IBS Emergence of New Diagnostic and Treatment Options

IBS Emergence of New Diagnostic and Treatment Options
IBS Emergence of New Diagnostic and Treatment Options

Irritable Bowel Syndrome:

Emergence of New Diagnostic and Treatment Options

Leonard B. Weinstock

Department of Internal Medicine/Gastroenterology, Washington University

School of Medicine, St Louis, Missouri

Running title: Diagnosis and Treatment of IBS

Address correspondence and reprint requests to

Leonard B. Weinstock, MD

Associate Professor of Clinical Medicine and Surgery

Washington University School of Medicine

11525 Olde Cabin Road

St Louis, MO 63141

Telephone: (314) 997-0554

Fax: (314) 997-5086

E-mail: lw@https://www.360docs.net/doc/a718445374.html,

Acknowledgement Statement: Sarah Vignola is ascknowledged as my assistant to format and check references. I am the sole author of this manuscipt and defined the scope of this literature review. The scope of the references supports this literature review. I have not been paid for any work involved herein. Disclosure: Dr. Weinstock is on the speakers bureau for Salix Pharmaceuticals, Inc.

Abstract

Background: Diagnosis and treatment options for irritable bowel syndrome (IBS) have traditionally addressed the clinical symptoms of the disease, including constipation, diarrhea, and abdominal pain. New understanding of the pathophysiology of IBS, including the potential association of small intestinal bacterial overgrowth (SIBO) with the disorder, promises to yield new diagnostic techniques and therapies to supplement symptom-based approaches. Purpose: This article reviews symptom-based diagnostic criteria and treatment options for IBS and discusses emerging diagnostic techniques, such as breath testing. It also reviews new pharmacologic therapies, including opioids, antibiotics, and other agents currently being evaluated. Symptom-based criteria will continue to be useful in the diagnosis of IBS, but these may be augmented by new techniques such as hydrogen and methane breath testing. Further understanding of the body’s physiologic response to IBS may identify diagnostically relevant biologic markers. Nontraditional therapies, such as

antibiotics (eg, rifaximin) and probiotics, may target SIBO as an underlying cause of IBS and have shown efficacy in disease management.

Conclusion: IBS treatment options will likely expand beyond mere management of clinical symptoms. Diagnostic and treatment options for IBS will continue to evolve with further understanding of the disorder, but addressing the symptoms

of the disease and their relief by pharmacologic therapies will remain the goals of IBS management.

Key words: irritable bowel syndrome, IBS, breath testing, rifaximin

Introduction

Irritable bowel syndrome (IBS) is a functional disorder of the gastrointestinal (GI) tract characterized by alterations in bowel function accompanied by abdominal pain and discomfort, including symptoms such as bloating and bowel urgency.[1-3] The abnormal bowel habits associated with IBS may be constipation-predominant (IBS-C) or diarrhea-predominant (IBS-D), or they might involve alternating or mixed periods of both (IBS-A).[1,2] The prevalence of IBS in North America is estimated to be 10% to 15%.[2,3] The disorder is more prevalent in females than males,[2-4] but this bias may be less pronounced than practitioners generally perceive. Although IBS is the most commonly made diagnosis by gastroenterologists,[4] the disorder often goes unrecognized or untreated, with as few as 25% of people with IBS seeking clinical care.[2] The direct and indirect annual cost of IBS in the United States is approximately $30 billion,[4] and it is a substantial source of missed work and loss of productivity.[5]

The diagnosis of IBS is primarily based on clinical symptoms and the exclusion of other conditions (eg, inflammatory bowel disease [IBD], celiac disease, colorectal cancer, lactose intolerance).[6,7] Thus, there has been a historical tendency to view IBS as a “diagnosis of exclusion” or as a hypersensitivity syndrome without explanation.[8] Although no single biologic marker exists to reliably identify patients with IBS,[6] the emergence of new diagnostic techniques offers options for clinicians while helping to elucidate the pathophysiology of this common disorder. As the understanding of IBS and diagnostic methods progress, new testing procedures will likely complement, rather than replace, existing symptom-based diagnostic criteria.

Similarly, treatment options for IBS have traditionally focused on symptomatic relief of constipation, diarrhea, and discomfort associated with the disorder,[9] but as understanding of the disease etiology progresses, new pharmacologic agents are being evaluated that may address the underlying causes of IBS. Therapies that target these underlying causes may have broad benefit for all patients with IBS, rather than merely managing disease symptoms in subgroups of patients. This review article will summarize the symptomatic

diagnostic criteria and treatment options for IBS and highlight new diagnostic methods and therapies showing promise in the management of the disorder.

Symptom-Based Diagnosis of IBS

Methodologies for diagnosing IBS have been evolving since the 1970s. Among commonly used, symptom-based criteria, the Manning criteria have been the most extensively evaluated.[6,7] The Manning criteria consist of 6 symptoms meant to differentiate IBS from other GI disorders (Table 1)[10] and are associated with a positive predictive value of 65% to 75%.[6] Building upon the Manning criteria, the Rome diagnostic criteria have been developed by expert consensus and have been periodically revised.[1,8,11] The most recent version (Rome III) is designed to improve the clinical usefulness of the criteria and describes 3 phenomena that, when coincident with the recurrence of abdominal pain or discomfort, are associated with a diagnosis of IBS (Table 1).[1] The Rome criteria represent useful advances in diagnostic consistency, but many symptoms commonly associated with IBS, including symptom worsening during menstruation,[12] fatigue and insomnia,[13] and urinary symptoms,[14,15] are not included in the diagnosis algorithm.

Clinicians may perform supplemental diagnostic tests to confirm and diagnose IBS, often by excluding disorders with similar symptomologies. Blood tests may be performed to detect anemia and other abnormalities inconsistent with IBS.[16] Diagnoses of thyroid disease may be excluded by performing thyroid function tests, including measuring levels of thyroid-stimulating hormone.[17] However, these results must be carefully considered, as thyroid function abnormalities are common in the general population,[18] and increased or decreased thyroid function may be present in patients with IBS as well.[17] Antibody testing may also be recommended to help exclude a diagnosis of celiac disease.[16,19] While symptom-based diagnostic criteria for IBS, combined with tests to exclude alternate diagnoses, will continue to have clinical usefulness, the development of additional diagnostic methods promises to assist clinicians in reliably identifying patients with IBS. These new methods, including investigation into identifying reliable biomarkers associated with IBS, are invariably connected to progress in understanding the pathophysiology and etiology of the disorder and stand to establish IBS as a more concrete clinical entity, rather than a convenient diagnosis of exclusion applied to explain common GI symptoms.

Emerging Diagnostic Methods

Small Intestinal Bacterial Overgrowth and Breath Testing

New IBS diagnostic techniques are being developed, and their application is helping our understanding of causative factors related to the disorder. Small intestinal bacterial overgrowth (SIBO), a condition in which abnormally high concentrations of enteric bacteria are present in the small intestine, has been reported in as many as 84% of patients meeting diagnostic criteria for IBS.[20,21] The onset of SIBO may be associated with poor clearance of intestinal contents caused by altered intestinal motility.[22] Symptoms associated with SIBO include

carbohydrate malabsorption (eg, lactose intolerance) and excessive production of gas in the small bowel due to bacterial fermentation; these phenomena are consistent with the hallmark IBS symptoms of abdominal pain and bloating. Hydrogen breath testing is a useful method of diagnosing SIBO, and studies have evaluated breath test results in patients with IBS. Fasting patients are administered a small amount of pure carbohydrate (glucose and lactulose are typical substrates, although lactose, fructose, xylose, and sorbitol are administered as well). Bacterial overgrowth results in an increased concentration of hydrogen in exhaled breath, ostensibly due to malabsorption of the carbohydrate and thus, more carbohydrate being available for bacterial metabolism.

A prospective study that evaluated lactulose breath testing as a diagnostic method for SIBO and as a measurement of subsequent response to antibiotic therapy demonstrated that 157 (78%) of 202 patients who met Rome diagnostic criteria for IBS also had SIBO.[20] After they received oral antibiotic therapy (eg, neomycin, ciprofloxacin, metronidazole, doxycycline) for 10 days, 47 patients were given follow-up breath tests and physical examinations. Among 25 patients in whom SIBO had been eradicated (as determined by breath test results), significant improvement in diarrhea and abdominal pain symptoms was achieved (P < .05), and 12 patients (48%) in whom SIBO had been eradicated no longer met Rome criteria for IBS (P < .001).

A subsequent double-blind, placebo-controlled study demonstrated that 93 (84%) of 111 patients with IBS had abnormal lactulose breath test results at baseline. After 10 days of treatment with either neomycin or placebo, the patients with abnormal breath test results at baseline who received neomycin achieved a 35% improvement in constipation, diarrhea, and abdominal pain symptoms, compared with a 4% improvement achieved by those who received placebo (P < .01).[21] Furthermore, normalization of lactulose breath test results in response to neomycin correlated with patient-reported normalization of bowel function. Among patients in whom breath testing indicated eradication of SIBO by neomycin, bowel normalization was improved by 75%, compared with 37% for patients in whom SIBO had not been eradicated by neomycin and 11% for patients who received placebo (P < .001).[21] The results of these studies support the administration of lactulose breath tests in IBS diagnosis and the connection between antibiotic eradication of SIBO and relief of IBS symptoms.

Other carbohydrates employed in hydrogen breath testing to identify sugar malabsorption disorders (eg, lactose intolerance) may also have value in diagnosing SIBO associated with IBS. A prospective study showed that 64 (65%) of 98 patients with IBS had abnormal lactulose breath test results and that these 64 patients showed a significant correlation with positive lactose (P < .05), fructose (P < .01), and sorbitol (P < .01) breath test results.[23] A separate study evaluating glucose as a substrate for hydrogen breath testing reported that 20 (31%) of 65 patients with IBS had positive glucose breath test results, compared with 4 (4%) of 102 healthy controls (P < .00001).[24] These results suggest that

carbohydrate malabsorption in general (and not with a specific sugar) may be a feature of SIBO that will prove helpful in diagnosing IBS.

Hydrogen breath testing is useful in identifying patients with IBS who are affected with SIBO, but other exhaled gases may have diagnostic benefit as well.

A prospective study measured methane concentrations in exhaled air from patients with IBS or IBD (ulcerative colitis or Crohn’s disease) who were administered lactulose breath tests.[25] Methane was detected in 50 (17%) of 296 patients with IBS, compared with 2 (3%) of 78 patients with IBD (P < .01). In an observational study of 254 patients with IBS who were administered lactulose breath tests, 120 patients (47%) had elevated hydrogen levels, 27 patients (11%) had elevated methane levels, and 14 patients (6%) had elevated levels of both gases.[26] Because methane production is associated with patients with IBS-C, measurement of both methane and hydrogen is important in the diagnosis of IBS.

The diagnostic benefit and noninvasiveness of breath testing in IBS clearly holds promise, but further investigation is required, as not all data support the clinical utility of diagnostic breath testing. A study evaluating hydrogen breath testing in IBS employing lactulose and xylose as substrates demonstrated that only 4 (10%) of 39 patients with IBS had abnormal lactulose test results and 5 (13%) of 39 had abnormal xylose test results.[27] However, the small number of patients in this study and the fact that only hydrogen (not methane) was measured may have affected these results.Breath testing may have an important role as a new diagnostic methodology for IBS, but standardized interpretation of its results remains to be implemented into clinical practice. Lactulose is not absorbed in the GI tract; therefore, lactulose breath test results may reflect the activity of bacteria throughout the entire GI tract and not necessarily overgrowth in the small intestine. Thus, while lactulose breath testing is considered sensitive for SIBO throughout the small bowel, the activity of colonic bacteria may contribute to false positive results. Glucose, however, is normally absorbed by the proximal small intestine, and while glucose breath testing is considered specific for SIBO, overgrowth in the distal small intestine may remain undetected by glucose testing and yield false negative results. The choice of carbohydrates employed in breath testing reflects a potential trade-off between diagnostic sensitivity and specificity.

Given the potential association of SIBO with IBS, breath testing to identify SIBO is a noninvasive and cost-effective alternative to the time-consuming culture and characterization of bacteria from patient stool samples or GI aspirates. However, DNA testing of stool samples may be able to identify and quantify enteric bacterial species contributing to IBS, although this approach is not widely applied in clinical practice. To date, fecal DNA testing studies have demonstrated high variation in bacterial counts from both patients with IBS and control patients,[28,29] but 1 study reported lower concentrations of Lactobacillus species in patients with IBS-D than in patients with IBS-C or those in the control group and higher concentrations of Veillonella species in patients with IBS-C than those in the control group.[29] Further understanding of bacterial species involved in IBS pathophysiology may lead to fecal DNA testing and bacterial

quantification becoming an important part of patient diagnosis and is likely to improve the diagnostic utility of breath testing as well.

Identifying Other Diagnostic Biomarkers

In addition to developing breath testing as a diagnostic technique, the identification of useful biomarkers for IBS may also improve diagnostic methods by making reliable blood and urine tests possible. While no such tests have been validated in controlled trials or applied in clinical practice, biochemical studies of patients with IBS suggest that blood and urine biomarker testing could potentially be developed to supplement current symptom-based criteria. For example, alterations of the hypothalamic-pituitary–adrenal axis (HPA), an important link between the nervous system and the GI tract, may yield such biomarkers. A study measuring concentrations of HPA peptides reported higher plasma levels of IL-6 and IL-8 (P < .001) and cortisol (P < .05) in 49 patients with IBS compared with 48 patients in the control group.[30] Measurement of neurotransmitters may also lead to new diagnostic possibilities for IBS. A study demonstrated elevated urinary levels of 5-hydroxyindole acetic acid (P = .036) and plasma levels of nitric oxide (P =.019) in 19 patients with IBS-D compared with 18 patients in the control group.[31] Understanding the body’s physiologic response to IBS may allow blood and urine tests for these or other biomarkers to be developed to help diagnose the disorder, just as further understanding of the underlying causes of IBS, such as the role played by enteric bacteria, is yielding new diagnostic possibilities.

Current Treatment Options for IBS

Further understanding of the pathophysiology of IBS will help identify specific targets for new diagnostic methods and will also contribute to the development of effective treatment options for patients with IBS. Nonpharmacologic treatment options include measures such as diet modification, exercise, and stress reduction. For example, increasing dietary fiber is often recommended to patients with IBS, but the overall efficacy of fiber in relieving GI symptoms is unclear.[32] Pharmacologic therapies administered in the treatment of IBS have traditionally focused on the relief of IBS symptoms,[9,32] but new therapies that target potential underlying causes of IBS are being evaluated.

Pharmacologic Therapies

A variety of drugs are currently administered to relieve symptoms of constipation, diarrhea, and abdominal pain in patients with IBS. Polyethylene glycol increases bowel frequency in patients with IBS who have chronic constipation, but its efficacy in relieving pain and other GI symptoms remains uncertain.[9,33] Antispasmodic agents, such as dicyclomine and hyoscyamine, relax GI muscle tension and may be administered to patients with IBS.[34] Dicyclomine has been shown to help relieve abdominal pain and other IBS symptoms in the short term,[35] but the overall benefit of antispasmodics in the treatment of IBS is unclear.[9] Loperamide, an opioid receptor agonist, is effective

at reducing diarrhea in IBS but does not relieve abdominal pain or distention.[36] Additionally, antidepressants are effective in improving many IBS symptoms,[37] but they may not provide relief of bloating and gas in all patients.

Drugs that affect serotonin receptors are also administered to help improve intestinal motility and relieve symptoms of IBS. The efficacy and safety of alosetron, a serotonin receptor antagonist, and tegaserod, a serotonin receptor agonist, have been evaluated in several clinical trials. In randomized, placebo-controlled clinical trials, alosetron significantly improved abdominal pain in patients with IBS-D or IBS-A compared with placebo,[38-41] with “adequate relief” reported in 41%[39] to 53%[41] of patients who received alosetron (P≤ .05 vs placebo). In these trials, alosetron improved diarrhea symptoms, including improved stool frequency and consistency. However, constipation is a frequently reported adverse event with alosetron, occurring in as many as 30% of patients,[39-41] and alosetron is associated with rare but serious GI adverse events including ischemic colitis.[42] Alosetron is only indicated for women with severe IBS-D who have not responded to conventional therapy.[42]

In randomized, placebo-controlled clinical trials, administration of tegaserod 12 mg/d for 4 to 12 weeks provided a modest benefit over placebo in improving IBS symptoms in patients with IBS-C.[43-45] Global relief of IBS symptoms was reported in 44%[44] to 46%[43] of patients who received tegaserod, with significant improvements over placebo reported for constipation symptoms, including bloating and stool frequency and consistency (P < .05). Tegaserod, in combination with antibiotics and other agents, is often administered as part of comprehensive therapy to treat IBS symptoms and normalize breath test results.[26,46] However, headache and diarrhea are adverse events associated with tegaserod,[43-45] and additional rare diarrhea-related adverse events have been reported, including hypovolemia, hypotension, and syncope.[47] Furthermore, in early 2007, tegaserod was removed from the market by the US Food and Drug Administration due to a potential increased risk of heart attack, stroke, and chest pain.[48] Because tegaserod is no longer available, other medications that improve intestinal motility, such as erythromycin,[49] may have clinical benefit in managing IBS associated with SIBO.

Overall, alosetron and tegaserod have modest efficacy in relieving diarrhea and constipation symptoms of IBS, respectively, but long-term efficacy and safety of these agents in patients with mild-to-moderate IBS remains questionable.

New Pharmacologic Treatment Options

The efficacy and safety of a number of other agents in IBS therapy are currently under investigation, including fedotozine, trimebutine, lubiprostone, renzapride, asimadoline, and clonidine (Table 2). In a phase 2 study of 238 patients with IBS, the opioid fedotozine 90 mg/d for 6 weeks relieved abdominal pain (P =.01 vs placebo),[50] although subsequent studies have not confirmed a clinical benefit.[51] A phase 2 trial (n = 69) reported that trimebutine, an opioid administered for the treatment of migraines, was efficacious in relieving

GI symptoms (P < .0001 vs placebo) by modulating colonic motility in patients with both IBS and gastroesophageal reflux disease, but its overall efficacy in IBS is unclear.[52] Lubiprostone, a chloride channel modulator, is indicated for the relief of chronic constipation,[53] although its efficacy and safety in the treatment of IBS is still being evaluated.[54-56] In a multicenter, phase 3 trial of 1167 patients with IBS-C, 18% of patients who received lubiprostone 16 μg/d for 12 weeks reported “overall response,” compared with 10% of patients who received placebo (P = .001).[54] In a separate phase 3 trial, lubiprostone 48 μg/d for 4 weeks significantly improved constipation symptoms (P ≤.0207) in 46 patients with IBS-C.[55] The serotonin receptor antagonist renzapride is also under investigation for the treatment of IBS-C. A pilot study reported that renzapride 4 mg/d for 28 days significantly reduced GI transit time in 11 patients with IBS-C (P < .05 vs placebo) and provided some relief of abdominal pain and constipation symptoms.[57] However, in another study, renzapride 1 to 4 mg/d for 11 to 14 days significantly reduced colonic transit time in patients with IBS-C (P = .056) but did not significantly improve IBS symptoms.[58] The opioid asimadoline is also being evaluated in the treatment of IBS, although in a study of 20 female patients with IBS, a single 0.5-mg dose of asimadoline did not significantly relieve abdominal pain.[59] Clonidine, an α2-adrenergic agonist and antihypertensive agent, may have some clinical benefit in patients with IBS-D. An exploratory study (n =42) demonstrated that clonidine 0.2 mg/d for 4 weeks significantly reduced the severity of diarrhea-related bowel dysfunction compared with placebo (P < .05) but did not significantly improve overall relief of IBS symptoms.[60]

Antibiotics

Given the potential association between SIBO and IBS, and the putative role of enteric bacteria in disease pathology, antibiotics have been investigated in the treatment of IBS. When breath test results were correlated with relief of IBS symptoms, 55 patients who received the systemic antibiotic neomycin 1000 mg/d for 10 days achieved a 35% reduction in severity of IBS symptoms, compared with an 11% reduction in 56 patients who received placebo (P < .05).[21] In the subset of patients with abnormal lactulose breath test results at baseline, 46 patients who received neomycin achieved a 35% reduction from baseline in severity of IBS symptoms, compared with a 4% reduction in 47 patients who received placebo (P < .01). A subsequent study reported that among patients with IBS-C, 19 patients who received neomycin 1000 mg/d for 10 days achieved a mean global improvement in IBS symptoms of 37% from baseline, compared with a 5% improvement for 20 patients who received placebo (P < .001).[61] Additionally, this global improvement with neomycin was most pronounced in the subset of patients who had a positive methane breath test result at baseline. These studies suggest that neomycin may provide relief of IBS symptoms, particularly among patients with constipation-predominant disease.

Successful antibiotic treatment of IBS symptoms in patients with SIBO is correlated with normalization of lactulose breath test results. A retrospective

study of 50 patients with positive breath test results who had been administered the antibiotic rifaximin reported that 31 patients (62%) achieved clinical improvement.[62] Posttreatment breath test results were normal in 81% of these patients who responded to rifaximin, compared with 16% of patients who did not respond to treatment (P < .001).

Rifaximin is a nonsystemic antibiotic with broad-spectrum antibacterial activity against enteric pathogens.[63] The minimal bioavailability (<0.4%) of rifaximin restricts its activity to the GI tract and limits the potential occurrence of systemic adverse events and drug-drug interactions.[63-65] Rifaximin has shown efficacy in the treatment of SIBO,[66,67] and its efficacy in the treatment of IBS has been evaluated in several studies. A retrospective chart review of 98 patients with IBS who received antibiotic therapy (median duration of patient time in clinical treatment, 11 months) reported that 58 (69%) of 84 patients who received at least 1 course of rifaximin experienced clinical response, compared with 9 (38%) of 24 patients who received neomycin (P < .01) and 27 (44%) of 61 patients who received other antibiotics (eg, augmentin, doxycycline; P < .01).[46] In a randomized, double-blind, placebo-controlled trial, 15 (41%) of 37 patients with IBS who received rifaximin 800 mg/d for 10 days achieved global symptomatic response (ascertained by patient-reported questionnaire), compared with 6 (18%) of 33 patients who received placebo (P = .04; Figure 1).[68] After 10 days posttreatment, 10 (27%) of 37 patients in the rifaximin group maintained their symptomatic response, compared with 3 (9%) of 33 patients in the placebo group (P = .05). In a second randomized, double-blind, placebo-controlled trial, 43 patients with IBS who received rifaximin 1200 mg/d for 10 days experienced a 36% mean improvement from baseline in the severity of IBS symptoms at 10 weeks posttreatment, compared with a mean improvement of 21% among 44 patients who received placebo (P = .02; Figure 2).[69] Additionally, bloating was significantly improved in the rifaximin group compared with the placebo group (P = .01). Furthermore, in an open-label, observational study, a 10-day course of rifaximin 1200 mg/d as part of a comprehensive treatment regimen including tegaserod and probiotic therapy improved IBS symptoms in 60% of 81 patients.[26] The positive results of these trials support antibiotic therapy as a clinically useful treatment option in IBS and warrant further investigation into the clinical benefit of nonsystemic antibiotics in patients with IBS.

Probiotics

There is increasing interest in administering probiotics to treat SIBO and IBS.[70] A small, placebo-controlled, 8-week study of probiotic mixture VSL #3 demonstrated no significant benefit over placebo in relieving bloating, pain, bowel frequency, or other GI symptoms in patients with IBS-D (n = 25).[71] However, a randomized, double-blind, placebo-controlled trial of a probiotic mixture containing Lactobacillus rhamnosus GG, L rhamnosus LC705, Bifidobacterium breve Bb99, and Propionibacterium freudenreichii ssp. shermanii JS reported that 41 patients who received the probiotics achieved a 42% median reduction from baseline in IBS symptom severity, compared with a 6% median reduction in

40 patients who received placebo (P = .015).[72] Additionally, a randomized, double-blind, placebo-controlled trial of the probiotic Bifidobacterium infantis 35624 demonstrated that after 4 weeks of treatment, 90 women with IBS who received the probiotics reported significant relief from baseline in abdominal pain, bloating, and bowel dysfunction compared with 92 women who received placebo (P≤ .05).[73] These results suggest that probiotic agents, in addition to antibiotics, may normalize bacterial concentrations in the bowel and help relieve symptoms of IBS.

Summary

IBS is a major health problem, and its unknown etiology has traditionally limited diagnostic and treatment techniques to addressing the GI symptoms of the disorder. Symptom-based classifications, including the Manning and Rome criteria, are an important foundation for identifying IBS but are not definitive diagnostic tools. The development of additional diagnostic techniques is an important step toward understanding IBS as a discrete GI disorder, rather than a catch-all diagnosis applied when other conditions have been excluded. Increased understanding of IBS pathophysiology and the identification of factors likely to influence its onset (eg, SIBO) are expanding both diagnostic methodologies and treatment options. In the absence of a reliable biomarker to identify IBS, diagnostic methods such as hydrogen and methane breath testing appear promising but require further investigation to determine their practical utility in the clinical setting. Standardized methodology and interpretation of breath test results is required before breath testing can be included in uniform diagnostic criteria.

Treatment of IBS has traditionally addressed the clinical GI symptoms of the disorder (notably, constipation, diarrhea, and abdominal pain), and while symptomatic relief will remain the principal goal of treatment, new therapies that target the underlying causes of IBS may provide long-term benefit for patients with all types of IBS. Although pharmacologic agents that relieve constipation and diarrhea will continue to benefit patients with IBS, many patients remain unresponsive to traditional therapies. The efficacy and safety of a number of agents are currently being investigated, but the association between SIBO and IBS has suggested that antibiotic and probiotic therapy offer particular promise in disease management. Notably, the nonsystemic antibiotic rifaximin has demonstrated efficacy in improving IBS symptoms, and its favorable safety profile warrants its consideration as a promising addition to the IBS pharmacopeia. Additional study of antibiotics, probiotics, and other agents as treatment options for IBS will no doubt lead to more effective management of this common disorder.

Figure Legends

Figure 1. Proportion of patients with IBS who received rifaximin 800 mg/d (n =37) or placebo (n =33) who achieved symptomatic response after 10 days of treatment and at 10 days posttreatment. *P ≤ .05 vs placebo.[68]

Figure 2. Mean improvement from baseline in symptom severity after 10 weeks posttreatment among patients with IBS who received rifaximin 1200 mg/d (n = 43) or placebo (n = 44) for 10 days. *P = .02 vs placebo.[69]

References

1. Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC.

Functional bowel disorders. Gastroenterology. 2006;130:1480-1491.

2. Hungin AP, Chang L, Locke GR, Dennis EH, Barghout V. Irritable bowel

syndrome in the United States: prevalence, symptom patterns and impact.

Aliment Pharmacol Ther. 2005;21:1365-1375.

3. Saito YA, Schoenfeld P, Locke GR III. The epidemiology of irritable bowel

syndrome in North America: a systematic review. Am J Gastroenterol.

2002;97:1910-1915.

4. Martin BC, Ganguly R, Pannicker S, Frech F, Barghout V. Utilization patterns and

net direct medical cost to Medicaid of irritable bowel syndrome. Curr Med Res

Opin. 2003;19:771-780.

5. Hahn BA, Yan S, Strassels S. Impact of irritable bowel syndrome on quality of life

and resource use in the United States and United Kingdom. Digestion.

1999;60:77-81.

6. Cash BD, Chey WD. Diagnosis of irritable bowel syndrome. Gastroenterol Clin

North Am. 2005;34:205-220, vi.

7. Cash BD, Schoenfeld P, Chey WD. The utility of diagnostic tests in irritable bowel

syndrome patients: a systematic review. Am J Gastroenterol. 2002;97:2812-

2819.

8. Thompson WG. The road to rome. Gastroenterology. 2006;130:1552-1556.

9. Chang HY, Kelly EC, Lembo AJ. Current gut-directed therapies for irritable bowel

syndrome. Curr Treat Options Gastroenterol. 2006;9:314-323.

10. Manning AP, Thompson WG, Heaton KW, Morris AF. Towards positive diagnosis

of the irritable bowel. Br Med J. 1978;2:653-654.

11. Thompson WG, Longstreth GF, Drossman DA, Heaton KW, Irvine EJ, Muller-

Lissner SA. Functional bowel disorders and functional abdominal pain. Gut.

1999;45(suppl 2):II43-47.

12. Heitkemper MM, Cain KC, Jarrett ME, Burr RL, Hertig V, Bond EF. Symptoms

across the menstrual cycle in women with irritable bowel syndrome. Am J

Gastroenterol. 2003;98:420-430.

13. Elsenbruch S, Thompson JJ, Hamish MJ, Exton MS, Orr WC. Behavioral and

physiological sleep characteristics in women with irritable bowel syndrome. Am J Gastroenterol. 2002;97:2306-2314.

14. Francis CY, Duffy JN, Whorwell PJ, Morris J. High prevalence of irritable bowel

syndrome in patients attending urological outpatient departments. Dig Dis Sci.

1997;42:404-407.

15. Erdem E, Akbay E, Sezgin O, Doruk E, Canpolat B, Cayan S. Is there a relation

between irritable bowel syndrome and urinary stone disease? Dig Dis Sci.

2005;50:605-608.

16. Sanders DS, Carter MJ, Hurlstone DP, et al. Association of adult coeliac disease

with irritable bowel syndrome: a case-control study in patients fulfilling Rome II

criteria referred to secondary care. Lancet. 2001;358:1504-1508.

17. Hamm LR, Sorrells SC, Harding JP, et al. Additional investigations fail to alter the

diagnosis of irritable bowel syndrome in subjects fulfilling the Rome criteria. Am J Gastroenterol. 1999;94:1279-1282.

18. Helfand M, Redfern CC. Screening for thyroid disease: an update. Ann Intern

Med. 1998;129:144-158.

19. Locke GR III, Murray JA, Zinsmeister AR, Melton LJ III, Talley NJ. Celiac disease

serology in irritable bowel syndrome and dyspepsia: a population-based case-

control study. Mayo Clin Proc. 2004;79:476-482.

20. Pimentel M, Chow EJ, Lin HC. Eradication of small intestinal bacterial overgrowth

reduces symptoms of irritable bowel syndrome. Am J Gastroenterol.

2000;95:3503-3506.

21. Pimentel M, Chow EJ, Lin HC. Normalization of lactulose breath testing

correlates with symptom improvement in irritable bowel syndrome: a double-

blind, randomized, placebo-controlled study. Am J Gastroenterol. 2003;98:412-

419.

22. Pimentel M, Soffer EE, Chow EJ, Kong Y, Lin HC. Lower frequency of MMC is

found in IBS subjects with abnormal lactulose breath test, suggesting bacterial

overgrowth. Dig Dis Sci. 2002;47:2639-2643.

23. Nucera G, Gabrielli M, Lupascu A, et al. Abnormal breath tests to lactose,

fructose and sorbitol in irritable bowel syndrome may be explained by small

intestinal bacterial overgrowth. Aliment Pharmacol Ther. 2005;21:1391-1395. 24. Lupascu A, Gabrielli M, Lauritano EC, et al. Hydrogen glucose breath test to

detect small intestinal bacterial overgrowth: a prevalence case-control study in

irritable bowel syndrome. Aliment Pharmacol Ther. 2005;22:1157-1160.

25. Pimentel M, Mayer AG, Park S, Chow EJ, Hasan A, Kong Y. Methane production

during lactulose breath test is associated with gastrointestinal disease

presentation. Dig Dis Sci. 2003;48:86-92.

26. Weinstock LB, Todorczuk JR, Fern SE, Thyssen EP. Comprehensive small

intestinal bacterial (SIBO) therapy for irritable bowel syndrome (IBS). Am J

Gastroenterol. 2006;101(suppl 2):S470-S471.

27. Walters B, Vanner SJ. Detection of bacterial overgrowth in IBS using the

lactulose H2 breath test: comparison with 14C-D-xylose and healthy controls. Am J Gastroenterol. 2005;100:1566-1570.

28. Balsari A, Ceccarelli A, Dubini F, Fesce E, Poli G. The fecal microbial population

in the irritable bowel syndrome. Microbiologica. 1982;5:185-194.

29. Malinen E, Rinttila T, Kajander K, et al. Analysis of the fecal microbiota of irritable

bowel syndrome patients and healthy controls with real-time PCR. Am J

Gastroenterol. 2005;100:373-382.

30. Dinan TG, Quigley EM, Ahmed SM, et al. Hypothalamic-pituitary-gut axis

dysregulation in irritable bowel syndrome: plasma cytokines as a potential

biomarker? Gastroenterology. 2006;130:304-311.

31. Yazar A, Buyukafpar K, Polat G, et al. The urinary 5-hydroxyindole acetic acid

and plasma nitric oxide levels in irritable bowel syndrome: a preliminary study.

Scott Med J. 2005;50:27-29.

32. Hadley SK, Gaarder SM. Treatment of irritable bowel syndrome. Am Fam

Physician. 2005;72:2501-2506.

33. Khoshoo V, Armstead C, Landry L. Effect of a laxative with and without

tegaserod in adolescents with constipation predominant irritable bowel

syndrome. Aliment Pharmacol Ther. 2006;23:191-196.

34. Wald A. Irritable Bowel Syndrome. Curr Treat Options Gastroenterol. 1999;2:13-

19.

35. Page JG, Dirnberger GM. Treatment of the irritable bowel syndrome with Bentyl

(dicyclomine hydrochloride). J Clin Gastroenterol. 1981;3:153-156.

36. Jailwala J, Imperiale TF, Kroenke K. Pharmacologic treatment of the irritable

bowel syndrome: a systematic review of randomized, controlled trials. Ann Intern Med. 2000;133:136-147.

37. Clouse RE. Antidepressants for irritable bowel syndrome. Gut. 2003;52:598-599.

38. Bardhan KD, Bodemar G, Geldof H, et al. A double-blind, randomized, placebo-

controlled dose-ranging study to evaluate the efficacy of alosetron in the

treatment of irritable bowel syndrome. Aliment Pharmacol Ther. 2000;14:23-34.

39. Camilleri M, Northcutt AR, Kong S, Dukes GE, McSorley D, Mangel AW. Efficacy

and safety of alosetron in women with irritable bowel syndrome: a randomised,

placebo-controlled trial. Lancet. 2000;355:1035-1040.

40. Camilleri M, Chey WY, Mayer EA, et al. A randomized controlled clinical trial of

the serotonin type 3 receptor antagonist alosetron in women with diarrhea-

predominant irritable bowel syndrome. Arch Intern Med. 2001;161:1733-1740. 41. Chang L, Ameen VZ, Dukes GE, McSorley DJ, Carter EG, Mayer EA. A dose-

ranging, phase II study of the efficacy and safety of alosetron in men with

diarrhea-predominant IBS. Am J Gastroenterol. 2005;100:115-123.

42. Lotronex (alosetron hydrochloride) [package insert]. Research Triangle Park, NC:

GlaxoSmithKline; 2006.

43. Muller-Lissner SA, Fumagalli I, Bardhan KD, et al. Tegaserod, a 5-HT(4) receptor

partial agonist, relieves symptoms in irritable bowel syndrome patients with

abdominal pain, bloating and constipation. Aliment Pharmacol Ther.

2001;15:1655-1666.

44. Novick J, Miner P, Krause R, et al. A randomized, double-blind, placebo-

controlled trial of tegaserod in female patients suffering from irritable bowel

syndrome with constipation. Aliment Pharmacol Ther. 2002;16:1877-1888.

45. Tack J, Muller-Lissner S, Bytzer P, et al. A randomised controlled trial assessing

the efficacy and safety of repeated tegaserod therapy in women with irritable

bowel syndrome with constipation. Gut. 2005;54:1707-1713.

46. Yang J, Lee H-R, Low K, Chatterjee S, Pimentel M. Rifaximin versus other

antibiotics in the primary treatment and retreatment of bacterial overgrowth in

IBS. Dig Dis Sci. In press.

47. Zelnorm (tegaserod maleate) [package insert]. East Hanover, NJ: Novartis

Pharmaceuticals Corporation; 2006.

48. Center for Drug Evaluation and Research. FDA Public Health Advisory:

tegaserod maleate (marketed as Zelnorm). Food and Drug Administration. March 30, 2007.

49. Scarpignato C, Pelosini I. Management of irritable bowel syndrome: novel

approaches to the pharmacology of gut motility. Can J Gastroenterol.

1999;13(suppl A):50A-65A.

50. Dapoigny M, Abitbol JL, Fraitag B. Efficacy of peripheral kappa agonist

fedotozine versus placebo in treatment of irritable bowel syndrome. A multicenter dose-response study. Dig Dis Sci. 1995;40:2244-2249.

51. Lembo A. Peripheral opioids for functional GI disease: a reappraisal. Dig Dis.

2006;24:91-98.

52. Kountouras J, Chatzopoulos D, Zavos C, Boura P, Venizelos J, Kalis A. Efficacy

of trimebutine therapy in patients with gastroesophageal reflux disease and

irritable bowel syndrome. Hepatogastroenterology. 2002;49:193-197.

53. New drug for chronic constipation. FDA Consum. 2006;40:8.

54. Drossman DA, Chey W, Panas R, Wahle A, Scott C, Ueno R. Lubiprostone

significantly improves symptom relief rates in adults with irritable bowel syndrome and constipation (IBS-C): data from two, twelve-week, randomized, placebo-

controlled, double-blind trials. Presented at: Digestive Disease Week, May 19-24, 2007, Washington, DC.

55. Johanson J, Wahle A, Ueno R. Efficacy and safety of lubiprostone in a subgroup

of constipation patients diagnosed with irritable bowel syndrome with constipation (IBS-C). Am J Gastroenterol. 2006;101(suppl 2):S491.

56. Johanson J, Panas R, Holland P, Ueno R. A dose-ranging, double-blind,

placebo-controlled study of lubiprostone in subjects with irritable bowel syndrome and constipation (IBS-C). Gastroenterology. 2006;130(suppl 2):A-25.

57. Tack J, Middleton SJ, Horne MC, et al. Pilot study of the efficacy of renzapride on

gastrointestinal motility and symptoms in patients with constipation-predominant

irritable bowel syndrome. Aliment Pharmacol Ther. 2006;23:1655-1665.

58. Camilleri M, McKinzie S, Fox J, et al. Effect of renzapride on transit in

constipation-predominant irritable bowel syndrome. Clin Gastroenterol Hepatol.

2004;2:895-904.

59. Delvaux M, Beck A, Jacob J, Bouzamondo H, Weber FT, Frexinos J. Effect of

asimadoline, a kappa opioid agonist, on pain induced by colonic distension in

patients with irritable bowel syndrome. Aliment Pharmacol Ther. 2004;20:237-

246.

60. Camilleri M, Kim DY, McKinzie S, et al. A randomized, controlled exploratory

study of clonidine in diarrhea-predominant irritable bowel syndrome. Clin

Gastroenterol Hepatol. 2003;1:111-121.

61. Pimentel M, Chatterjee S, Chow EJ, Park S, Kong Y. Neomycin improves

constipation-predominant irritable bowel syndrome in a fashion that is dependent

on the presence of methane gas: subanalysis of a double-blind randomized

controlled study. Dig Dis Sci. 2006;51:1297-1301.

62. Lee H-R, Low K, Chatterjee S, Yang J, Conklin J, Pimentel M. In the treatment of

IBS, the clinical response to rifaximin is determined by the normalization of the

lactulose breath test. Am J Gastroenterol. 2006;101(suppl):S474-S475.

63. Su C, Aberra F, Lichtenstein G. Utility of the nonabsorbed (<0.4%) antibiotic

rifaximin in gastroenterology and hepatology. Gastroenterol Hepatol. 2006;2:186-197.

64. Descombe JJ, Dubourg D, Picard M, Palazzini E. Pharmacokinetic study of

rifaximin after oral administration in healthy volunteers. Int J Clin Pharmacol Res.

1994;14:51-56.

65. Trapnell C, Connolly M, Pentikis H, Forbes B. The absence of effect of oral

rifaximin administration on the pharmacokinetics of ethinyl estradiol and

norgestimate contraceptive combination in healthy female volunteers. Ann

Pharmacother. In press.

66. Di Stefano M, Malservisi S, Veneto G, Ferrieri A, Corazza GR. Rifaximin versus

chlortetracycline in the short-term treatment of small intestinal bacterial

overgrowth. Aliment Pharmacol Ther. 2000;14:551-556.

67. Lauritano EC, Gabrielli M, Lupascu A, et al. Rifaximin dose-finding study for the

treatment of small intestinal bacterial overgrowth. Aliment Pharmacol Ther.

2005;22:31-35.

68. Sharara AI, Aoun E, Abdul-Baki H, Mounzer R, Sidani S, Elhajj I. A randomized

double-blind placebo-controlled trial of rifaximin in patients with abdominal

bloating and flatulence. Am J Gastroenterol. 2006;101:326-333.

69. Pimentel M, Park S, Mirocha J, Kane SV, Kong Y. The effects of a nonabsorbed

oral antibiotic (rifaximin) on the symptoms of irritable bowel syndrome. Ann Intern Med. 2006;145:557-563.

70. Quigley EM, Quera R. Small intestinal bacterial overgrowth: roles of antibiotics,

prebiotics, and probiotics. Gastroenterology. 2006;130(2 suppl 1):S78-S90.

71. Kim HJ, Camilleri M, McKinzie S, et al. A randomized controlled trial of a

probiotic, VSL#3, on gut transit and symptoms in diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther. 2003;17:895-904.

72. Kajander K, Hatakka K, Poussa T, Farkkila M, Korpela R. A probiotic mixture

alleviates symptoms in irritable bowel syndrome patients: a controlled 6-month

intervention. Aliment Pharmacol Ther. 2005;22:387-394.

73. Whorwell PJ, Altringer L, Morel J, et al. Efficacy of an encapsulated probiotic

Bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am J

Gastroenterol. 2006;101:1581-1590.

Table 1. Principal Symptom-Based Diagnostic Criteria for IBS

Manning criteria[10]

Abdominal pain relieved by defecation

Looser stools at the onset of abdominal pain

Increased stool frequency with abdominal pain

Abdominal distention

Mucus in stools

Feeling of incomplete evacuation

Rome III criteria[1]

Recurrent abdominal pain or discomfort ≥3 days/month in the last 3 months

associated with ≥2 of the following:

Improvement with defecation

Onset associated with change in stool frequency

Onset associated with change in stool form/appearance

IBS, irritable bowel syndrome.

Table 2. Pharmacologic Agents Being Evaluated for the Treatment of IBS

Status

class

Drug Therapeutic

2

Fedotozine Opioid Phase

3

Trimebutine Opioid Phase

Lubiprostone Chloride channel modulator Phase 3 (IBS-C)

receptor antagonist Phase 3 (IBS-C)

Renzapride Serotonin

2

Asimadoline Opioid Phase

Clonidine α2-Adrenergic receptor agonist Phase 2/3 (IBS-D)

Rifaximin Nonsystemic antibiotic Phase 2

receptor agonist Phase 2/3

Dextofisopam GABA

Phase 4

Duloxetine Serotonin norepinephrine

reuptake inhibitor

Linaclotide acetate Guanylate cyclase-C receptor

agonist

Phase 2 (IBS-C)

Solabegron β3-Adrenergic receptor agonist Phase 1 GABA, gamma-aminobutyric acid; IBS, irritable bowel syndrome; IBS-C, constipation-predominant IBS; IBS-D, diarrhea-predominant IBS.

软件系统简介

发电厂运行仿真分析系统软件系统简介 软件网站:https://www.360docs.net/doc/a718445374.html, 主要邮箱:szy@https://www.360docs.net/doc/a718445374.html, 附属邮箱:emrun@https://www.360docs.net/doc/a718445374.html,

目录 1. 软件版本简介 (1) 1.1 原理版功能 (1) 1.2 定制版功能 (1) 1.3 单机版功能 (1) 1.4 网络版功能 (1) 2. 软件功能简介 (2) 2.1 节能分析功能 (2) 2.2 运行仿真操作 (2) 2.3 故障事故分析 (2) 2.4 试验优化分析 (3) 2.5 设计优化分析 (3) 2.6 运行优化分析 (3) 3. 软件支撑系统 (1) 4. 软件操作简介 (3) 4.1 工况选择/保存功能 (3) 4.2 冻结/解冻/加速 (3) 4.3 外部参数设置功能 (4) 4.4 回退功能 (4) 4.5 事件及报警记录 (4) 4.6 重演功能 (5)

4.7 快存功能 (5) 4.8 故障设置功能 (5) 4.9 各类操作画面示例 (6) 4.10 测试版说明 (10)

1. 软件版本简介 1.1 原理版功能: 原理版软件只对通用类型的电厂生产原理过程进行仿真,在仿真范围及控制室表盘配置及DCS画面上进行简化,适合于现场运行管理人员和节能分析人员对运行过程进行理论分析,主要包括:故障运行分析、经济指标分析和典型技术分析,适用于对电厂机组的初步理论指导和经济核算指导。原理版软件也适合于大专院校热动、热自及电气专业的学生的课程学习。 1.2 定制版功能: 定制版软件只对某一具体电厂的生产过程进行仿真,满足电厂控制室DCS系统的完整操作画面及相关表盘的虚拟配置,建立的各系统数学模型能够真实再现这个电厂生产过程的各种运行工况,在功能、模拟范围和模型逼真上较高,对电厂设计论证、技术改造、经济评定、节能分析及对实际运行数据的跟踪比较程度水平较高。定制版软件主要适用于运行人员岗前培训、运行人员实时数据优化指导。 3. 单机版功能: 单机版软件的所有运行操作及节能分析功能都集成在单台计算机软件内,在独立的该计算机上能够完成仿真及运行的所有操作功能,包括运行操作分析、故障处理分析、经济指标分析等操作功能。 4. 网络版功能: 网络版软件按照不同的运行操作功能对仿真分析系统进行平台设置,可以在同一局域网内将不同的网络节点计算机设置成不同功能的操作员站:如汽机操作员台、锅炉操作员台、电气操作员台、故障设置及经济指标统计平台等。

动力电池智能制造技术【全面解析】

动力电池智能制造技术 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 1新能源汽车动力电池的智能制造 我国已成为名副其实的全球最大的新能源汽车市场。动力电池作为最为核心的关键零部件,它的相关技术必须与电动汽车的发展相适应。新能源汽车能走多远,最终取决于动力电池能走多远。综合各类电池的技术优势及发展趋势,锂离子电池在混合动力汽车、插电式混合动力汽车和纯电动汽车领域,将会有越来越广泛的应用。该类电池技术对新能源汽车产业发展的意义重大。 当前国内生产动力电池的企业约有上百家,但由于自动化程度低,不少企业呈现出生产效率低、产品良品率低和运营信息互联互通效率低的“三低”特点。这使得动力电池在技术以及一致性问题上一直很难有实质性突破,严重影响了动力电池的整体性能,也制约了我国新能源汽车产业的发展。 基于此,动力电池的智能制造应运而生。什么是动力电池的智能制造?它是指,动力电池生产智能工厂综合运用ERP系统、MES系统等软件,并实现全周期生产的可视化、自动化、智能化。未来,包括动力电池在内的新能源汽车制造,未来必然走向大规模和智能化,呈现高精度、高速度和高可靠性的“三高”特点。而以无人

化、可视化和信息化为代表的“三化”是实现“三高”的利器,亦是智能制造的范畴。 2动力电池工艺装备智能制造技术的发展水平 作为动力电池制造环节必需的工具,动力电池生产工艺装备对动力电池规模化生产条件下的技术发展起着极为关键的作用,近年来动力电池装备产业发展势头迅猛。结合动力电池生产工艺流程,我们将从动力电池电芯生产的前、中、后各段工序以及电池组模组及系统装配工序对动力电池装备产业的智能制造技术发展现状进行分析。 1.动力电池电芯生产前段工序的技术水平 作为动力电池整条产线最为关键的环节,生产前段工序对动力电池产品品质一致性和性能稳定性产生直接影响。动力电池电芯生产前段工序是指实现锂离子动力电池从原材料输送到模切的极片加工成型的过程。自动加料系统、搅拌机、涂布机、辊压机和模切机等是动力电池制造过程的核心工艺装备。 由于前段工艺装备对动力电池性能影响较大,各项技术指标要求高,且设备技术复杂程度高,前几年国产装备技术相对较为落后,在效率、精度、稳定性等方面与国外还存在一定差距,尤其是涂布机。近年来随着行业技术日趋成熟,国内装备行业快速发展,自动加料系统、大容积自动搅拌机、高速涂布机、高速模切机等高端设备逐步实现国产化,并在实际应用中产生了较好效果。 表1. 国内电池电芯前段工序设备情况

灵当CRM标准版模块使用说明

灵当CRM标准版系统用户手册客户管理从这里开始

一、工作台 (2) 1、功能说明 (2) 2、如何设置各个角色对应的工作台组建? (2) 二、公海客户 (3) 1、功能说明 (3) 2、客户公海的权限说明 (4) 3、系统管理员用户可操作 (4) 4、公海管理员可操作 (4) 5、公海用户可操作 (5) 6、公海客户设置及相关操作 (5) 三、日报周报月报 (14) 1、写日报周报月报 (15) 2、查看下级日报 (16) 3、查看日/周/月报提交情况(可以理解为“签到”功能) (17) 4、日/周/月报汇总 (18) 四、日程安排 (19) 1、如何添加日程安排? (19) 五、提醒 (20) 六、管理 (21) 七、客户管理 (22) 1、什么是客户管理? (22) 2、如何创建和查看客户 (23) 3、如何编辑或批量修改客户 (26) 4、如何管理和添加联系人信息 (28) 5、如何添加联系记录? (31) 6、如何管理客户售后? (32) 八、销售管理 (33) 1、轻松添加和管理报价单 (33) 2、如何添加合同订单? (35) 九、财务管理 (38) 1、如何添加回款计划(应收款) (39) 2、使用回款计划模块 (40) 3、如何进行收款或批量收款操作 (41) 十、报表 (43) 1、常用报表 (43) 2、如何根据公司业务需要,自定义个性化报表? (45) 十一、综合报表 (48) 十二、工具 (50) 1、如何添加“产品”? (50) 2、如何添加“价格表”? (50) 十三、营销管理 (52) 1、市场活动 (52)

一、工作台 1、功能说明 根据角色职责的不同,每个角色都有各自的工作台和对应的功能菜单,用户登录系统后,首先进入的是工作台首页页面,默认显示该角色下的数据信息,通过图形化数据展示,方便公司管理层和公司员工直接了解清楚最近的公司和个人销售情况。 2、如何设置各个角色对应的工作台组建? 管理员可以为每个角色设置工作台,普通用户不能设置自己的工作台,每个用户只能看到管理员为自己设置的工作台组件,不能看到没有权限的组件。 首先需要系统管理员admin登录系统,然后点击“控制面板—>首先组件模板”,打开“控制面板 > 首页组件模板”页面,如下图: 如需要为新增角色设置首页组件模板,则首先需要点击“新增模板”按钮,打开“控制面板 > 首页组件模板 > 新增模板页面”,然后操作步骤如下:

新能源电池智能制造装备项目建议书

新能源电池智能制造装备项目 建议书 投资分析/实施方案

报告说明 受益于新能源电池高能量比、高功率比、高转换率等优点,新能 源电池行业近年来呈高速增长态势。在新能源电池应用领域中,动力 锂电池由于受到新能源汽车行业爆发的影响,动力锂电池行业也快速 增长,成为新能源电池行业增长最快的细分产业。中国锂电池出货量 从2013年的21.04GWh增长到2017年的77.80GWh,复合增长率高达38.67%。根据瑞银集团预计,全球电动汽车动力电池产量将从2018年 的93GWh增长到2025年的973GWh,7年间产量将增长9.5倍。在新能 源电池下游需求旺盛的背景下,新能源电池不断地扩大产能,进行技 改提升产品性能。根据上海有色网(SMM)统计,仅在2018年,国内 有42个新能源电池项目开工,投资总额高达3,143.38亿元,平均单 个项目投资74.84亿元。当期我国新能源电池行业的自动化、智能化 程度较低,存在生产效率低、产品良品率低和运营效率互联互通效率 低等问题,使得电池技术难有实质性突破,严重影响了新能源电池的 整体性能,也制约了下游市场尤其是新能源汽车行业的发展。基于此,新能源电池行业的智能制造应运而生。通过智能制造,新能源电池工 厂可以综合运用EPR、MES系统等软件,实现全周期生产的可视化、自 动化、智能化,实现生产的高精度、高速度及高可靠性。智能制造是

提高新能源电池性能、降低成本,进而推动新能源汽车行业发展的必 由之路。因此,新能源电池快速增长的态势,以及新能源电池生产亟 待升级的现状为智能制造装备在新能源电池制造产业的应用提供了广 阔的市场空间。 本期项目总投资包括建设投资、建设期利息和流动资金。根据谨 慎财务估算,项目总投资41051.31万元,其中:建设投资32350.01 万元,占项目总投资的78.80%;建设期利息311.15万元,占项目总投资的0.76%;流动资金8390.15万元,占项目总投资的20.44%。 根据谨慎财务测算,项目正常运营每年营业收入99200.00万元, 综合总成本费用82277.50万元,净利润9858.66万元,财务内部收益 率14.27%,财务净现值1305.35万元,全部投资回收期5.02年。本期项目具有较强的财务盈利能力,其财务净现值良好,投资回收期合理。 本期项目技术上可行、经济上合理,投资方向正确,资本结构合理,技术方案设计优良。本期项目的投资建设和实施无论是经济效益、社会效益等方面都是积极可行的。 实现“十三五”时期的发展目标,必须全面贯彻“创新、协调、 绿色、开放、共享、转型、率先、特色”的发展理念。机遇千载难逢,任务依然艰巨。只要全市上下精诚团结、拼搏实干、开拓创新、奋力

智能型锂电池管理系统(BMS)

智能型锂电池管理系统(BMS) 产品简介 【系统功能与技术参数】 晖谱智能型电池管理系统(BMS),用于检测所有电池的电压、电池的环境温度、电池组总电流、电池的无损均衡控制、充电机的管理及各种告警信息的输出。特性功能如下: 1.自主研发的电池主动无损均衡专利技术 电池主动无损均衡模块与每个单体电芯之间均有连线,任何工作或静止状态均在对电池组进行主动均衡。均衡方式是通过一个均衡电源对单只电芯进行补充电,当某串联电池组中某一只单体电芯出现不平衡时对其进行单独充电,充电电流可达到5A,使其电压保持和其它电芯一致,从而弥补了电芯的不一致性缺陷,延长了电池组的使用时间和电芯的使用寿命,使电池组的能源利用率达到最优化。 2.模块化设计 整个系统采用了完全的模块化设计,每个模块管理16只电池和1路温度,且与主控制器间通过RS485进行连接。每个模块管理的电池数量可以从1~N(N≤16)只灵活设置,接线方式采用N+1根;温度可根据需要设置成有或无。 3.触摸屏显示终端 中央主控制器与显示终端模块共同构成了控制与人机交互系统。显示终端使了带触摸按键的超大真彩色LCD屏,包括中文和英文两种操作菜单。实时显示和查看电池总电压、电池总电流、储备能量、单体电池最高电压、单体电池最低电压、电池组最高温度,电池工作的环境温度,均衡状态等。 4.报警功能 具有单只电芯低电压和总电池组低电压报警延时功能,客户可以根据自己的需求,在显示界面中选择0S~20S间的任意时间报警或亮灯。 5.完善的告警处理机制 在任何界面下告警信息都能以弹出式进行滚动显示。同时,还可以进入告警信息查询界面进行详细查询处理。 6.管理系统的设置 电池电压上限、下限报警设置,温度上限报警设置,电流上限报警设置,电压互差最大上限报警设置,SOC初始值设置,额定容量,电池自放电系数、充电机控制等。 7.超大的历史数据信息保存空间 自动按时间保存系统中出现的各类告警信息,包括电池的均衡记录。 8.外接信息输出 系统对外提供工业的CANBUS和RS485接口,同时向外提供各类告警信息的开关信号输出。 9.软件应用 根据需要整个系统可以提供PC管理软件,可以将管理系统的各类数据信息上载到电脑,进行报表的生成、图表的打印等。 10.参数标准 电压检测精度:0.5% 电流检测精度:1% 能量估算精度:5%

L298N驱动模块使用说明

1.产品说明产品说明:: 本L298N 驱动模块,采用ST 公司原装全新的L298N 芯片,采用SMT 工艺稳定性高,采用高质量铝电解电容,使电路稳定工作。可以直接驱动两路3-16V 直流电机,并提供了5V 输出接口(输入最低只要6V),可以给5V 单片机电路系统供电(低纹波系数),支持3.3V MCU ARM 控制,可以方便的控制直流电机速度和方向,也可以控制2相步进电机,5线4相步进电机。是智能小车必备利器。

: 产品参数: .产品参数 1.驱动芯片:L298N双H桥直流电机驱动芯片 2.驱动部分端子供电范围Vs:+5V~+16V ; 如需要板内取电,则供电范围Vs:+6V~+16V 3.驱动部分峰值电流Io:2A 4.逻辑部分端子供电范围Vss:+5V~+7V(可板内取电+5V) 5.逻辑部分工作电流范围:0~36mA 6.控制信号输入电压范围(IN1 IN2 IN3 IN4): 低电平:-0.3V≤Vin≤1.5V 高电平:2.3V≤Vin≤Vss 7.使能信号输入电压范围(ENA ENB): 低电平:-0.3≤Vin≤1.5V(控制信号无效) 高电平:2.3V≤Vin≤Vss(控制信号有效) 8.最大功耗:20W(温度T=75℃时) 9.存储温度:-25℃~+130℃ 10.驱动板尺寸:55mm*45mm*33mm(带固定铜柱和散热片高度) 12.其他扩展:控制方向指示灯、逻辑部分板内取电接口。

3.接口说明接口说明:: 图中蓝色端子为电机驱动输出端与驱动电源输入端,排针处为电机控制 逻辑输入端与5V 电源输出端 OUT4 OUT3 OUT2 OUT1 控制电机输出端 VDD GND 为驱动电源输入端输入电压+6-16V

软件操作指南

[第一章] 概述 一、系统简介 考勤系统主要是考勤设置和员工考勤记录的统计与输出,此系统能够满足任何考勤规则(如:轮班、换班、跨天班、加班、请假、出差、上下班都考勤、只考上班勤、只考下班勤、以及无规律上班、加班、休息等),可以统计出每一个员工的迟到、早退、旷工的次数和加班、休息日加班,节假日加班的时间。能够以多种报表的形式或直接打印出来等功能。 二、系统组成 指纹考勤机:采集指纹数据,根据员工人数和出入口的多少决定采用台数。 网络电缆:联网多台考勤机之间的通讯、主考勤机与计算机之间的通讯。 操作系统:Win98/Win2000/Win2003/WinXP/Win7/Vista(32) 软件系统:考勤系统MYSQL或SQL Server2000数据库。 适用浏览器:IE6.0/IE7.0/IE8.0/IE9.0/Firefox/Chrome/360等 三、系统安装卸载 运行光盘里面的Setup.exe,按照提示安装即可。 如何卸载: 通过操作系统的[控制面版]的[添加/删除程序]卸载本系统 3.1软件安装步骤 1、将安装光盘放入CD-ROM,若没有出现下面的界面,请运行光盘上的【Setup.exe】

2、点击【下一步>】,进入选择安装路径界面: 3、选择好安装的路径,点击【下一步>】进入以下界面, 4、点击【安装】进入软件安装界面如下图:

5、系统会自动进行软件的安装和配置,出现以下界面点击【完成】,完成考勤软件的安装: 3.2 软件卸载 1、打开电脑系统的【开始】-【设置】-【控制面板】-【添加或删除程序】 找到【WebEcard】点击卸载,就能删除软件。

用户集成模块使用说明

强关联。 随着系统用户的人数的大量增加, 账号 管理会造成一定的工作量, 为了方便系统管 理员对账号管理,利用魔方网表外部字段组, 将人 员信息、组织结构与用户、用户组进行关 联,实现管理人员信息和组织结构,调整变化用户和用户组。 实现效果 人员信息表中添加数据,自动建立账号,加入当前空间。 组织结构表中添加数据,自动建立对应用户组。 人员信息中引用组织结构, 根据组织结构, 把人员对应的账号分配至组织结构本级及其所有 上级节点直至根节点。 初始化说明 初始化组织结构 添加及修改表单组织结构结构树 -- 字段组织结构的树节点, 给每一个树节点添加一条对应的记录。 执行手动回写公式初始化用户组。 初始化外部字段组连接 进入设置 -数据库连接管理。 修改数据库连接 localhost ,将服务器地址,端口,用户名,密码和数据名称设置为与当前 码 sa ,数据库 magicflu ,则无需修改。 聞創沟燴鐺險爱氇谴净祸測。 用户集成模块使用说明 模块简介 背景 魔方网表未内置组织结构及用户信息表, 因此人员信息与账号信息, 组织结构与用户组没有 魔方网表的数据库连接完全一致。如果数据库为本机 SQL 数据库, 1433 端口,账号 sa 密 矚慫润厲钐瘗睞枥庑赖賃軔。

导入人员信息 准备excel,必须包含的表头及示例数据如下,组织结构树结构为/根节点/节点1/节点2。 在人员信息表导入数据。 导入完成后将字段,一级,二级,三级取消公式编辑,组织结构启用公式编辑,保存表单。 初始化注意事项请使用前一定要初始化,否则影响使用。 本模板仅供使用SQL及ORACLE数据库用户使用,使用H2数据库的用户无法使用。 请使用魔方网表白金版6.120324W 及以上,旗舰版6.120324U及以上版本。 组织结构树层级不要超过三级。如超过三级可以联系技术进行扩展。 切勿删除列表中的以下字段。字段名称可以修改,不要修改启用公式编辑,禁止手动编辑选 项。 组织结构 组织结构文本 用户组ID 所处层级

MAAB软件使用简介

MATLAB 软件使用简介 MATLAB 是一个功能强大的常用数学软件, 它不但可以解决数学中的数值计算问题, 还可以解决符号演算问题, 并且能够方便地绘出各种函数图形。MATLAB自1984年由美国的MathWorks公司推向市场以来,历经十几年的发展和竞争,现已成为国际最优秀的科技应用软件之一。这里主要以适用于Windows操作系统的MATLAB5.3版本向读者介绍MATLAB的使用命令和内容。 一、MATLAB 的进入/退出 MATLAB 的安装成功后, 系统会在Windows【开始】菜单的【程序】子菜单中加入启动MATLAB命令的图标, 用鼠标单击它就可以启动MATLAB系统,见图2.1。 图2.1 启动MATLAB 启动MATLAB后, 屏幕上出现MATLAB命令窗口:

图2.2 MATLAB命令窗口 图2.2的空白区域是MATLAB 的工作区(命令输入区), 在此可输入和执行命令。 退出MATLAB系统像关闭Word文件一样, 只要用鼠标点击MATLAB系统集成界面右上角的关闭按钮即可。 二、 MATLAB 操作的注意事项 ●在MATLAB工作区输入MATLAB命令后, 还须按下Enter键, MATLAB才能执行你输入的MATLAB命 令, 否则MATLAB不执行你的命令。 ●MATLAB 是区分字母大小写的。 ●一般,每输入一个命令并按下Enter键, 计算机就会显示此次输入的执行结果。(以下用↙表示 回车)。如果用户不想计算机显示此次输入的结果,只要在所输入命令的后面再加上一个分号“;” 即可以达到目的。如: x= 2 + 3↙ x=5 x = 2 + 3 ; ↙不显示结果5 ●在MATLAB工作区如果一个表达式一行写不下,可以用在此行结尾处键入三个英文句号的方法达 到换行的目的。如: q=5^6+sin(pi)+exp(3)+(1+2+3+4+5)/sin(x)… -5x+1/2-567/(x+y) ●MATLAB 可以输入字母、汉字,但是标点符号必须在英文状态下书写。 ●MATLAB 中不需要专门定义变量的类型,系统可以自动根据表达式的值或输入的值来确定变量的 数据类型。 ●命令行与M文件中的百分号“%”标明注释。在语句行中百分号后面的语句被忽略而不被执行, 在M文件中百分号后面的语句可以用Help命令打印出来。 三、MATLAB的变量与表达式 ●MATLAB的变量名 MATLAB的变量名是用一个字母打头,后面最多跟19个字母或数字来定义的。如x,y,ae3,d3er45都是合法的变量名。应该注意不要用MATLAB中的内部函数或命令名作为变量名。MATLAB中的变量名是区分大小写字母的。如在MATLAB中,ab与 Ab表示两个不同的变量。列出当前工作空间中的变量命令为Who 将内存中的当前变量以简单形式列出; Whos 列出当前内存变量的名称、大小、类型等信息; Clear 清除内存中的所有变量与函数。 ●MATLAB的运算符 数学运算符:+(加号),-(减号),*(乘号), \(左除), / (右除), ^ (乘幂) 关系运算符:< (小于), > (大于), <= (小于等于), >= (大于等于),

03_模块使用说明_CAN

CAN Driver 模块 软件使用说明文档 恒润科技

第I页

第II 页 目录 1 文档介绍 (1) 1.1 目的 (1) 1.2 适用范围 (1) 1.3 读者对象 (1) 1.4 参考文档 (1) 1.5 术语和缩写 (1) 2 CAN Driver 模块 (2) 2.1 功能概述 (2) 2.2 文件组成 (2) 2.2.1 内核文件 (2) 2.2.1.1 Can.c (2) 2.2.1.2 Can.h (2) 2.2.2 配置文件 (2) 2.3 接口函数使用说明 (3) 2.3.1 影响整个CAN hardware unit 的函数 (3) 2.3.1.1 Can_Init (3) 2.3.2 影响某个CAN Controller 的函数 (3) 2.3.2.1 Can_InitController (3) 2.3.2.2 Can_SetControllerMode (4) 2.3.2.3 Can_DisableControllerInterrupts (4) 2.3.2.4 Can_EnableControllerInterrupts (5) 2.3.2.5 Can_DisableGlobalInterrupt (5) 2.3.2.6 Can_EnableGlobalInterrupt (6) 2.3.2.7 Can_GetV ersionInfo (6) 2.3.3 影响某个HOH 的函数 (7) 2.3.3.1 Can_Write (7) 无 (7) 2.3.4 需要周期调用的函数 (8) 2.3.4.1 Can_MainFunction_Write (8) 2.3.4.2 Can_MainFunction_Read (8) 2.3.4.3 Can_MainFunction_BusOff (8) 2.3.4.4 Can_MainFunction_Mode (9) 2.3.5 中断服务函数 (9) 2.3.5.1 CAN_PHYx_MB_ISR (9) 2.3.5.2 CAN_PHYx_Busoff_ISR (10) 2.4 配置参数使用说明 (10) 2.4.1 配置CAN 通道 (10) 2.4.1.1 CAN_USED_CONTROLLER_NUM (10) 2.4.1.2 CAN_PHYn_TO_LOGIC (11) 2.4.1.3 每个物理通道的处理机制 (11) 2.4.1.4 CanControllerIDtoPhys (11) 2.4.2 配置CAN 波特率 (13) 2.4.2.1 位时间相关参数的计算原理 (13)

Wasatch软件基本操作简介

Wasatch软件基本操作简介 Wasatch Softrip-Version6.8操作软件与蒙泰、Photoprint软件最大不同的是其可以同时Rip多个队列作业,而且实际应用操作起来更为强大。 一、进入主界面的简单操作。 在进入载入图片前,我们需要设置图片操作版面的质量单位,打印队列位置等。我们可以点击进入里的操作界面来进行操作设置。 载入需要作业的图片时,我们可以通过点击来载入图片,如下图可以点击右键进入,可以将该图片添加到版面上。

进入版面排版: 如下图界面可以设置单元选项,大小,拼接,描边等。

对于描边设置可以选择图面上的颜色设置底色,也可以从无内部路径和外包式描边来进行设置,具体操作建议结合实际图片分别设置比较。 二、具体系列重要操作介绍。 要进行这些选择,请选择“打印”菜单中的“设置”或单击“工具”图标启动“设置”屏幕(下图示)。 启动设置窗口 1. 选择打印机型号

从“设置”屏幕(下图示)上的“打印机型号”下拉窗口中选择您的打印机。请选择与您的特定打印方案匹配的打印机列表。 设置窗口 2. 选择配置方案 SoftRIP 的“配置方案”包括会影响最终颜色输出的所有设置。点击“配置方案”下拉列表可选择配置方案。编辑列表位于“配置方案”窗口的右侧。选择编辑可以看到如下窗口 点击属性会出现实际打印时的出墨等设置。见下图

打印模式选择我们实际打印需要的配置精度。 打点式选择可以选择fixed dot 和variable dot两种打点模式。 点大小选择我们实际打印过程中出墨打点的大小选择。比如选择了variable dot 打点模式后就会出现1,variable dot -dark 2,variable dot -standard 3,variable dot -light分别表示出墨点的大,中,小模式。 White Enable这是表示出白墨的选择,当我们选中该项后面的一栏就会变亮,选中white overlay表示白墨铺底,打印过程中就会发现在打印画色前先会喷出一层白墨来铺底。不选中就是表示盖面,打印过程中是先喷图画的彩色部分再喷白色,主要用于打印玻璃等透明材质。 Varnish Enable这个选项表示需要打印赋光油的材质,也有铺底和盖面两种模式,我们目前很少用。 White自动生成窗口介绍

智能锂电池充电管理方案

智能锂电池充电管理方案(1) 2012-07-30 21:59:37 来源:21ic 关键字:智能锂电池充电管理 1 引言 锂离子电池是上世纪九十年代发展起来的一种新型二次电池。由于锂离子电池具有能量密度高和循环寿命长等一系列的优点,因此很快在便携式电子设备中获得广泛应用,也获得了锂电池生产商的青睐。 锂离子电池主要由正极活性材料,易燃有机电解液和碳负极等构成。因此,锂离子电池的安全性主要是由这些组件间的化学反应引起。 在使用中,根据锂电池的结构特性,最高充电终止电压应低于4.2 V,绝对不能过充,否则会因正极锂离子拿走太多,产生危险。其充放电要求较高,一般应采用专门的恒流、恒压充电器进行充电。通常恒流充电至设定值后转入恒压充电,当恒压充电至0.1 A 以下时,应停止充电。 锂电池的放电由于内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命会缩短,因此在放电时需要严格控制放电终止电压。 因此,设计一套高精度锂离子充电管理系统对于锂离子电池应用是至关重要的。本文介绍的智能化锂电池充电系统是专门为锂电池设计的高端技术解决方案。该系统适用于锂离子/镍氢/铅酸蓄电池单体及整组进行实时监控、电池均衡、充放电电压、温度监测等,采用了电压均衡控制、超温保护等智能化技术,是功能强大、技术指标完善的动力电池充电管理系统。 2 系统构成与设计 充电系统主要由n 个(可扩充)充电模块和上位PC 机监控软件组成。支持充电过程编程,可按恒流充电、恒压充电等多种工况进行相应组合设置工作步骤,除了具有硬件过压过流保护,还允许用户定义每个通道的过电压、过电流等参数值,具备数据采集、存储、通讯及分析功能,具有掉电保护功能,不丢失数据。另外还配置锂电池管理系统,它主要由充电机、主控单元、数采单元和人机界面组成,硬件组成框图如图1 所示。

Keysight 智能电池管理系统 Battery Management System

SL1091A BMS BMS BMS SOC BMS BMS BMS BMS BMS

? BMS ? ? BMS ? SOC SOH ? ? ? BMS HiL HiL Scienlab BMS HiL 1 Gbps HiL BMS ± 1 mV ± 2 μA BMS 80 μs 1 MHz

BMS BMS BMS BMS CAN BMS BMS SOC SOH

BMS BMS // PE 1 KV BMS

BMS BMS ? ? ? ? / ? ? BMS SOC SOH SOF ? SOC ? SOH ? SOF ? ? ? ? ? ? / SOC ? ? ? ? ? ? ? ? Pt50Pt100 ? ? ? ? ? ? ? ? / CAN ? ? ? ? dSpace National Instruments ? ? ? ? CAN ? ? ? HiL

0 ... 8 V <1 mV ± 5 A± 10 A ± 40 W± 80 W (3 V –> 5 V)< -80 μs 1 kV PE ±10 mA ±2 μA + 0.05% ±5 A ±1 mA + 0.05% RTD Pt100Pt500Pt1000Ni KTY 1 kV PE 0 … 5 kΩ 0.1 Ω ±0.1 Ω ± 0.1% ±100 mV ±10 μV ±0.1% 1 kV PE 1 kΩ … 100 MΩ 1 kΩ … 1 MΩ 1% 1 MΩ … 100 MΩ 2% 1 kV PE 0 … 650 V 24 V / /PWM HiL EtherCAT 1 kHz CAN BMS BMS

5W模块使用说明书

HA_0050北斗模块使用说明

目录 1、功能描述 (3) 1.1 概述 (3) 1.2产品特点 (3) 2、引脚分布及规范 (4) 2.1引脚分布 (4) 2.2 软件接口 (5) 3、机械特性 (5) 4、电气特性 (6) 5、封装尺寸 (6)

1、功能描述 1.1 概述 图1-1 产品外观图 1.2产品特点 ●模块内置LNA,实现对RDSS 卫星信号进行滤波,低噪声放大, 用户无需外置LNA,直接连接无源天线即可; ●上位机可通过串口对RDSS功能进行软件版本升级; ●内置5W功放模块,无需外加PA即可满足用户的需求; ●模块尺寸为30×35×3.5mm;

●SMD的邮票封装形式; ●电源电压:VCC_RX_BAT: 3.5V-5.2V、VCC_PA_IN:4.9V-5.2V。 2、引脚分布及规范 2.1引脚分布 图2-1HA_0050北斗模块引脚分布

3表2-1HA_0050北斗模块引脚定义 2.2 软件接口 模块提供串行输入输出接口,默认波特率为115200bps,用户可根据实际使用需求进行重新配置,通过串口还可实现对基带程序的升级。串口接口协议参照有源输入输出军标4.0协议(可升级为2.1协议)。 3、机械特性 外形尺寸:30mm*35mm*3.5mm 封装形式:SMD邮票口(1.5mm*0.8mm)

4、电气特性 HA_0050北斗模块供电要求: ◇ VCC_RX_BAT输入电压:+3.5V~+5.2V,供电能力≥1A ◇ VCC_PA_IN输入电压:+4.9V~+5.2V,供电能力≥3.5A (要求VCC_RX_BAT的电源峰间纹波电压小于100 mV,VCC_PA_IN电源供电为瞬态电流,时间小于300ms) 注:超过最大电压使用可能导致模块永久损坏。 5、封装尺寸 邮票口管脚尺寸(单位:mm) 图7-1 HA_0050北斗模块邮票口引脚尺寸

软件操作文档

第二章首页功能介绍 1、首页介绍 首页主要由四部分组成: 1.上边:右上角显示当前登录人姓名,当前时间,以及安全退出和界面背景颜 色选择按钮; 2.用户操作菜单区域:提供新增组织机构、排序、字典表管理功能(该区域会随 着用户所选中的组织架构目录位臵发生改变),在用户操作右上角提供了对当前页面的刷新和屏幕缩放按钮(鼠标移动到对应按钮上会弹出提示信息); 3.内容显示区域:中间部分主要显示信息,根据选中的不同组织架构目录项, 显示与之对应的信息; 4.左侧组织架构目录区域:会显示组织架构目录分级等详细情况,用户可以在 该区域对组织架构目录进行搜索、查看、刷新等操作。 5.用户可以在搜索框中填写想要搜索的内容,点击搜索按钮,系统将搜索

匹配内容;点击重载按钮,刷新目录列表;点击按钮,展开列表,显示子目录;点击按钮,收缩列表,隐藏子目录。 2、首页各个区域介绍 2.1 用户操作区域介绍 用户操作区域为用户提供对指定目标的具体操作菜单,常有添加、删除、编辑、排序等。 2.1.1排序 对已有组织机构进行排序,在首页点击按钮出现排序窗口如下图(选中 一个组织机构名称,点击上移或者下移可以移动组织机构在目录中的位臵,点击保存即可保存修改)。 2.1.2字典表管理 字典表管理了本系统的基础数据,在首页字典表管理窗口中可以对字典表进行添加、删除操作,点击按钮弹出字典表管理窗口如下图:

1)在字典表管理窗口,点击下拉菜单箭头,会弹出字典类型列表如下图: 2)在字典表管理窗口,点击新增按钮,弹出新增字典表类型窗口,点击创建按钮保存,点击重臵按钮重新填写信息(如下图): 3)字典类型删除,在下拉列表中选中想要删除的字典类型,点击删除按钮即可删除选中字典类型:

基于智能化锂电池充电管理系统的研究

摘要 本文主要介绍的智能化锂电池充电系统是专门为锂电池设计的高端技术解决方案。该系统适用于锂离子、镍氢、铅酸蓄电池单体及整组进行实时监控、电池均衡、充放电电压、温度监测等,采用了电压均衡控制、超温保护等智能化技术,是功能强大、技术指标完善的动力电池充电管理系统[ 1]。 关键词:智能化锂电池恒流恒压充电系统SMBus1.1 引言 随着社会经济的迅速发展,移动电话、数码相机、笔记本电脑等便携式电子产品的普及,消费者对电池电能要求日渐提高;人们希望在获得大容量电能的同时, 能够尽量减轻重量, 提高整个电源系统的使用效率和寿命。锂电池作为上世纪九十年代发展起来的一种新型电池[ 2], 因具有能量密度高、性能稳定、安全可靠和循环寿命长等一系列的优点,很快在便携式电子设备中获得广泛应用,更获得了广大消费者的青睐。由此可见,设计一套高精度锂电池充电管理系统对于锂电池应用至关重要。 1 锂电池充放电原理 锂电池主要由正极活性材料、易燃有机电解液和碳负极等组件构成[ 3]。因此,锂电池的安全性能主要是由这些组件间的化学反应所决定的。 根据锂电池的结构特性,锂电池的最高充电电压应低于4.2 V[ 4],不能过充,否则会因正极锂离子拿走太多,发生危险。其充放电要求较高,一般采用专门的恒流恒压充电器进行充电。通常恒流充电至设定值后转入恒压充电状态,当恒压充电至0.1 A以下时[ 5],应立即停止充电。 锂电池的放电由于内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极[ 6],以保证下次充电时锂离子能够畅通地嵌入通道。否则电池寿命会缩短,因此在放电时需要严格控制放电终止电压。

Word软件简介及基本操作

Word软件简介及基本操作 课题:Word软件简介及基本操作 教学目标: 知识目标:熟悉Word 的工作界面;掌握文档的基本操作;掌握对文本的基本编辑; 技能目标:能应用Word完成对文本的基本编辑;熟练地掌握Word 的各种功能; 情感目标:能够通过学习、交流、讨论增加对信息技术科的兴趣,并促进学生能够主动积极的去学习; 教学重点:文本的编辑; 教学难点:文本的编辑; 教学课时:45分钟 教学过程: 一、新课导入 同学们老师想问一下:咱们班的同学有没有喜欢写东西的?你们平时都是用什么工具写的呢?是不是很不方面修改?今天老师就给你门将在计算机上如何写文章?如何使它们更美观?而要做到这些必须记住一种工具交Word。下面我们来具体学习一下。 二、新课教学 窗口简介: (一)标题栏:双击标题栏可实现窗口最大化与还原之间的快速切换。(组合键Alt+F10)(二)菜单栏: 1、Alt加上菜单后的英文字母可进入相应的菜单,配合四个箭头键可执行菜单中的命令。(进入文件菜单:Alt+F) 2、常用组合键 ①新建文件:Ctrl+N。②保存文件:Ctrl+S。③打开文件:Ctrl+O。④全选:Ctrl+A。⑤复制:C trl+C。⑥粘贴:Ctrl+V。⑦剪切:Ctrl+X。⑧撤销:Ctrl+Z。⑨恢复:Ctrl+Y。 (三)工具栏: 1、工具栏的调用: A、视图菜单→工具栏→……。 B、菜单栏或者工具栏上右击鼠标,在快捷菜单中选择。

2、工具栏的移动:将鼠标放在工具栏的最左侧(有四个灰白色的小点),指针变成移动符号,按住左键拖动。(或者放在工具栏的空白处按下左键出现移动符号时拖动左键。) (四)标尺:用于排版。 1、标尺的调用:视图菜单→标尺。 2、页边距的调整: A、将鼠标指针放在水平(垂直)标尺灰色部分左右(上下)两边出现“←→”时,按住左键拖动。 B、页面设置对话框中调整:文件菜单→页面设置→页边距选项卡……。 (五)工作区:用来编辑文档。 (六)视图按钮区:以各种视图方式显示文档。(可进入视图菜单设置视图的方式) (七)滚动条: (八)状态栏: 文档的操作 一、新建文档: 1、组合键:Ctrl+N。 2、文件菜单→新建……。(根据模板文件创建新文档,“本机上的模板……”) 3、常用工具栏上单击“新建空白文档”按钮。 二、保存文档: 1、第一次保存新建的文档: A、组合键:Ctrl+S。 B、文件菜单→保存。 C、常用工具栏上单击“保存”按钮。 注意:保存文档时应首先选择保存位置、再输入文件名、选择文件类型,最后单击“保存”。(文件默认类型为*.doc) 三、打开文档: 1、组合键:Ctrl+O。 2、常用工具栏上单击“打开”按钮。 3、文件菜单→打开。 文本的编辑 一、输入文本:

基于SH366000的智能电池管理系统

基于SH366000的智能电池管理系统 中颖电子股份有限公司高级工程师张朋翔 摘要:本文结合中颖电子的智能电池管理芯片SH366000,围绕着锂离子电池安全和有效利用的目标,对信息采集、充电方式、SOC估算、安全保护、电芯均衡、人机接口、低功耗设计等方面的实现策略进行了比较与分析,总结了现有智能电池管理系统的不足,对未来的发展方向进行了展望。 关键词:锂离子电池、智能电池管理系统、SH366000、充电管理、电池平衡、电池保护 中图分类号:TM912.6 文献标识码:A Smart Battery System Based on SH366000 Abstract:On the basis of the Li-ion battery of safety and effective use, We analyzed t he existing solution of Signal sample、Charge mode、SOC estimate、Safety protection、Cell balance、Man-machine interface、Low power design etc,summarized its disadvant age, and predicted the develop direction of the future. Key Word:Li-ion Battery、Smart Battery System、SH366000、Charge Management、Ce ll Balance、 Battery Protection 概述 锂离子电池研究始于20世纪80年代,1991年由索尼公司首先推出了民用产品。由于具备能量密度高、体积小、无记忆效应、循环寿命高、自放电率低等诸多优点,锂离子电池目前广泛应用于手机、MP3、笔记本电脑、相机等各种便携式设备。尤其在笔记本供电方面,其优异的高能量优势更是发挥得淋漓尽致。 但是由于能量密度高及特有的化学特性,锂离子电池的安全性和稳定性方面亦存在隐患,如过高温和过充可能会燃烧甚至导致爆炸,过放电可能造成电池本身的损坏。近年来,连续出现的笔记本电脑电池爆炸燃烧事故,导致了全球性的大批量电池召回现象,给生产厂家带来了巨大的经济损失。 为保证电池使用的安全性,在提高电池本身材料性能及加强工艺控制的同时,智能电池管理系统也成为锂离子电池应用研究的重中之重。 本文将结合中颖电子股份有限公司的锂离子电池管理与保护芯片SH366000,对智能电池管理系统中的关键技术进行阐述。 智能电池管理系统

和利时DCS模块使用说明

和利时DCS模块使用说明 FM802(一组2个)-------------DPU。 FM301---------------------------控制器底座。 FM910---------------------------冗余电源模块,每个控制器底座上6个。FM931---------24V查询电源模块(给DI模块外部供电) SM911---------冗余电源模块,24VDC,给模块供电,一列为一组电源。理解:每个控制器底座上6个FM910,共3组电源。对于扩展柜,需要安装6个SM911模块,也分为3组,给柜内模块供电,一组正面,一组反面,另一组给FM931,以及剩余的DI模块查询电源使用(这里需要加保险丝段子)。 FM171-------------16路触点型开关量输出模块(DO模块) FM138--------------16路继电器模块(DO模块) FM131-E----------电缆连接型端子底座(DO模块) FM192A-TR-------------DP终端电阻 FM131A------------------普通端子底座(DI,AI,AO,TC,RTD) FM192B-CC--------------热电偶冷端补偿模块(TC) FM1201--------------------DP总线模块(中继器) FM1303--------------------DP总线模块底座(中继器) FM148A--------------------8路模拟量输入模块(AI) FM151A---------------------8路模拟量输出模块(AO) FM143------------------------8路热电阻输入模块(RTD) FM147------------------------8路热电偶输入模块(TC)

相关文档
最新文档