔宽度=成品宽-1.2mm 3.3 槽深的设计: 槽深H与电芯厚度的关系如下:H = T-α 其中: T —电芯的厚度; α—当型号为双坑电池时,α取0.2 当型号为单坑电池时,α取-0.2 3.4 包装袋长、宽尺寸的确定: 3.4.1 包装袋宽度: a. 厚度≤5mm的电池铝塑膜宽度为电池本体宽度+(45~50mm),取代5mm 的整数倍为规格; b. 厚度﹥5mm的电池铝塑膜宽度为电池本体宽度+(55~60mm),取代5mm 的整数倍为规格; 3.4.2包装袋长度: 铝塑膜长度=成品电池长度×2+10mm 5、极片的设计: 5.1隔膜宽度=卷芯高度=电芯高度-5mm,(客户容量要求高的小型号电池或极片较 宽的各别型号除外);

手机锂离子电池与电芯的基本知识

第一节锂离子电池的基本知识 一般而言,锂离子电池有三部分构成: 1.锂离子电芯 2.保护电路(PCM) 3.外壳即胶壳 电池的分类 从锂离子电池与手机配合情况来看,一般分为外置电池和内置电池,这种叫法很容易理解,外置电池就是直接装在手上背面,如: MOTOROLA 191,SAMSUNG 系列等;而内置电池就是装入手机后,还另有一个外壳把其扣在手机电池内, 如:MOTOROLA 998,8088,NOKIA的大部分机型 1.外置电池 外置电池的封装形式有超声波焊接和卡扣两种:

1.1超声波焊接 外壳 这种封装形式的电池外壳均有底面壳之分,材料一般为ABS+PC料,面壳一般喷油处理,代表型号有 :MOTOROLA 191,SAMSUNG 系列,原装电池的外壳经喷油处理后长期使用一般不会磨花,而一些品牌电池或水货电池用上几天外壳喷油就开始脱落了.其原因为:手机电池的外壳较便宜,而喷油处理的成本一般为外壳的几倍(好一点的),这样处理一般有三道工序:喷光油(打底),喷油(形成颜色),再喷亮油(顺序应该是这样的,如果我没记错的话),而一些厂商为了降低成本就省去了第一和第三道工序,这样成本就很低了. 超声波焊塑机 其作用为: 行业内比较好的国产超声波焊塑机应该是深圳科威信机电公司生产的. 焊接 有了好的超声波焊塑机不够的,是否能够焊接OK,还与外壳的材料和焊塑机参数设置有很大关系,外壳方面主要与生产厂家的水口料掺杂情况有关,而参数设置则需自己摸索,由于涉及到公司一些技术资料,在这里不便多讲. 1.2卡扣式 卡扣式电池的原理为底面壳设计时形成卡扣式,其一般为一次性,如果卡好后用户强行折开的话,就无法复原,不过这对于生产厂家来讲不是很大的难度(卡好后再折开),其代表型号有:爱立信788,MOTOROLA V66. 2.内置电池

锂离子电池生产主工艺设计

目录 1.设计的目的与任务 (1) 1.1课程设计背景 (1) 1.2课程设计目的与任务 (1) 2.设计的详细内容 (2) 2.1原材料及设备的选取 (3) 2.2电池的工作原理 (3) 2.3电池的制备工艺设计 (4) 2.3.1制片车间的工艺设计 (4) 2.3.2装配车间的工艺设计 (8) 2.3.3化成车间工艺设计 (9) 2.3.4包装车间工艺设计 (11) 2.4厂房设计 (13) 3.经济效益 (13) 4.对本设计的评述 (14) 参考文献 (16)

1.设计的目的与任务 1.1课程设计背景 自从1990年SONY采用可以嵌锂的钴酸锂做正极材料以来,锂离子电池满足了非核能能源开发的需要,同时具有工作电压高、比能量大、自放电小、循环寿命长、重量轻、无记忆效应、环境污染少等特点,现成为世界各国电源材料研究开发的重点[1~3]。锂离子电池已广泛应用于移动电话、便携式计算机、摄像机、照相机等的电源,并在电动汽车技术、大型发电厂的储能电池、UPS电源、医疗仪器电源以及宇宙空间等领域具有重要作用[4~5]。 正极材料作为决定锂离子电池性能的重要因素之一,研究和开发更高性能的正极材料是目前提高和发展锂电池的有效途径和关键所在。目前,已商品化的锂电池正极材料有钴酸锂、锰酸锂、镍酸锂等,而层状钴酸锂正极材料凭借其电压高、放电平稳、生产工艺简单等优点占据着市场的主要地位,也是目前唯一大量用于生产锂离子电池的正极材料[6~8]。 18650电池是指外壳使用65mm高,直径为18mm的圆柱形钢壳为外壳的锂离子电池。自从上个世纪90年代索尼推出之后,这种型号的电池一直在生产,经久不衰。经过近20年的发展,目前制备工艺已经非常成熟,性能有了极大的提升,体积能量密度已经提高了将近4倍,而且成本在所有锂离子电池中也是最低,目前早已走出了原来的笔记本电脑的使用领域,作为首选电池应用于动力及储能领域。 1.2课程设计目的与任务 如前文所述,在目前商业化的锂离子电池中,很多厂家都选用层状结构的

锂电池的国家标准

锂电池的国家标准 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

1、锂离子电池标称电压(),充电截止电压(,根据电芯的厂牌有不同的设计)。(锂离子电芯规范的说法是:锂离子二次电池) 2、对锂离子电池充电要求(GB/T18287 2000规范):首先恒流充电,即电流一定,而电池电压随着充电过程逐步升高,当电池端电压达到(),改恒流充电为恒压充电,即电压一定,电流根据电芯的饱和程度,随着充电过程的继续逐步减小,当减小到时,认为充电终止。(C是以电池标称容量对照电流的一种表示方法,如电池是1000mAh的容量,1C就是充电电流1000mA ,注意是mA而不是mAh,就是10mA。)当然,规范的表示方式是,我这里简化了。 3、为什么认为为充电结束:这是国家标准GB/T18287-2000所规定的,也是讨论得出的。以前大家普遍以20mA为结束,邮电部行业标准YD/T998-1999也是这样规定的,即不管电池容量多大,停止电流都是20mA。国标规定的有助于充电更饱满,对厂家一方通过鉴定有利。另外,国标规定了充电时间不超过8小时,就是说即使还没有达到,8小时到了,也认为充电结束。(质量没问题的电池,都应在8小时内达到,质量不好的电池,等下去也无意义) 4、怎样区别电池是还是:消费者是无法区分的,这要看电芯生产厂家的产品规格书。有些牌子的电芯是和通用的,比如A&TB(东芝),国内厂家基本是,但也有例外,比如天津力神是(但目前也是按了)。 5、把的电芯充电到会怎么样:会使电池容量提高,感觉很好用,待机时间增加,但会减短电池的使用寿命。比如原来500次,减少到300次。同样道理,把的电芯过充,也会减短寿命。锂离子电芯是很娇嫩的。 6、既然电池内有保护板,我们是否就可以放心了呢:不是,因为保护板的截止参数是(这还是好的,差的要到,保护板是应付万一的,假如每次都过充,电池也会很快衰减的。 7、多大的充电电流算是合适的:理论上越小对电池越有好处。但你总不能为了一块电池充电等3天吧。国标规定的低倍率充电是(仲裁充电制式),还以上面的1000mAh容量的电池为例,就是200mA ,那么我们可以估计出这只电池5个多小时可以充饱。(容量mAh=电流mA×时间h)国家技术监督部门鉴定锂电容量,是以1C的高倍率充电,以的低倍率放电,以时间计算出容量值,试验次数5次,有1次容量达到试验结束。(就是有5次机会,如果第一次试验就合格了,后面的4次不做)检测之前允许有一次预循环,就是以1C恒流充电至即停止,而没有后面的恒压到的过程,更没有14小时。 8、锂离子电池能承受多大的充电电流:厂家试验时可以很高,但国标高倍率规定为1C,还以上面的电池为例,1个多小时即可充满。这么大的充电电流,电池能承受吗对于目前的锂离子电芯,是小意思而已。目前没有对充电器的国家标准,所执行的是邮电部行业标准YD/T998 1999/2,里面规定了充电器的电流不得大于1C。 9、寿命是怎样规定的:简单说是指电池经过N次1C充、1C放电后,容量下降到70%,此时的N 就是寿命。并不是说300次还可以用,301次就不能用了。国标规定寿命不得小于300次。我们平时使用的条件没有检测时这么严酷,寿命会更长。 鼓起来就是过充的表现,不过像这种电子产品,是应该具备过充保护功能;过放保护功能;短路保护功能;过流保护功能的。 简短点的: 技术参数:过充门限±50mV、过充延时75mS、过充释放、过放门限±50mV 、过放延时10mS、静态功耗<5uA、工作电流2A、过流保护值3A;短路延时时间4~12ms;

手机锂离子电池与电芯的基本知识

第一节锂离子电池的基本知识 1.锂离子电芯 一般而言,锂离子电池有三部分构成:? 2.保护电路(PCM) 3.外壳即胶壳 电池的分类 从锂离子电池与手机配合情况来看,一般分为外置电池和内置电池,这种叫法很容易理解,外置电池就是直接装在手上背面,如:MOTOROLA 191,SAMSUNG系列等;而内置电池就是装入手机后,还另有一个外壳把其扣在手机电池内,如:MOTOROLA 998,8088,NOKIA的大部分机型?1.外置电池 1.1超声波焊接 外置电池的封装形式有超声波焊接和卡扣两种:? 外壳?这种封装形式的电池外壳均有底面壳之分,材料一般为ABS+PC 料,面壳一般喷油处理,代表型号有 :MOTOROLA 191,SAMSUNG 系列,原装电池的外壳经喷油处理后长期使用一般不会磨花,而一些品牌电池或水货电池用上

几天外壳喷油就开始脱落了.其原因为:手机电池的外壳较便宜,而喷油处理的成本一般为外壳的几倍(好一点的),这样处理一般有三道工序:喷光油(打底),喷油(形成颜色),再喷亮油(顺序应该是这样的,如果我没记错的话),而一些厂商为了降低成本就省去了第一和第三道工序,这样成本就很低了.?超声波焊塑机其作用为: 行业内比较好的国产超声波焊塑机应该是深圳科威信机电公司生产的. 焊接 有了好的超声波焊塑机不够的,是否能够焊接OK,还与外壳的材料和焊塑机参数设置有很大关系,外壳方面主要与生产厂家的水口料掺杂情况有关,而参数设置则需自己摸索,由于涉及到公司一些技术资料,在这里不便多讲. 1.2卡扣式 卡扣式电池的原理为底面壳设计时形成卡扣式,其一般为一次性,如果卡好后用户强行折开的话,就无法复原,不过这对于生产厂家来讲不是很大的难度(卡好后再折开),其代表型号有:爱立信788,MOTOROLA V66. 2.内置电池?内置电池的封形式也有两种,超声波焊接和包标(使用商标将电池全部包起)?超声波焊接的电池主要有:NOKIA 8210,8250,8310,7210等. 包标的电池就很多了,如前两年很浒的MOTO998 ,8088了. 第二节锂离子电芯的基本知识 锂离子电芯是一种新型的电池能源,它不含金属锂,在充放电过程中,只有锂离子在正负极间往来运动,电极和电解质不参与反应。锂离子电芯的能量容量密

锂离子电池设计流程

电池设计流程 1、根据客户对安全性及容量的要求,选择相应的体系;客户对安全性要求较高时,可选择 铁锂或锰酸锂体系,对容量要求较高时,可选择钴酸锂及三元体系。 2、根据电池的厚度选择制作单芯或多芯电池,并选择内部或外部连接;较厚的电池在制作 中不方便,应选择多芯以减短极片的长度,电池太厚内部连接后不容易L型封口,因此要选择外部连接; 3、查看是否有此型号电池,如没有,打印一份与此型号电池相似的工艺(查找电池的宽度 及厚度相似的型号,并查看此型号电池的卷芯宽度是否合适): 1)如果打印工艺与需设计电池的厚度及宽度相同,可以通过调整面密度计算容量是否能够满足,如能满足,可以直接试卷绕; 2)如果卷芯宽度窄于电池宽度0.8~2mm(小型号电池可以是0.8~1mm,大型号电池必须在1mm 以上),此型号电池的厚度与需设计电池的厚度相近,则可以不必修改 卷针的尺寸; 3)如果卷芯宽度与电池宽度相差不足0.8mm(小型号电池),或者卷芯的宽度比电池宽度小1mm(大型号电池),电池的厚度与打印的工艺厚度相差较大时,则要更改 卷针的尺寸。 4、根据客户要求查找合适的模具: 1)看是否有此型号模具,如果没有,是否可以选择其它的型号代替(选择模具宽度与卷芯高度相同的模具,封侧边;如没有,可选择宽度与卷芯宽度相同的模具,封底 边); 2)模具的宽度比电池的宽度窄0.5~1mm左右,模具的高度根据电池的大小有所不同,比电池的高度小4~7mm; 5、根据模具的尺寸修改隔膜及极片宽度: 1)单芯电池隔膜宽度比模具窝的高度小1mm左右,多芯电池隔膜宽度比模具窝小2~3mm; 2)负极宽度比隔膜宽度小2mm; 3)为了方便卷绕,正极的宽度根据电池的大小,一般比负极窄2~4mm; 6、修改极片的长度: 1)电池在充放电时厚度会增加,卷绕圈数越多的电池,厚度增加也会越大,因此电池的厚度比卷芯的厚度厚0.6~1.5 mm; 2)先计算出半圈的厚度,为正极的压片厚度加负极的压片厚度加两层隔膜的厚度; 3)查看卷芯厚度与宽度,如厚度比需设计电池的厚度厚时,则要减短极片。需要减短极片的尺寸按每次减半圈(电池的宽度),直到能达到厚度要求为止; 4)如厚度比需设计电池的厚度薄时,则要加长极片。需要加长极片的尺寸按每次减半圈(电池的宽度),直到能达到厚度要求为止; 7、根据电池修改后的尺寸计算面密度、敷料量及所能达到的容量: 1)电池设计容量比实际的容量要高,根据电池的容量大小,实际容量比设计容量高10~50mAh; (有料部分面积为极片的长度-刮料长度/2)×极片的宽度 极片敷料量为有料面积×极片面密度 电池容量为敷料量×正极材料的发挥量 2)计算极片面密度为多少时,能够达到电池的容量,并将极片的面密度记录下来; 3)正极面密度×正极材料容量发挥×1.05/负极容量发挥得出负极面密度 4)面密度/压实密度+箔的厚度得出极片的压片厚度

锂离子电池_电芯知识培训

关于Li-ion电池的安全认证 ?国际国内关于锂离子电池的安全认证机构及其标准: ?GB(国家标准); ?UL(Underwriter Laboratory)美国安全认证机构; ?CE(COMMUNATE EUROPIEA欧共体的缩写)。表示该商品符合安全、卫生、环保和消费者保护等一系列欧洲指令的要求。证实该产品已通过了相应的合格评定程序或制造商的合格声明,是该产品被允许进入欧盟市场销售的―通行证‖; ?企业内部的认证标准,一旦通过各个企业的内部标准,表明具有向该企业供货的能力,并基本达成供货意向。如:MOTOROLA、SAMSUNG。 UL安全认证的测试项目 ?UL(Underwriter Laboratory)在认证过程中所要进行的项目及其测试目标值有: ?电性能方面包括: ?短路测试。不爆炸,不起火,外部温度不超过150℃ ?过充测试。不爆炸,不起火。 ?过放测试。不爆炸,不起火。 ?机械性能方面包括: ?挤压测试。不爆炸,不起火。 ?重物冲击测试。不爆炸,不起火。 ?高频振荡测试。不爆炸,不起火;不漏气或漏液。 ?振动测试。不爆炸,不起火;不漏气或漏液。 ?环境适应性能包括: ?热冲击测试。不爆炸,不起火。 ?温度循环测试。不爆炸,不起火。不漏气或漏液 ?低压测试。不爆炸,不起火。不漏气或漏液 GB要求的安全性能测试项目 ?GB(国标标准)所规定进行的安全性能测试项目: ?电性能方面包括: ?短路测试。不爆炸,不起火,外部温度不超过150℃

?过充测试。不爆炸,不起火。 ?机械性能方面包括: ?重物冲击测试。不爆炸,不起火。允许变形。 ?振动测试。无明显损伤、漏液、冒烟、或爆炸,电池电压不低于N*3.6V ?碰撞测试。无明显损伤、漏液、冒烟、或爆炸,电池电压不低于N*3.6V ?环境适应性能包括: ?热冲击测试。不爆炸,不起火。 ?恒定湿热性能。不爆炸,不起火;不漏气或漏液。 电池基本知识 1、什么是电池? ?电池是一种能源。当它正负极连接在用电器上时,因为正负极之间存在电势之差,电流从正极流向负极,储存在电池中的化学能直接转化成电能释放出来,一只电池必然由两种不同电化学活性的物质组成正负两极,正负极活性物质之间的电动势差形成电池的电压,根据其电化学系统的不同,各种类型的电池电压各有不同。 2、一次电池和充电电池有什么区别? ?电池内部的电化学设计决定了该类型的电池是否可充。根据它们的电化学成分和电极的结构可知,可充电电池的内部结构之间所发生的反应是可逆的。 ?理论上,这种可逆性是不会受循环次数的影响,既然充放电会在电极的体积和结构上引起可逆的变化,那么可充电电池的内部设计就支持这种变化。而一次电池在给定的电池环境中两个电极之间的电化学反应是不可逆的,因此,不可以将一次电池拿来充电,这种做法很危险也很不经济。如果需要反复使用,应选择真正的循环次数在1000次左右的充电电池,这种电池又称为二次电池。 ?另一明显的区别就是二次电池具有较高的比能量和负载能力,但自放电率较大。一次电池能量密度远比二次电池高。然而他们的负载能力相对要小。 3、充电电池是怎样实现它的能量转换? ?每种电池都具有电化学转换的能力,即将储存的化学能直接转换成电能。就二次电池而言(另一术语也称可充电便携式电池),在放电过程中,是将化学能转换成电能;而在充电过程中,又将电能重新转换成化学能。这样的过程根据电化学系统不同,一般可充放电500次以上。

锂电池的安全性设计示范文本

文件编号:RHD-QB-K7050 (安全管理范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 锂电池的安全性设计示 范文本

锂电池的安全性设计示范文本 操作指导:该安全管理文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 为了避免因使用不当造成电池过放电或者过充电,在单体锂离子电池内设有三重保护机构。一是采用开关元件,当电池内的温度上升时,它的阻值随之上升,当温度过高时,会自动停止供电;二是选择适当的隔板材料,当温度上升到一定数值时,隔板上的微米级微孔会自动溶解掉,从而使锂离子不能通过,电池内部反应停止;三是设置安全阀(就是电池顶部的放气孔),电池内部压力上升到一定数值时,安全阀自动打开,保证电池的使用安全性。 有时,电池本身虽然有安全控制措施,但是因为某些原因造成控制失灵,缺少安全阀或者气体来不及

通过安全阀释放,电池内压便会急剧上升而引起爆炸。 一般情况下,锂离子电池储存的总能量和其安全性是成反比的,随着电池容量的增加,电池体积也在增加,其散热性能变差,出事故的可能性将大幅增加。对于手机用锂离子电池,基本要求是发生安全事故的概率要小于百万分之一,这也是社会公众所能接受的最低标准。而对于大容量锂离子电池,特别是汽车等用大容量锂离子电池,采用强制散热尤为重要。 选择更安全的电极材料,选择锰酸锂材料,在分子结构方面保证了在满电状态,正极的锂离子已经完全嵌入到负极炭孔中,从根本上避免了枝晶的产生。同时锰酸锂稳固的结构,使其氧化性能远远低于钴酸锂,分解温度超过钴酸锂100℃,即使由于外力发生内部短路(针刺),外部短路,过充电时,也完全能

相关文档
最新文档