导数有关知识点总结、经典例题及解析、近年高考题带答案

导数有关知识点总结、经典例题及解析、近年高考题带答案
导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用

【考纲说明】

1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。

2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。

3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。

【知识梳理】

一、导数的概念

函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y

??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y

??有极限,我们

就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim →?x x y

??=0lim →?x x x f x x f ?-?+)()(00。

说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y

??不存在极限,就说函数在点x 0处不可导,

或说无导数。

(2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0);

(2)求平均变化率x y ??=x x f x x f ?-?+)

()(00;

(3)取极限,得导数f’(x 0)=x y

x ??→?0lim

二、导数的几何意义

函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数

①0;C '= ②()

1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-;

⑤();x x e e '=⑥()ln x

x

a a a '

=; ⑦

()1ln x x '=

; ⑧()1

l g log a a o x e

x '=.

四、两个函数的和、差、积的求导法则

法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),

即: (

.)'

''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,

即:

.)('''uv v u uv += 若C 为常数,则'

''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数:

.)(''Cu Cu =

法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:

?

?? ??v u ‘=2'

'v uv v u -(v ≠0)。

形如y=f [x

(?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间:

一般地,设函数)(x f y =在某个区间可导,

如果'f )(x 0>,则)(x f 为增函数; 如果'f 0)(

如果在某区间内恒有'

f 0)(=x ,则)(x f 为常数;

2、极点与极值:

曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正; 3、最值:

一般地,在区间[a ,b]上连续的函数f(x)在[a ,b]上必有最大值与最小值。 ①求函数?(x)在(a ,b)内的极值;

②求函数?(x)在区间端点的值?(a)、?(b);

③将函数?(x)的各极值与?(a)、?(b)比较,其中最大的是最大值,其中最小的是最小值。 4.定积分

(1)概念:设函数f(x)在区间[a ,b]上连续,用分点a =x0

在每个小区间[xi -1,xi]上取任一点ξi (i =1,2,…n )作和式In =∑n

i f

1

=(ξi)△x (其中△x 为小区间长度),把n

→∞即△x →0时,和式In 的极限叫做函数f(x)在区间[a ,b]上的定积分,记作:

?b

a

dx

x f )(,即?

b

a

dx

x f )(=

∑=∞

→n

i n f

1

lim (ξi)

△x 。

这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积式。 基本的积分公式:

?dx 0=C ; ?dx x m

=1

11++m x

m +C (m ∈Q , m ≠-1);

?x 1

dx =ln x +C ;?dx e x =x e +C ;

?dx a x

=a a x ln +C ;?xdx cos =sinx +C ;?xdx sin =-cosx +C (表中C 均为常数)。

(2)定积分的性质 ①?

?=b

a b

a

dx

x f k dx x kf )()((k 为常数);

?

??±=±b

a b a

b a

dx x g dx x f dx x g x f )()()()(;

③?

??+=b

a

c

a b

c

dx

x f dx x f dx x f )()()((其中a <c <b )。

(3)定积分求曲边梯形面积

由三条直线x =a ,x =b(a

?=b

a

dx

x f S )(。

如果图形由曲线y 1=f 1(x),y 2=f 2(x)(不妨设f 1(x)≥f 2(x)≥0),及直线x =a ,x =b (a

围成,那么所求图形的面积S =S 曲边梯形AMNB -S 曲边梯形DMNC =

?

?-b

a

b

a

dx

x f dx x f )()(21。

【经典例题】

【例1】(2012广东)曲线y=x 3-x+3在点(1,3)处的切线方程: 。

【解析】先对函数y=x 3-x+3求导,得:y=3x 2-1。代入点(1,3)求出斜率,k=2。设切线方程为y-3=2(x-1),得切线方程为:y=2x+1。 【例2】(2012辽宁)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A 的纵坐标为 。 【解析】抛物线变形为:y=

2

1x 2

。求导y ,=x 。代入两点横坐标得出两切线的斜率分别为:4,-2。点P ,Q 两点坐标为(4,8),(-2,2)。得出两切线为:y=4x-8,y=-2x-2。两直线交点为(1,-4)。所以交点的纵坐标为-4。 【例3】(2011课标)已知函数f(x)=x

b

x aInx ++1,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0。 (1)求a ,b 的值;

(2)如果当x>0,且x ≠1时,f(x)>

x

k

x Inx +-1,求k 的取值范围。 【解析】(1)f ,(x)=

2

2)1()

1

(

x b x Inx x x a -

+-+由于直线x+2y-3=0的斜率为21-,且过点(1,1), 故

即 解得a=1,b=1。

(2)由(1)知ln 11x x x ++,所以22ln 1(1)(1)

()()(2ln )11x k k x f x x x x x x ---+=+--。 考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22

(1)(1)2'()k x x

h x x -++=。

(i)设0k ≤,由22

2

(1)(1)'()k x x h x x

+--=知,当1x ≠时,'()0h x <。而(1)0h =,故 当(0,1)x ∈时,()0h x >,可得

2

1

()01h x x >-; 当x ∈(1,+∞)时,h (x )<0,可得2

11

x

- h (x )>0 f(x)=1

f ,(1)=2

1- b=1

b a -2=2

1-

从而当x>0,且x ≠1时,f (x )-(1ln -x x +x k )>0,即f (x )>1ln -x x +x k

. (ii )设0

+1)+2x>0,故h ’ (x )>0,而h (1)=0,故当x ∈(1,k

-11)

时,h (x )>0,可得2

11

x

-h (x )<0,与题设矛盾。 (iii )设k ≥1.此时h ’

(x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x )>0,可得2

11x - h (x )<0,与题设

矛盾。综合得,k 的取值范围为(-∞,0].

【例4】(2012山东)已知函数f(x) = x

e

k

x +ln (k 为常数,e=2.71828……是自然对数的底数),曲线y= f(x)在点(1,f(1))处的切线与x 轴平行。 (Ⅰ)求k 的值;

(Ⅱ)求f(x)的单调区间;

(Ⅲ)设g(x)=(x 2+x) '()f x ,其中'()f x 为f(x)的导函数,证明:对任意x >0,2

1)(-+

【解析】由f(x) = x

e k x +ln 可得=')(x

f x e

x

k x ln 1

--,而0)1(='f ,即01=-e k ,解得1=k ; (Ⅱ)=')(x f x

e

x

x ln 11

--,令0)(='x f 可得1=x , 当10<--='x x x f ;当1>x 时,0ln 11

)(<--='x x

x f 。

于是)(x f 在区间)1,0(内为增函数;在),1(+∞内为减函数。

(Ⅲ)x

x e

x x x x e x

x x x x g ln )(1ln 11

)()(222+--=--+=, 当1≥x 时, 0,0,0ln ,012

2

>>+≥≤-x

e x x x x ,2

10)(-+<≤e

x g .

当10<

)()(-+<+--=--+=e e

x x x x e x

x x x x g x

x 。 只需证2

2

2

1()ln (1)x

x x x x e e ---+<+,然后构造函数即可证明。

【例5】(2012北京)已知函数

2(1)

()a x f x x -=

,其中0a >.

(Ⅰ)求函数()f x 的单调区间;

(Ⅱ)若直线10x y --=是曲线()y f x =的切线,求实数a 的值;

(Ⅲ)设

2

()ln ()g x x x x f x =-,求()g x 在区间[1,e ]上的最大值.(其中e 为自然对数的底数)

【解析】(Ⅰ)

3(2)

()a x f x x -'=

,(0x ≠),在区间(,0)-∞和(2,)+∞上,()0f x '<;在区间(0,2)上,()0f x '>.

所以,()f x 的单调递减区间是(,0)-∞和(2,)+∞,单调递增区间是(0,2).

(Ⅱ)设切点坐标为00(,)x y ,则00

2

0000

3

0(1)10(2)

1a x y x x y a x x -?

=???

--=??-?=?? 解得0

1x =,1a =. (Ⅲ)()g x =l n (1)x x a x --,则()l n 1g x x a '=+-解()0g x '=,得1e a x -=,

所以,在区间1(0,e )a -上,()g x 为递减函数,在区间

1

(e ,)a -+∞上,()g x 为递增函数. 当1e 1a -≤,即01a <≤时,在区间[1,e ]上,()g x 为递增函数,所以()g x 最大值为(e )e e g a a =+-.

当1

e

e a -≥,即2a ≥时,在区间[1,e ]上,()g x 为递减函数,所以()g x 最大值为(1)0g =.

当1

1

(e )(1)ee 0g g a a -=+->,解得

e e 1a <

-,所以,e 1e 1a <<-时,()g x 最大值为(e )e e g a a =+-,

e

2

e 1a ≤<-时,()g x 最大值为(1)0g =.

综上所述,当

e

0e 1a <<

-时,()g x 最大值为(e )e e g a a =+-,

e

e 1a ≥

-时,()g x 的最大值为(1)0g =.

【例6】(2012重庆)已知函数3

()f x ax bx c =++在2x =处取得极值为16c - (1)求a 、b 的值;(2)若()f x 有极大值28,求()f x 在[3,3]-上的最大值。

【解析】错误!未找到引用源。(Ⅰ)因3

()f x ax bx c =++ 故2

()3f x ax b '=+ 由于()f x 在点2x = 处取得极值

故有(2)0(2)16f f c '=??=-?即1208216a b a b c c +=??++=-? ,化简得12048a b a b +=??+=-?解得112a b =??=-?

(Ⅱ)由(Ⅰ)知 3

()12f x x x c =-+,2

()312f x x '=-

令()0f x '=,得122,2x x =-=当(,2)x ∈-∞-时,()0f x '>故()f x 在(,2)-∞-上为增函数;当(2,2)x ∈-

时,()0f x '< 故()f x 在(2,2)- 上为减函数 当(2,)x ∈+∞时()0f x '>,故()f x 在(2,)+∞ 上为增函数。 由此可知()f x 在12x =- 处取得极大值(2)16f c -=+,()f x 在22x = 处取得极小值(2)16f c =-由题设条件知1628c +=得12c =,

此时(3)921,(3)93f c f c -=+==-+=,(2)164f c =-=-因此()f x 上[3,3]-的最小值为(2)4f =-。

【例7】(2011安徽)设()1x

e f x ax

=+,其中a 为正实数

(Ⅰ)当a 4

3

=

时,求()f x 的极值点; (Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围。

【解析】(1)f ' (x)=x

2

22ax 1e

12ax -ax )

()(++当a=34时令f ' (x)=0解得x=21或x=23 当x ??? ??

∞∈21-,时,f ' (x)>0;当x ??

? ??∈2321,时,f ' (x)<0;

当x ??

? ??∞+∈,

23,f ' (x)>0,所以f(x)在x=21处取得极大值,在x=2

3

处取得极小值。 (2)若()f x 为R 上的单调函数则f ' (x)恒大于等于零或f ' (x)恒小于等于零, 因为a>0所以Δ=(-2a )2-4a ≤0,解得0

【课堂练习】

一、选择题

1.(2011全国)曲线y=e -2x +1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为( )

A

31 B 21 C 3

2

D 1 2.(2010课标全国)曲线2

+=x x

y 在点(-1,-1)处的切线方程为( )

A y=2x+1

B y=2x-1

C y=-2x-3

D y=-2x-2 3.(2012陕西)设函数f(x)=xe x ,则( )

A x=1为f(x)的极大值

B x=1为f(x)的极小值

C x=-1为f(x)的极大值

D x=-1为f(x)的极大值 4.(2008广东理)设R a ∈,若函数x e y ax

3+=,R x ∈有大于零的极值点,则( )

A .3->a B. 3-

>a D. 3

1-

5.(2008江西、山西、天津理科)函数3

31x x y -+=有( )

A 极小值-1,极大值1

B 极小值-2,极大值3

C 极小值-2,极大值2

D 极小值-1,极大值3

6.(2006湖南理科)设f(x)、g(x)分别是定义在R 上的奇函数和偶函数,当x <0时,

)()()()(x g x f x g x f '+'>0.且()03g =-,.则不等式f(x)g(x)<0的解集是( )

A ),3()0,3(+∞?-

B )3,0()0,3(?-

C )∞+,3(∪)3,∞(

D )3,0(∪)3,∞( 7. (2007海南、宁夏理)曲线1

2

e x y =在点2

(4e ),处的切线与坐标轴所围三角形的面积为( )

A.

29e 2

B.2

4e

C.2

2e D .2

e

8. (2008湖北理)若f(x)=2

1ln(2)2

x b x -

++∞在(-1,+)上是减函数,则b 的取值范围是( ) A.[-1,+∞] B.(-1,+∞)C.(]1,-∞- D.(-∞,-1)

9.(2005江西理科)已知函数)(x f x y '=的图像如右图所示(其中)(x f '是函数))(的导函数x f ,下面四个图象中

)(x f y =的图象大致是 ( )

A B C D (1) (2006江西、天津理科)右图中阴影部分的面积是( ) A 32 B 329- C

3

32

D 335

二、填空题:

的切线方程是

11.(2007湖北文)已知函数)(x f y =的图象在M (1,f (1))处

x y 2

1

=

+2,f(1)—f ’(1)=______________. 12.(2007湖南理)函数3

()12f x x x =-在区间[33]-,

上的最小值是 . 13.(2008全国Ⅱ卷理)设曲线ax

y e =在点(01),

处的切线与直线210x y ++=垂直,则a =

. 14.(2006湖北文)半径为r 的圆的面积S(r)=πr 2,周长C(r)=2πr ,若将r 看作(0,+∞)上的变量,则)r (2

'?π=2πr

1,○1式可以用语言叙述为: 对于半径为R 的球,若将R 看作(0,+∞)上的变量,请你写出类似于○1的式子: ○

2式可以用语言叙述为: . 三、解答题:

15.(2005重庆文)某工厂生产某种产品,已知该产品的月生产量x (吨)与每吨产品的价格p (元/吨)之间的关系式为:

21

242005

p x =-,且生产x 吨的成本为50000200R x =+(元)

。问该产每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入─成本)。

16.(2008重庆文)设函数32

()91(0).f x x ax x a =+--若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求:

(Ⅰ)a 的值; (Ⅱ)函数f (x )的单调区间.

17.(2008全国Ⅰ卷文、理)已知函数3

2

()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;

(Ⅱ)设函数()f x 在区间2133??-- ???

内是减函数,求a 的取值范围. 3.(2006浙江理)设曲线x e y x

(-=≥0)在点M (t, t -e )处的切线l 与x 轴y 轴所围成的三角形面积为S (t )。

(Ⅰ)求切线l 的方程;

(Ⅱ)求S (t )的最大值。

19.(2007海南、宁夏文)设函数2

()ln(23)f x x x =++ (Ⅰ)讨论()f x 的单调性;

(Ⅱ)求()f x 在区间3144

??-????

,的最大值和最小值.

20.(2007安徽理)设a ≥0,f (x )=x -1-ln 2 x +2a ln x (x >0). (Ⅰ)令F (x )=xf '(x ),讨论F (x )在(0.+∞)内的单调性并求极值; (Ⅱ)求证:当x >1时,恒有x >ln 2x -2a ln x +1.

【课后作业】

一、选择题

1.(2005全国卷Ⅰ文)函数93)(2

3

-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A 2

B 3

C 4

D 5

2.(2008海南、宁夏文)设()ln f x x x =,若0'()2f x =,则0x =( ) A 2

e

B e

C

ln 2

2

D ln 2

3.(2005广东)函数13)(2

3

+-=x x x f 是减函数的区间为( ) A ),2(+∞ B )2,(-∞ C )0,(-∞ D (0,2) 4.(2008安徽文)设函数1

()21(0),f x x x x

=+

-< 则()f x ( ) A 有最大值 B 有最小值 C 是增函数 D 是减函数 5.(2007福建文、理)已知对任意实数x 有f(-x)=-f(x),g(-x)=g(x),且x>0时,f’(x)>0,g’(x)>0,则x<0时( ) A f’(x)>0,g’(x)>0 B f’(x)>0,g’(x)<0

C f’(x)<0,g’(x)>0

D f’(x)<0,g’(x)<0

6.(2008全国Ⅱ卷文)设曲线2

ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( ) A 1

B

1

2

C 12

-

D 1-

7.(2006浙江文)3

2

()32f x x x =-+在区间[]1,1-上的最大值是( )

A -2

B 0

C 2

D 4 8.(

若函数f(x)=x 2+b x +c

f /(x)的图象是( )

9.(2005全国卷Ⅱ理科)函数y =x cos x -sin x 在下面哪个区间内是增函数( ) A (

2π,23π) B (π,2π) C (2

3π,25π

) D (2π,3π)

10. (2012重庆)设函数()f x 在R 上可导,其导函数为,

()f x ,且函数,

(1)()y x f x =-的图像如图所示,则下列结

论中一定成立的是

(A )函数()f x 有极大值(2)f 和极小值(1)f (B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f -

A x D C x B

(D )函数()f x 有极大值(2)f -和极小值(2)f 二、填空题:

11.(2007浙江文)曲线

32

242y x x x =--+在点(1,一3)处的切线方程是 . 12.(2006重庆文科)曲线3

x y =在点(1,1)处的切线与x 轴、直线2=x 所围成的三角形的

面积为 .

13.(2007江苏)已知函数3

()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则

M m -= .

14.(2008北京文)如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f (f (0))= ; 函数f (x )在x =1处的导数f ′(1)= . 三、解答题:

15.(2005北京理科、文科)已知函数f (x )= -x 3+3x 2+9x +a . (I )求f (x )的单调递减区间;

(II )若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值.

16.(2006安徽文)设函数()32()f x x bx cx x R =++∈,已知()()()g x f x f x '=-是奇函数。 (Ⅰ)求b 、c 的值。 (Ⅱ)求()g x 的单调区间与极值。

1. (2005福建文科)已知函数d x bx x x f +++=c )(2

3的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为076=+-y x .

(Ⅰ)求函数)(x f y =的解析式; (Ⅱ)求函数)(x f y =的单调区间.

18.(2007重庆文)用长为18 m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少? 19.(2008全国Ⅱ卷文) 设a ∈R ,函数2

3

3)(x ax x f -=. (Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;

(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,

,在0=x 处取得最大值,求a 的取值范围. 20.(2008湖北文) 已知函数3

2

2

()1f x x mx m x =+-+(m 为常数,且m >0)有极大值9. (Ⅰ)求m 的值; (Ⅱ)若斜率为-5的直线是曲线()y f x =的切线,求此直线方程.

【参考答案】

【课堂练习】 一、选择

1—10AADBD DDCCC (2) 填空

(1) 3 ; 12.16-; 13. 2 ; 14. 2

3R 4R 34ππ='

??

? ??,球的体积函数的导数等于球的表面积函数

三、解答题

15. 解:每月生产x 吨时的利润为)20050000()5

124200()(2

x x x x f +--

= ).

(200,2000240005

3)()

0(50000240005

1

212

3舍去解得由-===+-='≥-+-=x x x x f x x x

0)(200),0[)(='=+∞x f x x f 使内只有一个点在因,故它就是最大值点,且最大值为:

)(31500005000020024000)200(5

1

)200(3元=-?+-=f

答:每月生产200吨产品时利润达到最大,最大利润为315万元.

16. 解:(Ⅰ)因为2

2

()91f x x ax x =+--, 所2

()329f x x ax '=+-2

23()9.33

a a x =---

即当2

()9.33a a x f x '=---时,取得最小值因斜率最小的切线与126x y +=平行,即该切线的斜率为-12,所以

2

2912,9.3

a a --=-=即 解得3,0, 3.a a a =±<=-由题设所以

(Ⅱ)由(Ⅰ)知3

2

3,()391,a f x x x x =-=---因此

212()3693(3(1)()0,1, 3.

(,1)()0,()(1(1,3)()0,()13()0,()3.()(,13f x x x x x f x x x x f x f x x f x f x f x f x f x '=--=-+'==-='∈-∞->-∞-'∈-<-'∈∞>+∞-∞-+∞令解得:当时,故在,)上为增函数;当时,故在(,)上为减函数;当x (3,+)时,故在(,)上为增函数由此可见,函数的单调递增区间为)和(,);单调递减区13.

-间为(,)

17.解:(1)32()1f x x ax x =+++ 求导:2

()321f x x ax '=++

当2

3a

≤时,0?≤,()0f x '≥, ()f x 在R 上递增

当2

3a >,()0f x '=

求得两根为3

a x -±=

即()f x

在?-∞ ??递增

, ??

递减

,

?

+∞????

递增 (2)要使f(x)在在区间2

133??-- ???,

内是减函数,当且仅当,0)(<'x f 在2133??-- ???

,恒成立, 由)(x f '的图像可知,只需???

?

???≤??? ??-'≤??? ??-'0

31032f f ,即???????≤-≤-0323403437a a , 解得。a ≥2。所以,a 的取值范围[)+∞,2。

18.解:(Ⅰ)因为,)()(x x

e e

x f ---='=' 所以切线l 的斜率为,t --e 故切线l 的方程为).(t x e e y t t --=---即

0)1(=+-+--t e y x e t t 。

(Ⅱ)令y= 0得x=t+1, x=0得)1(+=-t e y t

所以S (t )=

)1()1(21+?+-t e t t =t

e t -+2)1(21从而).1)(1(2

1)(t t e t S t +-='- ∵当∈t (0,1)时,)(t S '>0, 当∈t (1,+∞)时,)(t S '<0,所以S(t)的最大值为S(1)=

e

2

。 19.解:()f x 的定义域为32??-+ ???

∞. (Ⅰ)224622(21)(1)

()2232323

x x x x f x x x x x ++++'=+==+++. 当312x -

<<-时,()0f x '>;当1

12

x -<<-时,()0f x '<;当12x >-时,()0f x '>.

从而,()f x 分别在区间3

12

??-- ???

,12

??-+ ???

,∞单调增加,在区间112??

-- ??

?

,单调减少. (Ⅱ)由(Ⅰ)知()f x 在区间3144??

-????,的最小值为11

ln 224f ??

-=+ ???

又31397131149ln ln ln 1ln 442162167226f f ????

??-

-=+--=+=- ? ? ?????

??0<.

所以()f x 在区间3144??

-????,的最大值为11

7

ln 4162f ??

=+ ???

. 20.(Ⅰ)解:根据求导法则得.0,2In 21)( x x

a

x x x f +-=' 故,0,2In 2)()( x a x x x xf x F +-='= 于是.0,2

21)( x x

x x x F -=-='

列表如下:

F (2)=2-2In2+2a . (Ⅱ)证明:由.022In 22)2()(0 a F x F a +-=≥的极小值知, 于是由上表知,对一切.0)()(),,0( x xf x F x '=+∞∈恒有 从而当.,0)(,0)(0)内单调增加在(故时,恒有+∞'x f x f x 所以当.0In 2In 1,0)1()(12

x a x x f x f x +--=即时, 故当.1In 2In 12

+-x a x x x 时,恒有 【课后作业】

一、选择

1-10 DBDAB ACABD 一、填空

11. 520x y +-=; 12.3

8

;13. 32;14. 2 , -2 .

三、解答题 15. 解:(I ) f ’(x )=-3x 2+6x +9.令f ‘(x )<0,解得x <-1或x >3, 所以函数f (x )的单调递减区间为(-∞,-1),(3,+∞).

(II )因为f (-2)=8+12-18+a =2+a ,f (2)=-8+12+18+a =22+a ,

所以f (2)>f (-2).因为在(-1,3)上f ‘(x )>0,所以f (x )在[-1, 2]上单调递增, 又由于f (x )在[-2,-1]上单调递减,

因此f (2)和f (-1)分别是f (x )在区间[-2,2]上的最大值和最小值,于是有 22+a =20,解得 a =-2. 故f (x )=-x 3+3x 2+9x -2,因此f (-1)=1+3-9-2=-7, 即函数f (x )在区间[-2,2]上的最小值为-7.

16.解(Ⅰ)∵()3

2

f x x bx cx =++,∴()2

32f x x bx c '=++。从而

322()()()(32)g x f x f x x bx cx x bx c '=-=++-++=32(3)(2)x b x c b x c +-+--是一个奇函数,所以(0)0g =得0c =,由奇函数定义得3b =;

(Ⅱ)由(Ⅰ)知3()6g x x x =-,从而2

()36g x x '=-,由此可知,

(,-∞和)+∞是函数()g x 是单调递增区间;(是函数()g x 是单调递减区间;

()g x 在x =,()g x 在x =-。

一、解:(Ⅰ)由3

2

()f x x bx cx d =+++的图象过点P (0,2),d=2知,所以 3

2

()2f x x bx cx =+++,f '(x)=3x 2+2bx+c,由在(-1,(-1))处的切线方程是6x-y+7=0,知-6-f(-1)+7=0,即f(-1)=1, f '(-1)=6,

∴326,121,b c b c -+=??

-+-+=?即0,

23,

b c b c -=??-=-?解得b=c=-3。故所求的解析式为f(x)=x 3-3x 2-3x+2,

(Ⅱ) f '(x)=3x 2-6x-3,令3x 2-6x-3=0即x 2-2x-1=0,解得x 12

当, f '(x)>0;当, f '(x)<0

∴f(x)=x 3-3x 2-3x+2在∞)内是增函数,在(-∞内是增函数,在内是减函数. 18.解:设长方体的宽为x (m ),则长为2x (m),高为??? ?

?

-=-=230(m)35.44

1218<<x x x

h .

故长方体的体积为).2

3

0()

(m 69)35.4(2)(3322<<x x x x x x V -=-=

从而).1(18)35.4(1818)(2x x x x x x V -=--='令V ′(x )=0,解得x =0(舍去)或x =1, 因此x =1.当0<x <1时,V ′(x )>0;当1<x <

3

2

时,V ′(x)<0, 故在x =1处V (x )取得极大值,并且这个极大值就是V (x )的最大值。 从而最大体积V =V ′(x )=9×12-6×13(m 3),此时长方体的长为2 m ,高为1.5 m. 答:当长方体的长为2 m 时,宽为1 m ,高为1.5 m 时,体积最大,最大体积为3 m 3。 19.解:(Ⅰ)2

()363(2)f x ax x x ax '=-=-.

因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点. (Ⅱ)由题设,x x a ax x g 6)1(3)(2

3

--+=.0)0(=g

当()g x 在区间[02],

上的最大值为(0)g 时,06)1(32

3

≤--+x x a ax 对一切(]2,0∈x 都成立, 即x x x a 3632++≤

对一切(]2,0∈x 都成立.令x

x x x 36

3)(2++=?,(]2,0∈x ,则[]min )(x a ?≤

由0)

3(6

)2(3)(2

22<+-+-='x x x x ?,可知x x x x 363)(2++=?在(]2,0∈x 上单调递减, 所以[]56)2()(min =

=??x , 故a 的取值范围是65?

?-∞ ??

?,

(2)当0≠a 时,抛物线6)1(3)(2

--+=x a ax x h 的对称轴为a

a x 2)

1(3--=, 当a<0时,02)

1(3<--

a

a ,有h(0)= -6<0, 所以h(x)在),0(+∞上单调递减,h(x) <0恒成立; 当a>0时,因为h(0)= -6<0,,所以要使h(x)≤0在(]2,0∈x 上恒成立,只需h(2) ≤0成立即可,解得a ≤5

6

;综上,a 的取值范围为65??-∞ ???

,.

20.解:(Ⅰ) f ’(x )=3x 2+2mx -m 2=(x +m )(3x -m )=0,则x =-m 或x =3

1m , 当x 变化时,f ’(x )与f (x )的变化情况如下表:

从而可知,当x =-m 时,函数f (x )取得极大值9,即f (-m )=-m

+m +m +1=9,∴m =2. (Ⅱ)由(Ⅰ)知,f (x )=x 3+2x 2-4x +1,

依题意知f ’(x )=3x 2+4x -4=-5,∴x =-1或x =-31. 又f (-1)=6,f (-31)=27

68, 所以切线方程为y -6=-5(x +1),或y -27

68=-5(x +31

),即5x +y -1=0,或135x +27y -23=0.

高三导数压轴题题型归纳

导数压轴题题型 1. 高考命题回顾 例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-1 0+m =0?m =1, 定义域为{x |x >-1},f ′(x )=e x -1 x +m = e x x +1-1 x +1 , 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x -1 x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1 x +22>0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -13 2 <0,g ′(0)=1-1 2>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-1 2,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1 t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1 t +2+t = 1+t 2 t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-(2012全国新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥ 2 2 1)(,求b a )1(+的最大值。 (1)121 1()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f =

导数题型总结(12种题型)

导数题型总结 1.导数的几何意义 2.导数四则运算构造新函数 3.利用导数研究函数单调性 4.利用导数研究函数极值和最值 5.①知零点个数求参数范围②含参数讨论零点个数 6.函数极值点偏移问题 7.导函数零点不可求问题 8.双变量的处理策略 9.不等式恒成立求参数范围 10.不等式证明策略 11.双量词的处理策略 12.绝对值与导数结合问题 导数专题一导数几何意义 一.知识点睛 导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。 二.方法点拨: 1.求切线 ①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导

数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0). ②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。 2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上 三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习 1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是 2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.3 3.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= 4.(2014江西)若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是 5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2 + x b (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=2 1e x 上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B. 2(1-ln2) C.1+ln2 D.2(1+ln2) 7.若存在过点(1,0)的直线与曲线y=x 3 和y=ax 2 + 4 15 x-9都相切,则a 等于 8.抛物线y=x 2 上的点到直线x-y-2=0的最短距离为 A. 2 B.8 27 C. 2 2 D. 1

高考数学 导数及其应用的典型例题

第二部分 导数、微分及其导数的应用 知识汇总 一、求导数方法 1.利用定义求导数 2.导数的四则运算法则 3.复合函数的求导法则 若)(u f y =与)(x u φ=均可导,则[])(x f y φ=也可导,且dx du du dy dx dy ? = 即 [])()(x x f y φφ'?'=' 4.反函数的求导法则 若)(x f y =与)(y x φ=互为反函数,且)(y φ单调、可导,则 )(1)(y x f φ'= ',即dy dx dx dy 1 = 5.隐函数求导法 求由方程0),(=y x F 确定的隐函数 )(x f y =的导数dx dy 。只需将方程0),(=y x F 两边同时对x 求导(注意其中变量y 是x 的函数),然后解出 dx dy 即可。 6.对数求导法 对数求导法是先取对数,然后按隐函数求导数的方法来求导数。对数求导法主要解决两类函数的求导数问题: (1)幂指数函数y=)()(x v x u ;(2)由若干个因子的乘积或商的显函数,如 y= 3 4 )3(52)2)(1(---++x x x x x ,3 ) 2)(53() 32)(1(--+-=x x x x y ,5 5 2 2 5 +-=x x y 等等。 7.由参数方程所确定函数的求导法则 设由参数方程 ? ? ?==)() (t y t x ?φ ),(βα∈t 确定的函数为y=f(x),其中)(),(t t ?φ

可导,且)(t φ'≠0,则y=f(x)可导,且 dt dx dt dy t t dx dy =''=)()(φ? 8.求高阶导数的方法 二、求导数公式 1.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 2.常见函数的高阶导数 (1) n n x n x -+-?-?-?=αα αααα)1()2()1()() ( (2) x n x e e =) () ( (3) ()()ln x n x n a a a = (4) () (sin ) sin 2n x x n π? ?=+? ??? (5) ??? ? ??+=2cos )(cos )(πn x x n (6) () 1 (1)!ln()(1) ()n n n n a x a x --+=-+ (7) 1 )() (!)1()1(++-=+n n n n b ax a n b ax

导数经典专题整理版

导数在研究函数中的应用 知识点一、导数的几何意义 函数()y f x =在0x x =处导数()0f x '是曲线()y f x =在点()()00,P x f x 处切线的 ,即_______________;相应地,曲线()y f x =在点()()00,P x f x 处的切线方程是 例1.(1)曲线x e x y +=sin 在点)1,0(处的切线方程为( ) A.033=+-y x B.022=+-y x C.012=+-y x D.013=+-y x (2)若曲线x x y ln =上点P 处的切线平行于直线012=+-y x ,则点P 的坐标是( ) A.),(e e B.)2ln 2,2( C.)0,1( D.),0(e 【变式】 (1)曲线21x y xe x =++在点)1,0(处的切线方程为( ) A.13+=x y B.12+=x y C.13-=x y D.12-=x y (2)若曲线x ax y ln 2-=在点),1(a 处的切线平行于x 轴,则a 的值为( ) A.1 B.2 C.21 D.2 1- 知识点二、导数与函数的单调性 (1)如果函数)(x f y =在定义域内的某个区间(,)a b 内,使得'()0f x >,那么函数()y f x =在这个区间内为 且该区间为函数)(x f 的单调_______区间; (2)如果函数)(x f y =在定义域内的某个区间(,)a b 内,使得'()0f x <,那么函数()y f x =在这个区间内为 ,且该区间为函数)(x f 的单调_______区间.

例1.(1)函数x e x x f )3()(2-=的单调递增区间为( ) A.)0,(-∞ B.),0(+∞ C.)1,3(- D.),1()3,(+∞--∞和 (2)函数x x y ln 2 12-=的单调递减区间为( ) A.(]1,1- B.(]1,0 C.[)+∞,1 D.),0(+∞ 例2.求下列函数的单调区间,并画出函数)(x f y =的大致图像. (1)3)(x x f = (2)x x x f 3)(3+= (3)1331)(23+--=x x x x f (4)x x x x f 33 1)(23++-= 知识点三、导数与函数的极值 函数)(x f y =在定义域内的某个区间(,)a b 内,若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数)(x f '异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的 ,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是 (熟练掌握求函数极值的步骤以及一些注意点) 例1.(1)求函数133 1)(23+--=x x x x f 的极值 (2)求函数x x x f ln 2)(2-=的极值

高考导数压轴题型归类总结

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母范围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母范围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.

一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x . 所以当33= x 时,)(x g 有最小值9 32)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 11222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值范围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a ' =; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

高考导数压轴题型归类总结材料

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>. 一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x .

所以当33= x 时,)(x g 有最小值9 3 2)33(- =g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 1 1222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令 以下分两种情况讨论: ①a 若> 3 2 ,则a 2-<2-a .当x 变化时,)()('x f x f ,的变化情况如下表: )(所以x f .3)2()2(2)(2a ae a f a f a x x f -=---=,且处取得极大值在函数 .)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极小值在函数 ②a 若<3 2 ,则a 2->2-a ,当x 变化时,)()('x f x f ,的变化情况如下表: 所以)(x f .)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极大值在函数

高二数学导数及其应用练习题及答案

(数学选修1-1)第一章 导数及其应用 [提高训练C 组]及答案 一、选择题 1.若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 2.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( ) 3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(- 4.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C. (0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +> 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点( A .1个 B .2个 C .3个 D .4个 二、填空题 1.若函数()()2 f x x x c =-在2x =处有极大值,则常数c 的值为_________;

2.函数x x y sin 2+=的单调增区间为 。 3.设函数())(0)f x ??π=+<<,若()()f x f x '+为奇函数,则?=__________ 4.设3 2 1()252 f x x x x =- -+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。 5.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则 数列1n a n ?? ? ?+?? 的前n 项和的公式是 三、解答题 1.求函数3(1cos 2)y x =+的导数。 2.求函数y = 3.已知函数3 2 ()f x x ax bx c =+++在2 3 x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间 (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。 4.已知23()log x ax b f x x ++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列 两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由. (数学选修1-1)第一章 导数及其应用 [提高训练C 组] 一、选择题 1.A ' ' ()sin ,()sin f x x f αα==

高中数学导数典型例题精讲

高中数学导数典型例题 精讲 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

导数经典例题精讲 导数知识点 导数是一种特殊的极限 几个常用极限:(1)1 lim 0n n →∞=,lim 0n n a →∞=(||1a <);(2)0 0lim x x x x →=,00 11lim x x x x →=. 两个重要的极限 :(1)0sin lim 1x x x →=;(2)1lim 1x x e x →∞?? += ??? (e=…). 函数极限的四则运算法则:若0 lim ()x x f x a →=,0 lim ()x x g x b →=,则 (1)()()0 lim x x f x g x a b →±=±????;(2)()()0 lim x x f x g x a b →?=?????;(3)()()()0 lim 0x x f x a b g x b →=≠. 数列极限的四则运算法则:若lim ,lim n n n n a a b b →∞→∞ ==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞ ?=?(3)()lim 0n n n a a b b b →∞=≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞?=?=?( c 是常数) )(x f 在0x 处的导数(或变化率或微商) 000000()()()lim lim x x x x f x x f x y f x y x x =?→?→+?-?''===??. .瞬时速度:00()() ()lim lim t t s s t t s t s t t t υ?→?→?+?-'===??. 瞬时加速度:00()() ()lim lim t t v v t t v t a v t t t ?→?→?+?-'===??. )(x f 在),(b a 的导数:()dy df f x y dx dx ''===00()() lim lim x x y f x x f x x x ?→?→?+?-==??. 函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 几种常见函数的导数 (1) 0='C (C 为常数).(2) '1()()n n x nx n Q -=∈.(3) x x cos )(sin ='.x x sin )(cos -=' (4) x x 1)(ln =';e a x x a log 1)(log ='. (5) x x e e =')(; a a a x x ln )(='. 导数的运算法则 (1)' ' ' ()u v u v ±=±.(2)' ' ' ()uv u v uv =+.(3)'' '2 ()(0)u u v uv v v v -=≠. 复合函数的求导法则 设函数()u x ?=在点x 处有导数''()x u x ?=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ?=在点x 处有导数,且'''x u x y y u =?,或写作'''(())()()x f x f u x ??=. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.

导数各类题型方法总结(含答案)

导数各种题型方法总结 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0) 0302(3) 09330g m g m <-??<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)023011(2)0230F x x x F x x ?->--+>?????-<-+>??? 2b a ∴-=

导数典型例题.doc

导数典型例题 导数作为考试内容的考查力度逐年增大 .考点涉及到了导数的所有内容,如导数的定 义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等, 考查的题型有客观题(选择题、填空题) 、主观题(解答题)、考查的形式具有综合性和多 样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考 查成为新的热点. 一、与导数概念有关的问题 【例1】函数f(x)=x(x-1) (x-2)…(x-100)在x= 0处的导数值为 2 A.0 B.100 C.200 D.100 ! 解法一 “(0、_ .. f (° tx) _f(o) .. .-xC-x-DO-2V'^-100)-0 解法 f (0)_叽 L _叽 - _ ||m (A x-1)( △ x-2)…(△ x-100)_ (-1) (-2)-( - 100) =100 ! ???选 D. .x _0 解法二 设 f(x)_a 101x 101 + a 100X 100+ …+ a 1X+a 0,则 f z (0)_ 而 a 1_ (-1)(-2 ) - (- 100) _100 ! . ???选 D. 点评解法一是应用导数的定义直接求解, 函数在某点的导数就是函数在这点平均变化 率的极限.解法二是根据导数的四则运算求导法则使问题获解 111 【例2】已知函数f(x)_ c ; c ^x ? — C ;X 2亠■亠— C ;X k 亠■亠一

高考数学导数与三角函数压轴题综合归纳总结教师版0001

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题, 内容主要包 括函数零点个数的确定、 根据函数零点个数求参数范围、 隐零点问题及零点存在 性赋值理论 .其形式逐渐多样化、综合化 . 、零点存在定理 例1【. 2019全国Ⅰ理 20】函数 f(x) sinx ln(1 x),f (x)为f (x)的导数.证明: 1) f (x)在区间 ( 1, 2 )存在唯一极大值点; 2) f (x) 有且仅有 2 个零点. 可得 g'(x)在 1, 有唯一零点 ,设为 2 则当x 1, 时,g x 0;当 x ,2 时,g'(x) 0. 所以 g(x) 在 1, 单调递增,在 , 单调递减 ,故g(x) 在 2 值点 ,即 f x 在 1, 存在唯一极大值点 . 2 (2) f x 的定义域为 ( 1, ). (i )由( 1)知, f x 在 1,0 单调递增 ,而 f 0 0,所以当 x ( 1,0)时, f'(x) 0,故 f x 在 ( 1,0)单调递减 ,又 f (0)=0 ,从而 x 0是 f x 在( 1,0] 的唯 一零点 . 【解析】( 1)设 g x f x ,则 g x 当x 1, 时, g'(x)单调递减,而 g 2 1 1 sinx 2 1 x 2 cosx ,g x 1x 0 0,g 0, 2 1, 存在唯一极大 2

, 时, f '(x) 0.故 f (x) 在(0, )单调递增,在 , 单调递 22 3 变式训练 1】【2020·天津南开中学月考】已知函数 f (x) axsin x 2(a R), 且 在, 0, 2 上的最大值为 (1)求函数 f(x)的解析式; (2)判断函数 f(x)在( 0,π)内的零点个数,并加以证明 【解析】 (1)由已知得 f(x) a(sin x xcosx) 对于任意的 x ∈(0, ), 3 有 sinx xcosx 0,当 a=0 时,f(x)=- ,不合题意; 2 当 a<0时,x ∈(0,2 ),f ′(x)从<0而, f(x)在(0, 2 )单调递减, 3 又函数 f(x) ax sin x 2 (a ∈ R 在) [0, 2 ]上图象是连续不断的, 故函数在 [0, 2] 上的最大值为 f(0) ,不合题意; 当 a>0时,x ∈(0, 2),f ′(x)从>0而, f(x)在(0, 2 )单调递增, 3 又函数 f(x) ax sin x (a ∈R 在) [0, ]上图象是连续不断的, 33 故函数在[0, 2 ]上上的最大值为 f( 2)=2a- 23= 23,解得 a=1, 3 综上所述 ,得 f(x) xsinx 3(a R),; (2)函数 f(x) 在(0, π内)有且仅有两个零点。证明如下: 从而 f x 在 0, 没有零点 . 2 ( iii ) 当 x , 时 , f x 0 , 所 以 f x 在 单调递减.而 2 2 f 0, f 0 ,所以 f x 在, 有唯一零点 . 2 2 ( iv )当 x ( , ) 时,ln x 1 1,所以 f (x) <0,从而 f x 在( , ) 没有零点 . 减.又 f (0)=0 , f 1 ln 1 22 0 ,所以当x 0,2 时,f(x) 0. 综上, f x 有且仅有 2个零点. ii )当 x 0,2 时,由(1)知,f'(x)在(0, )单调递增 ,在 单调递减 ,而 f ' (0)=0 2 0 ,所以存在 ,2 ,使得 f'( ) 0,且当x (0, ) 时, f'(x) 0 ;当 x

导数大题方法总结

导数大题方法总结 一总论 一般来说,导数的大题有两到三问。每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。 二主流题型及其方法 *(1)求函数中某参数的值或给定参数的值求导数或切线 一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x = k时取得极值,试求所给函数中参数的值;或者是f(x)在(a , f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是: 先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x = k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。 注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。所以做两个字来概括这一类型题的方法就是:淡定。别人送分,就不要客气。③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。切线要写成一般式。 *(2)求函数的单调性或单调区间以及极值点和最值 一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。这类问题的方法是: 首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。 极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。 最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。 注意:①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。没有注意定义域问题很严重。②分类要准,不要慌张。③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下

相关文档
最新文档