一种改进的PCNN图像分割算法

一种改进的PCNN图像分割算法
一种改进的PCNN图像分割算法

2010 年 2 月 JOURNAL

OF CIRCUITS AND SYSTEMS February , 2010 文章编号:1007-0249 (2010) 01-0077-05

一种改进的PCNN 图像分割算法*

宋寅卯, 刘国乐

(郑州轻工业学院 电气信息工程学院,河南 郑州 450002)

摘要:PCNN 用于图像分割时,为获得满意分割效果,其参数往往通过反复试凑确定,这在一定程度上限制了PCNN 的使用。为此在改进的PCNN 基础上,提出结合图像灰度直方图,以最大交叉熵函数作自适应遗传算法的适应度函数,采用自适应遗传算法搜索最优门限阈值的图像分割算法。该方法可有效地完成图像分割,分割结果优于原PCNN 和传统Ostu 算法。

关键词:PCNN ;自适应遗传算法;最大交叉熵;图像分割 中图分类号:TP391

文献标识码:A

1 引言

图像分割是图像处理的重要内容,图像分割结果优劣直接影响后续图像分析的质量,图像分割一直是人们研究的热点之一。脉冲耦合神经网络(Pulse-Coupled Neural Network ,简记为PCNN )是以动物视觉皮层上同步脉冲发放现象为依据而提出的一种新型人工神经网络[1,2],它与传统人工神经网络有着根本性区别,为分析复杂问题提供了新思路,在图像处理、图像识别、通讯和决策优化等方面具有广泛的应用前景。本文将PCNN 应用于图像分割,首先介绍了PCNN 模型,然后提出基于改进PCNN 模型的灰度阈值参数确定方法,最后进行了实例分析并给出结论。

2 PCNN 模型

PCNN 也称为第三代人工神经网络,构成PCNN 的每一神经元由接受域、调制部分和脉冲产生三部分组成,其单个神经元模型如图1[3]。 可用离散数学方程描述如下:

ij ij S n F =)( (1) )1()(?=∑n Y W V n L kl kl

ijkl L ij (2)

)](1)[()(n L n F n U ij ij ij β+= (3) )1()1()exp()(?+??=n Y V n n ij ij ij θθθαθ (4)

??

?≤>=))

()((0

))

()((1

)(n n U n n U n Y ij ij ij ij ij θθ (5)

接受域分为两个通道,一个是线性连接输入通

道,用来接收邻近的其它神经元的输入信息,另一个是反馈输入通道,用来接收外部刺激信息S ij ;调制部分是神经元的内部活动项,它通过加有偏置的线性连接部分与外部刺激信息相乘获得;脉冲产生部分的U ij 由外部刺激信息S ij 和连接输入信息L ij 共同决定;脉冲产生部分有两个作用,产生脉冲输出Y ij 和调整阈值θij 。上述公式中的β(0>β)为连接强度系数,V L 和V θ为幅度常数,θa 是ij θ的衰减时间常数。

PCNN 用于二维图像分割时,神经元与图像像素一一对应。由它的数学模型分析可以得出两点结论:(1)无耦合链接的情况下,即0=β。此时PCNN 的运行行为是各神经元相互独立运行的组合,且每一神经元的运行机理是,在外部刺激X ij 的作用下,将以一定的频率(自然频率)发放脉冲,即为

* 收稿日期:2007-12-04 修订日期:

2008-01-23

图1 单个PCNN 神经元模型

自然点火。这就意味着不同灰度输入的神经元将在不同的时刻点火,而相同灰度输入的神经元则在同一时刻点火。此时的PCNN 是将图像像素灰度映射为含有时间特性的点火图,即每一时刻的点火图对应于同一灰度的像素图,而不同时刻的点火图对应于不同灰度的像素图;(2)有耦合链接的情况下,即0≠β。此时由于PCNN 中各神经元间的耦合链接,当外部刺激输入灰度的神经元N ij 在t 时刻点火时,导致与它邻近的神经元N kl 在这一时刻的内部行为由原来的kl F 变为)(1kl kl L F β+,这就意味着该神经元对应像素的灰度值从F kl 提升到)(1kl kl L F β+。因此当)()(1t L F kl kl kl θβ≥+,神经元在t 时刻提前点火。可见β越大、耦合链接域L kl 越大,则同步点火的神经元就越多,且在确定的β和L 参数下,各神经元间对应的灰度差值越小越易被捕获。

3 改进的图像分割算法

3.1 PCNN 模型的变形

鉴于PCNN 模型含有模拟系统中的时间概念,本文采用如图2的神经元模型[4,5]。

该神经元模型和原来的模型相比,由于完全去

掉了时间概念和门限产生机制,更适合图像分割处理,其离散数学方程保留原来公式(1)~(3)、(5),将公式(4)改成:

T T ij = (6) 当对某一具体区域分割时,区域内灰度大于等于门限阈值的像素发出脉冲,发出脉冲的像素和邻近像素传递连接,弥补了邻近未发出脉冲像素低于门限阈值的那部分灰度值,使得这些像素也发出脉冲并传递,最终整个区域的像素都发出了脉冲,即将这一区域分割出来。

变形后的PCNN 模型,门限阈值T 的选取至关重要。文献[3]根据灰度直方图对门限阈值进行估算;文献[4]根据灰度最小交叉熵和最大香农熵确定最优阈值;本文提出基于图像灰度直方图,以最大交叉熵函数作自适应遗传算法的适应度函数,采用自适应遗传算法搜索最优门限阈值。 3.2 自适应遗传算法适应度函数的确定

采用最大交叉熵函数作为自适应遗传算法的适应度函数。

交叉熵是用来度量两个概率分布},,,{21i p p p P …=和},,,{21i q q q Q …=之间信息差异的量,其定义:

∑==N

i i i i q p

p Q P D 1

ln ):(,它的对称形式称为对称交叉熵,其定义如下[6]:

????

???????????

?=∑∑==N i i i i N i i i i p q q q p p Q P D 11ln ln ):( (7) 最大交叉熵原理:阈值分割应使目标类C 1和背景类C 2具有最大类间差异,将这种类间差异,用图像中各像素点s ,分别判决到C 1、C 2的后验概率分布()/(1s C p 、)/(2s C p p )交叉熵表示,其最大值对应的灰度值就是所确定的最优阈值。

单个像素基于后验概率分布的交叉熵定义为[6]: )

(1)(1ln

)](1[31)(1)(1ln )](1[31

);:(12221121s C p s C p s C p s C p s C p s C p s C C D +++++++= (8) 设目标类C 1和背景类C 2的条件概率分布均服从正态分布,其像素点的先验概率分布、均值和方差可由图像灰度直方图估算出,然后用贝叶斯概率公式求取式(8)中的两个后验概率分布。用灰度值g 表征像素点s ,当用g 代替公式(8)中的像素点s 时,整幅图像的交叉熵为目标交叉熵和背景交叉熵之和,定义为[6]:

∑∑+==+=L

T g T

g g C C D P g h g C C D P g h T C C D 1212

210121);:()

();:()();:( (9)

图2 变形后的PCNN 神经元模型

第1期 宋寅卯等:一种改进的PCNN 图像分割算法 79

)(g h 是灰度直方图,∑==T

g g h P 0

1)(,∑+==

L

T g g h P 1

2)(,L

是灰度上界,T 是图像分割的灰度阈值。采用整幅

图像的交叉熵公式(9)作为自适应遗传算法的适应度函数。 3.3 自适应遗传算法遗传算子的确定

标准遗传算法[7]中,交叉算子c p 和变异算子m p 是影响遗传算法行为和性能的关键。交叉算子c p 越大,新的个体产生的速度就越快,遗传模式被破坏的可能性也越大(具有高适应性的个体结构很快就会被破坏);c p 越小,会使搜索过程缓慢,以至于停滞不前。变异算子m p 越大,遗传算法就变成了纯粹的随机搜索算法;m p 越小,就不易产生新的个体结构。

自适应遗传算法中,交叉算子c p 和变异算子m p 能够随个体的适应度自动改变。当种群各个体适应度趋于一致或趋于局部最优时,c p 和m p 增加;当群体适应度比较分散时,c p 和m p 减少。同时,对于适应值高于群体平均适应值的个体,对应于较低的c p 和m p ,使该个体得一保护进入下一代;而低于平均适应值的个体,对应于较高的c p 和m p ,使该个体被淘汰。在交叉算子c p 和变异算子m p 的确定上,最有代表性的是Srinivas 提出的下列公式:

??

?

??<≥??=avg avg avg

avg c f f k f f f f f f k P ,,)

(2max 1 (10) ??

?

??<≥??=avg avg avg

m f f k f f f f f f k p ,,)

(4max max 3 (11) 其中k 1~k 4取值范围是)1,0(,这种方法在进化初期阻碍进化效率,因为优良个体几乎处于不发生变化的状态,其有效模式也不能进行传播,影响了进化速度,而且优良个体一直不发生变化,有可能很快占据整个种群,使进化收敛到局部最优解,产生“早熟”现象;因此,为使进化初期,种群不会处于近似停滞不前的状态,又保证优良个体的有效模式,便于找到全局最优解,c p 和m p 按照下列公式自动调整:

??

?

??<≥????=avg c avg avg

avg c c c c f f P f f f f f f P P P P ,,))((0max 100 (12) ??

???

<≥????

=avg m avg avg

m m m m f f P f f f f f f P P P P ,,))((0max max 100 (13) 其中:9.00=c P ,6.01=c P ,1.00=m P ,001.01=m P ,f 是个体的适应度[8]。 3.4 基于自适应遗传算法的最优门限

阈值求取

设图像灰度值在0~255之间,故利用自适应遗传算法时,将每个可能的灰度阈值进行编码,长度为8位,由0或1组成的二进制码;种群规模对遗传算法的效率有明显的影响,太小时难以求出最优解,太大则增长收敛时间导致程序运行时间长。对不同的问题可能有各自适合的种群规模,通常种群规模为30-160;适应度函数使用公式(9)

。算

图3 自适应遗传算法求取最优门限阈值流程图

80 电路与系统学报 第15卷

法求解步骤如下:(1)种群初始化,随机生成规模M =80

的种

群;(2)计算个体的适应度并降序排列;(3)采用精英选择来确定参与进化的个体;(4)采用公式(12)调整交叉算子进行交叉;(5)采用公式(13)调整变异算子进行变异;(6)产生新一代种群;(7)重复步骤2~步骤6,直至满足收敛条件或达到最大进化代数;(8)得到最优灰度门限阈值。自适应遗传算法求取最优门限阈值的流程如图3所示。

4 实验与结果分析

实验分两部分,一是基于图像灰度直方图,以最大交叉熵函数作适应度函数,采用自适应遗传算法搜索最优门限阈值;二是使用基于最优门限阈值的PCNN 模型进行图像分割,并与其它分割算法比较。

以Pentium (R )4 CPU 2.93GHz ,内存256M ,WinXP ,matlab6.5为平台,以Lena 图像、Cameraman 图像、灰度相近多目标Rice 图像和Objects 图像为实验图像,原PCNN 模型的参数经多次实验后选取V L =1,V θ=80,β=0.4,W =[0.1 0.5 0.1; 0.5 0 0.5; 0.1 0.5 0.1],分别使用本文算法、原PCNN 算法和传统Ostu 算法对图像进行分割实验,实验结果如图4~图7。

(1)本文算法的视觉效果明显优于原PCNN 算法,且处理图像耗时最多0.8秒左右,而原PCNN 处理图像耗时最少27秒左右;(2)传统Otsu 算法被普遍认为是最优的,而本文算法的视觉效果优于Ostu 算法,运算量与Ostu 算属同一数量级;(3)按照综合评价函数J =NU ×GC ×SM ×(1-D )[9]

,使用均

图4 Lena

图像实验结果

图5 Cameraman

图像实验结果

图6 Rice

图像实验结果图7 Objects 图像实验结果

第1期 宋寅卯等:一种改进的PCNN 图像分割算法 81

匀性测度NU 、对比度GC 、形状测度SM 及模糊度D 对三种方法的分割结果进行定量评价,结果如表1所示。可以看出,本文算法综合评价高于原PCNN 图像分割的评价指数,略优于Ostu 算法。

5 结论

作为一种符合生物视觉原理的神经网络算法,PCNN 在图像处理和信号处理方面具有广阔的应用前景。本文基于改进的PCNN ,提出了利用自

适应遗传算法搜寻图像交叉熵最大时所对应的最优灰度阈值的图像分割算法,该方法综合利用灰度直方图和像素的空间邻近程度及灰度相似程度进行分割,即使目标区域和背景区域存在一定的重叠时,也能很好的保留目标区域的边界信息,且运算速度更快。本文提出的方法只选用了一个门限阈值,目前对于灰度相差较大的多目标图像分割效果不明显,这是今后进一步研究解决的问题。 参考文献:

[1] Johnson J L, Padgett M L. PCNN model and applications [J]. IEEE Transaction on Neural Networks, 1999, 10(3): 480-498.

[2] Kuntimad G, Ranganath H S. Perfect image segmentation using pulse-coupled neural networks [J]. IEEE Transaction on Neural Networks, 1999, 10(3): 591-598.

[3] 宋寅卯, 袁端磊. 基于PCNN 的迷宫最短路径求解算法[J]. 电路与系统学报, 2005, 10(3): 72-75.

[4] 孔祥维, 黄静, 石浩. 基于改进的脉冲耦合神经网络的红外目标分割方法[J]. 红外与毫米波学报, 2001, 20(5): 365-369. [5] 刘勍, 马义德, 钱志柏. 一种基于交叉熵的改进型PCNN 图像自动分割新方法[J]. 中国图象图形学报, 2005, 5(5): 580-584. [6] 薛景浩, 章毓晋, 林行刚. 基于最大类间后验交叉熵的阈值化分割算法[J]. 中国图象图形学报, 1999, 2(2): 110-114. [7] 王小平, 曹立明. 遗传算法-理论、应用与软件实现[M]. 西安交通大学出版社, 2002. 73-74.

[8] 刘丁, 刘晓丽, 等. 基于AGA 的ADRC 及其应用研究[J]. 系统仿真学报, 2006, 18(7): 1909-1911, 1916. [9]

侯格贤, 毕笃彦, 等. 图像分割质量评价方法[J]. 中国图像图形学报, 2000, 5A(1): 39-43.

作者简介:宋寅卯(1963-),男,河北晋州人,教授,主要从事智能检测技术和计算机应用领域的研究;刘国乐(1980-),

男,河南泌阳人,郑州轻工业学院硕士研究生,研究方向为图像处理与模式识别。

An image segmentation algorithm based on an improved PCNN

SONG Yin-mao, LIU Guo-le

( College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China )

Abstract: PCNN is very suitable for image segmentation. However, it is necessary to determine the adaptive parameters of the network to achieve satisfactory segmentation results for different images. Up to now, the parameters of PCNN are always adjusted manually, which impedes its application in image segmentation. Aiming at the difficulties and shortcomings with using PCNN in image segmentation, combining the gray histogram of images, using the maximal cross-entropy function as the fitness function of Adaptive Genetic Algorithm, adopting Adaptive Genetic Algorithm to search the optimal threshold, an image segmentation algorithm is put forward based on the improved PCNN. This method can complete efficiently image segmentation, and the segmentation results are superior to the original PCNN and the traditional Ostu Algorithm. Key words: PCNN; adaptive genetic algorithm; maximal cross-entrop; image segmentation

表1 三种分割算法的定量评价

分割方法

NU GC SM D 综合(J )

本文算法 0.9923

0.5801

0.7129 0.4149 0.2401 原PCNN 算法0.98920.57330.6717 0.4542 0.2079 Lena

Ostu 算法 0.99080.58560.7105 0.4218 0.2384 本文算法 0.99360.74890.7422 0.3393 0.3649 原PCNN 算法0.99120.64100.6274 0.5045 0.1975 Cameraman

Ostu 算法 0.99210.73450.7403 0.3302 0.3613 本文算法 0.9901

0.67680.6808 0.5262 0.2197 原PCNN 算法0.98470.41420.6144 0.6657 0.0838 Rice

Ostu 算法 0.98640.59680.6770 0.5164 0.1927 本文算法 0.9851

0.58130.6723 0.1699 0.3196 原PCNN 算法0.98130.43730.6047 0.2657 0.1905 Objects

Ostu 算法 0.9845

0.5192

0.6607 0.2208 0.2632

基于图的快速图像分割算法

Efficient graph-based image segmentation 2.相关工作 G=(V ,E),每个节点V i v 对应图像中一个像素点,E 是连接相邻节点的边,每个边有对应有一个权重,这个权重与像素点的特性相关。 最后,我们将提出一类基于图的查找最小割的分割方法。这个最小割准则是最小化那些被分开像素之间的相似度。【18】原文中叫Component,实质上是一个MST,单独的一个像素点也可以看成一个区域。 预备知识: 图是由顶点集(vertices )和边集(edges )组成,表示为,顶点,在本文中即为单个的像素点,连接一对顶点的边具有权重,本文中的意义为顶点之间的不相似度,所用的是无向图。 树:特殊的图,图中任意两个顶点,都有路径相连接,但是没有回路。如上图中加粗的边所连接而成的图。如果看成一团乱连的珠子,只保留树中的珠子和连线,那么随便选个珠子,都能把这棵树中所有的珠子都提起来。如果,i 和h 这条边也保留下来,那么h,I,c,f,g 就构成了一个回路。 最小生成树(MST, minimum spanning tree ):特殊的树,给定需要连接的顶点,选择边权之和最小的树。上图即是一棵MST 。 本文中,初始化时每一个像素点都是一个顶点,然后逐渐合并得到一个区域,确切地说是连接这个区域中的像素点的一个MST 。如图,棕色圆圈为顶点,线段为边,合并棕色顶点所生成的MST ,对应的就是一个分割区域。分割后的结果其实就是森林。 边的权值: 对于孤立的两个像素点,所不同的是颜色,自然就用颜色的距离来衡量两点 的相似性,本文中是使用RGB 的距离,即

关于图像分割算法的研究

关于图像分割算法的研究 黄斌 (福州大学物理与信息工程学院 福州 350001) 摘要:图像分割是图像处理中的一个重要问题,也是一个经典难题。因此对于图像分割的研究在过去的四十多年里一直受到人们广泛的重视,也提山了数以千计的不同算法。虽然这些算法大都在不同程度上取得了一定的成功,但是图像分割问题还远远没有解决。本文从图像分割的定义、应用等研究背景入手,深入介绍了目前各种经典的图像分割算法,并在此基础比较了各种算法的优缺点,总结了当前图像分割技术中所面临的挑战,最后展望了其未来值得努力的研究方向。 关键词:图像分割 阀值分割 边缘分割 区域分割 一、 引言 图像分割是图像从处理到分析的转变关键,也是一种基本的计算机视觉技术。通过图像的分割、目标的分离、特征的提取和参数的测量将原始图像转化为更抽象更紧凑的形式,使得更高层的分析和理解成为可能,因此它被称为连接低级视觉和高级视觉的桥梁和纽带。所谓图像分割就是要将图像表示为物理上有意义的连通区域的集合,也就是根据目标与背景的先验知识,对图像中的目标、背景进行标记、定位,然后将目标从背景或其它伪目标中分离出来[1]。 图像分割可以形式化定义如下[2]:令有序集合表示图像区域(像素点集),H 表示为具有相同性质的谓词,图像分割是把I 分割成为n 个区域记为Ri ,i=1,2,…,n ,满足: (1) 1,,,,n i i j i R I R R i j i j ===??≠ (2) (),1,2,,i i i n H R True ?== (3) () ,,,i j i j i j H R R False ?≠= 条件(1)表明分割区域要覆盖整个图像且各区域互不重叠,条件(2)表明每个区域都具有相同性质,条件(3)表明相邻的两个区域性质相异不能合并成一个区域。 自上世纪70年代起,图像分割一直受到人们的高度重视,其应用领域非常广泛,几乎出现在有关图像处理的所有领域,并涉及各种类型的图像。主要表现在: 1)医学影像分析:通过图像分割将医学图像中的不同组织分成不同的区域,以便更好的

图像分割算法开题报告

图像分割算法开题报告 摘要:图像分割是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,并在医学、工业、军事等领域得到了广泛应用。近年来具有代表性的图像分割方法有:基于区域的分割、基于边缘的分割和基于特定理论的分割方法等。本文主要对基于自动阈值选择思想的迭代法、Otsu法、一维最大熵法、二维最大熵法、简单统计法进行研究,选取一系列运算出的阈值数据和对应的图像效果做一个分析性实验。 关键字:图像分割,阈值法,迭代法,Otsu法,最大熵值法 1 研究背景 1.1图像分割技术的机理 图像分割是将图像划分为若干互不相交的小区域的过程。小区域是某种意义下具有共同属性的像素连通集合,如物体所占的图像区域、天空区域、草地等。连通是指集合中任意两个点之间都存在着完全属于该集合的连通路径。对于离散图像而言,连通有4连通和8连通之分。图像分割有3种不同的方法,其一是将各像素划归到相应物体或区域的像素聚类方法,即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘像素,然后再将边缘像素连接起来构成边界的方法。 图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,两者是紧密关联的。图像分割在一般意义下十分困难的,目前的图像分割处于图像的前期处理阶段,主要针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。 1.2数字图像分割技术存在的问题

虽然近年来对数字图像处理的研究成果越来越多,但由于图像分割本身所具有的难度,使研究没有大突破性的进展,仍然存在以下几个方面的问题。 现有的许多种算法都是针对不同的数字图像,没有一种普遍适用的分割算法。 缺乏通用的分割评价标准。对分割效果进行评判的标准尚不统一,如何对分割结果做出量化的评价是一个值得研究的问题,该量化测度应有助于视觉系统中的自动决策及评价算法的优劣,同时应考虑到均质性、对比度、紧致性、连续性、心理视觉感知等因素。 与人类视觉机理相脱节。随着对人类视觉机理的研究,人们逐渐认识到,已有方法大都与人类视觉机理相脱节,难以进行更精确的分割。寻找到具有较强的鲁棒性、实时性以及可并行性的分割方法必须充分利用人类视觉特性。 知识的利用问题。仅利用图像中表现出来的灰度和空间信息来对图像进行分割,往往会产生和人类的视觉分割不一致的情况。人类视觉分割中应用了许多图像以外的知识,在很多视觉任务中,人们往往对获得的图像已具有某种先验知识,这对于改善图像分割性能是非常重要的。试图寻找可以分割任何图像的算法目前是不现实,也是不可能的。人们的工作应放在那些实用的、特定图像分割算法的研究上,并且应充分利用某些特定图像的先验知识,力图在实际应用中达到和人类视觉分割更接近的水平。 1.3数字图像分割技术的发展趋势 从图像分割研究的历史来看,可以看到对图像分割的研究有以下几个明显的趋势。 对原有算法的不断改进。人们在大量的实验下,发现一些算法的效

医学图像分割方法综述

医学图像分割方法综述 林瑶,田捷1 北京,中国科学院自动化研究所人工智能实验室,100080 摘要: 图像分割是一个经典难题,随着影像医学的发展,图像分割在医学应用中具有特殊的重要意义。本文从医学应用的角度出发,对医学图像分割方法,特别是近几年来图像分割领域中出现的新思路、新方法或对原有方法的新的改进给出了一个比较全面的综述,最后总结了医学图像分割方法的研究特点。 关键词:医学图像分割 综述 1.背景介绍 医学图像包括CT 、正电子放射层析成像技术(PET )、单光子辐射断层摄像(SPECT )、MRI (磁共振成像技术)、Ultrasound (超声)及其它医学影像设备所获得的图像。随着影像医学在临床医学的成功应用,图像分割在影像医学中发挥着越来越大的作用[1]。图像分割是提取影像图像中特殊组织的定量信息的不可缺少的手段,同时也是可视化实现的预处理步骤和前提。分割后的图像正被广泛应用于各种场合,如组织容积的定量分析,诊断,病变组织的定位,解剖结构的学习,治疗规划,功能成像数据的局部体效应校正和计算机指导手术[2]。 所谓图像分割是指将图像中具有特殊涵义的不同区域区分开来,这些区域是互相不交叉的,每一个区域都满足特定区域的一致性。 定义 将一幅图像,其中g x y (,)0≤≤x Max x _,0≤≤y Max y _,进行分割就是将图像划分为满足如下条件的子区域...: g 1g 2g 3 (a) ,即所有子区域组成了整幅图像。 (b) 是连通的区域。 g k (c) ,即任意两个子区域不存在公共元素。 (d) 区域满足一定的均一性条件。均一性(或相似性)一般指同一区域内的像素点之间的灰度值差异较小或灰度值的变化较缓慢。 g k 如果连通性的约束被取消,那么对像素集的划分就称为分类(pixel classification),每一个像素集称为类(class)。在下面的叙述中,为了简单,我们将经典的分割和像素分类通称为分割。 医学图像分割到今天仍然没有获得解决,一个重要的原因是医学图像的复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像比较,不可避免的具有模糊、不均匀性等特点。另外,人体的解剖组织结构和形状复杂,而且人与人之间有相当大的差别。这些都给医学图像分割的分割带来了困难。传统的分割技术或者完全失败,或者需要一些特殊的处理技术。因此,我们有必要针对医学应用这个领域,对图像分割方法进行研究。 为了解决医学图像的分割问题,近几年来,很多研究人员做了大量的工作,提出了很多实用的分割算法[2][3][4],随着统计学理论、模糊集理论、神经网络、形态学理论、小波理论等在图像分割中的应用日渐广泛,遗传算法、尺度空间、多分辨率方法、非线性扩散方程等近期涌现的新方法和新思想也不断被用于解决分割问题,国内外学者提出了不少有针对性的好分割方法。本文将主要介绍近几年这一领域中研究人员提出的新方法或对原有方法的新改进。需要指出的是,由于从不同的角度将得到不同的分类结果,本文中所涉及方法的分类并不是绝对的,而且许多分割方法还是多种简单方法的综合体,我们只能大致将它们分为属于最能反映其特点 1x x g N k k =),(),(y g y =∪φ=(y y g j k ∩),(),x g x 1 联系人:田捷 电话:82618465 E-mail:tian@https://www.360docs.net/doc/b0680241.html,

图像分割算法的比较与分析

中北大学 课程设计说明书 学生姓名:学号: 学生姓名:学号: 学生姓名:学号: 学生姓名:学号: 学院:信息与通信工程学院 专业:电子信息工程 题目:信息处理综合实践: 图像分割算法的比较与分析 指导教师:陈平职称: 副教授 2014 年12 月29 日

中北大学 课程设计任务书 14/15 学年第一学期 学院:信息与通信工程学院专业:电子信息工程 学生姓名:学号: 课程设计题目:信息处理综合实践: 图像分割算法的比较与分析起迄日期:2015年1月5日~2015年1月16日课程设计地点:电子信息工程专业实验室 指导教师:陈平 系主任:王浩全 下达任务书日期: 2014 年12月29 日课程设计任务书

课程设计任务书

目录 第一章绪论 (1) 研究目的和意义 (1) 图像分割的研究进展 (1) 第二章区域生长法分割图像 (4) 区域生长法介绍 (4) 区域生长法的原理 (4) 区域生长法的实现过程 (5) 第三章程序及结果 (6) 区域生长算法及程序 (6) 图像分割结果 (7) 第四章方法比较 (8) 阈值法 (8) 区域法 (8) 分水岭法 (8) 形态学方法 (9) 第五章总结 (10) 参考文献 (11)

第一章绪论 研究目的和意义 图像分割是一种重要的图像技术,在理论研究和实际应用中都得到了人们的广泛重视。图像分割的方法和种类有很多,有些分割运算可直接应用于任何图像,而另一些只能适用于特殊类别的图像。许多不同种类的图像或景物都可作为待分割的图像数据,不同类型的图像,已经有相对应的分割方法对其分割;但某些分割方法只是适合于某些特殊类型的图像分割,所以分割结果的好坏需要根据具体的场合及要求衡量。图像分割是从图像处理到图像分析的关键步骤,可以说,图像分割结果的好坏直接影响对图像的理解。 图像分割是由图像处理到图像分析的关键步骤,在图像工程中占有重要位置。一方面,它是目标表达的基础,对特征测量有重要的影响。另一方面,因为图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象、更紧凑的表达形式,使得更高层的图像分析和理解成为可能。因此在实际应用中,图像分割不仅仅要把一幅图像分成满足上面五个条件的各具特性的区域,而且要把其中感兴趣的目标区域提取出来。只有这样才算真正完成了图像分割的任务,为下一步的图像分析做好准备,使更高层的图像分析和理解成为可能。 图像分割在很多方面,如医学图像分析,交通监控等,都有着非常广泛的应用,具有重要的意义。(1)分割的结果常用于图像分析,如不同形式图像的配准与融合,结构的测量,图像重建以及运动跟踪等。(2)在系统仿真,效果评估,图像的3D重建以及三维定位等可视化系统中,图像分割都是预处理的重要步骤。 (3)图像分割可在不丢失有用信息的前提下进行数据压缩,这就降低了传输的带宽,对提高图像在因特网上的传输速度至关重要。(4)分割后的图像与噪声的关系减弱,具有降噪功能,便于图像的理解。 图像分割的研究进展 图像分割是图像处理中的一项关键技术,至今已提出上千种分割算法。但因

图像分割方法综述

图像分割方法综述

图像分割方法综述 摘要:图像分割是计算计视觉研究中的经典难题,已成为图像理解领域关注的一个热点,本文对近年来图像分割方法的研究现状与新进展进行了系统的阐述。同时也对图像分割未来的发展趋势进行了展望。 关键词:图像分割;区域生长;活动边缘;聚类分析;遗传算法 Abstract:Image segmentation is a classic problem in computer vision,and become a hot topic in the field of image understanding. the research actuality and new progress about image segmentation in recent years are stated in this paper. And discussed the development trend about the image segmentation. Key words: image segmentation; regional growing; active contour; clustering

analysis genetic algorithm 1 引言 图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。本文根据图像发展的历程,从传统的图像分割方法、结合特定工具的图像分割方

图像分割常用算法优缺点探析

图像分割常用算法优缺点探析 摘要图像分割是数字图像处理中的重要前期过程,是一项重要的图像分割技术,是图像处理中最基本的技术之一。本文着重介绍了图像分割的常用方法及每种方法中的常用算法,并比较了各自的优缺点,提出了一些改进建议,以期为人们在相关图像数据条件下,根据不同的应用范围选择分割算法时提供依据。 关键词图像分割算法综述 一、引言 图像分割决定了图像分析的最终成败。有效合理的图像分割能够为基于内容的图像检索、对象分析等抽象出十分有用的信息,从而使得更高层的图像理解成为可能。目前图像分割仍然是一个没有得到很好解决的问题,如何提高图像分割的质量得到国内外学者的广泛关注,仍是一个研究热点。 多年来人们对图像分割提出了不同的解释和表达,通俗易懂的定义则表述为:图像分割指的是把一幅图像分割成不同的区域,这些区域在某些图像特征,如边缘、纹理、颜色、亮度等方面是一致的或相似的。 二、几种常用的图像分割算法及其优缺点 (一)大津阈值分割法。 由Otsu于1978年提出大津阈值分割法又称为最大类间方差法。它是一种自动的非参数非监督的门限选取法。该方法的基本思路是选取的t的最佳阈值应当是使得不同类间的分离性最好。它的计算方法是首先计算基于直方图而得到的各分割特征值的发生概率,并以阈值变量t将分割特征值分为两类,然后求出每一类的类内方差及类间方差,选取使得类间方差最大,类内方差最小的t作为最佳阈值。 由于该方法计算简单,在一定条件下不受图像对比度与亮度变化的影响,被认为是阈值自动选取的最优方法。该方法的缺点在于,要求得最佳阈值,需要遍历灰度范围0—(L-1)内的所有像素并计算出方差,当计算量大时效率会很低。同时,在实际图像中,由于图像本身灰度分布以及噪声干扰等因素的影响,仅利用灰度直方

一种基于HLS的快速图像分割算法

一种基于HLS的快速图像分割算法 【摘要】本文提出了一种新的基于HLS的快速图像分割算法。通过分析HLS 颜色空间特性,提出一种新的图像相似性的定义方法,可以快速选择出相似的颜色区域。在图像的预分割过程中起到了快速定位的作用。与基于MEANSHIFT 的图像分割算法,分水岭算法对比,通过实验结果表明,本论文提出的分割算法具有快速的,良好的的特性。 【关键词】预分割;图像分割;HLS颜色空间 1.分割的意义与现状 图像分割是计算机图像处理与机器视觉研究领域中的基本问题之一。随着计算机硬件和计算机理论的不断取得突破进展,数字图像处理技术和计算机视觉技术得到了广泛的应用。在对图像进行研究和应用中,前景提取或前景分割是一个重要的研究组成部分。在应用的过程中,往往只对图像中某些部分某些区域感兴趣,这些部分通常称之为前景。前景是图像中特定的,具有某些特性的区域,或者说是具有更高层次语义的区域。例如人,桌子等等自然物体,也可能是人身体的一部分,如头发,脸等等。为了进一步的研究分析,需要把前景区域单独提取出来,作为下一步的算法的输入。所以说图像分割算法是指将某些特定区域从背景中分割出来的算法。图像分割是数字图像处理与计算机视觉研究领域中的基本问题之一,也是热点之一。 在每一次交互式的过程中,我们并不需要对整幅图像进行处理,只需要对交互处周围的像素点进行分析即可。这样不仅仅是因为处理的像素点减少,从而可以节省大量的处理时间,同时在处理过程中,可以去掉不相似点的干扰,在处理速度上,在收敛性上,也可以节省大量的时间。所以如果能明确处理的区域,可以提高处理速度,从而保证算法的实时性。 如果定义一个固定的矩形或者圆形等形状的话,对于不同的物体显然具有不同的效果。如果物体比所定义的矩形框大,则不能一次性的分割出相邻的区域。如果物体比所定义的矩形框小很多的时候,不仅仅是处理速度上变慢,分割效果会降低。所以使用简单的分割算法进行粗定位,确定下一步的处理范围,对整个交互式过程来说是一个非常重要的步骤。 在过去二十多年中,人们对前景图像提取问题做了大量的研究。最简单的方法是,能过选取满足用户指定图像的颜色值的所有像素来提取前景。Photoshop 的智能剪刀和魔杖工具就是采用了这种方法。但是这种方法需要大量的用户交互,使用起来极其不方便。 近十年来,研究者提出了很多精确提取前景区域的系统,同时使用户的交互尽可能少。比如智能画布[1]和基于对象的图像编辑系统[2]等,通过将图像分割成区域,然后用户选取一些区域产生最后的前景对象的方法。Grab cut系统[3]

几种图像分割算法在CT图像分割上的实现和比较

第20卷第6期2000年12月北京理工大学学报JOurnaI Of Beijing InStitute Of TechnOIOgy VOI.20NO.6Dec.2000 文章编号21001-0645(2000)06-0720-05几种图像分割算法在CT 图像分割上的 实现和比较 杨 加19吴祈耀19田捷29杨骅2(1-北京理工大学电子工程系9北京1000 1;2-中国科学院自动化研究所9北京1000 0)摘要2对目前几种在图像分割领域得到较多应用的交互式分割 区域生长分割以及阈值 分割算法进行了探讨9并且结合实际CT 片图例分别进行分割实验研究9得到较为满意和 可用性强的结果.实验表明2阈值分割对于CT 切片的效果最好;区域生长分割适宜于对面 积不大的区域进行分割9分割效果较好;基于动态规划的交互式分割算法比较复杂9计算时 间较长9但对于边缘较平滑的区域9同样具有较好的实际效果.几种算法的评估为其在CT 图像分割上的实际应用提供了科学依据. 关键词2图像分割算法;CT 图像分割;交互式分割;阈值分割;区域生长分割 中图分类号2TN 911-73文献标识码2A 收稿日期220000625 基金项目2国家自然科学基金资助项目(69 43001);国家 63 计划项目作者简介2杨加9男91975年生9硕士生. 图像分割可以分解为两个任务9即识别(recOgnitiOn )和描绘(deIineatiOn ).识别的目的在于确定目标物体的大致位置并区别于图像中的其它物体;而描绘的任务在于精确定义和刻画图像中目标物体的区域或边缘的空间范围.人的识别能力通常强于计算机算法9另一方面9计算机算法的描绘能力则优于操作者(人).因此既能利用操作者强大的识别能力9又能利用计算机算法的描绘能力的交互式图像分割则越来越受到人们的关注.在医学领域中9图像分割是病变区域提取 特定组织测量以及实现三维重建的基础9因此图像分割技术在医学图像处理中具有十分重要的意义[1].作者探讨了3种目前在图像分割上得到较多实际应用的分割算法9并结合实际CT 片图例进行了实验研究9得到较为满意和可用性强的结果;最后对这几种方法进行了评估9为这些算法在CT 图像分割上的实际应用提供了科学依据. 1 交互式分割算法1-1基本理论及算法描述 动态规划方法最早应用于图像边缘跟踪[2].可以将图像边缘检测看作一个优化问题[3]9并将其表述为找出一目标函数V =V (I 19I 29I 39~9I H )的最优值M (如取最小值min )9得V 取最优值时的一组自变量值(I 19I 29I 39I 49~9I H 9).若变量离散9目标函数没有特定规律可循时9则该问题将包括一个极大的解空间.如果这个目标函数能够描述成如下形式2 V =V (I 19I 29I 39~9I N )=V 0(I 09I 1)+V 1(I 19I 2)+~+V H-1(I H-19I H )

图像分割方法综述

图像分割方法综述 摘要:图像分割是计算计视觉研究中的经典难题,已成为图像理解领域关注的一个热点, 本文对近年来图像分割方法的研究现状与新进展进行了系统的阐述。同时也对图像分割未来的发展趋势进行了展望。 关键词:图像分割;区域生长;活动边缘;聚类分析;遗传算法 Abstract: Image segmentation is a classic problem in computer vision,and become a hot topic in the field of image understanding. the research actuality and new progress about image segmentation in recent years are stated in this paper. And discussed the development trend about the image segmentation. Key words: image segmentation; regional growing; active contour; clustering analysis genetic algorithm 1 引言 图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。本文根据图像发展的历程,从传统的图像分割方法、结合特定工具的图像分割方法、基于人工智能的图像分割方法三个由低到高的阶段对图像分割进行全面的论述。 2 传统的图像分割方法 2.1 基于阀值的图像分割方法 阀值分割法是一种传统的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。阀值分割法的基本原理是通过设定不同的特征阀值,把图像像素点分为具有不同灰度级的目标区域和背景区域的若干类。它特别适用于目标和背景占据不同灰度级范围的图,目前在图像处理领域被广泛应用,其中阀值的选取是图像阀值分割中的关键技术。 灰度阀值分割方法是一种最常用的并行区域技术,是图像分割中应用数量最多的一类。图像若只用目标和背景两大类,那么只需要选取一个阀值,此分割方法称为单阀值分割。单阀值分割实际上是输入图像f到输出图像g的如下变换:

图像分割技术的原理及方法

浅析图像分割的原理及方法 一.研究背景及意义 研究背景: 随着人工智能的发展,机器人技术不断地应用到各个领域。信息技术的加入是智能机器人出现的必要前提。信息技术泛指包括通信技术、电子技术、信号处理技术等相关信息化技术的一大类技术。它的应用使得人们今天的生活发生了巨大变化。从手机到高清电视等家用电器设备出现使我们的生活越来越丰富多彩。在一些军用及民用领域近几年出现了一些诸如:图像制导、无人飞机、无人巡逻车、人脸识别、指纹识别、语音识别、车辆牌照识别、汉字识别、医学图像识别等高新技术。实现它们的核心就是图像处理、机器视觉、模式识别、智能控制、及机器人学等相关知识。其中图像处理具有重要地位。而图像分割技术是图像分析环节的关键技术。 研究图像分割技术的意义: 人类感知外部世界的两大途径是听觉和视觉,尤其是视觉,同时视觉信息是人类从自然界中获得信息的主要来源,约占人类获得外部世界信息量的80%以上。图像以视觉为基础通过观测系统直接获得客观世界的状态,它直接或间接地作用于人眼,反映的信息与人眼获得的信息一致,这决定了它和客观外界都是人类最主要的信息来源,图像处理也因此成为了人们研究的热点之一。人眼获得的信息是连续的图像,在实际应用中,为便于计算机等对图像进行处理,人们对连续图像进行采样和量化等处理,得到了计算机能够识别的数字图像。数字图像具有信息量大、精度高、内容丰富、可进行复杂的非线性处理等优点,成为计算机视觉和图像处理的重要研究对象。在一幅图像中,人们往往只对其中的某些区域感兴趣,称之为前景,这些区域内的某些空间信息特性(如灰度、颜色、轮廓、纹理等)通常与周围背景之间存在差别。图像分割就是根据这些差异把图像分成若干个特定的、具有独特性质的区域并提取感兴趣目标的技术和过程。在数字图像处理中,图像分割作为早期处理是一个非常重要的步骤。为便于研究图像分割,使其在实

图像分割技术综述---20050620

综述:PDE图像分割技术 沈民奋 汕头大学工学院,广东省图像处理重点实验室,汕头 515063 摘要:偏微分方程(PDE's)图像处理在图像处理的各个方面已经得到了广泛的应用,该 方法通常与水平集方法配合使用。在图像分割方面提出了许多基于偏微分方程(PDE's)的 方法,比如,M-S分片光滑法,C-V无需边缘的活动围线法,P-D测地活动区域组等等。本文 追踪偏微分方程(PDE's)图像分割的发展,回顾偏微分方程(PDE's)图像分割领域的重 要文献,也简述了偏微分方程(PDE's)图像分割中的数值技巧。从本文的综述可以看出, 当前偏微分方程(PDE's)图像分割的主要发展趋势有三个方面:将图像分割的边界特征和 区域特征相结合;建立新的水平集方法来实现偏微分方程(PDE's)图像分割;将偏微分方 程(PDE's)图像分割技术与传统技术如贝叶斯方法相结合。 关键词:偏微分方程,图像分割,水平集,活动围线,综述 中图分类号:TP391.4 文献标识码:A 文章编号: 0 引言 图像分割是图像分析和计算机视觉中一个基本处理环节。这方面的文献很多。本文主要关注偏微分方程(PDE)图像分割的最新进展。方程的建模通常是根据变分法寻找一个使能量泛函最小化的函数,并辅之以水平集技术。尽管本文主要综述关于二维灰度图像的分割方法,由于偏微分方程图象处理的固有优势,这些方法往往很容易推广到彩色图像分割或序列图像的运动追踪问题[1,5,29,30,33,35,41]。 传统的图像分割方法,无论是基于时域还是频域的分割,总是利用图像中的灰度边界信息或灰度同质区域进行分割图像。偏微分方程图像分割也是基本如此。从根本上说,偏微分方程图像处理是基于对图像的确定性描述,近年来,许多研究人员试图把概率性描述的一些手段与偏微分方程图像处理相结合。最早的偏微分方程图像分割借助于各向异性的灰度扩散技术,扩散的结果是使得原输入图象变换成为由一些分片光滑的灰度同质区域所组成的近似图像,从而更容易分割出图像中的不同区域。后来,随着水平集方法的提出,曲线演化和传统的参数型曲线演化相比,变得更加方便和有效。因此,曲线演化或称活动围线模型成为图像分割的主流。此后,偏微分方程活动围线的发展主要在于两个方面:多相活动围线和边界无关的活动围线模型。最近,活动围线和先验形状信息相结合的方法也相继被提出。另一方面,偏微分方程图像分割的技术改进也来自于新的数值技巧,比如改进传统的水平集方法;多尺度水平集技术;甚至完全抛开水平集方法而寻找方程的直接数值求解。 偏微分方程图象处理的一般方法是这样的:给定一个问题,在特定准则下最小化一个能量泛函,使得最小化函数即为问题的解。以图像分割为例,这些准则通常是图像中的灰度边缘信息或灰度同质区域信息;其次,根据这些准则确立一个能量泛函,使得仅在我们所期望达到的分割边界上该能量泛函达到最小;然后,从最小化问题中推导出相应的欧拉-拉格朗日方程(组),方程的解的存在性往往需要专门给出证明;最后,使用适当的数值技术求解这个方程(组)。偏微分方程图象处理确实能够提供与传统图象处理手段所不同的处理方法和效果,尤其对于复杂的图像分割问题显得灵活和有效。最近偏微分方程图象处理的繁荣就是由于它所能够提供灵活多样的,而且往往是传统处理方法所不能企及的处理性能。过去二十年来,有很多偏微分方程图像分割的文章相继发表,有基于边缘或测地边缘的活动围线模型,分片光滑的灰度同质区域分割模型,和结合其它方法(如贝叶斯方法)的偏微分方程图像分割模型。读者也可以参

图像阈值分割技术原理和比较要点

图像阈值分割和边缘检测技术原理和比较

摘要 图像分割是一种重要的图像分析技术。对图像分割的研究一直是图像技术研究中的热点和焦点。医学图像分割是图像分割的一个重要应用领域,也是一个经典难题,至今已有上千种分割方法,既有经典的方法也有结合新兴理论的方法。医学图像分割是医学图像处理中的一个经典难题。图像分割能够自动或半自动描绘出医学图像中的解剖结构和其它感兴趣的区域,从而有助于医学诊断。 阈值分割是一种利用图像中要提取的目标物与其背景在灰度特性上的差异,把图像视为具有不同灰度级的两类区域(目标和背景)的组合,选取一个合适的阈值,以确定图像中每个像素点应该属于目标区域还是背景区域,从而产生对应的二值图像。 本文先介绍各种常见图像阈值分割和边缘检测方法的原理和算法,然后通过MATLAB 程序实现,最后通过比较各种分割算法的结果并得出结论。 关键词:图像分割;阈值选择;边缘检测;

目录 1.概述 (4) 2.图像阈值分割和边缘检测原理 (4) 2.1.阈值分割原理 (4) 2.1.1.手动(全局)阈值分割 (5) 2.1.2.迭代算法阈值分割 (6) 2.1.3.大津算法阈值分割 (6) 2.2.边缘检测原理 (6) 2.2.1.roberts算子边缘检测 (7) 2.2.2.prewitt算子边缘检测 (7) 2.2.3.sobel算子边缘检测 (7) 2.2.4.高斯laplacian算子边缘检测 (8) 2.2.5.canny算子边缘检测 (8) 3.设计方案 (9) 4.实验过程 (10) 4.1.阈值分割 (12) 4.1.1.手动(全局)阈值分割 (12) 4.1.2.迭代算法阈值分割 (12) 4.1.3.大津算法阈值分割 (12) 4.2.边缘检测 (13) 4.2.1.roberts算子边缘检测 (13) 4.2.2.prewitt算子边缘检测 (13) 4.2.3.sobel算子边缘检测 (13) 4.2.4.高斯laplacian算子边缘检测 (13) 4.2.5.canny算子边缘检测 (14) 5.试验结果及分析 (14) 5.1.实验结果 (14) 5.1.1.手动(全局)阈值分割 (14) 5.1.2.迭代算法阈值分割 (17) 5.1.3.大津算法阈值分割 (18) 5.1.4.roberts算子边缘检测 (19) 5.1.5.prewitt算子边缘检测 (20) 5.1.6.sobel算子边缘检测 (21) 5.1.7.高斯laplacian算子边缘检测 (22) 5.1.8.canny算子边缘检测 (23) 5.2. 实验结果分析和总结 (24) 参考文献 (24)

图像检索中图像分割方法综述

2009年4月皖西学院学报A pr.,2009第25卷第2期Jo urnal o f West Anhui U niv er sity Vo l.25 NO.2 图像检索中图像分割方法综述 汪慧兰 (安徽师范大学物理与电子信息学院,安徽芜湖241000) 摘 要:图像分割是图像分析和模式识别需要解决的首要问题和基本问题,也是图像处理的经典难题。针对图像检索中应用的图像分割方法进行了系统论述,分析了各种方法的优缺点并探讨了图像分割技术的发展方向。具体介绍了基于颜色布局的分割方法,基于无监督的分割方法。 关键词:图像检索;图像分割;综述 中图分类号:T P391 文献标识码:A 文章编号:1009-9735(2009)02-0018-04 1 引言 基于区域的图像检索不仅能从整体上描述图像内容,而且通过对图像进行恰当的分割能鉴别出若干富有意义的图像区域以及这些目标区域之间的相互关系,以便在对象层描绘图像特征,使检索更加符合图像的语义。例如在图像库中搜索含有汽车的图像。为了代表图像的物体层,图像检索第一步就是抽取像素特征进行图像分割,分割后得到的各个不同语义区域,如果分割效果理想的话,这些区域将对应一个个物体。 图像分割一直是计算机视觉和图像处理的研究热点和难点,也是基于区域的图像检索系统的关键所在。因此图像分割的效果直接影响到区域特征的提取,进而影响到检索的效果。目前,图像分割至今为止尚无通用的自身理论,随着各学科许多新理论和新方法的提出,很多学者对目前提出的上千种图像分割方法作了综述[1][2]和分类。文献[1]将分割方法划分为基于数据驱动和基于模型驱动的分割方法;文献[2]将其划分为边缘检测、基于区域和其他方法。本文主要介绍近几年针对图像检索在图像分割中出现的新方法及新理论,分析各种方法的优缺点,并探讨图像分割技术的发展方向。 2 基于颜色布局的图像分割方法 2.1 图像分块 最早用于图像检索的分割方法是将图像进行分块,如Gong et al.[3],Chua et al.[4],Lu et al.[5], Pass et al.[6]为了代表图像的空间语义,首先将图像分块,然后从各个子块中抽取颜色特征,利用颜色空间直方图和颜色布局作为分割后的区域特征。还有B.M oghaddam et.al.[7]也将图像分成互不重叠的区域,这种方法虽然简单但不能准确代表图像目标区域的方法,且子块间的空间约束关系太强,对图像的旋转、平移等敏感。基于此,Stricker et al[8]将图像划分成5块互相交叠的区域,通过对区域中的像素和靠近边界的像素设置不同的权重,但也只能做到对目标的有限旋转不变性。 2.2 后向映射 Sw ain和Ballard[9]提出了后向映射算法,为支持大规模图像库中的快速查找,Smith和Chang提出了用颜色集(color sets)作为对颜色直方图的一种近似[10]同时和后向映射算法配合。他们首先将RGB 颜色空间转化成视觉均衡的颜色空间(如H SV空间),并将颜色空间量化成若干个柄。然后,他们用颜色分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达成一个二进制的颜色索引集。VisualSeek[11]是由哥伦比亚大学开发研制基于w eb的图像/视频搜索工具,它是最早基于区域的图像检索系统。系统所采用的视觉特性就是颜色集和基于小波变换的纹理特性。2.3 基于感兴趣点的方法 18 *收稿日期:2008-12-04 基金项目:教育部人文社会科学项目(05JC870012)。 作者简介:汪慧兰(1978-),女,安徽怀宁人,讲师,硕士研究生,研究方向:基于内容的视觉信息检索,模式识别。

图像分割综述

摘要 图像分割是把图像划分为有意义的若干区域的图像处理技术,分割技术在辅助医学诊断及运动分析、结构分析等领域都有着重要的研究价值和广泛的应用发展前景。 在阅读大量文献的基础上,本文对图像分割技术的理论基础、发展历程及图像分割方法的热点、难点问题进行了分类综述,对不同分割算法优缺点进行了总结和归纳,并对图像分割的发展趋势进行了初步的展望和预测。在此基础上,为了对图像分割理论有更直观的认识,本文选取并行边界算法和分水岭算法这两种方法,用MATLAB软件进行了基础的仿真,并对结果进行了分析和总结, 本文重点对一些近年来新兴的算法,比如水平集(Level-set)算法、马尔科夫随机场算法(Markov)、模糊算法、遗传算法、数学形态学算法等进行了概略性的探讨,对这些新兴算法的特点、原理、研究动态进行了分析和总结。 关键词:图像分割;边界;区域;水平集;马尔科夫

Abstract Image segmentation is an image processing technology that divides the image into a number of regions. Image segmentation has very important significance in supporting medical diagnosis, motion analysis, structural analysis and other fields. Based on recent research, a survey on the theory and development of image segmentation, hot and difficult issues in image segmentation is given in this article. And describes the characteristics of each method as well as their respective advantages and disadvantages in image segmentation .This article introduces and analyzes some basic imaging and image segmentation methods in theory and describes the development trends of medical image segmentation. To have a better understanding of image segmentation, I use MATLAB software to stimulate on images about the parallel edge algorithms and watershed algorithm. And the analysis of the segmentation results is given in the article. This article introduces and analyzes the new algorithms in recent years such as Level-set algorithm, Markov algorithm, Fuzzy algorithm, Genetic algorithm and Morphological algorithm. In this paper, the features, theory and research trends of these algorithms are analyzed and summarized. Keywords: Image segmentation; Border; Area;Level-set;Markov

PCB缺陷检测中图像分割算法的分析与比较

PCB 缺陷检测中图像分割算法的分析与比较 摘要:图像分割在图像处理中占有重要的地位,分割结果的好坏直接影响图像的后续处理。本文介绍了4种常用的图像分割方法及其在PCB 缺陷检测中的应用,并且利用实际的分割效果对4种分割方法进行了比较。对PCB 检测的实际应用提出了一种比较好的图像分割思路,并且做了实验研究。 关键词:图像处理;图像分割;PCB 检测 引言: 图像分割是图像处理中的一项关键技术,分割结果的好坏直接影响到图像的后续处理。本文中图像分割的目的是根据图像灰度等级准确划分出其中有意义的目标区域。但是由于系统在PCB 图像的采集、传输过程中,由于光照不均,CCD 摄像机自身的电子干扰,都不同程度的带来噪声,使图像污染。这些噪声也给图像分割带来了一定的难度。而传统的图像分割方法针对实际应用,本文分别采用四种公认比较好的分割方法对PCB 图像进行分割,并对分割效果进行了比较,最后确定了适合PCB 检测的图像分割方法。下面对它们进行具体说明。 1. 基于标准图像的模糊推理法 模糊理论在图像处理中的应用越来越广。在图像分割中,它可以把数据的校验用一些 模糊规则来进行描述。用基于标准图像的模糊推理法进行图像的分割主要包括以下几步[1]: (1) 计算原始图像的灰度直方图并用迭代阈值法计算它的阈值; (2) 寻找目标和背景的像素簇的峰值; (3) 计算LD(象素值低与较低之间的阈值)和LB (像素值高与较高之间的阈值); (4) 使用模糊逻辑方法(FLM-fuzzy linguistic method )来获取二值图像数据; 待处理PCB 图像的灰度直方图如图1所示 图1 像素值直方图 Fig.1 Pixel value histogram 背景和目标对象是直方图中的两个簇。这里采用迭代阈值的方法来求取待检测图像的阈值。具体过程如下[2]: 1) 求出图像中的最小和最大灰度值H min 及H max ,令阈值初始值为: T 0像素数 像素值 Dark max threshold Bright max 255 (= 1 2 (H min +H max ) (1)

相关文档
最新文档