水泥厂选址要求及水泥粉磨系统选择

水泥厂选址要求及水泥粉磨系统选择
水泥厂选址要求及水泥粉磨系统选择

水泥厂选址要求及水泥粉磨系统选择

水泥生产线厂址的选择突出的是“可靠”二字,就是原料供应要可靠、市场销售要可靠,过去将一个完整水泥生产线放在同一个厂址的概念,正在慢慢变为熟料、水泥项目分别建设,即熟料线靠近矿山而粉磨站靠近市场的选址思路。现在国内水泥销售以汽车运输为主,汽车运输的距离毕竟有限,太远则运输成本上升且不能适应市场的波动。另外,在销售市场附近建设粉磨站有树立品牌形象、给顾客以安全可靠的感觉。水泥厂用量最多的原料是石灰石,其运输量占全部物流的一半,因此熟料线靠近矿山可以减少运输成本,降低由于原料供应而影响生产的风险。熟料线的选址还应该考虑交通的便利性和熟料运输的成本,象枞阳海螺、池州海螺、铜陵海螺、华新阳新、华新武穴等大型熟料基地建设在长江沿岸,在长江上建有专用码头,利用廉价的水路运输将熟料运往各粉磨站或外销,这样就大大降低了熟料的生产成本和销售运输成本,增强了市场竞争的能力。

2 矿山的选择和规划

矿山的选择和规划要着重考虑“可靠、环保”,在资源日益紧张的今天,选择一个储量大、质量好的矿山不是很容易的事情,在浙江全省有那么多水泥厂,但好的矿山仅集中在两个区域。因此对矿山的要求不能太高,过去追求的同时具备大储量、高钙、低碱、均匀稳定、易开采等要求已经不太好满足,随着水泥厂不断大型化,技术越来越先进,对原料的适应性也越来越强,只要有害成分不是太高、品位满足基本配料要求即可。但矿山必须要作好详细的地质勘探,设计好长远的开采计划和资源利用方案。前几年普遍对矿山的规划工作不够,认为只要能运下石头就行,简单地做个道路、削顶和开采平台就匆匆投入使用了,结果一、两年后矿山无法开采,只好重新再作设计。现在有经验的水泥集团对矿山的前期工作十分重视,特别是地质部分,提前做好资源利用(搭配)方案和长远的开采规划,做到有控制地开采。现在大的水泥公司,对剥离下来的废石,全部搭配利用,既节约资源、又符合国家提倡的循环经济模式。

3 原料预均化设计

原料预均化的设计突出的是“简单”二字,在大型水泥厂的设计中,原燃料特别是石灰石均设有预均化堆场,但由于石灰石在矿山的开采过程中已经有意识地进行了搭配,且日用量特别大,一条万吨线的日用量大约1.2万吨,爆破时间间隔大大缩短,矿山的生产自然包含了均化作用。因此石灰石预均化堆场用于储存的作用就高于均化作用了,大型回转窑对原料的适应性很强,对均化的敏感性不像小型回转窑那么高。这样石灰石预均化堆场的真正作用就是作为石灰石破碎和生料磨之间的缓冲,一般破碎机更换一副锤头的时间为ld,则石灰石的储量设计3d就足够了,一般矿山到厂区采用长胶带输送机或设有专用运矿道路,因此不存在运输的风险。在大型水泥厂中,长形预均化堆场由于可扩建性,应该更具有优势,但轨道宽度要控制在40m以内,否则取料机大梁的刚度就面临严重挑战。堆料层数也没有必要设计400层那么多,堆料机的速度可以放慢,堆场必须设有应急通道,在取料机检修时使用。国外还有一种思路,就是直接将石灰石配料秤设在取料机下面,取消石灰石配料库,以减少中间环节,提高运转率。

由于国内能源供应日益紧张,质量好的原煤价格很高,许多水泥厂采用劣质煤,而且货源不能稳定,进货渠道不固定,所以必须设置原煤预均化堆场。原煤不像石灰石那样靠近矿山,必须有一定储量以抵抗市场供应的风险和保证必要的均化效果,储存期设计为7-10d为宜。

生料均化库也不必追求过高的均化效果,它的储存作用和均化作用同样重要,选择均化

效果达到5的均化库即可满足大型水泥厂的需要。有一种观点认为可以取消生料库,出磨生料直接入窑,但笔者认为不可行,因为这样窑喂料量很难调节,烧成系统无法稳定。如果生料磨采用两套系统,生料储存期可设计为1~2d;如果生料磨采用一套系统,生料储存期设计为2~3d为宜。

4 原料粉磨系统的选择

原料粉磨系统的设计要重点考虑“节能”二字,笔者负责的几个大型项目,除华新武穴采用风扫磨外,其余全部采用立磨。立磨系统因为其节电、流程简单成为大型水泥厂的首选,国内5000t/d项目采用管磨系统的不外乎两个原因:一是原料难磨,如石英砂岩含量高,二是立磨供货周期太长,影响建设工期。但由于大型水泥厂用电量很大,立磨的节电效果明显,因此只要有一点可能,也要采用立磨。

过去有些项目模仿山东大宇的立磨工艺流程,即采用所谓高浓度电收尘器,出磨气体不设置旋风筒,事实证明这样设计是不成功的,收尘效果很差。无论采用电收尘器还是袋收尘器,出磨含尘气体均应设置旋风筒进行预收尘,以降低收尘器的负荷,提高气体排放标准。

为了保护立磨,在物料进磨前设有三通,将探测到的含铁或其它金属物料排放出去。在小型厂可以直接排放或设废料仓,但大型水泥厂每次物料排放量很大,因此在进调配库前即设置除铁器,进行“预除铁”,生料磨前排放的废料再入循环仓进行“二次除铁”,以减少废料的运输量。

5 烧成系统的设计

回转窑烧成系统是水泥厂的核心,设计的原则应是“先进、节能、环保”,烧成系统的技术十分成熟,可以说国内的技术与国外没有什么差别。国内外各著名设计单位的分解炉炉型不一样,但工作原理和技术参数十分接近,以天津院第三代烧成系统和枞阳10000t/d对比为例,我国的新型干法水泥技术已经达到国际先进水平,完全掌握了核心技术。不但如此,而且新一代烧成系统对原燃料的适应性更强,过去认为原煤的热值应大于22990kJ才能满足预分解窑的要求,而现在只要18810kJ即可,甚至更低,这样就大大降低了原料成本。目前需要重点研究的是如何优化窑尾塔架的用钢量和推广两档窑,以降低一次性投资。最近投产的由天津院设计的天瑞石龙5000t/d项目,经过对塔架的优化设计,较传统的5000t/d项目节约钢材130t。

目前国家大力提倡利用水泥回转窑进行垃圾焚烧,即对工业废弃物进行处理,这种处理既不造成二次污染,又比专门设计一套垃圾处理系统经济,处理能力很大。因此烧成系统的设计不但要考虑“先进、节能”,还要考虑对“环保”的贡献。

6 水泥粉磨系统选择

水泥粉磨系统的设计重点也是“节能”,因为水泥粉磨部分在水泥厂中所占电耗比例最大,约为45%。可供选择的水泥粉磨系统流程很多,有开流磨、普通闭路磨、预粉磨、联合粉磨、终粉磨、立磨等。开流磨即高细磨,虽然能耗低、投资低,但调整水泥品种比较困难,水泥成品温度太高,除两广地区外不太受用户欢迎;普通闭路磨流程简单,运行可靠,以拉法基公司为代表的国外大公司基本采用该系统,但笔者认为该系统不适于国内大型水泥厂,原因是电耗较高,我国是能源消耗大国,不符合“节能”的理念,因此辊压机和立磨应该是大型水泥厂设计的首选方案。无论预粉磨还是联合粉磨,每吨水泥至少节电5kWh,如果采用终粉磨或立磨系统则每吨水泥节电12~15kWh。随着新材料技术和机加工能力的不断提高,辊压机给人以不可靠、维修量大的感觉会慢慢改变,辊压机用于终粉磨也不是不可能。至于立磨,应该是水泥粉磨的发展趋势。笔者曾经负责安徽朱家桥水泥公司的设计,该项目采用拉法基公司立磨粉磨水泥和矿渣,运行将近十年,效果一直很好。天津院在浙江某公司将立磨成功用于粉磨矿渣,后又陆续为唐山、福建等公司提供了数套立磨用于粉磨矿渣,矿渣较熟料难磨,因此立磨用于水泥粉磨也一定是一个趋势。

7 余热发电系统

不需要补燃的低温余热发电技术已经十分成熟,这为水泥厂的节能设计提供了很好的技术支撑,过去烧成系统产生的废气经过增湿、降温、收尘处理后直接排放,没有对这部分余热加以回收利用。目前该技术余热发电量可达36~40kWh/t熟料,主要流程是在窑头冷却机废气出口设置窑头余热锅炉AQC炉,前段为蒸汽段,后段为热水段,在窑尾预热器的废气管道上设置SP余热锅炉,SP炉产生的蒸汽与窑头AQC余热锅炉前段产生的蒸汽合并后送入汽轮机作功发电。随着能源供应的日益紧张,节能减排成为基本国策,国家对新的水泥生产线审批时,要求同步设计余热发电系统,因此余热发电系统是最能体现“节能”这个理念了。

8 电气自动化系统

电气自动化的设计主要考虑“可靠、先进”的原则,现在水泥项目的调试主要是调电气设备和相应的参数,影响运转率的因素有很多是电气原因,所以电气自动化的设计思路首先是“可靠”,特别是大型水泥厂,主机不能开开停停。自动化的设计指标是一个工厂技术水平的重要标志,只有自动化水平提高,才能减少操作工人,降低生产成本,才能完善设备的安全保护措施,并提高生产的稳定性,因此自动化设计追求的目标永远是“先进”。现在大型工厂的测点越来越多,需要处理的信息量越来越大,控制系统越来越复杂,现场总线技术因此而产生,该系统要求采用智能仪表,中低压采用智能化MCC(智能马达控制器),利用总线通过Ethernet网络与计算机系统连在一起。虽然仪表和传动部分增加成本,但计算机系统特别是通讯电缆和桥架的投资会大大降低,总的投资反而会减少。笔者负责的华新两个项目和海螺万吨线均采用了现场总线技术,采用该技术后,操作员掌握的信息量大大增加,更有利于对运行参数的判断和调整,使系统运行更加稳定,因此值得推广。

大型水泥厂设计原则和需要考虑的因素很多,但笔者认为关键是“可靠、简单、先进、节能、环保”这十个字,过去强调的“低投资”、“经济合理”、“建设周期最短”、“花园式工厂”、“功能齐全”等理念不是没有道理,但相比之下在“以人为本”、“可持续发展”的总体思路下,已经显得不是很重要了。

辊压机联合粉磨系统节能降耗措施

辊压机联合粉磨系统节能降耗的措施 辊压机联合粉磨系统因其增产效果显著而得到了广泛应用。目前,水泥厂粉磨工艺以趋于设备大型化、系统自动化、工艺简单化、技术节能化的发展趋势。本文从郑州天瑞水泥有限公司辊压机、磨机系统改进和工艺参数控制等方面列举了联合粉磨系统的节能降耗改进措施:改进辊压机进料装置为正上部进料,并把流量调节板改为双边对称调节;调整V型选粉机内部结构;对磨机系统隔仓板、一仓衬板、二仓衬板以及磨内研磨体级配进行调整。结果表明:改进辊压机系统能够提高系统循环量,增加物料挤压次数,改善了挤压效果;合理控制料粒度、物料水分及辊压压力能够提高辊压机的辊压效果充分发挥辊压机节能优势;改进磨内结构,优化操作,能够充分发挥磨机的研磨能力保证系统节能效果;对整个系统工艺参数进行调整,合理分配其比例,以达到改善水泥性能,降低水泥工业能源消耗的效果。 关键词:粉磨系统,辊压机,磨机,节能降耗 I JOINT GRINDING SYSTEM ENERGY SAVING MEASURES ABSTRACT Roller grinding machine joint due to its increasing production system has been widely used. At present, cement grinding process to tend to be enlarged equipment, automation, process simplification, the devel opment trend of energy technology. Based TianRui cement Co., LTD. Of zhengzhou roller machine, grinder system and improve the process para meters are controlled etc enumerated joint grinding system energy sav ing measures: improve roller machine feeding device for upper feed, a nd positive bilateral symmetry circuit-adjusting board to adjust, Adj ust V classifier internal structure, For grinding machine system diap hragms, a warehouse liner board, two warehouse liner and grinding mil l body inside the gradation adjustment. The results indicate that the roller press of the roller mill system can improve circulation, incr ease the number of extrusion, improve the material extruded effect, R easonable control partical, material moisture and roller pressure rol ler machine can improve the effect of roller adequately roller machin e, energy saving, Improved grinding in structure, optimizing operatio n, can fully exert mill grind ability assurance system energy saving effect, For the whole system, KEY WORDS: shut grinding system, Roller machine, Grinding machine, Sa ving energy and reducing consumption II 目录 前言 ............................................................... .. (1) 第一章联合粉磨系统概 述 (2) 1.1 发展与现

国产大型辊压机及粉磨系统的方案

国产大型辊压机及粉磨系统的方案 作者:张永龙王学敏王虔虔单位:合肥水泥研究设计院1 国产辊压机发展简介 自上世纪八十年代中期由合肥水泥研究设计院、天津水泥工业设计研究院、洛阳矿山机器厂、唐山水泥机械厂四家单位联合引进德国KHD公司辊压机设计制造技术以来,经过了二十年的发展历程。国产辊压机的规格,辊径由800mm发展到今天的1600mm ;辊宽由200mm发展到今天的1400mm;装机功率由90kW×2发展到今天的1120kW×2 ;整机重量由30多吨发展到今天的200多吨,产品质量逐步提高。辊压机的通过量由40t/h发展到今天的800t/h;配套磨机的产量由20t/h 发展到今天的180t/h,节能幅度达30%以上。 回顾国产辊压机二十年的发展历程,大致可以分成三个阶段: 1.1 研究开发阶段 1986年—1992年 在此期间参加引进辊压机设计制造技术的四家单位在做好引进样机的转化设计和制造的同时,相继开发出各自的国产化辊压机,并在1990年前后通过鉴定。在此期间国内的减速机生产厂家、轴承生产厂家、液压元器件生产厂家、耐磨堆焊生产研发等单位也都为国产化辊压机的研制成功做出了贡献。合肥水泥研究设计院经国家“七五”重点科技攻关专题研究,推出第一台国产辊压机,并成功地应用于工业性生产,取得了使磨机增产40%,节电15%的效果。 1.2 整改提高阶段 1993年—1999年 在此期间由于各厂家制造的辊压机在生产线上相继出现问题,使得许多看中辊压机增产节能效果的厂家想上而不敢上,一些用了辊压机的厂家也觉得是“尝到了甜头,吃尽了苦头”。合肥水泥研究设计院针对出现的问题进行了分析认为主要存在两个方面问题,一是加工件、配套件的质量问题,二是工艺系统的设计及配套问题。经国家“八五”、“九五”重点科技攻关课题的持续研究,集十余年的应用经验,推出了具有自主知识产权,设计更合理、性能更优越,可靠性更高的第三代HFCG系列辊压机。有效解决了包括辊压机偏辊、偏载、水平振动和传动系统扭振等一系列关键性技术难题,在此期间国内的减速机生产厂家、轴承生产厂家、液压元器件生产厂家、耐磨堆焊生产研发等单位的配套件质量也都大大提高,为国产化辊压机的长期安全运转做出了贡献,设备运转率达90%以上;研究、开发出具有自主知识产权的国家专利产品——SF系列打散分级机以及“V”型选粉机,使辊压机和球磨机各自的优点得以充分发挥,构成的粉磨系统工艺参数更加合理。 1.3 快速发展阶段 2000年至今 解决了国产化辊压机设备制造和工艺配套两方面的问题,为国产化辊压机的快速发展应用奠定了基础,近些年国家水泥产业结构调整,淘汰立窑,发展旋窑,加上能源紧张又为辊压机的快速发展创造了难得的机遇。近几年旋窑朝着大型化发展,5000t/d 熟料生产线已成为市场的主流,这就要求国产化辊压机也朝着大型化发展,我们抓住了机遇,及时开发出装机功率在1120kW×2的大型 HFCG160-140辊压机。近些年国产工业迅速发展,加工能力和加工质量进一步提高,为5000t/d 熟料生产线设备国产化创造了条件,同样也为大型辊压机国产化创造了条件。HFCG160-140大型辊压机配Ф4.2×13m开路水泥磨产量可达170t/h以上,配Ф4.2×13m闭路水泥磨产量可达180t/h以上,取得使磨机增产100%,节电 30%的效果。

辊压机终粉磨系统在生料制备中的应用

辊压机终粉磨系统在生料制备中的应用 发表时间:2019-12-17T09:10:48.577Z 来源:《基层建设》2019年第26期作者:文有强[导读] 摘要:随着阶梯电价普查的日趋严格,对于能耗较高的水泥生产企业面临着严峻的生存压力,节能改造成为近年来水泥企业的热门话题。 中建材(合肥)粉体科技装备有限公司安徽合肥 230051摘要:随着阶梯电价普查的日趋严格,对于能耗较高的水泥生产企业面临着严峻的生存压力,节能改造成为近年来水泥企业的热门话题。由于中卸烘干磨对烘干热源有较高要求,正常生产时与余热发电系统发生抢风现象,影响余热发电能力,导致产品成本偏高。为了有效节能降耗、降低成本,对生料制备系统进行技术改造,选择辊压机终粉磨技术。辊压机进行生料终粉磨是先进的生产工艺,其利用粒间 高压料床粉碎原理,高效节能,从而提高粉磨系统的粉磨效率,达到节能降耗的目的。关键词:生料制备;辊压机终粉磨系统;中卸烘干磨系统辊压机属于新型水泥节能粉磨设备,除了能够有效节能外,还能降低噪声污染,在现代水泥生产工艺中发挥着举足轻重的作用。以往辊压机主要用于水泥粉磨系统,包括水泥挤压混合粉磨、水泥联合粉磨、水泥半终粉磨等多种形式。辊压机生料终粉磨系统近几年才发展起来,已经体现出其优势,对水泥生产企业节能和降低成本的效果显著。与立磨相比,电耗低是最大优势。某公司现有一条4000t/d熟料生产线,原料粉磨系统采用两套传统的中卸烘干磨粉磨工艺。由于原料粉磨系统设备陈旧,工艺相对落后,生料粉磨电耗高(两套生料粉磨系统平均电耗~24 kwh/t)、生产维护费用高等问题,公司考虑新增两套辊压机终粉磨系统对现有生料粉磨系统进行技改。 一、生料粉磨的基本特点生料粉磨是水泥生产过程的一个重要环节,与水泥粉磨相比,具有自身的特点和要求,主要体现在处理的原料特性和产品要求方面,因此采用的系统技术要求也存在较大差别。生料配料主要包括钙质原料、硅质原料、铁质原料等,这些原料的易磨性、磨蚀性、含水量等差别很大,即使同一类原料波动范围也很宽,必须经过测试生料的邦德功指数试验才能确定合理的系统配置和技术指标,否则只能基于假设的“中等性能”确定初步方案。 二、辊压机作终粉磨工艺改造方案 1、改造前的两套生料粉磨系统的主要配置如下:表2-1 原料粉磨系统主机设备一览表 2、采用的技改方案目前先进的生料粉磨系统主要有两种,一种是采用立式磨系统,另一种是辊压机终粉磨系统。立式磨对原料水分的适应能力更强,缺点是系统热风用量大,电耗偏高;而辊压机终粉磨系统是更加节能的生料粉磨方案,同样情况下,比立磨系统电耗低约2-3kWh/t、热风用量也略少于立磨系统,缺点是当原料水分过高造成物料很黏时,其适应能力不足。因本项目所用原料综合水分可控,且没有很黏的物料,气候条件适用,为避免与已投用余热发电系统争夺热风的现象,经确定采用两套更加节能的辊压机终粉磨系统代替现有的两套生料球磨机系统。 3、生产工艺流程简述在原有生料磨两侧空地上,新增二套HFCG160-120 辊压机+V4000 型气流分级机与原有球磨机系统中现有的风路、选粉、废气处理等系统组合,形成新的辊压机终粉磨系统。工艺流程阐述:来自原料配料库的混合原料(石灰石、硅石、铁矿粉等)通过皮带机输送至辊压机车间气流分级机进料口,新鲜物料汇同辊压机挤压后的物料送入新增的气流分级机内。物料经过气流分级机的分选,粗粉通过皮带机和提升机返回辊压机稳流称重仓,细粉(半成品)被风带入原有组合式高效选粉机内,选出的粗粉也回到辊压机称重仓,细粉即为成品再由空气输送斜槽、提升机等送入生料均化库内。窑尾热风仍作为整个系统的主要烘干热源,重新安装风管后将热风直接引入新增的气流分级机内,与循环风、自然风一起通过料幕,将物料中的细粉带出进入到原组合式选粉机内,通过选粉机分离后的含尘风部分返回到气流分级机内,其余气体进入窑尾收尘器。整个风路系统仍由原组合式选粉机后的循环风机完成,在入V 型气流分级机的热风管、循环风管及冷风管上均设有电动风阀。在上述系统中,在入辊压机系统的物料皮带及V 型气流分级机粗料返回皮带机上均设有自动除铁器,以去除原料及系统中的铁,有效保护辊压机。 工艺流程图如下:

国产大型辊压机及粉磨系统工艺方案

国产大型辊压机及粉磨系统工艺方案 来源:合肥水泥研究设计院 1. 国产辊压机发展简介 自上世纪八十年代中期,由合肥水泥研究设计院、天津水泥工业设计研究院、洛阳矿山机器厂、唐山水泥机械厂四家单位联合引进德国KHD 公司辊压机设计制造技术以来,经过二十年的不断完善,国产辊压机的辊径由800mm 发展到今天的1600mm ; 辊宽由200mm 发展到今天的1400mm ;装机功率由90kW< 2发展到今天的1120kW< 2; 整机重量由30 多吨发展到今天的200 多吨,通过量由40t/h 发展到今天的800t/h ;配套磨机的产量由 20t/h 发展到今天的180t/h ,辊压机产品质量逐步提高,节能幅度达30% 以上。回顾国产辊压机二十年的发展历程,大致可以分成三个阶段: 1.1 研究开发阶段(1986 年—1992 年) 参加引进辊压机设计制造技术的四家单位在做好引进样机的转化设计和制造的同 时,相继开发出各自的国产化辊压机,并在1990 年前后通过鉴定。在此期间国内的减速机生产厂家、轴承生产厂家、液压元器件生产厂家、耐磨堆焊生产研发等单位也都为国产化辊压机的研制成功做出了贡献。合肥水泥研究设计院经国家“七五”重点科技攻关专题研究,推出第一台国产辊压机,并成功地应用于工业性生产,取得了使磨机增产 40% ,节电15% 的效果。 1.2 整改提高阶段(1993 年—1999 年) 在此期间,由于各厂家制造的辊压机在水泥生产中相继出现问题,让一些辊压机用户“既尝到了增产节能甜头,也吃尽了频繁检修的苦头”。使得许多青睐辊压机增产节 能效果的企业想上而不敢上。合肥水泥研究设计院对此进行了分析和整改、 完善。一是注重加工件、配套件的质量提高;二是优化工艺系统及设备的选型与配套。经国家 “八五”、“九五”重点科技攻关课题的持续研究,集十余年的应用经验,推出了具有自主知识产权,设计更合理、性能更优越,可靠性更高的第三代HFCG 系列辊压机。有效解决 了包括辊压机偏辊、偏载、水平振动和传动系统扭振等一系列关键性技术难题。国内的减速机、轴承、液压元器件、耐磨堆焊材料等研发等单位的配套件质量也都大大提高,为国产辊压机的长期安全运转奠定了基础,使主机设备运转率达90% 以上,同时还开 发出具有自主知识产权的SF系列打散分级机以及“V”分级机等国家专利产品,使挤 压粉磨系统工艺更加完善,参数更加合理。 1.3 快速发展阶段(2000 年至今) 解决了大型国产化辊压机设备制造和工艺配套两方面的问题,使国产辊压机进入全面推广应

辊压机预粉联合粉磨工艺技术改造

摘要:将次序给料,逐级取出成品,磨机粗粉自循环粉磨技术应用于已有水泥生产线上,在不增加系统功率的情况下,将一段辊压机产生的合格粉取出。提高磨机的效率,提高系统产量。同时对管磨机磨内结构,进行适合喂入经辊压机挤压后的细粉物料的适应性改造,以避免研磨体级配困难,磨机跑粗现象,和混合材过粉磨现象,提高比表面积,改善因筛余难于控制,而导致的水泥台时产量偏低的情况。 关键词:提产、取出成品、节能、降耗 辊压机预粉磨工艺技术改造 作者:李宪章(北票市理想粉磨研究所所长) 地址:辽宁省北票市 邮编:122100 前言: 辊压机联合粉磨工艺系统,其技术核心在本质上属于“分段粉磨”。目前,国际水泥制成工序广泛应用由辊压机+ V型选粉机(静态分级设备)或打散分级机(动态分级设备)+管磨机开路(或配用高效选粉机组成双闭路)组成的联合粉磨工艺系统,在实际运行过程中,由于各线生产工艺流程及设备配置、物料粉磨特性、水份等方面因素不尽相同,导致系统产量、质量及粉磨电耗等技术经济指标也参差不齐,本文拟对水泥联合粉磨双闭路系统的工艺技术进行探讨分析,并提出我们的节能降耗的解决办法,文章中不足之处恳望予以批评指正 一、辊压机、管磨机双闭路粉磨系统的提产改造方法 1、辊压机、管磨机双闭路粉磨工艺存在的缺陷: 针对辊压机、V型选粉机,粗细粉分离器、开流管磨机粉磨工艺存在的磨机跑粗现象严重,尤其是混合材的过粉磨现象,设计部门采用了管磨机圈流粉磨工艺,出磨水泥80um筛余得到控制,磨机台时产量有所提高,但是粉磨系统增加了提升机、选粉机、除尘器,循环风机等较多的设备,以4213磨机需要增加电机功率近1000kw。我们按原生产线吨水泥电耗 35kw.h/t来计算,那么1000kw.h/t的电耗应该增加28t的磨机台时产量。其粉磨电耗没有得到根本的降低,粉磨po42.5级水泥的电耗仍然需要在 35kw.h/t以上的水平。另外圈流粉磨水泥成品存在着比表面积偏低的现象,

辊压机粉磨系统

辊压机粉磨系统 一、所属行业:建材行业 二、技术名称:辊压机粉磨系统 三、适用范围:水泥生产线原料及水泥粉磨,高炉矿渣的超细粉磨。 四、技术内容: 1.技术原理 采用高压挤压料层粉碎原理,配以适当的打散分级装置。 2.关键技术 专用磨辊堆焊及修复技术,液压、润滑、喂料、传动、自动控制技术,以及与之相配套的打散分级、球磨机改造等。 3.工艺流程 辊压机联合粉磨→半终粉磨→终粉磨。 五、主要技术指标: 5000t/d水泥生产线采用不同水泥成品粉磨系统能耗指标比较: 采用球磨机闭路系统电耗指标:38~42kWh/t; 采用辊压机粉磨系统:单套粉磨能力200t/h,系统电耗(P.O42.5级水泥)≤30kWh/t。 六、技术应用情况: 该设备1990年通过国家建材局技术鉴定,1992年荣获建材行业部级科技进步二等奖,1993年荣获国家科技进步二等奖。迄今已有400多台HFCG型辊压机及其系统水泥生产线运行,并批量出口国外。 典型用户有:台泥(英德)、河北冀东、浙江红狮、山东山水、兆山新星、山东山铝、福建水泥、广西华润、湖北华新等诸多水泥集团。目前该技术在行业内的推广比例达到60%。 七、典型用户及投资效益: (1)某5000t/d新型干法水泥生产线 项目节能技改投资额约2000万元,建设期150天。同比采用球磨机,节电30%以上(约8~10kWh/t水泥);同比采用球磨机,吨水泥粉磨电耗降低8kWh/t计算,年节电效益约为800万元(按0.5元/ kWh计算),投资回收期3.0年。 (2)某2500t/d新型干法水泥生产线,老厂改造

节能技改投资额约1200万元,建设期150天。比原采用球磨机,节电30%以上(约8~10kWh/t水泥);同比采用球磨机,以年产100万吨水泥,吨水泥粉磨电耗降低8kWh/t 计算,年节电效益约为400万元(按0.5元/度计算),投资回收期3.5年。 八、推广前景和节能潜力: 据“十一五”期间水泥产业结构调整政策,新型干法水泥增量相当于新建200多条5000t/d新型干法水泥生产线,需要各种规格的辊压机在800台套以上。另外,尚有大量的中、小水泥厂利用原有的球磨机改造为粉磨站。市场前景广阔,节能降耗效果显著。 “十一五”期间,该技术在行业内的普及率预计能达到80%,需总投入10亿元,可节电8亿kWh。 九、推广措施及建议: 1.参加行业推广会、技术交流会; 2.建议进一步提高耐磨材料材质,进一步延长耐磨材料使用寿命。

辊压机及挤压联合粉磨技术讲义

辊压机及挤压联合粉磨技术讲义 辊压机部分 一、工作原理和工作方式: 该设备根据高压料层粉碎能耗低的原理,采用单颗粒粉碎群体化的工作方式,脆性物料经过高压区挤压后使物料粒度迅速减小,<0.08mm的细粉含量达20%~30%,<2mm的物料含量达70%以上,在所有经挤压后的物料表面存有大量的裂纹,易磨性显著改善,使物料在进入下一工序的粉磨时所需的粉磨能耗大幅度降低,获得大幅度增产节能的效果。 辊压机的核心部分是两个辊径辊宽相同,相向转动的磨辊,辊压机采用的工作方式是在两个相向转动的磨辊之间形成高压力区,采用过饱和喂料的方式在磨辊上方设置用于保证仓内料位的称重仓,料位由称重传感器以负反馈方式控制,形成具有一定料压的料柱,通过进料装置喂入两磨辊之间,磨辊将物料拉入辊隙后在压力区以高压将物

料压成密实的料饼后从辊隙间落下进入下一工序。 由于辊压机工作时采用完全正压力对物料实施挤压,同时在辊面菱形花纹对物料的限制作用下,物料与磨辊之间无产生剪切效果的相对滑移(注:在获得相同粉碎效果的前提下,剪应变所需能量是压应变的5倍),所以上述工作方式不仅节省能耗,辊面磨损也很小。 二、设备结构: 设备由主机架、轴系、液压系统、润滑系统、进料装置、传动系统、检测系统等组成。 1、主机架: 主机架用于承受设备的挤压粉碎力,分别由上、下横梁,左、右立柱,承载销,定位销,导轨及高强度联接螺栓组等组成。上、下横梁采用工字型结构,左、右立柱则采用工字型与箱型相结合的结构形式,均具有较高的刚度,通过高强度螺栓组的联接使整个机架形成一个刚性的整体。 承载销将立柱上所受到的挤压粉碎力传递到上、下横

辊压机联合粉磨工艺系统分析

辊压机联合粉磨工艺系统分析 辊压机联合粉磨(或半终粉磨)工艺系统,其技术核心在本质上属于“分段粉磨”。目前,国内水泥制成工序广泛应用由辊压机+打散分级机(动态分级设备)或V型选粉机(静态分级设备)+管磨机开路(或配用高效选粉机组成双闭路)组成的联合粉磨工艺系统(或由辊压机+V型选粉机(静态分级设备)+高效选粉机+管磨机组成的半终粉磨工艺系统),在实际运行过程中,由于各线生产工艺流程及设备配置、物料粉磨特性、水份等方面因素不尽相同,导致系统产量、质量及粉磨电耗等技术经济指标也参差不齐,本文拟对水泥联合粉磨单闭路(管磨机为开路)及双闭路系统(或半终粉磨系统)中各段常出现的工艺技术与设备故障模式进行探讨分析,并提出了相应的解决办法,仅供粉磨工程技术人员在日常工作中参考,文章中谬误之处恳望予以批评指正: 一、辊压机系统故障模式:辊压机挤压效果差 故障原因1: 1. 被挤压物料中的细粉过多,辊压机运行辊缝小,工作压力低 影响分析: 辊压机作为高压料床(流动料床)粉磨设备,其最大特点是挤压力高(>150Mpa),粉磨效率高,是管磨机的3-4倍,预处理物料通过量大,能够与分级和选粉设备配置用于生料终粉磨系统。但由于产品粒度分布窄、颗粒形貌不合理及凝结时间过快、标准稠度需水量大与混凝土外加剂相容性差等工作性能参数方面的原因,国内水泥制备工艺未采用辊压机终粉磨系统,辊压机只在水泥联合粉磨系统中承担半终粉磨(预粉磨)的任务,经施以双辊之间的高压力挤压后的物料,其内部结构产生大量的晶格裂纹及微观缺陷、<2.0mm及以下颗粒与<80um细粉含量增多(颗粒裂纹与粒度效应),分级后的入磨物料粉磨功指数显著下降(15-25%),易磨性明显改善;因后续管磨机一仓破碎功能被移至磨前,相当于延长了管磨机细磨仓,从而大幅度提高了系统产量,降低粉磨电耗。但辊压机作业过程中对入机物料粒度及均匀性非常敏感,粒状料挤压效果好、粉状料挤压效果差,即有“挤粗不挤细”的料床粉磨特性;当入机物料中细粉料量多时会造成辊压机实际运行辊缝小,主电机出力少,工作压力低,若不及时调整,则挤压效果会变差、系统电耗增加。 解决办法: 实际生产过程中应控制粒度<0.03D(D—辊压机辊径 mm)的物料比例占总量的95%以上;生产实践经验证明:入机粒度25mm~30mm且均齐性好的物料挤压效果最好。 采用套筛筛析入机物料粒度分布,简便易行。一般3天检测一次即可满足监控要求。 做好不同粒度物料的搭配,避免过多较细物料进入辊压机而影响其正常做功;同时,可根据入机物料特性对工作辊缝及入料插板及时进行调整,消除不利因素影响。 故障原因2: 2. 辊压机侧挡板磨损严重,工作间隙值变大,边缘漏料 影响分析: 辊压机自身固有的“边缘效应”是指辊子中间部位挤压效果好,细粉产生量多,而边缘挤压效果差,细粉量少甚至漏料,即旁路失效。当两端侧挡板磨损严重,工作间隙值变大时,边缘漏料更将不可避免,在显著减少挤压后物料细粉含量的同时,部分粗颗粒物料还将进入后续动态或静态分级设备,对分级机内部造成较大磨损。 解决办法: 辊压机侧挡板与辊子两端正常的工作间隙值一般为2mm~3mm之间;据走访调查,部分企业辊压机侧挡板与辊子两端之间的工作间隙值在1.8mm~2.0mm; 生产中可采用耐磨钢板或耐磨合金铸造件予以解决,应时常备用1~2套侧挡板,以应对临时性更换。在采用耐磨合金铸造件之前,应将表面毛刺打磨干净,便于安装使用; 更换安装过程中用塞尺和钢板直尺测量控制间隙尺寸即可; 实施设备故障预防机制,要求在正常生产中一般7~10天利用停机时间对侧挡板与辊子之间间隙检查测量一次,若超出允许范围,须及时调整,并做好专项记录备查;

水泥粉磨系统安全操作规程(标准版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 水泥粉磨系统安全操作规程(标 准版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

水泥粉磨系统安全操作规程(标准版) 一、开车顺序 1、确定水泥品种和物料配比及质量控制指标 2、确定水泥进入库号,启动水泥输送系统及收尘设备 3、启动系统通风与收尘设备 4、启动选粉机润滑系统及选粉机 5、启动磨机、减速机及电机润滑系统 6、启动磨机主电机和喂料系统 7、磨机正常运行后自动停止轴承润滑站的高压油泵 二、停车顺序 1、关停喂料秤,10min后停主电机。在磨机停车前,轴承润滑站高压油泵将自动开机运行 2、关停选粉机

3、关停磨内部通风设备及收尘设备 4、关停水泥输送与收尘设备 5、在磨机轴承、主减速机、主电机及选粉机轴承温度降到正常温度后,才可关停稀油站 6、在水泥磨主电机停车后,应不定时启动辅传,转动磨机,直至磨体完全冷却至常温,在此期间,应不关停通风设备 三、正常生产操作 1、密切监视磨机进出风口压差,磨机电机电流的变化,提升机电流和物料的稳定供给,防止喂料不足或过多,而造成“空磨”或“饱磨” 2、加强磨机润滑站的巡查,对正常运行中可能出现的油量油压不足、油温过高、各部位轴承温度超限及减速机、选粉机及排风机振动过大等故障,都必须停磨 3、加强气箱脉冲袋收尘器的巡检,防止出现经常性的滤袋破损、脉冲阀失灵等故障,确保磨内通风顺畅 4、水泥磨主电机第二次启动距上一次停车时间不得少于20min,

辊压机水泥半终粉磨工艺系统调试

辊压机水泥半终粉磨工艺系统增产调试 邹伟斌中国建材工业经济研究会水泥专业委员会(100024) 邹捷南京工业大学粉体科学与工程研究所 (210009) 题要:本文总结了ZC公司5000t/d新型干法水泥熟料生产线,水泥制成工序采用辊压机、V型静态选粉机、双分离高效选粉机、双仓管磨机组成的半终粉磨闭路工艺系统增产调试过程,调整中以“分段粉磨”理论及系统工程方法为指导依据,并对粉磨系统中各段存在的技术问题进行了诊断分析,制定并实施了相应的改进措施,充分挖掘粉磨系统中每一段生产潜力,最终达到增产、降耗的目的。 关键词:辊压机 半终粉磨系统 双分离高效选粉机 增产调试 1. 水泥粉磨工艺线基本概况 ZC公司5000t/d新型干法水泥熟料生产线,两套水泥成品制备系统均配用160-140辊压机+V型静态分级机(V型选粉机)+双分离高效选粉机+Φ4.2×13m双仓管磨机组成的半终粉磨闭路工艺;其具体工艺流程为:物料经过配料站由高速板链斗式提升机输送至稳流称重仓,进入辊压机挤压后通过V型选粉机分级出细粉(<80um以下颗粒占70%-85%、<45um以下水泥成品颗粒所占比例约为55%以上),V型选粉机细粉出口联接下进风的双分离高效选粉机(负压抽吸式进入高浓度布袋收尘器收集成品),首先分离出由辊压机挤压过程中产生的成品,分选出成品后的粗粉输送至管磨机粉磨,出磨物料经输送设备由上部喂入双分离高效选粉机再次分选。在辊压机、管磨机两段正常运行后,双分离高效选粉机承受下部(V选出口)及上部(由管磨机磨尾输送的)两股料流,同时进行分选。我们可以将辊压机水泥半终粉磨工艺系统理解为:它是传统联合粉磨工艺系统的另一个变种,辊压机半终粉磨工艺系统与辊压机联合粉磨工艺系统各有其技术特点、均可使粉磨系统增产能力达到70%-200%甚至200%以上、节电幅度达 20%-30%。 该半终粉磨工艺系统与传统联合粉磨工艺系统相比,须采用一台物料处理能力较大的辊压机和一台喂料、分选能力大的下进风双分离高效选粉机,V型选粉机与双分离高效选粉机则共用一台系统风机,取消了联合粉磨系统中一台循环风机与旋风收尘器(双旋风筒或单旋风筒)及部分管道和输送设备,减少了设备数量及维护点,维修成本降低。此外,该半终粉磨系统中直接采用高浓度布袋收尘器收集由辊压

水泥粉磨系统的操作与控制

绵阳职业技术学院 水泥制成 《任务三项目报告书》 第五组 项目负责人:古世兴 成员:阙圆、黄鹏、赵毅凡、何尔古、龚政

绵阳职业技术学院 “水泥制成”课程任务书 院(系)材料工程系班级部门五任务三 任务下达日期:2016年月日 任务完成日期:2016年月日 任务题目:水泥粉磨系统的操作控制 主要内容和要求: 内容: 一个日产5000吨的新型干法水泥厂, 52.5r普通硅酸盐水泥,掌握该厂水泥粉磨系统的操作控制。 要求 (1)掌握水泥粉磨系统的操作控制要求;何儿古 (2)掌握水泥粉磨系统的开停机顺序;赵毅凡 (3)掌握球磨机正常操作及注意事项;黄鹏 (4)掌握水泥粉磨系统的常见故障及处理方法;阙圆 (5)掌握辊压机的操作及常见故障处理;阙圆 (6)确定水泥粉磨质量控制的项目及控制指标。龚政 Ppt word 古世兴 指导教师签字:

一、掌握水泥粉磨系统的操作控制要求 (1)刚刚出窑冷却的熟料温度仍然较高,超过80℃不允许入磨,最好冷却到50℃以下再去粉磨。而且入磨熟料、混合材和石膏必须符合质量(氧化物成分、f-CaO含量、S0 含量不得大于30mm,混合材水分不大于2%。 3 (2)入磨物料喂料计量控制系统不论是设在库底还是设在磨头仓下,均由计算机控制,其配料误差应在±1%以内。 (3)将不同尺寸的钢球、刚段根据入磨物料粒度、硬度及出磨水泥细度等进行配合填入磨内、使对入磨物料的冲击和研磨能力保持平衡。根据研磨体的磨损情况定期清仓补球。 (4)衬板掉角、压条磨平时要及时更换,隔仓板、出料篦板的篦孔堵塞时要清理,磨损过大时要跟换,防止研磨体窜仓导致比例失调。 (5)闭路粉磨系统要控制好选粉机粗粉回料量与产量的比例,其循环负荷率控制在80%~250%范围内,选粉效率控制在50%~80%,这样能更好地发挥磨机和选粉机的作用。 (6)调节好粉磨系统排风机的排风量(由阀门开度的大小来控制),风量的大小是按磨内有效断面风速(开路磨为0.5~0.9m/s)来确定的。要密闭堵漏,尽量避免漏风,使系统处于负压状态。 (7)粉磨水泥时由于研磨体对物料的冲击、研磨,研磨体之间及研磨体与衬板和隔仓板的碰撞、研磨,要产生一定的热量,使磨内温度上升,因此,需采用磨身淋水或磨内喷(雾状)水,来降低磨内温度,出磨水泥温度控制在120℃以下。 (8)磨机系统要每年进行一次技术标定,对磨机操作参数、作业情况和技术指标进行全面的测定和分析,以及改进操作方法,确定最佳在操作方案。 二掌握水泥粉磨系统的开停机顺序 开车前准备: 1.掌握入磨物料的物理性质,了解粉磨产品的各项计划指标要求,以便在生产 中保证实现。 2.察看磨头仓的备料情况,熟料必须有一定库存储量,一般应满足4h以上的生

邹伟斌辊压机预粉磨系统增产调整

辊压机预粉磨系统增产降耗优化调整与探讨 邹伟斌中国建材工业经济研究会水泥专业委员会(100024) 汪海滨建筑材料工业技术情报研究所(100024) 邹捷南京工业大学粉体科学与工程研究所 (210009) 摘要:目前,国内尚有部分水泥企业应用带有辊压机通过式挤压预粉磨的水泥粉磨系统,由于该系统原配辊压机能力较小且无分级设备配置,入磨物料粒度分布范围较宽,均齐性较差,虽后续管磨机系统增产幅度一般达到20%-60%,平均节电幅度10%-20%,但系统粉磨电耗仍较高。在辊压机预粉磨系统采用机械筛分技术,降低入磨物料粒度,提高均齐性的同时,优化调整磨内研磨体级配及成品选粉机技术参数,最终达到了较理想的增产、降耗效果。 关键词:辊压机预粉磨机械筛分分级增产降耗 1.基本慨况 某公司水泥制成工序原采用Ф4.2×13m双仓水泥管磨机(主电机功率3550KW、两仓研磨体均使用钢球、一仓采用曲面阶梯衬板、二仓采用风机衬板;双层筛分隔仓板、同心圆状粗筛缝宽度10mm、内筛缝宽度4.0mm;磨尾出料同心圆状篦板缝宽度8mm)+选粉机的一级闭路粉磨系统,台时产量只有90t/h。之后,为实施磨前物料处理,配置一台120-80辊压机(电机功率500KW×2、通过量260t/h)作为预粉磨(无分级)设备,由于缺乏维护,辊压机动、静辊面及侧挡板磨损较严重、两侧边部漏料、工作压力低、挤压效果差,入磨物料中大于8mm以上颗粒比例达到30%以上,粒度分布范围较宽,系统产量较低。 磨尾为系统风机与收尘风机各自单列配置,O-SePa N-3500高效选粉机(主轴电机功率200KW、最大喂料能力630t/h、选粉能力210t/h、理论配风量210000m3/h、实际配置系统风机风量250000m3/h、风压7500Pa),粉磨P.O42.5水泥(熟料、石灰石、粉煤灰、脱硫石膏,成品比表面积≥360m2/kg)产量120t/h,系统粉磨电耗36kwh/t左右。 2.增产降耗技术措施优化探讨 为了进一步增产降耗,根据原预粉磨系统“辊压机配置小、磨机粉磨能力大”的工艺特点以及成品选粉机能力富裕量大,同时结合生产场地位置等实际状况,经技术论证,决定在辊压机系统设置物料分级回转筛并配置收尘设备,物料形成闭路循环,筛分分级后的细颗粒物料入管磨机粉磨,粗颗粒料返回称重仓再入辊压机挤压。 2.1回转筛技术参数 确定机械筛分分级回转筛筛孔宽度为5.0mm,筛子直径Ф2200mm,处理能力可达300t/h左右,端盖密封后联接一台布袋收尘器,收集的粉状料直接进入管磨机。安装调试运行后,能够有效地控制入磨物料粒度全部<5mm、颗粒分布由宽变窄、均齐性良好。 2.2辊压机工作压力与辊缝调整 为避免铁质对辊面造成损坏,配料皮带上方原有一道电磁除铁器,本次改造时又增加了一道高强磁除铁器,以除去熟料及混合材料中的铁质。 对于辊压机的处理:首先,采取堆焊方式修复辊压机辊面,恢复辊压机挤压过程中辊面对物料的牵制能力。其次,更换侧挡板(采用碳化铬复合耐磨钢板制作,

生料辊压机终粉磨说明书

原料粉磨及废气处理系统调试操作说明书

一、工艺流程介绍 来自石灰石预均化库的石灰石经胶带输送机送至原料调配站的石灰石库。 辅助原料包括砂岩、铁矿石和粉煤灰。砂岩、铁矿石由胶带输送机输送至原料调配站。在原有粉煤灰输送皮带下增加一台三通阀,对原有输送皮带进行改造,新增一座φ5m粉煤灰仓,仓底设置棒阀和定量给料机。 因原料粉磨/废气处理改造为辊压机终粉磨后系统能力加大,经核算石灰石库底定量给料机能力足够,不需调整;更换原石英砂岩库定量给料机;原石英砂岩库底定量给料机移至铁矿石库底计量铁矿石用。在定量给料机计量下实现各种物料的定量喂料,配好的混合料经除铁装置和金属探测器除铁探测后,由胶带输送机送入生料磨车间。 原料粉磨采用辊压机终粉磨系统,入磨物料粒度≤55mm。各种原料经胶带机送入V型选粉机(12.10)分级打散,其中粗粉部分经提升机(12.11)、除铁器(12.12)、称重稳流仓(12.13)回辊压机 (12.16)循环再挤压;另一部分进入动态选粉机(12.18)分选,合格成品随一部分气流送入旋风收尘器(12.22)收集,不合格品经过重锤阀(12.18-1)、除铁器(12.19)、空气输送斜槽 (12.20) 、称重稳流仓(12.13)回辊压机 (12.16)循环再挤压。挤压后的物料经提升机(12.17)送入V选。旋风收尘器(12.22)收集下来的成品经空气输送斜槽(12.25、12.39)、斗式提升机(12.41)、空气输送斜槽(12.42)入生料库储存、均化。出旋风收尘器(12.22)的气体经循环风机(12.27),一部分气体作为循环风重新进入V型选粉机(12.10),其余气体则通过窑尾袋收尘器净化后,经尾排风机和烟囱排入大气。窑尾袋收尘器和增湿塔收下的粉尘经链式输送机、提升机(16.01)汇同生料成品一起经空气输送

水泥粉磨系统的改造

四川广旺集团天台水泥厂于2002年10月正式启动生产系统完善 工程,该工程由合肥水泥研究设计院设计,通过生产系统配套完善后,设计年生产能力由原15.4万吨/年增为 25.4万吨/年。其中,原水泥粉磨系统 为!2.6m×13m开路磨系统,产量 28t/h,完善工程需要水泥磨产量提 高到36t/h以上,通过三种增产方案的比较,最终确定采用“增加柱磨机预粉磨系统”新型增产节能方案。 1水泥粉磨系统改造方案的选择根据工程设计指标,水泥磨产量 需提高到36t/h,需改造原开路磨系统,有如下三种方案。方案一:增加选粉机,将开路磨系统改造为闭路粉磨系统;方案二:增加熟料细碎用锤式破碎机,并采用高产磨技术对磨机内部进行改造;方案三:增加柱磨机预粉磨系统。水泥粉磨系统改造方案比较见表1。 从三种方案比较看,方案二系统 简单、投资最省、增加装机功率最小;方案三一次性投资最高、增加装机功率最大,但提高产量的幅度最大,增产量为12t/h,如与增产量对比计算,则单位增产的投资和单位增产的增加装机功率与方案二基本相当。方案二和方案三均可行,因方案三有明显的增产优势和规模效益,故最终确定采用方案三。 2系统改造工艺2.1 改造前工艺 原水泥磨系统的工艺流程见图 1。原水泥磨系统的工艺设备配置见 表2。 2.2柱磨机预粉磨系统工艺 柱磨机预粉磨系统的工艺流程见图 2。柱磨机预粉磨系统的工艺设备配 置见表3。 3柱磨机的基本结构、工作原理及性能特点 3.1 基本结构 ZMJ柱磨机的基本结构如图3。 其中传动装置包括电动机、减速机和主轴。 3.2工作原理 柱磨机采用了新颖的中速脉动、 连续反复中压力的料床辊压粉磨原理,结构设计科学,它同时具有高压辊压机和辊式磨的性能。电动机带动减速机使主轴旋转,安装在主轴支座上的三个辊轮在环锥形内衬中转动,当物料从进料口进入柱磨机后,经过撒料盘的均匀布料,再加上重力作用和上部推料作用,使物料均匀地从内衬周围由上而下通过,并在辊轮与衬板之间形成稳定的料层,物料受到辊轮的反复滚动碾压而形成粉末,再经过堵料桶的自然筛分,合格的细料从磨机下部的出料口自动卸料。 其增产机理为: (1)由于物料被三个辊轮连续多次碾压,其颗粒内部晶格被破坏,所 水泥粉磨系统的改造 Modification ofCement Grinding System □□何宏涛 摘要:本文介绍了柱磨机的在四川广旺集团天台水泥厂的应用实例,叙述了系统改造前工艺及柱磨机预粉磨系统工艺,柱磨机的基本结构、工作原理及性能特点,柱磨机在改造中的使用效果及经济效益分析。 关键词:柱磨机;水泥粉磨;熟料预粉磨;增产;节能;改造中图分类号:TQ172.639 文献标识码:B 文章编号:1001-6171(2007)04-0045-04 通讯地址:合肥水泥研究设计院,安徽 合肥 230051;收稿日期:2006-07-03;编辑:吕 光 粉磨技术 45 2007/4 水泥技术

综合粉磨系统分析选粉机和辊压机

综合粉磨系统分析选粉机和辊压机 粉磨在制造水泥工程中占有非常重要的地位,无论是生料(半成品)还是水泥(成品)需要通过粉磨来获得,每生产1吨水泥,需要粉磨各种物料3、5吨左右,电耗约为100~110kw.h,其中60%~70%的电耗消耗在粉磨中。尤其是水泥粉磨系统比生料粉磨系统耗电量更大,这是因为水泥熟料质量差时,熟料中的硅酸二钙含量高时难磨,粉磨效率就会明显降低,电耗明显增加。从水泥的水化和硬化反应、胶凝性有效利用率、强度尤其是早期强度来考虑,水泥磨的越细越好,这样还能改善其泌水性和易性等,水泥还要考虑产品的颗粒分布,力争做到节能、环保、确保水泥质量。 Grinding in manufacturing cement engineering occupies a very important position, either in the raw materials (semi-finished products) or cement (finished product) should be obtained by grinding, each 1 tons of cement production, need to all kinds of material 3, 5 tons, power consumption is about 100 ~ 110 kw h, 60% ~ 60% of energy consumption in grinding. Especially for cement grinding system is greater than the system power consumption of raw material grinding, it is because the poor quality of cement

几种水泥粉磨系统的综合比较

几种水泥粉磨系统的综合比较 【中国水泥网】作者:鲁京单位:来源:中国建材报【2010-08-25】 1.球磨机开路与闭路粉磨系统的比较 一般来说,开路流程粉碎产品的颗粒组成比较分散,而闭路流程粉碎产品的颗粒组成比较均匀。 对于生料粉磨系统来说,由于出磨生料细度的均匀性不一样,生料的易烧性也不一样,其在窑内的反应速度相差较大。事实上,生料越细、均匀性越好,越有利于煅烧优质的水泥熟料。因此,目前各水泥企业普遍采用闭路粉磨流程来制备生料。与此同时,在确保熟料烧成质量的情况下,闭路粉磨生料的控制细度可以由R0.08筛余8%~10%放宽到13%~15%,球磨机产量一下就能提高15%~20%,节能高产的效果十分明显。 对于水泥粉磨来说,水泥颗粒分布是水泥性能的主要决定因素之一。目前,一般公认的水泥最佳颗粒组成为3~30μm 。其中,0~10μm 的水泥颗粒早期强度高,10~30μm 的水泥颗粒后期强度高。20世纪80年代中期,国内外学者进一步提出:水泥中3~30μm (或32μm)颗粒对强度的增长起主要作用,其颗粒分布是连续的,总量应不低于65%;16~24μm 的颗粒对水泥性能尤为重要,含量越多越好;小于3μm 的细颗粒易结团,不要超过10%;大于64μm 的颗粒活性很小,越少越好。以前行业内有一个共识,开路粉磨的水泥,颗粒组成范围宽,水泥颗粒中微细粉含量较多,比表面积高,早期强度高。2008年实行《通用硅酸盐水泥》(GB175-2007)国家标准后,对水泥出磨的细度控制值(筛余)要求更加严格,圈流粉磨的水泥也必须要达到较高的比表面积和合理的颗粒级配。而系统选粉机只有采用高浓度袋收尘器收集细粉,才能够实现这个目标。如此情形下,开流粉磨的水泥早期强度高的优势已经不很明显,因此,有条件的水泥厂逐渐改用圈流粉磨的工艺流程来粉磨水泥,这样既可以避免开流粉磨的过粉磨现象,又能保证磨机的节能高产。 2.立式磨与球磨机粉磨系统的比较 立式磨作为一种集粉碎、烘干、粉磨、分级等功能于一体,且机内自成闭路粉磨系统的高效节能粉磨设备,在新型干法水泥生产线上的应用越来越广泛。在生料制备工艺上,立式磨的生产能力已经达到400~600t /h ,从规模和数量上,已经证实:它将取代球磨机成为大型水泥生产线的主要粉磨设备。 立式磨属于“料床粉碎”的粉磨设备,不仅能量利用率远远高于“单颗粒粉碎”的球磨机,而且烘干能力强、流程简单,允许入料粒度大,物料在磨内停留时间短,工艺参数易于调控。从工作环境讲,立式磨的车间噪音比球磨机车间低10dB以上。此外,它还能利用窑头窑尾的废气余热烘干生料,能耗低,效果好。 3.辊压机联合粉磨系统与球磨机闭路粉磨系统的比较 辊压机是20世纪80年代中期发展起来的一种新型粉磨设备,它应用于水泥生产工艺过程之后,大幅度提高了磨机产量、降低了能量消耗。物料在整个挤压粉碎过程中,被封闭在狭小的空间里,无逃离的余地,也不产生过大的运动,很少有动能或热能的转换而带来能量损失,在利用率极高的情况下将物料粉碎并压成料饼。物料经辊压机挤压粉碎后,其易磨

相关文档
最新文档