我国古代建筑中两种传统硅酸盐材料的物理力学特性研究

我国古代建筑中两种传统硅酸盐材料的物理力学特性研究
我国古代建筑中两种传统硅酸盐材料的物理力学特性研究

钢铁的物理力学性能和机械性能表

钢铁的物理力学性能和机械性能表 2007-9-22 11:04 钢铁的物理力学性能和机械性能表 钢材的主要机械性能(也叫力学性能)通常是指钢材在标准条件下均匀拉伸.冷弯和冲击等. 单独作用下所显示的各种机械性能。钢材通常有五大主要的机械性能指标:通过一次拉伸试验可得到抗拉强度,伸长率和屈服点三项基本性能; 通过冷弯试验可得到钢材的冷弯性能; 通过冲击韧性试验可得到冲击韧性。 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σ b= Pb/Fo (MPa)。 4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为 0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维

无机材料物理性能习题解答

这有答案,大家尽量出有答案的题材料物理性能 习题与解答 吴其胜 盐城工学院材料工程学院 2007,3

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm ,受到应力为1000N 拉力,其杨氏模量为3.5×109 N/m 2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) (0114.010 5.310101401000940000cm E A l F l E l l =?????=??= ?=?=?-σ ε0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变) (91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100=-=?=A A l l ε名义应变) (99510 524.44500 6 MPa A F T =?= = -σ真应力

1-3一材料在室温时的杨氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(210 5.3) 1(28 8 MPa Pa E G ≈?=+?= += μ剪切模量) (390)(109.3) 7.01(310 5.3) 21(38 8 MPa Pa E B ≈?=-?= -=μ体积模量. ,. ,112 1 2 1 2 1 2 1 2 1 2 1 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝=== = ∝= = = =??? ? ? ?亦即做功或者:亦即面积εε εε εε εσεσεσ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(11 2211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-= e e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为

最新01第一章 钢筋混凝土结构材料的物理力学性能

01第一章钢筋混凝土结构材料的物理力 学性能

第一章钢筋混凝土结构材料的物理力学性能 钢筋混凝土是由钢筋和混凝土两种力学性能截然不同的材料组成的复合结构。正确合理地进行钢筋混凝土结构设计,必须掌握钢筋混凝土结构材料的物理力学性能。钢筋混凝土结构材料的物理力学性能指钢筋混凝土组成材料——混凝土和钢筋各自的强度及变形的变化规律,以及两者结合组成钢筋混凝土材料后的共同工作性能。这些都是建立钢筋混凝土结构设计计算理论的基础,是学习和掌握钢筋混凝土结构构件工作性能应必备的基础知识。 §1-1 混凝土的物理力学性能 一、混凝土强度 混凝土强度是混凝土的重要力学性能,是设计钢筋混凝土结构的重要依据,它直接影响结构的安全和耐久性。 混凝土的强度是指混凝土抵抗外力产生的某种应力的能力,即混凝土材料达到破坏或开裂极限状态时所能承受的应力。混凝土的强度除受材料组成、养护条件及龄期等因素影响外,还与受力状态有关。 (一) 混凝土的抗压强度 在混凝土及钢筋混凝土结构中,混凝土主要用以承受压力。因而研究混凝土的抗压强度是十分必要的。

仅供学习与交流,如有侵权请联系网站删除 谢谢34 混凝土试件的横向变形产生约束,延缓了裂缝的开展,提高了试件的抗压极限强度。当压力达到极限值时,试件在竖向压力和水平摩阻力的共同作用下沿斜向破坏,形成两个对称的角锥形破坏面。如果在试件表面涂抹一层油脂,试件表面与压力机压盘之间的摩阻力大大减小,对混凝土试件横向变形的约束作用几乎没有。最后,试件由于形成了与压力方向平行的裂缝而破坏。所测得的抗压极限强度较不加油脂者低很多。 混凝土的抗压强度还与试件的形状有关。试验表明,试件的高宽比h/b 越大,所测得的强度越低。当高宽比h/b ≥3时,强度变化就很小了。这反映了试件两端与压力机压盘之间存在的摩阻力,对不同高宽比的试件混凝土横向变形的约束影响程度不同。试件的高宽比h/b 越大,支端摩阻力对试件中部的横向变形的约束影响程度就越小,所测得的强度也越低。当高宽比h/b ≥3时,支端摩阻力对混凝土横向变形的约束作用就影响不到试件的中部,所测得的强度基本上保持一个定值。 此外,试件的尺寸对抗压强度也有一定影响。试件的尺寸越大,实测强度越低。这种现象称为尺寸效应。一般认为这是由混凝土内部缺陷和试件承压面摩阻力影响等因素造成的。试件尺寸大,内部缺陷(微裂缝,气泡等)相对较多,端部摩阻力影响相对较小,故实测强度较低。根据我国的试验结果,若以150×150×150mm 的立方体试件的强度为准,对200×200×200mm 立方体试件的实测强度应乘以尺寸修正系数1.05;对100×100×100mm 立方体试件的实测强度应乘以尺寸修正系数0.95。 为此,我们在定义混凝土抗压强度指标时,必须把试验方法、试件形状及尺寸等因素确定下来。在统一基准上建立的强度指标才有可比性。 混凝土抗压强度有两种表示方法: 1、立方体抗压强度 我国规范习惯于用立方体抗压强度作为混凝土强度的基本指标。新修订的<公路钢筋混凝土及预应力混凝土桥涵规范>JTG D62(以下简称《桥规JTG D62》)规定的立方体抗压强度标准值系指采用按标准方法制作、养护至28天龄期的边长为150mm 立方体试件,以标准试验方法(试件支承面不涂油脂)测得的具有95%保证率的抗压强度(以MPa 计),记为f cu.k 。 )645 .11(645.1150150150150.f s f f s f k cu f δμσμ-=-= (1.1-1) 式中 k cu f .——混凝土立方体抗压强度标准值(MPa); s f 150μ——混凝土立方体抗压强度平均值(MPa); 150f σ——混凝土立方体抗压强度的标准差(MPa); 150f δ——混凝土立方体抗压强度的变异系数,150150150/s f f f u δσ=。其数值可按表 1.1-1采用。

无机材料物理性能试题

无机材料物理性能试题及答案

无机材料物理性能试题及答案 一、填空题(每题2分,共36分) 1、电子电导时,载流子的主要散射机构有中性杂质的散射、位错散射、电离杂质的散射、晶格振动的散射。 2、无机材料的热容与材料结构的关系不大,CaO和SiO2的混合物与CaSiO3 的 热容-温度曲线基本一致。 3、离子晶体中的电导主要为离子电导。可以分为两类:固有离子电导(本征 电导)和杂质电导。在高温下本征电导特别显著,在低温下杂质电导最为显著。 4、固体材料质点间结合力越强,热膨胀系数越小。 5、电流吸收现象主要发生在离子电导为主的陶瓷材料中。电子电导为主的陶瓷材料,因 电子迁移率很高,所以不存在空间电荷和吸收电流现象。 6、导电材料中载流子是离子、电子和空位。 7. 电子电导具有霍尔效应,离子电导具有电解效应,从而可以通过这两种效应检查材料 中载流子的类型。 8. 非晶体的导热率(不考虑光子导热的贡献)在所有温度下都比晶体的 小。在高温下,二者的导热率比较接近。 9. 固体材料的热膨胀的本质为:点阵结构中的质点间平均距离随着温度升高而增 大。 10. 电导率的一般表达式为 ∑ = ∑ = i i i i i q nμ σ σ 。其各参数n i、q i和μi的含义分别 是载流子的浓度、载流子的电荷量、载流子的迁移率。 11. 晶体结构愈复杂,晶格振动的非线性程度愈大。格波受到的 散射大,因此声子的平均自由程小,热导率低。 12、波矢和频率之间的关系为色散关系。 13、对于热射线高度透明的材料,它们的光子传导效应较大,但是在有微小气孔存在时,由于气孔与固体间折射率有很大的差异,使这些微气孔形成了散射中心,导致透明度强烈降低。 14、大多数烧结陶瓷材料的光子传导率要比单晶和玻璃小1~3数量级,其原因是前者有微量的气孔存在,从而显著地降低射线的传播,导致光子自由程显著减小。 15、当光照射到光滑材料表面时,发生镜面反射;当光照射到粗糙的材料表面时,发生漫反射。 16、作为乳浊剂必须满足:具有与基体显著不同的折射率,能够形成小颗粒。 用高反射率,厚釉层和高的散射系数,可以得到良好的乳浊效果。 17、材料的折射随着入射光的频率的减少(或波长的增加)而减少的性质,称为折射率的色散。

无机材料物理性能题库(2)综述

名词解释 1.应变:用来描述物体内部各质点之间的相对位移。 2.弹性模量:表征材料抵抗变形的能力。 3.剪切应变:物体内部一体积元上的二个面元之间的夹角变化。 4.滑移:晶体受力时,晶体的一部分相对另一部分发生平移滑动,就叫滑移. 5.屈服应力:当外力超过物理弹性极限,达到某一点后,在外力几乎不增加的情况下,变形骤然加快,此点为屈服点,达到屈服点的应力叫屈服应力。 6.塑性:使固体产生变形的力,在超过该固体的屈服应力后,出现能使该固体长期保持其变形后的形状或尺寸,即非可逆性。 7.塑性形变:在超过材料的屈服应力作用下,产生变形,外力移去后不能恢复的形变。 8.粘弹性:一些非晶体和多晶体在比较小的应力时,可以同时变现出弹性和粘性,称为粘弹性. 9.滞弹性:弹性行为与时间有关,表征材料的形变在应力移去后能够恢复但不能立即恢复的能力。 10.弛豫:施加恒定应变,则应力将随时间而减小,弹性模量也随时间而降低。 11.蠕变——当对粘弹性体施加恒定应力,其应变随时间而增加,弹性模量也随时间而减小。 12.应力场强度因子:反映裂纹尖端弹性应力场强弱的物理量称为应力强度因子。它和裂纹尺寸、构件几何特征以及载荷有关。 13.断裂韧性:反映材料抗断性能的参数。 14.冲击韧性:指材料在冲击载荷下吸收塑性变形功和断裂功的能力。 15.亚临界裂纹扩展:在低于材料断裂韧性的外加应力场强度作用下所发生的裂纹缓慢扩展称为亚临界裂纹扩展。 16.裂纹偏转增韧:在扩展裂纹剪短应力场中的增强体会导致裂纹发生偏转,从而干扰应力场,导致机体的应力强度降低,起到阻碍裂纹扩展的作用。 17.弥散增韧:在基体中渗入具有一定颗粒尺寸的微细粉料达到增韧的效果,称为弥散增韧。 18.相变增韧:利用多晶多相陶瓷中某些相成份在不同温度的相变,从而达到增韧的效果,称为相变增韧。 19.热容:分子热运动的能量随着温度而变化的一个物理量,定义为物体温度升高1K所需要的能量。 20.比热容:将1g质量的物体温度升高1K所需要增加的热量,简称比热。 21.热膨胀:物体的体积或长度随温度升高而增大的现象。 热传导:当固体材料一端的温度笔另一端高时,热量会从热端自动地传向冷端。22.热导率:在物体内部垂直于导热方向取两个相距1米,面积为1平方米的平行平面,若两个平面的温度相差1K,则在1秒内从一个平面传导至另一个平面的热量就规定为该物质的热导率。 23.热稳定性:指材料承受温度的急剧变化而不致破坏的能力,又称为抗热震性。 24.抗热冲击断裂性:材料抵抗温度急剧变化时瞬时断裂的性能。 25.抗热冲击损伤性:材料抵抗热冲击循环作用下缓慢破坏的性能。 26.热应力:材料热膨胀或收缩引起的内应力。 27.声频支振动:振动的质点中包含频率甚低的格波时,质点彼此间的位相差不

材料力学答案第二章

第二章 拉伸、压缩与剪切 第二章答案 2.1 求图示各杆指定截面的轴力,并作轴力图。 40kN 50kN 25kN (a ) 4 4F R F N 4 40kN 3 F N 3 25kN 2F N 2 20kN 11 F N 1 解: F R =5kN F N 4 =F R =5 kN F N 3 =F R +40=45 kN F N 2 =-25+20=-5 kN F N 1 =20kN 45kN 5kN 20kN 5kN

(b) 1 10kN 6kN F N 1 =10 kN F N 2 =10-10=0 F N 3 =6 kN 1—1截面: 2—2截面: 3—3截面:10kN F N 1 1 1 10kN 10kN 2 2 F N 2 6kN 3 3 F N 3 2.2 图示一面积为100mm 200mm的矩形截面杆,受拉力F = 20kN的作用,试求:(1)

6 π = θ的斜截面m-m 上的应力;(2)最大正应力max σ和最大剪应力max τ的大小及其作用面的方位角。 解: 320101MPa 0.10.2 P A σ?===?2 303cos 14 σσα==?=3013sin600.433MPa 2 22 σ τ= = ?=max 1MPa σσ==max 0.5MPa 2 σ τ= =F 2.3 图示一正方形截面的阶梯形混凝土柱。设重力加速度g = 9.8m/s 2, 混凝土的密度为 33m /kg 1004.2?=ρ,F = 100kN ,许用应力[]MPa 2=σ。试根据强度条件选择截面宽度a 和b 。

b a 解: 2 4, a ρ?3 42 2.0410ρ=??11 [] a σσ=0.228m a ≥ = =22 342424431001021040.2282104a b b ρρ=?+?=??+???+???2[], b σσ≥0.398m 398mm b ≥ == 2.4 在图示杆系中,AC 和BC 两杆的材料相同,且抗拉和抗压许用应力相等,同为[]σ。BC 杆保持水平,长度为l ,AC 杆的长度可随θ角的大小而变。为使杆系使用的材料最省,试求夹角θ的值。

材料无机材料物理性能考试及答案

材料无机材料物理性能考试及答案

————————————————————————————————作者:————————————————————————————————日期:

无机材料物理性能试卷 一.填空(1×20=20分) 1.CsCl结构中,Cs+与Cl-分别构成____格子。 2.影响黏度的因素有____、____、____. 3.影响蠕变的因素有温度、____、____、____. 4.在____、____的情况下,室温时绝缘体转化为半导体。 5.一般材料的____远大于____。 6.裂纹尖端出高度的____导致了较大的裂纹扩展力。 7.多组分玻璃中的介质损耗主要包括三个部分:____、________、____。 8.介电常数显著变化是在____处。 9.裂纹有三种扩展方式:____、____、____。 10.电子电导的特征是具有____。 二.名词解释(4×4分=16分) 1.电解效应 2.热膨胀 3.塑性形变 4.磁畴 三.问答题(3×8分=24分) 1.简述晶体的结合类型和主要特征: 2.什么叫晶体的热缺陷?有几种类型?写出其浓度表达式?晶体中离子电导分为哪几类? 3.无机材料的蠕变曲线分为哪几个阶段,分析各阶段的特点。 4.下图为氧化铝单晶的热导率与温度的关系图,试解释图像先增后减的原因。 四,计算题(共20分) 1.求熔融石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm,弹性模量值从60 到75GPa。(10分) 2.康宁1273玻璃(硅酸铝玻璃)具有下列性能参数: =0.021J/(cm ·s ·℃);a=4.6×10-6℃-1;σp=7.0kg/mm2,

材料力学答案解析第二章

第二章 拉伸、压缩与剪切 第二章答案 2.1 求图示各杆指定截面的轴力,并作轴力图。 40kN 50kN 25kN (a ) 4 4F R F N 4 40kN 3 F N 3 25kN 2F N 2 20kN 11 F N 1 解: F R =5kN F N 4 =F R =5 kN F N 3 =F R +40=45 kN F N 2 =-25+20=-5 kN F N 1 =20kN 45kN 5kN 20kN 5kN

(b) 1 10kN 6kN F N 1 =10 kN F N 2 =10-10=0 F N 3 =6 kN 1—1截面: 2—2截面: 3—3截面:10kN F N 1 1 1 10kN 10kN 2 2 F N 2 6kN 3 3 F N 3 2.2 图示一面积为100mm 200mm的矩形截面杆,受拉力F = 20kN的作用,试求:(1)

6 π = θ的斜截面m-m 上的应力;(2)最大正应力max σ和最大剪应力max τ的大小及其作用面的方位角。 解: 320101MPa 0.10.2 P A σ?===?2 303cos 14 σσα==?=3013sin600.433MPa 2 22 σ τ= = ?=max 1MPa σσ==max 0.5MPa 2 σ τ= =F 2.3 图示一正方形截面的阶梯形混凝土柱。设重力加速度g = 9.8m/s 2, 混凝土的密度为 33m /kg 1004.2?=ρ,F = 100kN ,许用应力[]MPa 2=σ。试根据强度条件选择截面宽度a 和b 。

b a 解: 2 4, a ρ?3 42 2.0410ρ=??11 [] a σσ=0.228m a ≥ = =22 342424431001021040.2282104a b b ρρ=?+?=??+???+???2[], b σσ≥0.398m 398mm b ≥ == 2.4 在图示杆系中,AC 和BC 两杆的材料相同,且抗拉和抗压许用应力相等,同为[]σ。BC 杆保持水平,长度为l ,AC 杆的长度可随θ角的大小而变。为使杆系使用的材料最省,试求夹角θ的值。

水泥物理力学性能试题及答案

水泥物理力学性能试验试题 一)填空题 1、水泥取样可连续取,亦可从(20)个以上不同部位取等量样品,总量至少(12Kg) 2、水泥胶砂试块质量比,水泥:ISO标准砂:水等于(1 : 3 : 0.5 ) 3、水泥胶砂强度试验方法采用尺寸(40mm*40mm*160n)m棱柱体试块的水泥抗压强度和抗折强度 4、达到试验龄期时将试块从水中取出用潮湿棉布覆盖先进行(抗折强度)试验,折断后每截再进行(抗压强度)试验 5、试验室室内空气(温度)和(相对湿度)以及养护池水的(水温)在工作期间每天至少记录一次 6、养护箱的温度与相对湿度至少每4h 记录一次,在自动控制的情况下记录次数酌情减至一天记录(二次)。 7、水泥胶砂振实台为了防止外部振动影响振实效果,需要在整个混凝土基座下放一层厚约 (5mm)天然橡胶弹性衬垫。 8、水泥抗折试验以(50±10N/S )的速率均匀加荷,直至破坏。 9、制备胶砂后立即进行成型。用勺子将胶砂分(二层)装入试模,装第一层时,每个槽约放 300g,用大播料器垂直模套顶部沿着每个槽来回一次播平,接着振实(60 )次。再装入第二层,用小播料器播平,再振实(60)次。 10、试体龄期是从(水泥加水搅拌)开始试验时算起。 11、雷氏夹受力弹性应符合要求。当一根指针的根部先悬挂在尼龙丝上,另一根指针的根部再挂上(300g)质量的砝码时,两根指针针尖的距离增加应在(17.5 ± 2.5mm)范围内,并且去掉砝码后针尖的距离能恢复至挂砝码前的状态。 12、由(水泥全部加入水中)至终凝状态的时间为水泥的初凝时间,用什么单位(min )表示。 13、水泥安定性试验每个样品需成型(两)个试件 14、当两个试件煮后增加距离(C-A)的平均值大于(5.0)mm寸,应用同一样品立即重做一次试验,以复检结果为准

钢材的物理力学性能和机械性能表

钢材的物理力学性能和机械性能表 钢材的主要机械性能(也叫力学性能)通常是指钢材在标准条件下均匀拉伸.冷弯和冲击等. 单独作用下所显示的各种机械性能。钢材通常有五大主要的机械性能指标:通过一次拉伸试验可得到抗拉强度,伸长率和屈服点三项基本性能; 通过冷弯试验可得到钢材的冷弯性能; 通过冲击韧性试验可得到冲击韧性。 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。

4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为 0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 ⑴布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 ⑵洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材

最新无机材料物理性能考试试题及答案

无机材料物理性能考试试题及答案 一、填空(18) 1. 声子的准粒子性表现在声子的动量不确定、系统中声子的数目不守恒。 2. 在外加电场E的作用下,一个具有电偶极矩为p的点电偶极子的位能U=-p·E,该式表明当电偶极矩的取向与外电场同向时,能量为最低而反向时能量为最高。 3. TC为正的温度补偿材料具有敞旷结构,并且内部结构单位能发生较大的转动。 4. 钙钛矿型结构由 5 个简立方格子套购而成,它们分别是1个Ti 、1个Ca 和3个氧简立方格子 5. 弹性系数ks的大小实质上反映了原子间势能曲线极小值尖峭度的大小。 6. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 7. 制备微晶、高密度与高纯度材料的依据是材料脆性断裂的影响因素有晶粒尺寸、气孔率、杂质等。 8. 粒子强化材料的机理在于粒子可以防止基体内的位错运动,或通过粒子的塑性形变而吸收一部分能量,达从而到强化的目的。 9. 复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 10.裂纹有三种扩展方式:张开型、滑开型、撕开型 11. 格波:晶格中的所有原子以相同频率振动而形成的波,或某一个原子在平衡位置附近的振动是以波的形式在晶体中传播形成的波 二、名词解释(12) 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性能等。 电子的共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子的某一电子壳层转移到相邻原子的相似壳层上去,因而电子可以在整个晶体中运动。这种运动称为电子的共有化运动。 平衡载流子和非平衡载流子:在一定温度下,半导体中由于热激发产生的载流子成为平衡载流子。由于施加外界条件(外加电压、光照),人为地增加载流子数目,比热平衡载流子数目多的载流子称为非平衡载流子。 三、简答题(13) 1. 玻璃是无序网络结构,不可能有滑移系统,呈脆性,但在高温时又能变形,为什么? 答:正是因为非长程有序,许多原子并不在势能曲线低谷;在高温下,有一些原子键比较弱,只需较小的应力就能使这些原子间的键断裂;原子跃迁附近的空隙位置,引起原子位移和重排。不需初始的屈服应力就能变形-----粘性流动。因此玻璃在高温时能变形。 2. 有关介质损耗描述的方法有哪些?其本质是否一致? 答:损耗角正切、损耗因子、损耗角正切倒数、损耗功率、等效电导率、复介电常数的复项。多种方法对材料来说都涉及同一现象。即实际电介质的电流位相滞后理想电介质的电流位相。因此它们的本质是一致的。 3. 简述提高陶瓷材料抗热冲击断裂性能的措施。 答:(1) 提高材料的强度 f,减小弹性模量E。(2) 提高材料的热导率c。(3) 减小材料的热膨胀系数a。(4) 减小表面热传递系数h。(5) 减小产品的有效厚度rm。

第二章 金属材料力学性能基本知识及钢材的脆化

金属材料力学性能基本知识 及钢材的脆化 金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。 通常所指的金属材料性能包括以下两个方面: 1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。 2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。工艺性能对制造成本、生成效率、产品质量有重要影响。 1.1材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。 1.1.1强度 金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测 出。把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。在拉伸曲线上可以得到该材料强度性能的一些数据。图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。所以曲线称为P—AL曲线或一一s曲线。图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:

无机材料物理性能期末复习题

期末复习题参考答案 一、填空 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。 5.电介质材料中的压电性、铁电性与热释电性是由于相应压电体、铁电体和热释电体都是不具有对称中心的晶体。 6.复介电常数由实部和虚部这两部分组成,实部与通常应用的介电常数一致,虚部表示了电介质中能量损耗的大小。 7.无机非金属材料中的载流子主要是电子和离子。 8.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 10.对于中心穿透裂纹的大而薄的板,其几何形状因子Y= 。 11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 15.当温度不太高时,固体材料中的热导形式主要是声子热导。 16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 17.电滞回线的存在是判定晶体为铁电体的重要根据。 18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 20.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 21.晶体发生塑性变形的方式主要有滑移和孪生。 22.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 23.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。 滞弹性:当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。 格波:处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,格波的一个

材料力学第二章

材料力学-第二章

————————————————————————————————作者:————————————————————————————————日期:

2005年注册岩土工程师考前辅导精讲班 材料力学 第四讲截面的几何性质 【内容提要】 本节主要了解静矩和形心、极惯性矩和惯性积的概念,熟悉简单图形静矩、形心、惯性矩和惯性积的计算,掌握其计算公式。掌握惯性矩和惯性积平行移轴公式的应用,熟练掌握有一对称轴的组合截面惯性矩的计算方法。准确理解形心主轴和形心主惯性矩的概念,熟悉常见组合截面形心主惯性矩的计算步骤。 【重点、难点】 重点掌握平行移轴公式的应用,形心主轴概念的理解和有一对称轴的组合截面惯性矩的计算步骤和方法 一、静矩与形心 (一)定义 设任意截面如图4-1所示,其面积为A,为截面所在平面内的任意直角坐标系。c 为截面形心,其坐标为,。则 截面对z轴的静矩 截面对轴的静矩 截面形心的位置 (二)特征 1.静矩是对一定的轴而言的,同一截面对不同轴的静矩值不同。静矩可能为

正,可能为负,也可能为零。 2.静矩的量纲为长度的三次方.即。单位为或。 3.通过截面形心的坐标称为形心轴。截面对任一形心轴的静矩为零;反之,若截面对某轴的静矩为零,则该轴必通过截面之形心。 4.若截面有对称轴,则截面对于对称轴的静矩必为零,截面的形心一定在该对称轴上。 5.组合截面(由若干简单截面或标准型材截面所组成)对某一轴的静矩,等于其组成部分对同一轴的静矩之代数和(图4-2),即 合截面的形心坐标为:

二、惯性矩惯性积 (一)定义 设任意截面如图4-3所示,其面积为A,为截面所在平面内任意直角坐标系。则

无机材料物理性能_完美版

无机材料物理性能试卷 一.填空(1×20=20分) 1.CsCl结构中,Cs+与Cl-分别构成____格子。 2.影响黏度的因素有___、____、____. 3.影响蠕变的因素有温度、____、____、____. 4.在____、____的情况下,室温时绝缘体转化为半导体。 5.一般材料的____远大于____。 6.裂纹尖端出高度的____导致了较大的裂纹扩展力。 7.多组分玻璃中的介质损耗主要包括三个部分:____、________、____。 8.介电常数显著变化是在____处。 9.裂纹有三种扩展方式:____、____、____。 10.电子电导的特征是具有____。 二.判断正误。(2×10=20分) 1.正应力正负号规定是拉应力为负,压应力正。() 2.Al2O3结构简单,室温下易产生滑动。() 3.断裂表面能比自由表面能大。() 4.一般折射率小,结构紧密的电介质材料以电子松弛极化性为主。()5.金红石瓷是离子位移极化为主的电介质材料。() 6.自发磁化是铁磁物质的基本特征,是铁磁物质和顺磁物质的区别之处。 () 7.随着频率的升高,击穿电压也升高。() 8.磁滞回线可以说明晶体磁学各向异性。() 9.材料弹性模量越大越不易发生应变松弛。() 10.大多数陶瓷材料的强度和弹性模量都随气孔率的减小而增加。() 三.名词解释(4×4分=16分) 1.电解效应 2.热膨胀 3.塑性形变 4.磁畴 四.问答题(3×8分=24分) 1.简述晶体的结合类型和主要特征: 2.什么叫晶体的热缺陷?有几种类型?写出其浓度表达式?晶体中 离子电导分为哪几类? 3.无机材料的蠕变曲线分为哪几个阶段,分析各阶段的特点。

混凝土结构材料的物理力学性能

第 2 章混凝土结构材料的物理力学性能 本章提要 钢筋与混凝土的物理力学性能以及共同工作的特性直接影响混凝土结构和构件的性能,也是混凝土结构计算理论和设计方法的基础。本章讲述钢筋与混凝土的主要物理力学性能以及混凝土与钢筋的粘结。 2.1 混凝土的物理力学性能 2.1.1 混凝土的组成结构 普通混凝土是由水泥、砂、石材料用水拌合硬化后形成的人工石材,是多相复合材料。通常把混凝土的结构分为三种基本类型:微观结构即水泥石结构;亚微观结构即混凝土中的水泥砂浆结构;宏观结构即砂浆和粗骨料两组分体系。 微观结构(水泥石结构)由水泥凝胶、晶体骨架、未水化完的水泥颗粒和凝胶孔组成,其物理力学性能取决于水泥的化学矿物成分、粉磨细度、水灰比和凝结硬化条件等。混凝土的宏观结构与亚微观结构有许多共同点,可以把水泥砂浆看作基相,粗骨料分布在砂浆中,砂浆与粗骨料的界面是结合的薄弱面。骨料的分布以及骨料与基相之间在界面的结合强度也是重要的影响因素。 浇注混凝土时的泌水作用会引起沉缩,硬化过程中由于水泥浆水化造成的化学收缩和干缩受到骨料的限制,会在不同层次的界面引起结合破坏,形成随机分布的界面裂缝。 混凝土中的砂、石、水泥胶体组成了弹性骨架,主要承受外力,并使混凝土具有弹性变形的特点。而水泥胶体中的凝胶、孔隙和界面初始微裂缝等,在外力作用下使混凝土产生塑性变形。另一方面,混凝土中的孔隙、界面微裂缝等缺陷又往往是混凝土受力破坏的起源。由于水泥胶体的硬化过程需要多年才能完成,所以混凝土的强度和变形也随时间逐渐增长。 2.1.2 单轴向应力状态下的混凝土强度 混凝土的强度与水泥强度等级、水灰比有很大关系;骨料的性质、混凝土的级配、混凝土成型方法、硬化时的环境条件及混凝土的龄期等也不同程度地影响混凝土的强度;试件的大小和形状、试验方法和加载速率也影响混凝土强度的试验结果。因此各国对各种单向受力下的混凝土强度都规定了统一的标准试验方法。 1.混凝土的抗压强度 (1) 混凝土的立方体抗压强度和强度等级 立方体试件的强度比较稳定,所以我国把立方体强度值作为混凝土强度的

材料力学第二章习题【含答案】

浙江科技学院2015-2016学年第一学期考试试卷 A 卷 考试科目材料力学考试方式闭完成时限 2 小时拟题人陈梦涛审核人批准人2015 年9 月17 日建工学院2014 年级土木工程专业 一、单项选择题(每小题3分,计30分) 1. 对于塑性材料来说,胡克定律(Hooke's law)使用的范围是。 A. p σσ <; B. p σσ >; C. s σσ <; D. s σσ > 2.实心圆截面杆直径为D,受拉伸时的绝对变形为mm l1 = ?。仅当直径变为2D时,绝对变形l?为。 A.1mm B.1/2 mm C.1/4 mm D.2mm 3. 下列有关受压柱截面核心的说法中,正确的是。 A.当压力P作用在截面核心内时,柱中只有拉应力。 B.当压力P作用在截面核心内时,柱中只有压应力。 C.当压力P作用在截面核心外时,柱中只有压应力。 D.当压力P作用在截面核心外时,柱中只有拉应力。 4. 构件的强度、刚度和稳定性。 A.只与材料的力学性质有关; B.只与构件的形状尺寸关; C.与二者都有关; D.与二者都无关。 5. 如右图所示,设虚线表示为单元体变形后的形状,则该单元体的剪 应变为。 A. α; B.π/2-α; C.π/2-2α; D.2α 6. 图示一杆件的拉压刚度为EA,在图示外力作用下其 应变能U的下列表达式是。 7.应力-应变曲线的纵、横坐标分别为σ=FN /A,ε=△L / L,其中。 A.A 和L 均为初始值; B.A 和L 均为瞬时值; C.A 为初始值,L 为瞬时值; D.A 为瞬时值,L 均为初始值。 8. 设一阶梯形杆的轴力沿杆轴是变化的,则发生破坏的截面上。 题5图 题6图

水泥物理力学性能-复习资料

水泥物理力学性能-复习资料 1、水泥成型室温度应保持在20±2℃,相对湿度应为不低于50% ,养护箱或雾室温度应保持在 20±1℃,相对湿度应为不低于90% ,养护水温度(水泥胶砂强度试验中试体养池水温度)应为20±1℃。 2、水泥代号与名称:硅酸盐水泥——P2I(不掺加混合材料)、P2Ⅱ(加量不超过水泥质量5%石灰 石或粒化高炉矿渣混合材料);普通硅酸盐水泥——P2O;矿渣硅酸可卡因水泥——P2s;火山灰质硅酸盐水泥——P2P;粉煤灰硅酸盐水泥——P2F;复合硅酸盐水泥——P2C。 3、硅酸盐水泥细度检验结果以比表面积表示,标准指标要求为大于300m/kg ,普通水泥细度检验 结果以筛网上所得筛余物的质量占试样原始质量的百分数(筛余百分数)表示,标准指标要求为不超过10.0% 。 4、氧化镁、三氧化硫、初凝时间、安定性中任一项不符合标准规定时,均为废品。 5、细度、终凝时间、不溶物和烧失量不符合标准规定,或混合材料掺加量超过最大限量和强度超过 低于商品强度等级指标,水泥包装标志中水泥品种、强度等级、生产省名称和出厂编号不全时,为不合格品。 6、试验室温湿度及养护水温度至少每1d 记录一次,养护箱温湿度至少每4h 记录一次,且每个养 护池只能养护同类型的水泥试件,水泥净浆量水器最小刻度为0.1ml ,精度1% ,水泥胶砂强度试验中,称量用天平精度为±1g ,用自动滴管加225ml水时,滴管精度应达到±1ml 。 7、24h龄期的试件,应在破型试验前20min 内脱模,24h 以上龄期的,在成型后20~24h 之间 脱模。 8、试件破型前15min 从水中取出,不同龄期强度试验时间允许偏差范围:24h±15min ; 48h±30min ;72h±45min ;7d±2h ;28d±8h . 9、水泥胶砂强度检验时,标准砂为中国ISO标准砂,配合比为:一份水泥、三份标准砂、半份水(灰 砂比:1:3 ,水灰比:0.5 )。 10、用标准法测定标准稠度用水量时,以试杆沉入净浆并距底板6mm±1mm的水泥净浆为标准稠度 净浆;当试针沉至距底板4mm±1mm 时,为水泥达到初凝状态;当试针沉入试体0.5mm 时,为水泥达到终凝状态。由水泥全部加入水中至终凝状态的时间为水泥的终凝时间,用min 表示。 11、采用负压筛法测定水泥细度时,水泥应通过0.9mm方孔筛,用最大称量为100g ,分度值不 大于0.05g 的天平称取25g 试样,在负压为4000~6000Pa 条件下连续筛析2min 。 12、胶砂搅拌机叶与片与锅底,锅壁间的间隙为3±1mm 。 13、抗折强度试验加荷速度:50N/s±10N/s ;抗压强度试验加荷速度:2400N/s±200N/s 。 14、抗折强度以一组三个试件结果平均值作为试验结果,当三个强度值中,有超出平均值±10% 时, 应剔除后再取平均值作为试验结果。 15、抗压强度以一组三个棱柱体上得到的六个抗压强度测定值的算术平均值为试验结果,如其中六个 测定值中有一个超过平均值的±10% ,应剔除,取余下五个的平均值作为结果。如果余下五个测定值中,再有超过平均值的±10% ,结果作废。 16、各类水泥的技术要求。(GB175-1999,GB1344-1999) 17、用雷氏法(标准法)进行安定性试验时,应将净浆一次装满雷氏夹,用宽约10mm 的小刀插捣 数次,抹平,盖上玻璃板,立即移到养护箱养护24h±2h 。之后,取出试件测量雷氏夹指针 尖端间距离(精确到0.5mm),将试件放入沸煮箱水中试件架上,指针朝上,在30min±5min 内加热至沸,并恒沸180min±5min 。两个试件煮后增加的距离(C-A)平均值不大于 5.0mm 为合格。 当两个试件的(C-A)值相差超过 4.0mm 时,同一样品重做试验。再如此,则该水泥安定性不合格。

相关文档
最新文档