【2016年全国高考数学】专题07导数的应用(单调性、最值、极值)

【2016年全国高考数学】专题07导数的应用(单调性、最值、极值)
【2016年全国高考数学】专题07导数的应用(单调性、最值、极值)

【母题来源一】2016高考山东理数

【母题原题】已知()221()ln ,R x f x a x x a x

-=-+∈. (Ⅰ)讨论()f x 的单调性;(II )略

【答案】(Ⅰ)当0≤a 时,函数)(x f 在)1,0(内单调递增,在),1(+∞内单调递减; 当20<

1(a 内单调递减,在),2(+∞a

内单调递增; 当2=a 时,)(x f 在),0(+∞内单调递增;当2>a ,)(x f 在)2,

0(a 内单调递增,在)1,2(a

内单调递减,在),1(+∞内单调递增.

考点:应用导数研究函数的单调性

【名师点睛】本题主要考查导数的计算、应用导数研究函数的单调性、分类讨论思想.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.

【母题来源二】 2016高考天津理数

【母题原题】设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈,

(Ⅰ)求)(x f 的单调区间;(II)略;(Ⅲ)略错误!未找到引用源。.

【答案】(Ⅰ)当0≤a 时,单调递增区间为),(+∞-∞;当0>a 时,单调递减区间为)331,331(a a +-,单调递增区间为)3

31,(a --∞,),331(+∞+a . 【解析】(Ⅰ)解:由b ax x x f ---=3)1()(,可得a x x f --=2

)1(3)('.

下面分两种情况讨论:

【名师点睛】1.求可导函数单调区间的一般步骤

(1)确定函数)(x f 的定义域(定义域优先);

(2)求导函数()f x ';

(3)在函数)(x f 的定义域内求不等式()0f x '>或()0f x '<的解集.

(4)由()0f x '>(()0f x '<)的解集确定函数)(x f 的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.

2.由函数)(x f 在(,)a b 上的单调性,求参数范围问题,可转化为()0f x '≥ (或()0f x '≤)恒成立问题,要注意“=”是否可以取到.

【命题意图】 导数是研究函数的重要工具,利用导数研究函数的单调性可以描绘出函

数图象大致的变化趋势,是进一步解决问题的依据.分类讨论思想具有明

显的逻辑特征,是整体思想一个重要补充,解决这类问题需要一定的分

析能力和分类技巧.因此高考对这类题主要考查导数的运算、代数式化简

与变形,考查运算求解能力,运用数形结合、分类讨论的思想方法分析

与解决问题能力.

【考试方向】 含有参数的函数导数试题,主要有两个方面:一是根据给出的某些条件

求出这些参数值,基本思想方法为方程的思想;二是在确定参数的范围

(或取值)使得函数具有某些性质,基本解题思想是函数与方程的思想、

分类讨论的思想.含有参数的函数导数试题是高考考查函数方程思想、分

类讨论思想的主要题型之一.这类试题在考查题型上,通常以解答题的形

式出现,难度中等.

【得分要点】

1.研究函数单调区间,实质研究函数极值问题.分类讨论思想常用于含有参数的函数的极值问题,大体上可分为两类,一类是定区间而极值点含参数,另一类是不定区间(区间含参数)极值点固定,这两类都是根据极值点是否在区间内加以讨论,讨论时以是否使得导函数变号为标准,做到不重不漏.

2.求可导函数单调区间时首先坚持定义域优先原则,必须先确定函数的定义域,尤其注意定义区间不连续的情况,此时单调区间按断点自然分类;其次,先研究定义区间上导函数无零点或零点落在定义区间端点上的情况,此时导函数符号不变,单调性唯一;对于导函数的零点在定义区间内的情形,最好列表分析导函数符号变化规律,得出相应单调区间.

3.讨论函数的单调性其实质就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论,在不能通过因式分解求出根的情况时根据不等式对应方程的判别式进行分类讨论.讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制.

4.含参数的函数的极值(最值)问题常在以下情况下需要分类讨论:

(1)导数为零时自变量的大小不确定需要讨论;

(2)导数为零的自变量是否在给定的区间内不确定需要讨论;

(3)端点处的函数值和极值大小不确定需要讨论;

(4)参数的取值范围不同导致函数在所给区间上的单调性的变化不确定需要讨论.

5.求可导函数单调区间的一般步骤

(1)确定函数)(x f 的定义域(定义域优先);

(2)求导函数()f x ';

(3)在函数)(x f 的定义域内求不等式()0f x '>或()0f x '<的解集.

(4)由()0f x '>(()0f x '<)的解集确定函数)(x f 的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.

6.由函数)(x f 在(,)a b 上的单调性,求参数范围问题,可转化为()0f x '≥ (或()0f x '≤)恒成立问题,要注意“=”是否可以取到.

7. 求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念.

8. 函数、导数解答题中贯穿始终的是数学思想方法,在含有参数的试题中,分类与整

合思想是必要的,由于是函数问题,所以函数思想、数形结合思想也是必要的,把不等式问题转化为函数最值问题、把方程的根转化为函数零点问题等,转化与化归思想也起着同样的作用,解决函数、导数的解答题要充分注意数学思想方法的应用. 9. 导数及其应用通常围绕四个点进行命题.第一个点是围绕导数的几何意义展开,设计求曲线的切线方程,根据切线方程求参数值等问题,这类试题在考查导数的几何意义的同时也考查导数的运算、函数等知识,试题的难度不大;第二个点是围绕利用导数研究函数的单调性、极值(最值)展开,设计求函数的单调区间、极值、最值,已知单调区间求参数或者参数范围等问题,在考查导数研究函数性质的同时考查分类与整合思想、化归与转化思想等数学思想方法;第三个点是围绕导数研究不等式、方程展开,涉及不等式的证明、不等式的恒成立、讨论方程根等问题,主要考查通过转化使用导数研究函数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用;第四个点是围数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用.

10. 函数的单调性问题与导数的关系

(1)函数的单调性与导数的关系:设函数()y f x =在某个区间内可导,若

()0f x '>,则()f x 为增函数;若/()0f x <,则()f x 为减函数.

(2)用导数函数求单调区间方法

求单调区间问题,先求函数的定义域,在求导函数,解导数大于0的不等式,

得到区间为增区间,解导数小于0得到的区间为减区间,注意单调区间一定要

写出区间形式,不用描述法集合或不等式表示,且增(减)区间有多个,一定

要分开写,用逗号分开,不能写成并集形式,要说明增(减)区间是谁,若题

中含参数注意分类讨论;

(3) 已知在某个区间上的单调性求参数问题

先求导函数,将其转化为导函数在这个区间上大于(增函数)(小于(减函数))

0恒成立问题,通过函数方法或参变分离求出参数范围,注意要验证参数取等号

时,函数是否满足题中条件,若满足把取等号的情况加上,否则不加.

(4)注意区分函数在某个区间上是增(减)函数与函数的增(减)区间是某各区间的

区别,函数在某个区间上是增(减)函数中的区间可以是该函数增(减)区间的子

集.

11.函数的极值与导数

(1)函数极值的概念

设函数()y f x =在0x 附近有定义,若对0x 附近的所有点,都有0()()f x f x <,则称0()f x 是函数()f x 的一个极大值,记作y 极大值=0()f x ;

设函数()y f x =在0x 附近有定义,若对0x 附近的所有点,都有0()()f x f x >,则称0()f x 是函数()f x 的一个极小值,记作y 极小值=0()f x .

注意:极值是研究函数在某一点附近的性质,使局部性质;极值可有多个值,且极大值

不定大于极小值;极值点不能在函数端点处取.

(2)函数极值与导数的关系

当函数()y f x =在0x 处连续时,若在0x 附近的左侧/()0f x >,右侧/()0f x <,那么0()f x 是极大值;若在0x 附近的左侧/()0f x <,右侧/()0f x >,那么0()f x 是极小值.

注意:

①在导数为0的点不一定是极值点,如函数3y x =,导数为/23y x =,在0x =处导数

为0,但不是极

值点;

②极值点导数不定为0,如函数||y x =在0x =的左侧是减函数,右侧是增函数,在

0x =处取极小值,但在0x =处的左导数0(0)(0)lim x x x

-?→-+?--?=-1,有导数0(0)(0)lim x x x

+?→+?-?=1,在0x =处的导数不存在. (3)函数的极值问题

①求函数的极值,先求导函数,令导函数为0,求出导函数为0点,方程的根和导数不存在的点,再用导数判定这些点两侧的函数的单调性,若左增由减,则在这一点

取值极大值,若左减右增,则在这一点取极小值,要说明在哪一点去极大(小)值;

②已知极值求参数,先求导,则利用可导函数在极值点的导数为0,列出关于参数方程,求出参数,注意可导函数在某一点去极值是导函数在这一点为0的必要不充分条件,故需将参数代入检验在给点的是否去极值;

③已知三次多项式函数有极值求参数范围问题,求导数,导函数对应的一元二次方程有解,判别式大于0,求出参数的范围.

12.最值问题

(1)最值的概念

对函数()y f x =有函数值0()f x 使对定义域内任意x ,都有()f x ≤0()

f x (()f x ≥0()f x )则称0()f x 是函数()y f x =的最大(小)值.

注意:①若函数存在最大(小)值,则值唯一;最大值可以在端点处取;若函数的最大值、最小值都存在,则最大值一定大于最小值.

②最大值不一定是极大值,若函数是单峰函数,则极大(小)值就是最大(小)值. (2)函数最问题

①对求函数在某一闭区间上,先用导数求出极值点的值和区间端点的值,最大者为最大值,最小者为最小值,对求函数定义域上最值问题或值域,先利用导数研究函数的单调性和极值,从而弄清函数的图像,结合函数图像求出极值;

②对已知最值或不等式恒成立求参数范围问题,通过参变分离转化为不等式()f x ≤(≥)()g a (x 是自变量,a 是参数)恒成立问题,()g a ≥max ()f x (≤min ()f x ),转化为求函数的最值问题,注意函数最值与极值的区别与联系.

【母题1】 (Ⅰ)讨论函数x x 2f (x)x 2

-=

+e 的单调性,并证明当0x >时,(2)20x x e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2

x =(0)x e ax a g x x -->()有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.

【答案】(Ⅰ)详见解析;(Ⅱ)2

1(,].24

e .

考点: 函数的单调性、极值与最值. 【名师点睛】求函数单调区间的步骤:

(1)确定函数f (x )的定义域;

(2)求导数f ′(x );

(3)由f ′(x )>0(f ′(x )<0)解出相应的x 的范围.

当f ′(x )>0时,f (x )在相应的区间上是增函数;当f ′(x )<0时,f (x )在相应的区间上是减函数,还可以列表,写出函数的单调区间.

注意:求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念.

【母题2】设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,

(1)求a ,b 的值;

(2)求()f x 的单调区间.

【答案】(Ⅰ)2a =,b e =;(2))(x f 的单调递增区间为(,)-∞+∞.

【解析】(1)因为bx xe x f x a +=-)(,所以b e x x f x a +-='-)1()(.

依题设,???-='+=,1)2(,22)2(e f e f 即???-=+-+=+--,

1,222222e b e e b e a a 解得e b a ==,2;(2)由(Ⅰ)知ex xe x f x +=-2)(.

由)1()(12--+-='x x e x e x f 即02>-x e 知,)(x f '与11-+-x e x 同号.

令11)(-+-=x e x x g ,则11)(-+-='x e x g .

所以,当)1,(-∞∈x 时,0)(<'x g ,)(x g 在区间)1,(-∞上单调递减;

当),1(+∞∈x 时,0)(>'x g ,)(x g 在区间),1(+∞上单调递增.

故1)1(=g 是)(x g 在区间),(+∞-∞上的最小值,

从而),(,0)(+∞-∞∈>x x g .

综上可知,0)(>'x f ,),(+∞-∞∈x ,故)(x f 的单调递增区间为),(+∞-∞.

考点:导数的应用.

【名师点睛】用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.

【母题3】设函数f (x )=ax 2-a -ln x ,其中a ∈R.

(Ⅰ)讨论f (x )的单调性;

(Ⅱ)确定a 的所有可能取值,使得11()x f x e x

->

-在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数). 【答案】(Ⅰ)当x ∈

(时,'()f x <0,()f x 单调递减;当x ∈+)∞时,'()f x >0,()f x 单调递增;(Ⅱ)1

[,)2a ??.

考点:导数的计算、利用导数求函数的单调性,最值、解决恒成立问题.

【名师点睛】本题考查导数的计算、利用导数求函数的单调性,最值、解决恒成立问题,考查学生的分析问题解决问题的能力和计算能力.求函数的单调性,基本方法是求'()f x ,解方程'()0f x =,再通过'()f x 的正负确定()f x 的单调性;要证明函数不等式()()f x g x >,一般证明()()f x g x -的最小值大于0,为此要研究函数()()()h x f x g x =-的单调性.本题中注意由于函数()h x 有极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到.有一定的难度.

【母题4】 已知函数),()(2

3R b a b ax x x f ∈++=.

(1)试讨论)(x f 的单调性;

(2)若a c b -=(实数c 是a 与无关的常数),当函数)(x f 有三个不同的零点时,a 的取值范围恰好是),23()23,1()3,(+∞--∞ ,求c 的值.

【答案】(1)当0a =时, ()f x 在(),-∞+∞上单调递增;

当0a >时, ()f x 在2,3a ??-∞- ???,()0,+∞上单调递增,在2,03a ??- ???上单调递减; 当0a <时,

()f x 在(),0-∞,2,3a ??-+∞ ???上单调递增,在20,3a ??- ???上单调递减. (2) 1.c =

【考点定位】利用导数求函数单调性、极值、函数零点

【名师点晴】求函数的单调区间的步骤:①确定函数y =f(x)的定义域;②求导数y′=f′(x),令f′(x)=0,解此方程,求出在定义区间内的一切实根;③把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;④确定f′(x)在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性.

已知函数的零点个数问题处理方法为:利用函数的单调性、极值画出函数的大致图像,数形结合求解.

已知不等式解集求参数方法:利用不等式解集与对应方程根的关系找等量关系或不等关系.

【母题5】设函数2()f x x ax b =-+.

(Ⅰ)讨论函数(sin )f x 在(,)22ππ-

内的单调性并判断有无极值,有极值时求出极值; (Ⅱ)记2000()f x x a x b =-+,求函数0(sin )(sin )f x f x -在[]22

ππ-,上的最大值D ; (Ⅲ)在(Ⅱ)中,取000a b ==,求2

4

a z

b =-满足D 1≤时的最大值. 【答案】(Ⅰ)极小值为2

4

a b -;(Ⅱ)00||||D a a b b =-+-; (Ⅲ)1. 【解析】(Ⅰ)2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x π

π

-<<.

[(s i n

)]'(2s i n )f x x a x =-,22x ππ-<<. 因为22x ππ-<<,所以cos 0,22sin 2x x >-<<.

①当2,a b R ≤-∈时,函数(sin )f x 单调递增,无极值.

②当2,a b R ≥∈时,函数(sin )f x 单调递减,无极值.

【考点定位】1.函数的单调性、极值与最值;2.绝对值不等式的应用.

【名师点睛】函数、导数解答题中贯穿始终的是数学思想方法,在含有参数的试题中,分类与整合思想是必要的,由于是函数问题,所以函数思想、数形结合思想也是必要的,把不等式问题转化为函数最值问题、把方程的根转化为函数零点问题等,转化与化归思想也起着同样的作用,解决函数、导数的解答题要充分注意数学思想方法的应用.

【母题6】已知函数()n ,n f x x x x R =-∈,其中*

n ,n 2N ∈≥.

(I)讨论()f x 的单调性;

(II)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;

(III)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证: 21|-|21a x x n

<+- 【答案】(I) 当n 为奇数时,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增;当n 为偶数时,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. (II)见解析; (III)见解析.

(III)证明:不妨设12x x ≤,由(II)知()()20()g x n n x x =--,设方程()g x a =的根为2

x ',可得

202

.a x x n n '=+-,当2n ≥时,()g x 在(),-∞+∞上单调递减,又由(II)知222()()(),g x f x a g x '≥==可得22x x '≤.

类似的,设曲线()y f x =在原点处的切线方程为()y h x =,可得()h x nx =,当(0,)x ∈+∞,

()()0n f x h x x -=-<,即对任意(0,)x ∈+∞,()().f x h x <

设方程()h x a =的根为1x ',可得1a x n

'=,因为()h x nx =在(),-∞+∞上单调递增,且111()()()h x a f x h x '==<,因此11x x '<. 由此可得212101a x x x x x n ''-<-=

+-. 因为2n ≥,所以11112

(11)111n n n C n n ---=+≥+=+-=,故1102n n x -≥=, 所以2121a x x n

-<+-. 【考点定位】1.导数的运算;2.导数的几何意义;3.利用导数研究函数性质、证明不等式.

【名师点睛】本题主要考查函数的性质与导数之间的关系以及利用函数证明不等式.第(I)小题求导后分n 为奇偶数讨论函数的单调性,体现了数学分类讨论的重要思想;第(II)(III)中都利用了构造函数证明不等式这一重要思想方法,体现数学中的构造法在解题中的重要作用,是拨高题.

【母题7】已知函数22()2()ln 22f x x a x x ax a a =-++--+,其中0a >.

(1)设()g x 是()f x 的导函数,评论()g x 的单调性;

(2)证明:存在(0,1)a ∈,使得()0f x ≥在区间∞(1,+)内恒成立,且()0f x =在∞(1,+)内有唯一解.

【答案】(1)当104a <<时,()g x 在区间)+∞上单调递增,

在区间上单调递减;当14a ≥时,()g x 在区间(0,)+∞上单调递增.(2)详见解析.

word完整版导数的单调性与极值题型归纳

导数的应用(单调性与极值) 一、求函数单调区间 3-3x的单调递减区间是________________ x1、函数y= x的单调递增区间是_______________ -3)e(x)=(x2、函数f 3、函数f(x)=ln x-ax(a>0)的单调递增区间为() 11A.(0,) B.(,+∞) aa1B.C.(-∞,) D.(-∞,a) a 4、函数y=x-2sin x在(0,2π)内的单调增区间为________. 2x x5、求函数f(x)=x(e-1)-的单调区间. 2 a6、已知函数f(x)=+x+(a-1)ln x+15a,其中a<0,且a≠-1.讨论函数f(x)的x单调性.

二、导函数图像与原函数图像关系 1 导函数正负决定原函数递增递减导函数大小等于原函数上点切线的斜率 导函数大小决定原函数陡峭平缓 1、若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a, b]上的图象可能是() 2、若函数y=f(x)的导函数在区间[a,b]上是先增后减的函数,则函数y=f(x)在区间[a,b]上的图象可能是() 2x cos x)·,则函数y=g(g在其任一点+1(x,y)处切线斜率为(x)=3、设曲线yx) (的部分图象可以为

) 的图象,如图所示,则(xx)的导函数f′()f4、函数 ( 0是极小值点B.x=x=1是最小值点 (1,2)上单增在xf D 是极小值点=.C x2 .函数()三、恒成立问题2

123+bx+cxf(x)=x-b-∞,+∞)上是增函数,求.若f(x)1、已知函数在(2; 的取值范围

导数的应用—单调性与极值的习题课

导数的应用—单调性与极值的习题课 【复习目标】 1.理解导数在研究函数的单调性和极值中的作用; 2.理解导数在解决有关不等式、方程的根、曲线交点个数等问题中有广泛的应用。 3.结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的 单调性,会求不超过三次的多项式函数的单调区间; 4.结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三 次的多项式函数的极大值、极小值,体会导数方法在研究函数性质中的一般性和有效性。 【重点难点】 ①利用导数求函数的极值;②利用导数求函数的单调区间;④利用导数证明函数的单调性; ⑤数在实际中的应用;⑥导数与函数、不等式等知识相融合的问题; 【基础过关】1. 函数的单调性 ⑴ 函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则) (x f 为 .(逆命题不成立) (2) 如果在某个区间内恒有0)(='x f ,则)(x f . 注:连续函数在开区间和与之相应的闭区间上的单调性是一致的. (3) 求可导函数单调区间的一般步骤和方法: ① 确定函数)(x f 的 ; ② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根; ③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺 序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间; ④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区 间内的增减性. 2.可导函数的极值 ⑴ 极值的概念 设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称 )(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点. ⑵ 求可导函数极值的步骤: ① 求导数)(x f '; ② 求方程)(x f '=0的 ; ③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负, 那么函数y =)(x f 在这个根处取得 ;如果在根的左侧附近为负,右侧为正,那么函 数y =)(x f 在这个根处取得 . 【基础训练】 例1.如果函数()y f x =的图像如右图,那么导函数, ()y f x =的图像可能是( ) 例2. 曲线x x y ln 22-= 的单调减区间是( )

导数与单调性极值最基础值习题

导数与单调性极值最基础值习题 评卷人得分 一.选择题(共14小题) 1.可导函数y=f(x)在某一点的导数值为0是该函数在这点取极值的() A.充分条件B.必要条件 C.充要条件?D.必要非充分条件 2.函数y=1+3x﹣x3有( ) A.极小值﹣1,极大值3?B.极小值﹣2,极大值3 C.极小值﹣1,极大值1 D.极小值﹣2,极大值2 3.函数f(x)=x3+ax2﹣3x﹣9,已知f(x)的两个极值点为x1,x2,则x1?x2=() A.9 B.﹣9C.1 D.﹣1 4.函数的最大值为() A.?B.e2C.e D.e﹣1 5.已知a为函数f(x)=x3﹣12x的极小值点,则a=() A.﹣4 B.﹣2 C.4 D.2 6.已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=() A.﹣2或2? B.﹣9或3 C.﹣1或1 D.﹣3或1 7.设函数f(x)=xex,则() A.x=1为f(x)的极大值点 B.x=1为f(x)的极小值点 C.x=﹣1为f(x)的极大值点?D.x=﹣1为f(x)的极小值点 8.函数y=x3﹣2ax+a在(0,1)内有极小值,则实数a的取值范围是() A.(0,3)?B.(0,)?C.(0,+∞)?D.(﹣∞,3) 9.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于() A.11或18?B.11 C.18?D.17或18 10.设三次函数f(x)的导函数为f′(x),函数y=x?f′(x)的图象的一部分如图所

示,则正确的是() A.f(x)的极大值为,极小值为 B.f(x)的极大值为,极小值为 C.f(x)的极大值为f(﹣3),极小值为f(3) D.f(x)的极大值为f(3),极小值为f(﹣3) 11.若f(x)=x3+2ax2+3(a+2)x+1有极大值和极小值,则a的取值范围是( )A.﹣a2或a<﹣1C.a≥2或a≤﹣1?D.a>1或a<﹣2 12.函数y=xe﹣x,x∈[0,4]的最小值为() A.0 B.?C.?D. 13.函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是()A.5,﹣15 B.5,﹣4C.﹣4,﹣15?D.5,﹣16 14.已知f(x)=2x3﹣6x2+m(m为常数)在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值是( ) A.﹣37 B.﹣29 C.﹣5 D.以上都不对 评卷人得分 二.填空题(共10小题) 15.函数f(x)=x3﹣3x2+1的极小值点为. 16.已知f(x)=x3﹣ax2﹣bx+a2,当x=1时,有极值10,则a+b=. 17.已知函数f(x)=x(x﹣c)2在x=2处有极大值,则c= . 18.已知函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则实数a 的取值范围是. 19.已知函数f(x)=x3+mx2+(m+6)x+1既存在极大值又存在极小值,则实数m的

导数的单调性及极值问题

二轮复习导数 (一) 2015. 02. 07 一、 运用导数研究函数的单调性 单调区间: (1) 求单调区间 (2)已知单调区间 (3)在某区间上不单调 运用导数求函数单调区间的思维流程图: 答题步骤: 第一步:求定义域; 第二步:求)(x 'f ; 第三步:令)(x 'f =0,求相应的导函数零点值;(是一次型还是二次型?是否有解?有几个解) 第四步:列表分析函数的单调性, (列表实际上就是画数轴,也可以认为是穿根解不等式,首先要做的是比较根的大小以及根于定义域边界的大小) 第五步:由表格写结论。 例1:(2012西城一模)已知函数()e (1)ax a f x a x =?++,其中1-≥a . 求)(x f 的单调区间. 解:2 (1)[(1)1] ()e ax x a x f x a x ++-'=,0x ≠.……………6分 ①当1-=a 时,令()0f x '=,解得1x =-. )(x f 的单调递减区间为(,1)-∞-;单调递增区间为(1,0)-,(0,)+∞.……8分 当1a ≠-时,令()0f x '=,解得1x =-,或1 1 x a = +. ②当01<<-a 时,)(x f 的单调递减区间为(,1)-∞-,1 ( ,)1 a +∞+; 单调递增区间为(1,0)-,1 (0, )1 a +.………10分 ③当0=a 时,()f x 为常值函数,不存在单调区间.…………11分 ④当0a >时,)(x f 的单调递减区间为(1,0)-,1 (0, )1 a +; 单调递增区间为(,1)-∞-,1 ( ,)1 a +∞+.…………13分

1)分类讨论的特点:二次项系数不确定 ,一元二次方程根的大小确定 。 例2:(2012-2013朝阳第一学期期末)已知函数1 ()()2ln ()f x a x x a x =--∈R .求函数()f x 的单调区间. 解:函数()f x 的定义域为(0,)+∞.222 122()(1)ax x a f x a x x x -+'=+-= (1)当0a ≤时,2()20h x ax x a =-+<在(0,)+∞上恒成立, 则()0f x '<在(0,)+∞上恒成立,此时()f x 在(0,)+∞上单调递减.……………4分 (2)当0a >时,244a ?=-, (ⅰ)若01a <<, 由()0f x '>,即()0h x >,得1x a <或1x a +>;………………5分 由()0f x '<,即()0h x -, .......................................2分 令()0f x '=,得到121 2,0x x a = -= , 由12a ≥可知120a -≤ ,即10x ≤....................5分 ① 即12a =时,121 20x x a =-==.所以,2 '2 ()0,(1,)2(1) x f x x x =-≤∈-+∞+,............6分 故()f x 的单调递减区间为(1,)-+∞ . ................................7分 ② 当 112a <<时,1 120a -<-<,即1210x x -<<=, 所以,在区间1 (1,2)a --和(0,)+∞上,'()0f x <;........8分在区间1(2,0)a -上,'()0f x >..........9分 故 ()f x 的单调递减区间是1 (1,2)a --和(0,)+∞,单调递增区间是1(2,0)a -. .........10分 ③当1a ≥时,11 21x a = -≤-,

《函数的单调性与极值》教学案设计

《函数的单调性与极值》教学案设计 教学目标:正确理解利用导数判断函数的单调性的原理; 掌握利用导数判断函数单调性的方法; 教学重点:利用导数判断函数单调性; 教学难点:利用导数判断函数单调性 教学过程: 一 引入: 以前,我们用定义来判断函数的单调性.在假设x 10时,函数y=f(x) 在区间(2,∞+)内为增函数;在区间(∞-,2)内, 切线的斜率为负,函数y=f(x)的值随着x 的增大而减小,即/y <0时,函数y=f(x) 在区间 (∞-,2)内为减函数. 定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y=f(x) 在为这个区间内的增函数;,如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数。 例1 确定函数422+-=x x y 在哪个区间内是增函数,哪个区间内是减函数。 例2 确定函数76223+-=x x y 的单调区间。 y

2 极大值与极小值 观察例2的图可以看出,函数在X=0的函数值比它附近所有各点的函数值都大,我们说f(0)是函数的一个极大值;函数在X=2的函数值比它附近所有各点的函数值都小,我们说f(0)是函数的一个极小值。 一般地,设函数y=f(x)在0x x 及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说f(0x )是函数y=f(x)的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说f(0x )是函数y=f(x)的一个极小值。极大值与极小值统称极值。 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点: (ⅰ)极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小。并不意味着它在函数的整个的定义域内最大或最小。 (ⅱ)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。 (ⅲ)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,如下图所示,

用导数解决函数的单调性、极值、最值的方法步骤

用导数解决函数的单调性、极值、最值的方法步骤 (833200)新疆奎屯市第一高级中学 特级教师 王新敞 极值是一个局部概念 由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小 并不意味着它在函数的整个的定义域内最大或最小函数的极值不是唯一的 即一个函数在某区间上或定义域内极大值或极小值可以不止一个极大值与极小值之间无确定的大小关系 即一个函数的极大值未必大于极小值. 函数的极值点一定出现在区间的内部,区间的端点不能成为极值点 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 用导数判别f (x 0)是极大、极小值的思路: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值 求函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ) (2)求方程f ′(x )=0的根 (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f (x )在这个根处无极值在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值;在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值. 函数的最值是比较整个定义域内的函数值得出的,函数的极值是比较极值点附近函数值得出的. 函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个 利用导数求函数的最值步骤:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与 )(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值 例1 求列函数的极值:(1)22)2()1(--=x x y ;(2)21 22 -+= x x y 解:(1)2 / 2 2 )2)(75)(1()(,)2()1()(---=∴--=x x x x f x x x f 令0)(/ =x f ,得驻点2,5 7 ,1321== =x x x

导数与函数的单调性、极值、最值

教学过程 一、课堂导入 问题:判断函数的单调性有哪些方法?比如判断2x y=的单调性,如何进行? 因为二次函数的图像我们非常熟悉,可以画出其图像,指出其单调区间,再想一下,有没有需要注意的地方? 如果遇到函数x y3 x 3- =,如何判断单调性呢?你能画出该函数的图像吗? 定义是解决问题的最根本方法,但定义法较繁琐,又不能画出它的图像,那该如何解决呢?

二、复习预习 函数是描述客观世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.函数的单调性与函数的导数一样都是反映函数变化情况的,那么函数的单调性与函数的导数是否有着某种内在的联系呢?

三、知识讲解 考点1 利用导数研究函数的单调性 如果在某个区间内,函数y=f(x)的导数f′(x)>0,则在这个区间上,函数y=f(x)是增加的;如果在某个区间内,函数y=f(x)的导数f′(x)<0,则在这个区间上,函数y=f(x)是减少的. 利用导数研究函数的单调性、极值、最值可列表观察函数的变化情况,直观而且条理,减少失分.

求极值、最值时,要求步骤规范、表格齐全;含参数时,要讨论参数的大小. 注意定义域优先的原则,求函数的单调区间和极值点必须在函数的定义域内进行. ①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点; ②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点; ③若f′(x)在x0两侧的符号相同,则x0不是极值点.

(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. (3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下: ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.

利用导数研究函数的单调性和极值(答案)

小题快练 1.(2013全国Ⅰ卷理)设曲线1 1 x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .1 2 - D .2- 2.(2013全国Ⅰ卷改编)设函数2 )1()(x e x x f x --=,则函数()f x 的单调递增区间 为 ,单调递减区间为 . 【解析】(Ⅰ) 当1k =时, ()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=- 令()0f x '=,得10x =,2ln 2x = 当x 变化时,()(),f x f x '的变化如下表: 右表可知,函数f x 的递减区间为0,ln 2,递增区间为,0-∞,ln 2,+∞. 3.(2013湖北理)若f(x)=2 1ln(2)2 x b x - ++∞在(-1,+)上是减函数,则b 的取值范围是(C ) A.[-1,+∞] B.(-1,+∞) C.(-∞,-1) D.(-∞,-1) 4.已知函数x bx ax x f 3)(2 3 -+=在1±=x 处取得极值. (1)讨论)1(f 和)1(-f 是函数f (x )的极大值还是极小值; (2)过点)16,0(A 作曲线y= f (x )的切线,求此切线方程. (1)解:323)(2-+='bx ax x f ,依题意,0)1()1(=-'='f f ,即 ?? ?=--=-+. 0323, 0323b a b a 解得0,1==b a . ∴)1)(1(333)(,3)(2 3 -+=-='-=x x x x f x x x f . 令0)(='x f ,得1,1=-=x x . 若),1()1,(∞+--∞∈Y x ,则0)(>'x f ,故 f (x )在)1,(--∞上是增函数, f (x )在),1(∞+上是增函数. 若)1,1(-∈x ,则0)(<'x f ,故f (x )在)1,1(-上是减函数. 所以,2)1(=-f 是极大值;2)1(-=f 是极小值. (2)解:曲线方程为x x y 33 -=,点)16,0(A 不在曲线上. 设切点为),(00y x M ,则点M 的坐标满足03 003x x y -=. 因)1(3)(2 00-='x x f ,故切线的方程为))(1(3020 0x x x y y --=- 注意到点A (0,16)在切线上,有 )0)(1(3)3(16020030x x x x --=-- 化简得83 0-=x ,解得20-=x . 所以,切点为)2,2(--M ,切线方程为0169=+-y x .

导数的单调性及极值

导数的单调性及极值 1.已知函数()cos x f x xe =(e 为自然对数的底数),当[],x ππ∈-时, ()y f x =的图象大致是() A. B. C. D. 2.函数x y xe -=,[0,4]x ∈的最小值为( ) A .0 B .1e C.44e D .22 e 3.已知函数()y f x =的图象是下列四个图象之一,且其导函数'()y f x =的图象如图所示, 则该函数的图象是( ) A . B . C. D . 4.函数32()f x x bx cx d =+++图象如图,则函数222log ()33 c y x bx =++的单调递减区间为( ) A.(,2]-∞- B.[3,)+∞ C.[2,3]-- D.1[,2+∞) 5.函数()f x 的定义域为开区间(,)a b ,导函数'()f x 在(,)a b 内的图象如图所示,则函数()f x 在开区间(,)a b 内有极小值点( ) A .1个 B .2个 C. 3个 D .4个 6.对于R 上可导的任意函数()f x ,若满足10'() x f x -≤,则必有( ) A .(0)(2)2(1)f f f +> B .(0)(2)2(1)f f f +≤ C .(0)(2)2(1)f f f +< D .(0)(2)2(1)f f f +≥

7.已知R 上的可导函数()f x 的图象如图所示,则不等式() ()2230x x f x '-->的解集为 A .() (),21,-∞-+∞ B .()(),21,2-∞- C .()()(),11,13,-∞--+∞ D .()()(),11,02,-∞--+∞ 8.已知函数1)6()(23++++=x a ax x x f 有极大值和极小值,则实数a 的取值范围是 A .21<<-a B .63<<-a C .3-a D .1-a 9.若函数12 3)(23++-=x x a x x f 在区间)3,21(上单调递减,则实数a 的取值范围为 A.)310,25( B.),310(+∞ C.),3 10[+∞ D.),2[+∞ 10.已知函数()321f x x ax x =-+--在(),-∞+∞上是单调函数,则实数a 的取值范围是() A .(),3,?-∞+∞? B . (() ,3,-∞+∞ C .?? D .( 11.设3 21()252 f x x x x =--+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的取值范围为 A.7m > B.15727m > C.157727m << D.7m < 12.已知函数()33f x x x =-,若对于区间[]3,2-上任意的12,x x 都有()()12f x f x t -≤,则实数t 的最 小值是( ) A .0 B .10 C .18 D .20 13.已知()f x 是定义在()0+∞, 上的可导函数,其导函数为()'f x ,且当0x >时,恒有()()'l n 0f x x x f x +<,则使得()0f x >成立的x 的取值范围是( ) A .()01, B .()1+∞, C .()()011+∞,, D .? 14.已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,当0>x 时,有0)()(2>-'x x f x f x 成立,则不等 式0)(>?x f x 的解集是( ) (A )),1()1,(+∞?--∞ (B ))1,0()0,1(?- (C )),1(+∞ (D )),1()0,1(+∞?- 15.已知函数

导数用于单调性和极值问题

专题十四、导数用于单调性和极值问题 题型一 利用导数判断函数的单调性 1.证明:函数f (x )=sin x x 在区间??? ?π2,π上单调递减. 题型二 利用导数求函数的单调区间 2.求下列函数的单调区间. (1)f (x )=x 3-x ;(2)y =e x -x +1. ! 3.求函数y =x 2-ln x 2的单调区间. 题型三 已知函数单调性求参数的取值范围 4.已知函数f (x )=x 2+a x (x ≠0,常数a ∈R ).若函数f (x )在x ∈[2,+∞)上是单调递增的,求a 的取值范围. 5.(1)已知函数f (x )=x 3+bx 2+cx +d 的单调减区间为[-1,2],求b ,c 的值. (2)设f (x )=ax 3+x 恰好有三个单调区间,求实数a 的取值范围. … 题型四 用单调性与导数关系证不等式 6.当x >0时,证明不等式ln(x +1)>x -1 2x 2. 7.当0<x <π2时,求证:x -sin x <1 6x 3. ; 题型五、函数的极值问题 8.下列函数存在极值的是( ) A .y =2x B .y =1x C .y =3x -1 D .y =x 2 9.设函数f (x )=2 x +ln x ,则( ) A .x =1 2为f (x )的极大值点 B .x =1 2为f (x )的极小值点

C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点 … 10.若函数y =f (x )是定义在R 上的可导函数,则f ′(x 0)=0是x 0为函数y =f (x )的极值点的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 11.函数y =x ·e x 的最小值为________. 12.若函数f (x )=x x 2+a (a >0)在[1,+∞]上的最大值为33,则a 的值为________. 题型六、利用极值求参数范围 13.已知函数f (x )=a sin x -b cos x 在x =π4时取得极值,则函数y =f (3π 4-x )是( ) A .偶函数且图象关于点(π,0)对称 … B .偶函数且图象关于点(3π 2,0)对称 C .奇函数且图象关于点(3π 2,0)对称 D .奇函数且图象关于点(π,0)对称 14.已知函数f (x )=x 3+ax 2+bx +c ,f (x )在x =0处取得极值,并且在区间[0,2]和[4,5]上具有相反的单调性. (1)求实数b 的值; (2)求实数a 的取值范围. 题型七、导数用于解决实际问题 15.用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒.所做的铁盒容积最大时,在四角截去的正方形的边长为( ) ? A .6 B .8 C .10 D .12 16.一工厂生产某型号车床,年产量为N 台,分批进行生产,每批生产量相同,每批生产的准备费为C 2元,产品生产后暂存库房,然后均匀投放市场(指库存量至多等于每批的生产量).设每年每台的库存费为C 1元,求在不考虑生产能力的条件下,每批生产该车床________

导数与函数的单调性、极值、最值

§3.2 导数与函数的单调性、极值、最值 1.函数的单调性 在某个区间(a,b),如果f′(x)>0,那么函数y=f(x)在这个区间单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间单调递减. 2.函数的极值 (1)判断f(x0)是极值的法 一般地,当函数f(x)在点x0处连续时, ①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值; ②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值. (2)求可导函数极值的步骤 ①求f′(x); ②求程f′(x)=0的根; ③检查f′(x)在程f′(x)=0的根的左右两侧导数值的符号.如果左正右负,那么f(x)在 这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值. 3.函数的最值 (1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函 数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. (3)设函数f(x)在[a,b]上连续,在(a,b)可导,求f(x)在[a,b]上的最大值和最小值的步 骤如下: ①求f(x)在(a,b)的极值; ②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小 值. 1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)f′(x)>0是f(x)为增函数的充要条件. ( ×)

(2)函数在某区间上或定义域极大值是唯一的. ( × ) (3)函数的极大值不一定比极小值大. ( √ ) (4)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件. ( × ) (5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值. ( √ ) (6)函数f (x )=x sin x 有无数个极值点. ( √ ) 2. 函数f (x )=x 2 -2ln x 的单调减区间是 ( ) A .(0,1) B .(1,+∞) C .(-∞,1) D .(-1,1) 答案 A 解析 ∵f ′(x )=2x -2x =2(x +1)(x -1) x (x >0). ∴当x ∈(0,1)时,f ′(x )<0,f (x )为减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数. 3. (2013·)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则 ( ) A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值 C .当k =2时,f (x )在x =1处取到极小值 D .当k =2时,f (x )在x =1处取到极大值 答案 C 解析 当k =1时,f ′(x )=e x ·x -1,f ′(1)≠0. ∴x =1不是f (x )的极值点. 当k =2时,f ′(x )=(x -1)(x e x +e x -2) 显然f ′(1)=0,且x 在1的左边附近f ′(x )<0, x 在1的右边附近f ′(x )>0, ∴f (x )在x =1处取到极小值.故选C. 4. 函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞)

专题2.13 利用导数求函数的单调性、极值、最值(解析版)

第十三讲 利用导数求函数的单调性、极值 、最值 【套路秘籍】 一.函数的单调性 在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 二.函数的极值 (1)一般地,求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时: ①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x ); ②求方程f ′(x )=0的根; ③考查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 三.函数的最值 (1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值. (2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 【套路修炼】 考向一 单调区间 【例1】求下列函数的单调区间: (1)3 ()23f x x x =-; (2)2 ()ln f x x x =-. (3))f (x )=2x -x 2. 【答案】见解析 【解析】(1)由题意得2 ()63f x x '=-. 令2 ()630f x x '=->,解得2x <- 或2 x >. 当(,2x ∈-∞- 时,函数为增函数;当)2 x ∈+∞时,函数也为增函数. 令2 ()630f x x '=-<,解得22x - <<.当(22 x ∈-时,函数为减函数.

最新5导数及其应用(单调性极值与最值)汇总

5导数及其应用(单调性极值与最值)

补讲:导数及其应用(单调性、极值与最值) 一.选择题: (1) 已知函数?Skip Record If...?在区间?Skip Record If...?内可导,且?Skip Record If...?,则?Skip Record If...? ( ) (A)?Skip Record If...? (B)?Skip Record If...? (C)?Skip Record If...? (D)?Skip Record If...? (2) 函数?Skip Record If...?在区间 ( ) (A) ?Skip Record If...?上单调递减 (B) ?Skip Record If...?上单调递减 (C) ?Skip Record If...?上单调递减 (D) ?Skip Record If...?上单调递增 (3) 函数?Skip Record If...?在?Skip Record If...?上的最大值和最小值依次是( ) (A) ?Skip Record If...? (B) ?Skip Record If...? (C) ?Skip Record If...? (D) ?Skip Record If...? (4) 已知函数?Skip Record If...?有极大值和极小值,则实数?Skip Record If...?的取值范围是 ( ) (A)?Skip Record If...? (B)?Skip Record If...? (C)?Skip Record If...?或?Skip Record If...? (D)?Skip Record If...?或?Skip Record If...? (5) 设点?Skip Record If...?是曲线?Skip Record If...?上的任意一点,?Skip Record If...?点处切线倾斜角为?Skip Record If...?,则角?Skip Record If...?的取值范围是( ) (A) ?Skip Record If...?(B)?Skip Record If...? (C) ?Skip Record If...?(D) ?Skip Record If...? (6) 方程?Skip Record If...?的实根个数是 ( ) (A) ?Skip Record If...? (B) ?Skip Record If...? (C) ?Skip Record If...? (D) ?Skip Record If...? 二.填空题: (7) 函数?Skip Record If...?在?Skip Record If...?处有极大值,则实数?Skip Record If...? (8) 已知曲线?Skip Record If...?,直线?Skip Record If...?,若?Skip Record If...?与?Skip Record If...?相切于点?Skip Record If...?,则切点坐标是 (9) 函数?Skip Record If...??Skip Record If...?在区间?Skip Record If...?上单调递增,且关于?Skip Record If...?的方程 ?Skip Record If...?的根都在区间?Skip Record If...?内,则实数?Skip Record If...?的取值范围是 (10) 已知?Skip Record If...??Skip Record If...?在?Skip Record If...?上有最小值?Skip Record If...?,则在?Skip Record If...?上, ?Skip Record If...?的最大值是

利用导数研究函数的单调性之二阶求导型

利用导数研究函数的单调性之二阶求导型 一、解答题(题型注释) 1.已知函数ax x xe x f x --=ln )(2. (1)当0=a 时,求函数)(x f 在]1,2 1[上的最小值; (2)若0>?x ,不等式1)(≥x f 恒成立,求a 的取值范围; (3)若0>?x ,不等式e x x e x e e x x f 1111 1)1(2+ -+≥-恒成立,求a 的取值范围. 1.(1) ln 22 e +; (2)2a ≤;(3)11(1)e e a e e ≤---. 【解析】 试题分析:(1)由0=a 时,得出x xe x f x ln )(2-=,则21 ()(21)x f x x e x '=+- ,再求导()f x '',可得函数)(/ x f 在),0(+∞上是增函数,从而得到函数()f x 的单调性,即可求解函数)(x f 在]1,2 1[上的最小值; (2)由(1)知函数)(/ x f 在),0(+∞上是 增函数,且00>?x ,使得0()0f x '=,得01 )12(0 200 =-- +a x e x x ,即022 000(2)1x a x x x e =+-,设 022000()1ln 2x f x x x e =--,利用函数0()f x 的单调性,即可求解求a 的取值范围;(3)根据题意,转化为1 1ln x e x e a x x x e +-≤--对任意0>x 成 立,令e x e e x x x x x g 11ln )(+---=,所以()g x ',可得出()g x 的单调性,求解出()g x 的最小值,即可a 的取值范围. 试题解析:(1)0=a 时,x xe x f x ln )(2-=,x e x x f x 1)12()(2/-+=∴, 01 )44()(22//>++=?x e x x f x ,所以函数)(/x f 在),0(+∞上是增函数,

导数与函数的单调性、极值

导数与函数的单调性、极值 一、高考要求 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线的切线斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式(c ,n x (n 为有理数),x e , x a ,ln x ,log a x ,sin x ,cos x 的导数); 掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的充要条件; 会求一些实际问题(一般指单峰函数)的最大值和最小值. 二、核心考点 1.利用导数研究函数单调性的一般步骤:(1)求 '()f x ; (2)确定'()f x 在(),a b 内的符号; (3)若 '()0f x >在(),a b 上恒成立,则()f x 在 (),a b 上单调递增; 若 '()0f x <在(),a b 上恒成立,则()f x 在 (),a b 上单调递减.

2.用导数求函数单调区间的一般步骤: (1)求'()f x ; (2) '()0f x >的解集对应的区间为增区间; '()0f x <的解集对应的区间为减区间. 2.极大值与极小值 极小值定义:设函数 ()f x 在开区间(),a b 内有 定义,0x 是(),a b 内的一个点,如果存在正数 0δ>,对任意()00,x x x δδ∈-+,且 0x x ≠,均有0()()f x f x >,则称0()f x 是 函数()f x 的极小值,称0x 是函数的极小值 点. 极大值定义:设函数 ()f x 在开区间(),a b 内有 定义,0x 是(),a b 内的一个点,如果存在正数 0δ>,对任意()00,x x x δδ∈-+,且 0x x ≠,均有0()()f x f x <,则称0()f x 是 函数()f x 的极大值,称0x 是函数的极大值 点.

5.导数及其应用(单调性、极值与最值)

补讲:导数及其应用(单调性、极值与最值) 一.选择题: (1) 已知函数)(x f y =在区间),(b a 内可导,且),(0b a x ∈,则=--+→h h x f h x f h ) ()(lim 000 ( ) (A))('0x f (B))('20x f (C))('20x f - (D)0 (2) 函数x x y ln =在区间 ( ) (A) )1,0(e 上单调递减 (B) ),1(+∞e 上单调递减 (C) ),0(+∞上单调递减 (D) ),0(+∞上单调递增 (3) 函数512322 3 +--=x x x y 在]3,0[上的最大值和最小值依次是( ) (A) 15,12- (B) 15,5- (C) 4,5- (D) 15,4-- (4) 已知函数1)6()(2 3 ++++=x a ax x x f 有极大值和极小值,则实数a 的取值范围是 ( ) (A)21<<-a (B)63<<-a (C)3-a (D)1-a (5) 设点P 是曲线3 2 33 + -=x x y 上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是 ( ) (A) )32[ππ, (B) ]322(ππ, (C) ),32[)2,0[πππ (D) ),6 5[)2,0[πππ (6) 方程010962 3 =-+-x x x 的实根个数是 ( ) (A) 3 (B) 2 (C) 1 (D) 0 二.填空题: (7) 函数2 )()(c x x x f -=在2=x 处有极大值,则实数=c (8) 已知曲线x x x y C 232 3 +-=:,直线kx y l =:,若l 与C 相切于点)0)(,(000≠x y x ,则切点坐标是 (9) 函数bx x x f +-=3 )()(R b ∈在区间)1,0(上单调递增,且关于x 的方程 0)(=x f 的根都在区间]2,2[-内,则实数b 的取值范围是 (10) 已知a x x x f ++=2 3 3)()(R a ∈在]33[,-上有最小值3,则在]33[,-上, )(x f 的最大值是 三.解答题: (11) 函数b ax x x f +-=3)(3)0(>a 的极大值为6,极小值为2,求实数b a ,的值.

相关文档
最新文档