ZEMAX 各种像差图详细分析

ZEMAX 各种像差图详细分析
ZEMAX 各种像差图详细分析

头盔的定位传感系统是与光学系统同等重要的一部分。它包括头部的定位和眼球的定位。眼球的定位主要应用在瞄准系统上,一般采用红外图像的识别处理跟踪来获得眼球的运动信息。头部定位采用的方法比较多,如超声波、磁、红外、发光二极管等的定位系统,头部的定位提供位置和指向六个自由度的信息。对定位传感系统的要求是灵敏度高、延迟小,灵敏度低易受外界环境影响。

头盔电路控制系统一般与头盔显示器分开放置以减轻头盔重量,其连接系统在机载时的设计要考虑在紧急情况下能够迅速使头盔和飞机上的控制系统脱离,保证飞行员的安全。

头盔是显示器的固定部件,由于显示器的重量在头的前部,这使头盔的中心发生了变化,容易产生疲劳,因此赢在头后部加配重保持重心不变。

用来描述HMD光学系统的几个重要参数:

●视场(FOV)

●出瞳

●Optical eye relief

●光通量

●分束器传递(beamsplitter transmission/反射系数)(针对see-through HMD)●调制传递函数(MTF)

●色差

●畸变

●场曲

●放大率

●鬼像

●重量

●重心

●体积

虽然光学材料的发展已经有了显著地进步,但是最好的成像质量还是由玻璃得到的,不幸的是玻璃是最重的光学媒介。塑料光学元件有质量小和成本低的特点,在牺牲部分成像质量的代价下可以考虑采用。全息元件的质量更轻。折射光学系统设计中,使用全息分束器可以利用部分波长并且不产生多余的光强度。

人眼的瞬间视场是椭圆的,一般为垂直120°水平150°,双眼总视场为垂直120°水平200°。光学系统的视场越大越好,但是FOV的尺寸被几个因素制约,包括重量,位置和分辨率。

影响设计参数最重要的一个指标为MTF,MTF是度量光学系统从输入到输出传递调制对比度的工具,MTF曲线横坐标为空间频率。任何情况均可归结为一系列正弦曲线的空间频率,所以可以用来度量光学系统的像质损耗。

图 MTF(调制传递函数)曲线

在HMD中,每一个组件(传感器,像源,光学元件)都有自己的MTF。如果系统是线性的,它的总MTF可以由各组件的MTF乘积得到。上图的传递函数代表了一个相对较好地对比度传递(在低频率和中频率),但是在高频区下降非常迅速。在高频区,系统不能很好的再生对比度会造成环境细节的丢失。

光学系统的出瞳必须位于人眼的入瞳处,这样人才能看到像的全部。出瞳有三个特征量:尺寸,形状和位置。在其它设计约束诸如尺寸,质量,复杂度和成本等的范围内,应该把出瞳设计得尽量大。

人眼的入瞳直径为3mm,在视场范围内眼球的活动留量为5mm,再加上头盔的滑移余量为±3mm。这样,就使得系统最小的出瞳直径为14mm。

最后的光学元件到出瞳的距离为eye relief(眼点距)。

图眼点距,有图为有多余结构时,称为物理眼点距

Zemax中的点列图的分析方法

点列图的原理就是显示光学系统在IMA面上的成像。换句话说,它就就是通过计算,把一系列物方的点通过光学系统以后,成像在IMA面上的情况给实际绘制出来。 为了表现方便,它可以选择一系列预定的模板形式,具体来说,比如一个在轴上的点,从无限远成像到IMA面上,ZEMAX就模拟在无限远有若干个发光点(光束),这些点平行射入入瞳,然后经过光学系统,最后成像在IMA面上。显然如果光学系统就是完美的光学系统,那么这些点成像点为一个理想的点。但对于实际的光学系统,就会成像为一个弥散斑。那么这个弥散斑在IMA面上的像,就就是Spot Diagram。同理,在非轴上点,也可以参照主光线的角度与位置,形成一系列的发光点,经过入瞳最后成像在IMA面上最后也形成一个弥散斑。 如何通过Spot Diagram观察出光学设计的质量,简单说,这个弥散斑越小越好。如果您发现弥散斑足够小,满足您对光学系统最小弥散斑的要求(spot diagram的单位就是微米)那么您的光学系统就完全可以进行实际的加工了。换句话说,就就是您的光学系统已经可以设计完成了。 如何才知道您的光学系统足够的好?这里有个参考,就就是airy 斑的参考。airy斑就是物理光学的一个概念。它指出在形成的弥散斑直径在2、44*F*(主波长)以内的时候,该光学系统可以认为就是理想(完美)光学系统。这样当您在Spot Diagram图中,在setting 菜单中,设置显示airy斑。然后发现您的点列图完全都在airy斑环之内,您就可以认为您的光学系统设计已经完美。但实际上,很少有光学系统,可以满足符合airy斑直径的要求。那么说明您的光学系统有像差。

ZEMAX中像差分析及理解

Z E M A X中像差分析及 理解 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

Z E M A X中像差分析及理解1、轴上点球差和轴向色差、轴上点垂轴色差 在ZEMAX的分析菜单中有“longitudinalaberration”项目,实际上就是“轴上点的球差分析”,不过直译过来是“纵向像差”,这实际上是外国人的说法罢了。在这个分析图中,纵轴是“光瞳”,横轴是“像差”值。分析图描述了F、d、C三个描述光波的球差情况,实际上也反映了轴向色差的情况,就是F、C光的数值差。 在“RayAbberation”(横向特性曲线)的0视场分析图中,也反映了轴上点像差和轴向色差的情况。在该分析图中,数值反映的是“在像面上,各个孔径的光线与像面交点的高度与主光线与像面交点高度的差值”。轴上点与其差别为: 其中是几何像差表示的轴上点球差,表示的是横向特性曲线数值,是该对子午光线出射夹角。 轴上点的“垂轴色差”就是“RayAbberation”0视场的F、C光线数据差值。 2、??轴外球差和轴外色差 “RayAbberation”光性特性曲线其他分析图反映的是物面不同高度或者不同视场的“轴外点球差和轴外点色差”,但是都反映的是像面上交点高度的差。需要获得确切的数据值

需要角度之间的转换,这是比较复杂的一件事情。但是,从图上我们可以反映出轴外点球差和色差的大体值,一般而言其数据不会超出一个数量级。 3、??彗差与色彗差 “RayAbberation”不但反映了系统球差和色差的大体情况,而且反映了彗差的情况。按照像差理论,彗差是与孔径和视场都有关的一个像差,主要反映了经过光学系统后与主光线原对称的光线对不再与主光线对称的情形,能量上反映了对于中心点的不对称,也就是“彗尾现象”。 彗差的大体数值可以使用以下方法大体判断。如图。 特性曲线的端点代表代表光线对在像面上的不同交点,连接两点与纵轴有一个交点A,B。A点与原点的距离大体上可以描述该视场下的彗差数值。而AB两点之间的距离表示两种不同波长光之间的“色彗差”。 4、??场曲、畸变和像散、色场曲、色畸变 场曲和畸变是有专门的特性曲线描述的。当然,其中的不同波长之间的场曲差异以及畸变差异就反映了“色场曲”和“色畸变”像差。 至于“像散”,从其定义可以从场曲图中分析出来,主波长光线的“子午场曲和弧矢场曲之差”。ZEMAX描述的场曲为“宽光束场曲”而非“细光束场曲”。

zemax像差图分析报告

ZEMAX像差深入以及像差各种图表分 析 初级像差深入 近轴光线和远轴光线的概念。 近轴光线和远轴光线都是指与光轴平行的光线,它们都成像在光轴上(下图中画的是主光轴情况)缩小的光圈可以拦去远轴光线,而由近轴光线来成像。 总的来说,镜头的像差可以分成两大类,即单色像差及色差。镜头的单色像差五种,它们分别是影响成像清晰度的球差、彗差、象散、场曲,以及影响物象相似度的畸变 光线称远轴光线 主光轴 /isnonci.oon 以下就分别介绍五种不同性质的单色像差: 球差

是由于镜头的透镜球面上各点的聚光能力不同而引起的。从无穷远处来的平行光线在理论上应该会聚 在焦点上。但是由于近轴光线与远轴光线的会聚点并不一致,会聚光线并不是形成一个点,而是一个以光轴为中心对称的弥散圆,这种像差就称为球差。球差的存在引起了成像的模糊,而从下图可以看出,这种模糊是与光圈的大小有关的。 小光圈时,由于光阑挡去了远轴光线,弥散圆的直径就小,图像就会清晰。大光圈时弥散圆直径就大, 图像就会比较模糊。 必须注意,这种由球差引起的图像模糊与景深中的模糊完全是两会事,不可以混为一谈的。球差可以 通过复合透镜或者非球面镜等办法在最大限度下消除的。在照相镜头中,光圈(孔径)数增加一档(光 孔缩小一档),球差就缩小一半。我们在拍摄时,只要光线条件允许,可以考虑使用较小的光圈 (孔 径)来减小球差的影响。

实用文案彗差

是在轴外成像时产生的一种像差。从光轴外的某一点向镜头发岀一束平行光线,经光学系统后,在像平面上并不是成一个点的像,而是形成不对称的弥散光斑,这种弥散光斑的形状象彗星,从中心到边缘拖着一个由细到粗的尾巴,首端明亮、清晰,尾端宽大、暗淡、模糊。这种轴外光束引起的像差就称为彗差。彗差的大小既与光圈仔L径)有关,也与视场有关。我们在拍摄时也可以采取适当采用较小的光圈(孔径)来减少彗差对成象的影响。 像散 也是一种轴外像差。与彗差不同,像散仅仅与视场有关。由于轴外光束的不对称性,使得轴外点的子午细光束(即镜头的直径方向)的会聚点与弧矢细光束(镜头的园弧方向)的会聚点位置不同,这种现象称为象散。像散可以对照眼睛的散光来理解。带有散光的眼睛,实际上是在两个方向上的晶状体曲率不一致,造成看到的点弥散成了一条短线。象散也使得轴外成像的像质大大地下降。像散的大小只与视场角有关,与孔径是没有关系的。即使光圈开得很小,在子午和弧矢方向仍然无法同时获得非常清晰的像。在广角镜头中,由于视场角比较大, 像散现象就比较明显。我们在拍摄的时候应该尽量使被摄体处于画面的中心。这好象与构图要求不把 主要表现对象放在图面正中央有些冲突,如何掌握就要看实际情况了。

Zemax中的点列图的分析方法

点列图的原理是显示光学系统在IMA面上的成像。换句话说,它就是通过计算,把一系列物方的点通过光学系统以后,成像在IMA面上的情况给实际绘制出来。 为了表现方便,它可以选择一系列预定的模板形式,具体来说,比如一个在轴上的点,从无限远成像到IMA面上,ZEMAX就模拟在无限远有若干个发光点(光束),这些点平行射入入瞳,然后经过光学系统,最后成像在IMA面上。显然如果光学系统是完美的光学系统,那么这些点成像点为一个理想的点。但对于实际的光学系统,就会成像为一个弥散斑。那么这个弥散斑在IMA面上的像,就是Spot Diagram。同理,在非轴上点,也可以参照主光线的角度和位置,形成一系列的发光点,经过入瞳最后成像在IMA面上最后也形成一个弥散斑。 如何通过Spot Diagram观察出光学设计的质量,简单说,这个弥散斑越小越好。如果你发现弥散斑足够小,满足你对光学系统最小弥散斑的要求(spot diagram的单位是微米)那么你的光学系统就完全可以进行实际的加工了。换句话说,就是你的光学系统已经可以设计完成了。 如何才知道你的光学系统足够的好?这里有个参考,就是airy 斑的参考。airy斑是物理光学的一个概念。它指出在形成的弥散斑直径在2.44*F*(主波长)以内的时候,该光学系统可以认为是理想(完美)光学系统。这样当你在Spot Diagram图中,在setting菜单中,设置显示airy斑。然后发现你的点列图完全都在airy斑环之内,你就可以认为你的光学系统设计已经完美。但实际上,很少有光学系统,可以满足符合airy斑直径的要求。那么说明你的光学系统有像差。

究竟是哪种像差在起主要作用?主要的像差有,球差,慧差,像散,场曲,畸变。这些像差在spot diagram上的表现各不相同。但由于一个光学系统通常是各种像差的混合。因此需要你对spot diagram的形状进行判断。确认是主要是哪种像差,然后通过修改玻璃,或者曲率以及光阑的位置等加以调整。 不同的像差有不同的像表现,同时随着像差的大小不同,这个像,也叫斑点的大小也不一样,显然像差越小的光学系统,其斑点也越小。衡量这个斑点大小有个定义,就是RMS半径定义,另外还有一个就是几何半径的定义。RMS是均方根半径,可以定量的反映这个系统实际的斑点大小。 在Spot Diagram中还有几个参数可以参考,RMS RADIUS,均平方根半径是一个重要的半径参数,它是弥散斑各个点坐标,参考中心点,进行的坐标平方和后,除以点数量,然后开方的值,这个值的半径可以反映一个典型的弥散斑的大小,以定量的反映这个系统实际的斑点大小。但它不是全部弥散斑的直径,全部弥散斑的直径是GEO RADIUS。RMS RADIUS是重要的反映弥散质量的参数,它和在优化中和MF的值极大的吻合。(就是说MF的某个视场最后值就是RMS的半径) 需要说明的是:不同的射入入瞳的光线排列会对最后的RMS半径等有影响,但并不大。 关键影响RMS半径的是,每个airy斑的中心点参考点的选择:一种选择的方式是根据主光线的位置做为斑点中心光线的中点。另外一种方式是采用斑点的实际重心做为斑点中点。 对于一个轴对称系统,在轴上,显然主光线中心和斑点重心是一点没有差别,但在轴外点成像。主光线的中心计算出来的RMS显然要比斑点重心计算的RMS半径要大。其实,通常采用的是斑点重心的参考中点方式。

ZEMAX中像差分析及理解

Z E M A X中像差分析及理解1、轴上点球差和轴向色差、轴上点垂轴色差 在ZEMAX的分析菜单中有“longitudinalaberration”项目,实际上就是“轴上点的球差分析”,不过直译过来是“纵向像差”,这实际上是外国人的说法罢了。在这个分析图中,纵轴是“光瞳”,横轴是“像差”值。分析图描述了F、d、C 三个描述光波的球差情况,实际上也反映了轴向色差的情况,就是F、C光的数值差。 在“RayAbberation”(横向特性曲线)的0视场分析图中,也反映了轴上点像差和轴向色差的情况。在该分析图中,数值反映的是“在像面上,各个孔径的光线与像面交点的高度与主光线与像面交点高度的差值”。轴上点与其差别为: 其中是几何像差表示的轴上点球差,表示的是横向特性曲线数值,是该对子午光线出射夹角。 轴上点的“垂轴色差”就是“RayAbberation”0视场的F、C光线数据差值。 2、??轴外球差和轴外色差 “RayAbberation”光性特性曲线其他分析图反映的是物面不同高度或者不同视场的“轴外点球差和轴外点色差”,但是都反映的是像面上交点高度的差。需要获得确切的数据值需要角度之间的转换,这是比较复杂的一件事情。但是,从图上我们可以反映出轴外点球差和色差的大体值,一般而言其数据不会超出一个数量级。 3、??彗差与色彗差 “RayAbberation”不但反映了系统球差和色差的大体情况,而且反映了彗差的情况。按照像差理论,彗差是与孔径和视场都有关的一个像差,主要反映了经过光学系统后与主光线原对称的光线对不再与主光线对称的情形,能量上反映了对于中心点的不对称,也就是“彗尾现象”。 彗差的大体数值可以使用以下方法大体判断。如图。 特性曲线的端点代表代表光线对在像面上的不同交点,连接两点与纵轴有一个交点A,B。A点与原点的距离大体上可以描述该视场下的彗差数值。而AB两点之间的距离表示两种不同波长光之间的“色彗差”。 4、??场曲、畸变和像散、色场曲、色畸变

ZEMAX像差深入以及像差各种图表分析_最新修正版

ZEMAX像差深入以及像差各种图表分析 目录 [隐藏] ?1初级像差深入 o1.1球差 o1.2彗差 o1.3像散 o1.4场曲 o1.5畸变 ?2各种像差图表 o2.1初级球差大的点列图 o2.2初级球差大的垂轴像差 o2.3子午慧差大的情况 o2.4其慧差和垂轴色差大 初级像差深入 近轴光线和远轴光线的概念。 近轴光线和远轴光线都是指与光轴平行的光线,它们都成像在光轴上(下图中画的是主光轴情况)。缩小的光圈可以拦去远轴光线,而由近轴光线来成像。 总的来说,镜头的像差可以分成两大类,即单色像差及色差。镜头的单色像差五种,它们分别是影响成像清晰度的球差、彗差、象散、场曲,以及影响物象相似度的畸变。

以下就分别介绍五种不同性质的单色像差: 球差 是由于镜头的透镜球面上各点的聚光能力不同而引起的。从无穷远处来的平行光线在理论上应该会聚在焦点上。但是由于近轴光线与远轴光线的会聚点并不一致,会聚光线并不是形成一个点,而是一个以光轴为中心对称的弥散圆,这种像差就称为球差。球差的存在引起了成像的模糊,而从下图可以看出,这种模糊是与光圈的大小有关的。 小光圈时,由于光阑挡去了远轴光线,弥散圆的直径就小,图像就会清晰。大光圈时弥散圆直径就大,图像就会比较模糊。 必须注意,这种由球差引起的图像模糊与景深中的模糊完全是两会事,不可以混为一谈的。球差可以通过复合透镜或者非球面镜等办法在最大限度下消除的。在照相镜头中,光圈(孔径)数增加一档(光孔缩小一档),球差就缩小一半。我们在拍摄时,只要光线条件允许,可以考虑使用较小的光圈(孔径)来减小球差的影响。

彗差 是在轴外成像时产生的一种像差。从光轴外的某一点向镜头发出一束平行光线,经光学系统后,在像平面上并不是成一个点的像,而是形成不对称的弥散光斑,这种弥散光斑的形状象彗星,从中心到边缘拖着一个由细到粗的尾巴,首端明亮、清晰,尾端宽大、暗淡、模糊。这种轴外光束引起的像差就称为彗差。彗差的大小既与光圈(孔径)有关,也与视场有关。我们在拍摄时也可以采取适当采用较小的光圈(孔径)来减少彗差对成象的影响。

ZEMAX中像差分析及理解

ZEMAX中像差分析及理解 1、轴上点球差和轴向色差、轴上点垂轴色差 在ZEMAX的分析菜单中有“longitudinal aberration”项目,实际上就是“轴上点的球差分析”,不过直译过来是“纵向像差”,这实际上是外国人的说法罢了。在这个分析图中,纵轴是“光瞳”,横轴是“像差”值。分析图描述了F、d、C三个描述光波的球差情况,实际上也反映了轴向色差的情况,就是F、C光的数值差。 在“Ray Abberation”(横向特性曲线)的0视场分析图中,也反映了轴上点像差和轴向色差的情况。在该分析图中,数值反映的是“在像面上,各个孔径的光线与像面交点的高度与主光线与像面交点高度的差值”。轴上点与其差别为: 其中是几何像差表示的轴上点球差,表示的是横向特性曲线数值,是该对子午光线出射夹角。 轴上点的“垂轴色差”就是“Ray Abberation”0视场的F、C光线数据差值。 2、轴外球差和轴外色差 “Ray Abberation”光性特性曲线其他分析图反映的是物面不同高度或者不同视场的“轴外点球差和轴外点色差”,但是都反映的是像面上交点高度的差。需要获得确切的数据值需要角度之间的转换,这是比较复杂的一件事情。但是,从图上我们可以反映出轴外点球差和色差的大体值,一般而言其数据不会超出一个数量级。 3、彗差与色彗差 “Ray Abberation”不但反映了系统球差和色差的大体情况,而且反映了彗差的情况。按照像差理论,彗差是与孔径和视场都有关的一个像差,主要反映了经过光学系统后与主光线原对称的光线对不再与主光线对称的情形,能量上反映了对于中心点的不对称,也就是“彗尾现象”。 彗差的大体数值可以使用以下方法大体判断。如图。 特性曲线的端点代表代表光线对在像面上的不同交点,连接两点与纵轴有一个交点A,B。A点与原点的距离大体上可以描述该视场下的彗差数值。而AB两点之间的距离表示两种不同波长光之间的“色彗差”。 4、场曲、畸变和像散、色场曲、色畸变

ZEMAX的基本像差控制与优化

ZEMAX勺基本像差控制与优化 ZEMAX 已经成为光学设计人员最常用勺工具软件了。光学设计中,描述和控制一个光学系统勺初级像差结构,通常使用轴上球差、轴向色差、彗差、场曲、畸变、垂轴色差、像散等像差参数。当我们企图更为详细勺描述和控制轴外指定视场、指定光束勺像差结构时,常常会使用轴外宽光束球差、彗差和细光束场曲等三个像差参数。然而,ZEMAX并不能像SOD88那样直接引用相对应的像差操作数来指定像差目标大小,更没有描述高级像差数勺像差操作数,这些通常都需要设计者自行分析和定义。 描述和控制系统光束结构的方法因习惯而有一定的差异,由于某些像差变量之间有某种相关性,而设置的优化权重又可以不同,因此常常都能够达到相同的效果,只是所计算的数学步骤不同而已。到底选择多少个参数来描述一个系统,虽无统一规定,但是还是要因系统像差特性不同而区别选择。经验表明,最少最准确的参数描述量,能够尽可能的提高优化的效率,并且减少掉入效果较差的局部优化的次数。经验丰富的工程师,轻车熟路,在这个环节上少走了很多的弯路,从而其设计效率和设计出来的产品品质要比通常的设计人员有些得多,成功率高的多。 笔者撰写本文的目的就是企图浅显的探讨光学设计中,ZEMAX 中光学结构的描述方法以及权重选择的问题。这些都是笔者在设计当中积累的经验,可能这个文章的论断会由于经验的多寡有一定的局限性,所以希望读者当作参考,不要照搬。 基本像差描述和控制 1、轴上球差LONA 和SPHA LONA 表示的是轴上物点指定波长,指定光束尺寸(光线对)的轴上成像交点到近轴焦平面之间轴向距离。这个定义和我们定义的轴向球差相同。光瞳尺寸(光束尺寸)在0~1 之间,那么将追迹实际的光束汇交点计算轴向球差。 SPHA 常用于指定面产生勺像差数值。若不指定特殊面(取值为0),则计算所有面产生球差总和。注意这个总合不是像差计算公式中勺经过各面逐个放大之后勺加权和,而是代数和(有待读者进一步验证)。 经验:当选择LONA 控制不住球差时,同时加入SPHA 操作数,设置合理勺权重,可以将轴向球差进一步改善。 2、轴向色差AXCL 定义为两个指定波长勺近轴焦平面轴向距离。若光瞳尺寸(光束尺寸)定义为0,那么使用近轴焦平面进行色差计算,定义不为0,则使用实际勺光线与轴交点位 置进行色差计算。 3、垂轴色差(倍率色差)在ZEMAX 中没有直接定义垂轴色差的操作数,但是从垂轴色差的定义可以知道,它是指某视场、某指定光束尺寸的、两指定波长光束在像面上所成的理想像的垂向距离差。 在ZEMAX中有REAY(wav, Hy , Py)操作数。其定义为指定波长、指定视场、指定光

ZEMAX 各种像差图详细分析

头盔的定位传感系统是与光学系统同等重要的一部分。它包括头部的定位和眼球的定位。眼球的定位主要应用在瞄准系统上,一般采用红外图像的识别处理跟踪来获得眼球的运动信息。头部定位采用的方法比较多,如超声波、磁、红外、发光二极管等的定位系统,头部的定位提供位置和指向六个自由度的信息。对定位传感系统的要求是灵敏度高、延迟小,灵敏度低易受外界环境影响。 头盔电路控制系统一般与头盔显示器分开放置以减轻头盔重量,其连接系统在机载时的设计要考虑在紧急情况下能够迅速使头盔和飞机上的控制系统脱离,保证飞行员的安全。 头盔是显示器的固定部件,由于显示器的重量在头的前部,这使头盔的中心发生了变化,容易产生疲劳,因此赢在头后部加配重保持重心不变。 用来描述HMD光学系统的几个重要参数: ●视场(FOV) ●出瞳 ●Optical eye relief ●光通量 ●分束器传递(beamsplitter transmission/反射系数)(针对see-through HMD)●调制传递函数(MTF) ●色差 ●畸变 ●场曲 ●放大率 ●鬼像 ●重量 ●重心 ●体积 虽然光学材料的发展已经有了显著地进步,但是最好的成像质量还是由玻璃得到的,不幸的是玻璃是最重的光学媒介。塑料光学元件有质量小和成本低的特点,在牺牲部分成像质量的代价下可以考虑采用。全息元件的质量更轻。折射光学系统设计中,使用全息分束器可以利用部分波长并且不产生多余的光强度。 人眼的瞬间视场是椭圆的,一般为垂直120°水平150°,双眼总视场为垂直120°水平200°。光学系统的视场越大越好,但是FOV的尺寸被几个因素制约,包括重量,位置和分辨率。 影响设计参数最重要的一个指标为MTF,MTF是度量光学系统从输入到输出传递调制对比度的工具,MTF曲线横坐标为空间频率。任何情况均可归结为一系列正弦曲线的空间频率,所以可以用来度量光学系统的像质损耗。

zemax像差图分析

ZEMAX像差深入以及像差各种图表分析初级像差深入 近轴光线和远轴光线的概念。 近轴光线和远轴光线都是指与光轴平行的光线,它们都成像在光轴上(下图中画的是主光轴情况)。缩小的光圈可以拦去远轴光线,而由近轴光线来成像。 总的来说,镜头的像差可以分成两大类,即单色像差及色差。镜头的单色像差五种,它们分别是影响成像清晰度的球差、彗差、象散、场曲,以及影响物象相似度的畸变。 以下就分别介绍五种不同性质的单色像差: 球差 是由于镜头的透镜球面上各点的聚光能力不同而引起的。从无穷远处来的平行光线在理论上应该会聚在焦点上。但是由于近轴光线与远轴光线的会聚点并不一致,会聚光线并不是形成一个点,而是一个以光轴为中心对称的弥散圆,这种像差就称为球差。球差的存在引起了成像的模糊,而从下图可以看出,这种模糊是与光圈的大小有关的。 小光圈时,由于光阑挡去了远轴光线,弥散圆的直径就小,图像就会清晰。大光圈时弥散圆直径就大,图像就会比较模糊。 必须注意,这种由球差引起的图像模糊与景深中的模糊完全是两会事,不可以混为一谈的。球差可以通过复合透镜或者非球面镜等办法在最大限度下消除的。在照相镜头中,光圈(孔径)数增加一档(光孔缩小一档),球差就缩小一半。我们在拍摄时,只要光线条件允许,可以考虑使用较小的光圈(孔径)来减小球差的影响。

彗差 是在轴外成像时产生的一种像差。从光轴外的某一点向镜头发出一束平行光线,经光学系统后,在像平面上并不是成一个点的像,而是形成不对称的弥散光斑,这种弥散光斑的形状象彗星,从中心到边缘拖着一个由细到粗的尾巴,首端明亮、清晰,尾端宽大、暗淡、模糊。这种轴外光束引起的像差就称为彗差。彗差的大小既与光圈(孔径)有关,也与视场有关。我们在拍摄时也可以采取适当采用较小的光圈(孔径)来减少彗差对成象的影响。 像散 也是一种轴外像差。与彗差不同,像散仅仅与视场有关。由于轴外光束的不对称性,使得轴外点的子午细光束(即镜头的直径方向)的会聚点与弧矢细光束(镜头的园弧方向)的会聚点位置不同,这种现象称为象散。像散可以对照眼睛的散光来理解。带有散光的眼睛,实际上是在两个方向上的晶状体曲率不一致,造成看到的点弥散成了一条短线。 象散也使得轴外成像的像质大大地下降。像散的大小只与视场角有关,与孔径是没有关系的。即使光圈开得很小,在子午和弧矢方向仍然无法同时获得非常清晰的像。在广角镜头中,由于视场角比较大,像散现象就比较明显。我们在拍摄的时候应该尽量使被摄体处于画面的中心。这好象与构图要求不把主要表现对象放在图面正中央有些冲突,如何掌握就要看实际情况了。 场曲

zemax像差知识总结

一、zemax的spot diagram的看图方式说明 光学设计程序zemax中有个很常用的评测光学系统质量的分析工具-spot diagram,中文翻译就是点图,借助它可以形象的对光学系统成像进行很好的描述。这里写下本人对spot diagram的体会和认识。可以通过多种方式在zemax中显示点图,方式一:直接点击在屏幕菜单工具栏中的“Spt”按钮;方式二:选择菜单Analysis-Spot Diagrams-Standard。 点图的原理是显示光学系统在IMA面上的成像。换句话说,它就是通过计算,把一系列物方的点通过光学系统以后,成像在IMA 面上的情况给实际绘制出来。 为了表现方便,它可以选择一系列预定的模板形式,具体来说,比如一个在轴上的点,从无限远成像到IMA面上,zemax就模拟在无限远有若干个发光点,这些点平行射入入瞳,然后经过光学系统,最后成像在IMA面上。显然如果光学系统是完美的光学系统,那么这些点成像点为一个理想的点。 但对于实际的光学系统,就会成像为一个弥散斑。那么这个弥散斑在IMA面上的像,就是Spot Diagram。同理,在非轴上点,也可以参照主光线的角度和位置,形成一系列的发光点,经过入瞳最后成像在IMA面上最后也形成一个弥散斑。 如何通过spot diagram看光学设计的质量,简单说,这个弥散斑越小越好。如果你发现弥散斑足够小,满足你对光学系统最小弥散斑的要求(spot diagram的单位是微米)那么你的光学系统就完全可以

进行实际的加工了。换句话说,就是你的光学系统已经可以设计完成了。 如何才知道你的光学系统足够的好?这里有个参考,就是airy 斑的参考。airy斑是物理光学的一个概念。它指出在形成的弥散斑直径在 2.44*F*(主波长)以内的时候,该光学系统可以认为是理想(完美)光学系统。这样当你在spot diagram图中,在setting菜单中,设置显示airy斑。然后发现你的点图完全都在airy斑环之内,你就可以认为你的光学系统设计已经完美。 但实际上,很少有光学系统,可以满足符合airy斑直径的要求。那么说明你的光学系统有像差。究竟是哪种像差在起主要作用?主要的像差有,球差,慧差,像散,场曲,畸变。 这些像差在spot diagram上的表现各不相同。但由于一个光学系统通常是各种像差的混合。因此需要你对spot diagram的形状进行判断。确认是主要是哪种像差,然后通过修改玻璃,或者曲率以及光阑的位置等加以调整。 在spot diagram中还有几个参数可以参考,RMS RADIUS,均平方根半径是一个重要的半径参数,它是弥散斑各个点坐标,参考中心点,进行的坐标平方和后,除以点数量,然后开方的值,这个值的半径可以反映一个典型的弥散斑的大小,但它不是全部弥散斑的直径,全部弥散斑的直径是GEO RADIUS。RMS RADIUS是重要的反映弥散质量的参数,它和在优化中,MF的值极大的吻合。(就是说MF的某个视场最后值就是RMS的半径)

ZEMAX的基本像差控制与优化

ZEMAX的基本像差控制与优化 ZEMAX已经成为光学设计人员最常用的工具软件了。光学设计中,描述和控制一个光学系统的初级像差结构,通常使用轴上球差、轴向色差、彗差、场曲、畸变、垂轴色差、像散等像差参数。当我们企图更为详细的描述和控制轴外指定视场、指定光束的像差结构时,常常会使用轴外宽光束球差、彗差和细光束场曲等三个像差参数。然而,ZEMAX并不能像SOD88那样直接引用相对应的像差操作数来指定像差目标大小,更没有描述高级像差数的像差操作数,这些通常都需要设计者自行分析和定义。 描述和控制系统光束结构的方法因习惯而有一定的差异,由于某些像差变量之间有某种相关性,而设置的优化权重又可以不同,因此常常都能够达到相同的效果,只是所计算的数学步骤不同而已。到底选择多少个参数来描述一个系统,虽无统一规定,但是还是要因系统像差特性不同而区别选择。经验表明,最少最准确的参数描述量,能够尽可能的提高优化的效率,并且减少掉入效果较差的局部优化的次数。经验丰富的工程师,轻车熟路,在这个环节上少走了很多的弯路,从而其设计效率和设计出来的产品品质要比通常的设计人员有些得多,成功率高的多。 笔者撰写本文的目的就是企图浅显的探讨光学设计中,ZEMAX中光学结构的描述方法以及权重选择的问题。这些都是笔者在设计当中积累的经验,可能这个文章的论断会由于经验的多寡有一定的局限性,所以希望读者当作参考,不要照搬。 一基本像差描述和控制 1、轴上球差LONA 和SPHA LONA表示的是轴上物点指定波长,指定光束尺寸(光线对)的轴上成像交点到近轴焦平面之间轴向距离。这个定义和我们定义的轴向球差相同。光瞳尺寸(光束尺寸)在0~1之间,那么将追迹实际的光束汇交点计算轴向球差。 SPHA常用于指定面产生的像差数值。若不指定特殊面(取值为0),则计算所有面产生球差总和。注意这个总合不是像差计算公式中的经过各面逐个放大之后的加权和,而是代数和(有待读者进一步验证)。 经验:当选择LONA控制不住球差时,同时加入SPHA操作数,设置合理的权重,可以将轴向球差进一步改善。 2、轴向色差AXCL 定义为两个指定波长的近轴焦平面轴向距离。若光瞳尺寸(光束尺寸)定义为0,那么使用近轴焦平面进行色差计算,定义不为0,则使用实际的光线与轴交点位置进行色差计算。 3、垂轴色差(倍率色差) 在ZEMAX中没有直接定义垂轴色差的操作数,但是从垂轴色差的定义可以知道,它是指某视场、某指定光束尺寸的、两指定波长光束在像面上所成的理想像的垂向距离差。

ZEMAX像差优化全集

ZEMAX像差优化全集 ZEMAX已经成为光学设计人员最常用的工具软件了。光学设计中,描述和控制一个光学系统的初级像差结构,通常使用轴上球差、轴向色差、彗差、场曲、畸变、垂轴色差、像散等像差参数。当我们企图更为详细的描述和控制轴外指定视场、指定光束的像差结构时,常常会使用轴外宽光束球差、彗差和细光束场曲等三个像差参数。然而,ZEMAX并不能像SOD88那样直接引用相对应的像差操作数来指定像差目标大小,更没有描述高级像差数的像差操作数,这些通常都需要设计者自行分析和定义。 描述和控制系统光束结构的方法因习惯而有一定的差异,由于某些像差变量之间有某种相关性,而设置的优化权重又可以不同,因此常常都能够达到相同的效果,只是所计算的数学步骤不同而已。到底选择多少个参数来描述一个系统,虽无统一规定,但是还是要因系统像差特性不同而区别选择。经验表明,最少最准确的参数描述量,能够尽可能的提高优化的效率,并且减少掉入效果较差的局部优化的次数。经验丰富的工程师,轻车熟路,在这个环节上少走了很多的弯路,从而其设计效率和设计出来的产品品质要比通常的设计人员有些得多,成功率高的多。 笔者撰写本文的目的就是企图浅显的探讨光学设计中,ZEMAX中光学结构的描述方法以及权重选择的问题。这些都是笔者在设计当中积累的经验,可能这个文章的论断会由于经验的多寡有一定的局限性,所以希望读者当作参考,不要照搬。 一基本像差描述和控制 1、轴上球差LONA 和 SPH A LONA表示的是轴上物点指定波长,指定光束尺寸(光线对)的轴上成像交点到近轴焦平面之间轴向距离。这个定义和我们定义的轴向球差相同。光瞳尺寸(光束尺寸)在0~1之间,那么将追迹实际的光束汇交点计算轴向球差。 SPHA常用于指定面产生的像差数值。若不指定特殊面(取值为0),则计算所有面产生球差总和。注意这个总合不是像差计算公式中的经过各面逐个放大之后的加权和,而是代数和(有待读者进一步验证)。 经验:当选择LONA控制不住球差时,同时加入SPHA操作数,设置合理的权重,可以将轴向球差进一步改善。 2、轴向色差AXCL 定义为两个指定波长的近轴焦平面轴向距离。若光瞳尺寸(光束尺寸)定义为0,那么使用近轴焦平面进行色差计算,定义不为0,则使用实际的光线与轴交点位置进行色差计算。 3、垂轴色差(倍率色差) 在ZEMAX中没有直接定义垂轴色差的操作数,但是从垂轴色差的定义可以知道,

相关文档
最新文档