纳米金刚石抛光液的制备与应用

纳米金刚石抛光液的制备与应用
纳米金刚石抛光液的制备与应用

纳米金刚石抛光液的制备与应用

来源:中国粉末冶金网2008-10-22

纳米金刚石兼具金刚石和纳米颗粒的双重特性,具有超硬特性、高比表面积以及球形等特点,用这种金刚石粉制成的研磨液,可以抛光出光洁度极高的表。

由于纳米金刚石的比表面积大、比表面能高,处于热力学不稳定状态,所以在介质中分散稳定性差,容易发生团聚,使其在应用过程中受到严重制约。

纳米金刚石抛光液制备的关键技术是纳米金刚石在介质中的长期稳定分散。这是一道共同的世界性技术难题,因为广大的科技工作者对其应用前景十分看好,所以,在过去的年月里有许许多多的探索者,投身到了解决这一技术难题的工作中,并做了大量有益的工作,获得了许多有实用价值的技术数据。本文将就纳米金刚石的分散与纳米金刚石抛光液的应用进行综述。

1、分散问题的提出

纳米金刚石是在爆轰这种极端非平衡条件下合成的,容易形成硬的难以解聚的团聚体,商业纳米金刚石干粉团聚粒度平均达2μm。

表面活性剂的作用是可以改变纳米金刚石部分的官能团构成及电性,改变其在悬浮液中的分散效果。

纳米金刚石颗粒表面的大量原子悬空键使其化学活性大大提高;非常大的表面积,使其有巨大的表面能。但是,减少比表面积,减少表面能而发生纳米颗粒的团聚是一个自发过程,所以说,纳米颗粒团聚是不可避免的。

在纳米颗粒分散后,还要及时采取措施阻止纳米颗粒再次发生团聚,加入表面活性剂能够增大颗粒之间的距离,减少范德华力的相互作用,从而稳定整个分散体系。

纳米金刚石表面含有大量有机官能团,主要为: OH(羟基)、C=O(羰基)、COOH(羧基)以及一些含氮的基团,所占面积可达颗粒表面的10%~25%。这些含氧活性基团和含氮活性物质可与许多有机化合物反应或吸附,为纳米金刚石在油或水介质中的分散提供了基础。

纳米金刚石进行分散处理,是因为超细粉体制备过程中新生粒子的分散与团聚对最终产品的细度起至关重要的作用。由于超细粉体极易团聚,团聚后的超细粉体将失去其自身的许多优越性,使其效能无法充分发挥,而严重制约超细粉体的使用价值和应用前景。

2、团聚问题的解决

纳米粒子的分散就是将纳米粒子的团聚体分离成单个纳米粒子或者为数目不多的纳米粒子的小团聚体,使其均匀分布于有机介质的过程,这是一个复杂的

难度较大的工艺操作,当把纳米粒子浸入有机介质时,因纳米粒子表面能大,很容易产生浸湿,如果纳米粒子因浸湿而使其表面构成有机膜或双电层或者形成聚合物吸附层,都会对纳米粒子的初步分散产生积极效应,但是对纳米粒子的深度分散则应考虑纳米粒子的分散与团聚的平衡性。

纳米粒子的巨大比表面的吸附是纳米粒子易团聚的内在因素,要想得到分散性好,粒径小,粒径分布窄的纳米粒子,必须削弱或减小纳米粒子巨大的表面吸附作用,可采取适当的方法对纳米粒子进行化学改性或化学修饰,使纳米粒子间的排斥作用增强。研究发现,通过含氧高分子分散剂在纳米金刚石表面的吸附,产生并强化立体保护作用,来增强纳米金刚石的排斥作用,能有效阻止纳米金刚石的重新聚集。

纳米金刚石的分散技术一般分物理分散和化学分散。

物理分散又可分为超声分散、机械搅拌分散和机械研磨分散。

化学分散又可分为化学改性分散和分散剂分散。

抛光液的分散过程就是使纳米金刚石聚集体在抛光液中呈原始单体状态弥散分布于液相的过程。分散过程主要包括两个步骤:一是颗粒在液相中的浸湿;二是使原生颗粒稳定分散而不产生团聚或使已形成的团聚破解成较小的团聚或原始单体颗粒。

需要特别提及的是表面活性剂对纳米颗粒的分散作用问题。

第一、固体粒子的润湿。

润湿是固体粒子分散的最基本条件,若要把固体粒子均匀地分布在介质中,首先必须使每个固体微粒或粒子团,能被介质充分地润湿。在此过程中,表面活性剂所起的作用有两个,一是表面活性剂在介质表面的定向吸附(介质若为水),表面活性剂会以亲水基伸入水相,疏水基朝向气相而定向排列,使气液表面能降低。另一种作用是在固-液界面以疏水链吸附于固体粒子表面而亲水基伸入水相的定向排列。

第二、粒子团的分散或破碎。

在此过程中,粒子团的分散或破碎涉及到粒子团内部的固-固界面分离,在固体粒子团中往往存在酸缝隙,另外粒子晶体由于应力作用也会使晶体造成微缝隙,粒子团的破碎就发生在这些地方。在固体表面电势不是很强的条件下,阴离子表面活性剂可通过范德瓦尔斯相吸力克服静电排斥力或通过镶嵌方式被吸附于缝隙的表面,表面因带同种电荷使排斥力增强,以及渗透水产生渗透压共同作用,使微粒间绞结强度下降,减少了固体粒子或粒子团破裂并逐步分散在液体介质中。

非离子表面活性剂是通过范德瓦尔斯力被吸附于缝隙壁上,非离子表面活性

剂的存在不能使之产生电排斥力,但能产生熵斥力及渗透水化力,使粒子团中微裂缝隙间的绞结强度下降,有利于粒子团破裂。

阳离子表面活性剂可以通过静电吸引力吸附于缝隙壁上,但吸附状态不同于阴离子表面活性剂和非离子表面活性剂。

第三,阻止固体微粒的重新聚集。

固体微粒一旦分散在液体中,得到的是一个均匀的分散体系,但稳定与否则取决于各自分散的固体颗粒能否重新聚集形成凝聚物。由于表面活性剂吸附在固体微粒的表面上,增加了防止微粒重新聚集的能障,并且所添加的表面活性剂降低了固-液界面的界面张力,因此,增加了分散体系的热力学稳定性。

3、研究的成果

欧美俄等国开展纳米金刚石研究较早,在纳米金刚石抛光液的制备方面也走在了前列。美国、英国、德国、日本等国家具备了纳米金刚石抛光液的生产能力,美国Engis公司是世界上最著名的抛光产品供应企业,美国All公司可以提供水性以及油性抛光液,日本企业可以提供抛光液、抛光膏等各类抛光产品。国内在抛光液制备领域的研究刚起步,技术水平与国外相比还有一定的差距。

Chiganova用饱和AlCl3水溶液加热处理纳米金刚石粉,制得的悬浮液中纳米金刚石的二次粒度为上百个纳米。

Agibalova L.V等在水中通过超声能量分散纳米金刚石粉,所得悬浮液中团聚体的粒度在300nm左右。

陈万鹏等曾尝试用水+磷酸钠、乙醇、明胶水溶液+碳酸钠等介质对纳米金刚石进行分散研究。

许向阳等在机械力作用的同时,加入无机电解质、表面活性剂等物质使纳米金刚石粉可以稳定分散于水介质中。

于雁武等对纳米金刚石在水中分散做了有益尝试。

E.D.Eidelman等制备了一种黑色、高粘度、稳定的纳米金刚石悬浮液,浓度为0.2%。他们研究了悬浮液中粒子的结构、光吸收性能以及悬浮液的粘度。

徐康等提出了一个石墨化-氧化法对纳米金刚石进行解团聚,取得了有益的效果。他们用碘氢酸处理经过石墨化-氧化的产物,使90%以纳米金刚石团聚体尺寸减少到30nm以下。

许向阳对纳米金刚石在水介质中的稳定分散工艺及其机理进行了探索,认为采用机械化学处理对全金刚石进行表面改性,利用高剪切搅拌、高能超声振动磨等机械力与聚合物表面活性剂的协同效应,在有效地粉碎纳米金刚石团聚体的同时,对纳米金刚石表面尤其是粉碎过程中新生的表面进行改性,调节颗粒表面亲

水疏水性能,实现纳米金刚石在介质中的稳定分散。

张栋使用硅烷偶联剂KH-570和高聚物JQ-3表面改性过的纳米金刚石,以超声作为分散手段,将其分散在乙醇中,得到了平均粒径51.7nm的胶体溶液。两种高聚物分散剂复配使用,可以明显提高纳米金刚石在乙醇中的分散性和稳定性,为油性抛光液的制备奠定了基础。

许向阳等和胡志孟等分别研究了纳米金刚石团聚体在白油介质中的解聚与分散方法。他们认为聚氧乙烯类非离子表面活性剂能够有效地把纳米金刚石分散于油中,分散剂的端基能牢固锚固在金刚石表面的活性基,如羟基和羧基或含氮活性物质上,使纳米金刚石表面亲油,而聚氧乙烯基是一个庞大的亲水基团,它像一个巨大的屏障膜,使纳米金刚石颗粒难重新团聚,从而实现了纳米金刚石在油性介质中的稳定分散。他们的结论是纳米金刚石可用作超精加工中的抛光材料,能大大降低表面粗糙度;纳米金刚石用作抛光材料,关键技术是使用分散剂,这种分散剂能使纳米金刚石在油中能很好分散并悬浮;在磁头抛光中,这种分散剂最好具有抗静电作用以消除加工中的静电荷。

A.P.Voznyakovskii等采用将纳米金刚石表面甲硅基化的方法对纳米金刚石进行表面疏水化处理,清除纳米金刚石表面吸附的水分子,增强其表面疏水性。该研究采用含过量三甲基甲硅基混合物,含不足量的甲硅基混合物以及含乙烯组分的甲硅基混合物等3种体系在甲苯中对纳米金刚石表面进行改性。结果表明,采用三甲基或二甲基乙烯基甲硅基基团,伪纳米金刚石在甲苯体系中分散性能较好(平均粒径为14.5~18nm)。

A.P.Voznyakovskii等还对几种非水介质如丙酮、苯、丙醇中纳米金刚石的分散性进行了研究。他们认为,介质极性对悬浮液中纳米金刚石颗粒的稳定性及其粒度分布均有重要影响。对于不同介质,极性越低,则置于其中的纳米金刚石颗粒分散性越低。同时,在介质调整组合时,往较小极性的介质中(如丙酮)添加较大极性物质,将导致纳米金刚石在悬浮液中的分散性得到改善。可见,在非水介质尤其是非极性介质中的分散是实际应用中的一个难点,如何对纳米金刚石改性和调整介质组成,实现粉体在这些体系中的稳定分散值得深入研究。Voznyakovskii等研究了在苯介质中采用二甲基硅氧烷和聚异戊二烯等聚合物对纳米金刚石进行表面改性的效果,所得体系中纳米金刚石颗粒平均尺寸为

300nm左右,可稳定存放10天。

许向阳等对纳米金刚石在水介质和非水介质中的稳定分散进行研究时发现,如果只采用机械方法对纳米金刚石团聚体进行解聚,悬浮体系的稳定性不好,颗粒很容易重新聚集,仅采用化学方法,则无法解开纳米金刚石硬团聚体。他们认为,采用机械化学方法,利用机械力的作用与表面活性剂和超分散剂的协同作用,在高能有效地粉碎纳米金刚石团聚体的同时,对纳米金刚石表面尤其是粉碎过程中新生成的表面进行修饰,改变其表面官能团组成,调节其亲水疏水性能,从而实现纳米金刚石在介质中的稳定分散。研发出的纳米金刚石水体系机白油基、液体石蜡基以及正构烷羟体系均能保持长期稳定。在白油体系中,纳米金刚石与聚合物分散剂配比不同时,机械化学改性所得体系中纳米金刚石颗粒的累计分布曲线不同。当分散剂与纳米金刚石重量比为1:1时解团聚效果最佳,体系小于50nm

颗粒占92%以上,继续增加分散剂用量,粒度有增粗的现象。这说明,分散剂过量时,可能导致部分已经解团聚的颗粒重新聚集,分散性变差。

由于能源和环境问题日益突出,水基润滑剂是未来摩擦学发展的方向。纳米材料的出现为研制高性能的水基润滑剂提供了可能。纳米金刚石是一种无污染的新型碳材料,用于制备无污染纳米级水基润滑剂十分理想。胡志孟认为,纳米金刚石大都作为润滑油添加剂,而作为水润滑添加剂尚未见报道,水基润滑剂清洁而无污染,因此,开发纳米水基润滑剂,强调能源和环境的时代意义尤为重大。通过实验得出,水基纳米金刚石的润滑机制可能是纳米金刚石微球填充于磨损表面起滚球轴承效应,在边界润滑时会形成一层超硬合金薄膜,由于这种膜的存在,避免了摩擦副的直接接触,从而减少了摩擦副的摩擦磨损;同时纳米金刚石在摩擦过程中的抛光作用可提高表面光洁度,超光的表面也有益于降低摩擦副材料的摩擦磨损。

4、初步应用

纳米金刚石抛光液以其优异的性能广泛应用于半导体硅片抛光、计算机硬盘基片、计算机磁头抛光、精密陶瓷、人造晶体、硬质合金、宝石抛光等领域。

T.Kurobe将水基纳米金刚石应用于硅片抛光,用海藻酸钠、羧甲基纤维素钠、表面活性剂以及去离子水配制抛光液,制备了悬浮稳定的抛光液。T.Kurobe 对超分散纳米金刚石抛光硅片进行了研究,并对干法抛光和抛光液湿法抛光进行了对比,干法抛光液使硅片表面粗糙度Ra从107nm降到4nm。使用水基纳米金刚石抛光液进行湿法抛光,抛光效率更高,并且得到硅片的表面粗糙度更小,达到4nm。

朱永伟等开发出了一种水基纳米金刚石抛光液及其制造方法,通过向离子水中加入纳米金刚石、改性剂、分散剂、超分散剂、pH调节剂、润湿剂、具有化学作用的添加剂,通过超声或搅拌将纳米金刚石分散成20~100nm的小团聚体,制成抛光液,用于各种光电子晶体、计算机硬盘基片、光学元器件及铜连接的半导体集成电路等的超精密抛光,用于硅片抛光,表面粗糙度达到0.214nm。

马红波等提出了一种用于存储器硬盘磁头背面研磨的研磨液的制造方法,组分包括十到十三个碳的烷羟矿物油,十五个碳的油性剂、金刚石单晶微粉、抗氧化防腐剂、非离子表面活性剂、消泡剂和抗静电剂,将该抛光剂用于磁头背面抛光,研磨后表面划痕、表面残余应力、表面粗糙度为0.3~0.4nm。

雒建斌等公开了纳米抛光液及其制造方法的发明专利,以轻质量白油为介质,加入非离子表面活性剂、抗静电剂、净洗剂以及pH调节剂制备了稳定性较好的纳米金刚石抛光液,除了应用于计算机磁头之外,还可以应用于光学器件和陶瓷等高精度表面研磨和抛光之用。

为避免划伤磁盘表面,硬盘磁头的表面粗糙度必须足够小,下一代磁头表面的粗糙度要求小于0.2nm,目前,磁头采用亚微米级合金刚石抛光液抛光,已不能满足下一代磁头加工的要求。为此,龚艳玲等对中等粒度纳米金刚石悬浮液用

于磁头抛光工艺进行了研究,结果表明,纳米金刚石颗粒越细,抛光表面粗糙度越小,但是二者并不构成简单的线性关系;悬浮液的分散稳定性很大程度上影响了表面划痕,抛光液的稳定分散是重要的。

Ronald F制备了一种水性纳米金刚石抛光液,通过三乙醇胺调节pH值后,用来抛光氧化铝工件,这种抛光液使得被加工工件表面更容易清洗。

5、结语与展望

(1)在非水体系,特别是在非极性介质中实现纳米金刚石均匀稳定的分散是开展纳米金刚石在上述领域的应用,发挥其纳米颗粒和超硬特性等优异性能的前提。

(2)纳米金刚石抛光液分为水性和油性的抛光液。由于水性抛光液具有绿色、环保的特点,而且在抛光过程中具有散热快的优点,适用于高速抛光。

(3)无论是水性还是油性抛光液,制备的关键都是纳米金刚石在介质中的长期、稳定分散。

(4)纳米金刚石表面吸附含有氧活性基团、羟基、羰基、羧基、醚基等,这些含氧活性基团和含氮活性基团物质与许多有机化合物反应或吸附,这些表面基团的存在,为纳米金刚石在介质中的分散提供了可能。

(5)纳米金刚石的分散技术采用机械研磨+物理分散(超声分散并辅助机械搅拌分散)+化学分散三者有机结合成功将纳米金刚石分散于油性或水性介质中,制得分散稳定的纳米金刚石抛光液。

作者:王光祖崔仲呜

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

纳米金刚石的提纯工艺已经非常的成熟

1. 前言 自从1982年前苏联科学家采用爆轰法合成纳米金刚石以来,由于纳米超细金刚石(Ultra-fine Diamond,简称UFD)具有其他纳米固体粒子所不具备的高硬度﹑高的导热性﹑高的耐磨性﹑极佳的化学稳定性,所以纳米金刚石方面的研究一直是当前的研究热点。 目前对纳米金刚石的提纯工艺已经非常的成熟,通过液相氧化法和气相氧化法的纯化处理可以得到纯度超过95%以上的超细金刚石粉[1-2]。但在实际应用中并没有得到大量的应用,这主要是因为纳米金刚石具有很高的比表面能,处于一种热力学不稳定状态,在爆轰金刚石的合成和后处理的过程中都容易形成团聚体。在制备悬浮液体系中,纳米金刚石的团聚也很严重,会发生明显的絮凝和沉降。所以纳米金刚石的解团聚及其在不同介质中的分散是一个技术的瓶颈。 对于这一技术难题,国内外的很多研究人员做了大量的工作,得出了非常有益的经验。本文将从纳米金刚石悬浮液的分散原理和制备方法两个方面进行综述。 2. 悬浮液的分散原理 超细粉体在液相中的分散包括三个阶段:1颗粒在液相中的润湿过程;2团聚体在外力的作用下被打散,形成单个的小颗粒或很小的团聚体的过程;3单个颗粒或小团聚体的分散稳定,防止再次的团聚沉降。 悬浮液颗粒分散的两个基本原则[3]: 1润湿原则就是颗粒必须被液体介质润湿,从而能很好的浸没在液体介质中。选择分散介质的基本原则是粉体颗粒易于在非极性分散介质中分散,极性粉体颗粒易于在极性分散介质中分散,即所谓的极性相同原则。 Voznyakovskii A P等[4]认为介质的极性对纳米金刚石颗粒的悬浮的稳定性和介质中的粒度分布都有很大的影响,在不同的介质中,如果介质的极性越小,则悬浮液中的颗粒的分散性就越差。同时,在介质的调整组时,向较小极性的介质中添加较大极性的物质,将有利于纳米金刚石在介质中的稳定分散 2表面张力原则就是颗粒之间的总表面力必须是一个较大的正值,从而使颗粒之间的相互排斥力足够强从而防止颗粒相互接触而团聚沉降。 3. 纳米金刚石的分散技术 爆轰的纳米金刚石的化学成分除了碳,还包含大量的其他原子,一般纳米金刚石的组成元素主要有85%左右的碳﹑10%左右的氧﹑1%左右的氢﹑2%左右的氮以及其他元素,而金刚石表面的官能团主要为羧

金刚石材料的功能特性研究与应用

陶瓷专题 金刚石材料的功能特性研究与应用 高 凯,李志宏 (天津大学材料科学与工程学院,天津 300072) Study and Application on Functional Properties of Diamond Materials GAO Kai,LI Zhi hong (S chool of M ater ial S cience and Engineer ing,T ianj in Univer sity,T ianj in300072,China) Abstract:Functional properties of diamo nd mater ials and its study and application recent years on w ide bandg ap semiconducto rs,ultraviolet detectors,sing le pho to n source for quantum computer,so nic surface diffusion and electronic encapsulatio n w ere reviewed in this paper,and other po tential application on func tional proper ties of the diamond materials w ere expected. Key words:Diamo nd,Functional proper ty,Study,Application 摘要:本文综述了金刚石的功能特性及其近年来在宽禁带半导体、紫外探测器、量子计算机用单光子源、声波材料和电子封装等方面的研究与应用进展,并对金刚石材料在其它功能特性方面的开发与应用前景提出了展望。 关键词:金刚石;功能特性;研究;应用 中图分类号:TB33 文献标识码:A 文章编号:1002-8935(2010)04-0009-05 金刚石是目前工业化生产的最硬材料,其前通常利用其硬度特性广泛地作为加工、研磨材料。但它除了具有高硬度之外,其许多优异特性被逐渐发现和挖掘,如室温下高热导率、极低的热膨胀系数、低的摩擦系数、良好的化学稳定性、大的禁带宽度(5 5eV)、高的声传播速度、掺杂诱导的半导体特性以及高的光学透过率,使其在机械加工、微电子器件、光学窗口及表面涂层等许多领域有着广阔的应用前景。因此,金刚石材料的功能特性研究与应用引起了人们极大的兴趣,并在很多领域取得了突破和进展。 1 在宽禁带半导体方面的研究与应用 金刚石作为一种宽禁带半导体,在光电子学中的应用前景无疑是最引人注目的。但是由于n型金刚石半导体掺杂存在着一定的困难,使制备同质结的困难加大,目前领先的依然是麻省理工学院有关于金刚石薄膜p n结的研究[1],2001年麻省理工学院的Koizumi等第一次制备了金刚石薄膜p n结,在金刚石单晶的(111)面上以同质外延生长的方法制备了两层金刚石薄膜,p型半导体使用B元素掺杂金刚石薄膜而成,n型半导体则以P元素掺杂制备,然后他们对这个装置进行了改进,在施加20V 偏压电路的情况下,装置被激发出了紫外光,并且指出,该装置可以在高温下运作。Alexo v A等[2]则在掺杂B元素后的金刚石薄膜上用同质外延法制备了一层掺杂N元素的金刚石薄膜,但是并没有详细报道此p n结的电致发光等特性。之后有关同质结的报道很不常见,估计主要是还是因为金刚石n型半导体掺杂的可重复性存在着一定的困难所致,目前报道都集中于金刚石半导体异质结上,比如,已在Si晶片上生长含B金刚石薄膜[3],或者是制备肖特基二极管(Schottky diodes)和场效应晶体管(Field effect transisto rs,FET)。 1987年化学气相沉积(CVD)法制备含B金刚石薄膜的方法并不完善,所以Geis等[4]用合成含B 金刚石单晶的方法制备了由W元素接触的首个金刚石肖特基二极管,并在700下考察了样品的性能,确定了样品具有很高的击穿场强。同一课题组的相关人员进一步考察了不同金属元素接触对金刚石肖特基二极管性能的影响[5],大量的工作表明,使用Al,Au,H g元素作为含B金刚石的表面接触元

2-2微粉金刚石(汪 静)1

第二篇金刚石工具用金刚石 第二章金刚石微粉 (作者汪静) 2.1 概述 金刚石微粉的种类很多,用低强度的人造金刚石为原材料,经过破碎、提纯、分级等工艺生产的金刚石微粉是最常见的品种。这类产品涵盖了几十纳米到几十微米的粒度范围,产品性价比高,目前占据金刚石微粉的大部分市场份额。随着应用领域的不断拓展,根据用途不同,市场上出现了多种类别的金刚石微粉。 按照原材料来源不同,可分为天然金刚石微粉和人造金刚石微粉。不能用于珠宝首饰加工的低品级天然金刚石,可以经过球磨破碎生产出金刚石微粉,用于工业研磨抛光,如宝石、精密零件等的后期加工。随着工业的快速发展,研磨抛光领域对金刚石微粉的需求量急剧增加,天然金刚石微粉的产量远远满足不了市场需求。人造金刚石的出现解决了这一问题,它为金刚石微粉提供了充足的原料。据统计2008年国内金刚石产量为50多亿克拉,金刚石微粉的产量约为3亿克拉。人造金刚石微粉在硬、脆材料的磨削方面有着广泛的应用。作为粉体材料可用于多种天然宝石、人造宝石、玻璃、陶瓷等材料的磨削抛光。制成研磨液、研磨膏可用于半导体材料如硅片、蓝宝石晶片等元件的切削和研磨抛光。还可以做成多种制品,如精密砂轮、金刚石复合片、精磨片、拉丝模等。可用于金加工、地质钻探、光学玻璃加工、金属丝线生产等众多领域。 根据原材料金刚石强度高低,可分为高强度金刚石微粉和低强度金刚石微粉。前者是采用高强度金刚石为原材料生产的微粉,微粉单颗粒强度高、内部杂质含量低、磁性低。后者以低强度金刚石为原材料,产品自锐性好。 依据金刚石晶体结构不同可分为单晶金刚石微粉(如图2-1)和多晶金刚石微粉(如图2-2)。单晶金刚石微粉是用单晶金刚石为原材料生产的金刚石微粉,其颗粒保留了单晶金刚石的单晶体特性,具有解理面,受到外力冲击的时候优先沿解理面碎裂,露出新的“刃口”。多晶金刚石微粉是由直径5-10nm的金刚石晶粒通过不饱和键结合而成的微米和亚微米多晶颗粒,内部各向同性无解理面,具有很高的韧性。由于其独特的结构性能,常用于半导体材料、精密陶瓷等的研磨和抛光。 另外还有爆轰法生产的纳米金刚石(如图2-3),这类金刚石是由负氧平衡炸药内部多余的碳原子在适当的爆轰条件下合成的,由5-20纳米粒径的金刚石晶粒组成的二次团聚体,粉体外观一般为灰黑色。纳米金刚石具有良好的耐磨性、耐腐蚀性和导热性,可用于硬盘、半导体等的精密抛光,可以作为润滑油添加剂,显著提高润滑油的润滑性能,减少磨损,可以添加到橡胶和塑胶中强化产品性能,还可以作为优良的功能材料涂覆到金属模具、工具、部件等表面,增强表面硬度、耐磨性、及导热性能,延长使用寿命。

纳米金刚石薄膜的制备

?材料? 纳米金刚石薄膜的制备3 杨保和33,崔 建,熊 瑛,陈希明,孙大智,李翠平 (天津理工大学光电信息与电子工程系,薄膜电子与通信器件天津市重点实验室,天津300191) 摘要:采用微波等离子体化学气相沉积系统,利用氢气、甲烷、氩气和氧气为前驱气体,在直径为5cm的(111)取 向镜面抛光硅衬底上沉积出高平整度纳米金刚石薄膜。利用扫描电镜、X射线衍射谱和共焦显微显微拉曼光 谱我们分析了薄膜的表面形貌和结构特征。该薄膜平均粒径约为20nm。X射线衍射谱分析表明该薄膜具有 立方相对称(111)择优取向金刚石结构。在该薄膜一阶微显微拉曼光谱中,1332cm-1附近微晶金刚石的一阶 特征拉曼峰减弱消失,可明显观测到的三个拉曼散射峰分别位于1147cm-1、1364cm-1和1538cm-1,与己报导 的纳米金刚石拉曼光谱类似。该方法可制备出粒径约为20nm粒度分布均匀致密具有较高含量的sp3键的纳 米金刚石薄膜。 关键词:纳米金刚石薄膜;微波等离子体化学气相沉积 中图分类号:O484.4 文献标识码:A 文章编号:100520086(2008)0520625203 T he fab rication of nano2di amond substrate for SA W d evice in high frequ ency and pow er Y ANG Bao2he33,CUI Jian,XIONG Y ing,CHEN X i2ming,SUN Da2zhi,LI Cui2ping (Dept.of Opt.Electronic Information and Electronic Engineering,Tianjin University of T echnology,Tianjin K ey Lab.of Film Electronic&C ommunicate Devices,Tianjin300191,China) Abstract:A novel method to nano2diam ond films is provided.Nano2diam ond film has been prepared on(111)m irror polished Si substrate by m icrowave plasma chem ical deposition system with m ixture gases of H2,CH4,O2and Ar.C ombined SEM, golden phase micro2pictures,XRD spectrum and micro2Raman spectrum the morphology and structure of the film are charac2 terized.It is found that the film has uniform particle size and the average size,of diam ond particles is about20nm.According to the XRD spectrum,the film is cubic structure(111)diamond.And the only allowed Raman band in the first2order dia2 m ond spectrum near1332cm-1decreases and can′t be observed in the micro2Raman spectrum of the film.Three Raman band near1147cm-1,1364cm-1and1538cm-1lie in the spectrum which are sim ilar to the reported nano2diam ond films. 20nm plain diam ond film with high concentration of sp3is obtained by this method. K ey w ords:nano2diamond film;micowave plasma chemical vapor deposition 1 引 言 当今世界,电子和光电子产品正迅速朝着速度更快、体积更小、功率更高的方向发展。但是小体积、高功率的电子和光电器件由于会在小面积上产生大量的热(有时高达几个kW/ cm2)而导致出现一个极大的热通量,如果不能迅速降温散热器件就容易出现问题。金刚石具有所有物质中最高的热导率,最好的化学稳定性和抗各种辐射能力等,这使它成为具有广泛应用前景的新型薄膜功能材料[1~5]。 然而,作为实用的薄膜功能材料往往需要薄膜有很好的平整度。由于金刚石晶体生长特点是呈笋状生长,所以具有一定厚度的高平整度的微晶金刚石薄膜的制备难度很大[3]。另外,考虑到微晶金刚石的硬度和粗糙度,抛光过于昂贵和消费时间。所以也有必要探索自然生长具有光滑表面的薄膜。纳米金刚石膜致密光滑,缺陷和晶界尺度远小于微米量级,具有与金刚石微晶近似的较高的弹性模量,是非常优异的声表面波基底材料[2,4,5];另外,由于纳米金刚石的沉积方法是通过减少反应气体中刻蚀气体氢气的比重,增加反应中碳的二聚物C2,所以生长机制不同于微晶薄膜,可以制备表面平整且较厚的膜[2]。以上原因使高平整度纳米金刚石薄膜的制备成为金刚石声表面波器件研究的主要内容之一。 目前已报导的纳米金刚石膜的制备路径一方面可以通过 光电子?激光 第19卷第5期 2008年5月 Journal of Optoelectronics?Laser Vol.19No.5 May2008 3收稿日期:2006210203 修订日期:2007212218  3 基金项目:国家自然科学基金资助项目(60576011);天津市自然基金重点资助项目(05YF J Z JC00400);天津市科技发展计划资助项目(06TXT JJC14701);天津市自然基金资助项目(05YF J M JC05300)  33E2m ail:bhyang207@https://www.360docs.net/doc/bf825866.html,

电化学在制备纳米材料方面的应用

电化学在制备纳米材料方面的应用 摘要:应用电化学方法制备纳米材料是近年来发展起来的一项新技术。本文对应用电化学技术制备纳米材料的方法进行分类,着重介绍了电化学沉积法、电弧法、超声电化学法和电化学腐蚀法,并对其应用前景做了展望。 关键词:电化学纳米材料电沉积 1 前言 纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当材料的粒子尺寸小至纳米级时,材料就具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应;(2)表面效应,指纳米微粒表面原子与总原子数之比。纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减小,表面原子数迅速增加。由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。正是由于纳米材料具有上面的三大效应,才使它表现出:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等令人难以置信的奇特的宏观物理特性。 自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。 由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制在纳米材料合成中是非常重要的。 目前制备纳米材料主要采用机械法、气相法、磁控溅射法等物理方法和溶胶—凝胶法、离子液法、溶剂热法、微乳法化学方法。但在这些方法中,机械法、气相法、磁控溅射法的生产设备及条件要求很高,生产成本高;化学方法中的离子液法和微乳法是近几年发展起来的新兴的研究领域,同时离子液离子液作为一种特殊的有机溶剂,具有粘度较大、离子传导性较高、热稳定性高、低毒、流动性好等独特的物理化学性质,但是离子液体用于纳米材料制备的技术还未成熟。 应用电化学技术制备纳米材料由于简单易行、成本低廉等特点被广泛研究与采用。与其他方法相比,电化学制备方法主要具有以下优点:1、适合用于制备的纳米晶金属、合金及复合材料的种类较多;2、电化学制备纳米材料过程中的电位可以人为控制。整个过程容易实现计算机监控,在技术上困难较小、工艺灵活,易于实验室向工业现场转变;3、常温常压操作,避免了高温在材料内部引入的热应力;4、电沉积易使沉积原子在单晶基底上外延生长,可在大面积和复杂形状的零件上获得较好的外延生长层。 电化学方法已在纳米材料的制备研究领域取得了一系列具有开拓性的研究成果。本文综述了应用电化学技术制备纳米材料的主要的几种方法及其制备原理,并对其优劣进行了比较。 2 应用电化学技术制备纳米材料的种类 2.1 电化学沉积法 与传统的纳米晶体材料制备相比,电沉积法具有以下优点:(1)晶粒尺寸在1~100 nm内;(2)

爆轰法制备纳米超微金刚石

2014年第2期甘肃石油和化工2014年6月爆轰法制备纳米超微金刚石的最新进展 刘世杰 (甘肃兰金民用爆炸高新技术公司,甘肃兰州730020) 摘要:近年来,纳米金刚石性质的研究和功能开发利用已经成为热门,但由于我国在该领域的 研发起步晚、条件差等客观因素的存在,虽取得了一些成绩,但是与其它国家相比,依然整体处 于落后水平。本文主要综述了爆轰法合成纳米超微金刚石的发展历程、制备方法、工艺条件、发 展趋势并对存在的一些问题提出了建议。 关键词:炸药;爆轰;纳米金刚石;石墨;发展前景 1前言 纳米超微金刚石(Ultrafine Diamond,缩写为UFD)是一种颗粒尺寸和形状特异的工业金刚石,这类金刚石的颗粒尺寸在0.5-10.0nm之间,平均尺寸为4-5nm,大部分颗粒尺寸在2-8nm之间[1]。UFD既有金刚石的特性,又具有纳米材料的特性,因此它的应用领域极其广泛。目前,人们对纳米材料的研究已经渗透到许多研究领域。纳米结构材料的研究已成为跨世纪材料学的研究热点,这种材料被誉为“21世纪最有前途的功能材料”。通过结合应用需求进行金刚石颗粒与形貌的再加工、表面官能化,实现颗粒在应用介质中的均匀与稳定分散,是金刚石纳米晶的应用基础。在这个基础上开展研究,有利于发挥金刚石粉体的优良性能,并推动这种粉体材料在高端技术领域的应用。纳米金刚石在高强、耐磨纳米复合材料,高精密研磨抛光,纳米流体,纳米润滑和生物医药等领域都有较好的表现。它的制备技术有石墨高压相变法、等离子体化学气相沉积法[2]、冲击波压缩技术、催化热解法、静态高压高温合成法、动态超高压高温合成法、低压气象沉淀法以及20世纪80年代新出现的炸药爆炸法。 2爆轰法制备纳米超微金刚石 2.1爆轰法制备纳米超微金刚石 爆轰合成纳米金刚石通常采用梯恩梯(TNT)和黑索金(RDX)炸药为原料,并在1个充有惰性介质的密闭容器中进行爆轰反应,使未被氧化的自由碳原子在瞬时超高温高压作用下转变为纳米金刚石。陈鹏万等[3]采用注装TNT/RDX(50/50)混合装药,爆炸前在爆炸容器中充惰性保护气体或者在药柱外包裹有保压和吸热作用的水、冰或热分解盐类,收集爆炸后得到的黑粉,用强氧化剂除去其中的石墨、无定型碳等非金刚石相杂质,清洗、烘干后便可得到浅灰色纳米金刚石粉末(UFD)。利用爆炸法制备的超细金刚石采用浓硝酸和浓硫酸混合液的沸腾处理及氢氟酸水浴处理后,除了残留极少量无定形碳外,基本除去了超细金刚石以外的杂质。 2.2爆轰法制备纳米金刚石合成机理 纳米金刚石生成机理的探讨随着纳米金刚石的生产研究同时进行。周刚博士提出了“碳液滴”模型,认为碳元素在爆轰环境中被还原成碳原子,未被氧化的部分经过聚集、晶化等形成金刚石[4];李世才提出了纳米金刚石的尺寸由爆温限制[5];陈权博士提出爆轰产物中石墨要在爆轰反应区中和 收稿日期:2014-06-20 作者简介:刘世杰(1986-),男,甘肃白银人,助理工程师,现从事高能气体压裂技术服务及爆破工作。

纳米相增强金属材料制备技术的研究进展及应用

纳米相增强金属材料制备技术的研究进展及应用 【摘要】目前纳米技术应用广泛,在高强金属材料应用方面尤为突出。本文针对现有主要几种纳米增强金属材料制备工艺方法进行概述并比较,讨论其优缺点。最后还探讨了纳米相增强制备技术未来的发展趋势和改进方向,并对纳米结构材料应用领域和前景进行展望。 【关键词】纳米增强制备方法优缺点 随着科技进步,各个领域对于相关材料的性能要求日益提高。纳米增强技术是改善材料性能的重要方法之一,其在金属材料领域尤其应用广泛。在电子、汽车、船舶、航天和冶金等行业对高性能复合材料需求迫切,选用最佳制备方法制备出性能更优良的纳米材料是当前复合材料发展的迫切要求。 1 纳米增强技术概述 纳米相增强金属材料是由纳米相分散在金属单质或合金基体中而形成的。由于纳米弥散相具有较大的表面积和强的界面相互作用,纳米相增强金属复合材料在力学、电学、热学、光学和磁学性能方面不同于一般复合材料,其强度、导电性、导热性、耐磨性能等方面均有大幅度的提高[1]。 1.1 机械合金化法 机械合金化法(MA)是一种制备纳米颗粒增强金属复合材料的有效方法。通过长时间在高能球磨机中对不同的金属粉末和纳米弥散颗粒进行球磨,粉末经磨球不断的碰撞、挤压、焊合,最后使原料达到原子级的紧密结合的状态,同时将颗粒增强相嵌入金属颗粒中。由于在球磨过程中引入了大量晶格畸变、位错、晶界等缺陷,互扩散加强,激活能降低,复合过程的热力学和动力学不同于普通的固态过程,能制备出常规条件下难以制备的新型亚稳态复合材料。 1.2 内氧化法 内氧化法(Internal oxidation)是使合金雾化粉末在高温氧化气氛中发生内氧化,使增强颗粒转化为氧化物,之后在高温氢气气氛中将氧化的金属基体还原出来形成金属基与增强颗粒的混合体,最后在一定的压力下烧结成型。因将材料进行内氧化处理,氧化物在增强颗粒处形核、长大,提高增强粒子的体积分数及材料的整体强度,这样可以提高材料的致密化程度,且可以改善相界面的结合程度,使复合材料的综合力学性能得到提高。 1.3 大塑性变形法 大塑性变形法(Severe plastic deformation)是一种独特的纳米粒子金属及金属合金材料制备工艺。较低的温度环境中,大的外部压力作用下,金属材料发

化学气相沉积法制备超纳米金刚石薄膜_王玉乾

化学气相沉积法制备超纳米金刚石薄膜* 王玉乾1,王 兵1,孟祥钦1,甘孔银2 (1 西南科技大学材料学院,绵阳621010;2 中国工程物理研究院应用电子学研究所,绵阳621900) 摘要 采用微波等离子体化学气相沉积法,利用CH 4、SiO 2和A r 的混合气体在单晶硅片基底上制备出高质 量的超纳米金刚石薄膜。表征结果显示,制备的薄膜致密而均匀,晶粒平均尺寸约7.47nm ,表面粗糙度约15.72nm ,并且其金刚石相的物相纯度相对较高,是质量优异的超纳米金刚石薄膜材料。 关键词 微波等离子体 化学气相沉积 超纳米金刚石薄膜 中图分类号:0484 文献标识码:A Preparation of Ultrananocrystalline Diamond Film by Chemical Vapor Deposition WANG Yuqian 1 ,WANG Bing 1 ,M ENG Xiangqin 1 ,G AN Kongyin 2 (1 Schoo l o f M aterials Science and Engineering ,So uthw est U niver sity o f Scie nce and T echno lo gy ,M iany ang 621010; 2 Institute of A pplied Electro nics ,CAEP ,M ia ny ang 621900) Abstract High -quality ultrananocry stalline diamo nd film is prepa red o n single cry stal Si with A r ,CH 4,CO 2u -sing micro wav e plasma chemical vapo r depositio n (M PCV D )technolo gy .T he results show tha t the high -quality thin film is compact a nd ho moge neous ,and its av erage cr ystalline g rains and surface ro ug hne ss are nearly 7.47nm and 15.72nm ,respective ly .A nd the film aslo has a higher diamo nd phase purity .Key words microw ave plasma ,CV D ,ultrananocry stalline diamo nd film  *国家自然科学基金(10876032);国家863计划强辐射重点实验室基金(20070202)  王玉乾:男,1983年生,硕士生,研究方向:功能薄膜材料 E -mail :wangy uqian83@163.co m 王兵:通讯作者,1967年生,博士,副 研究员,研究方向:功能材料 E -mail :w ang bin67@https://www.360docs.net/doc/bf825866.html, 0 引言 近年来,在纳米金刚石薄膜研究领域出现的一个新概念越来越引起人们的注意———超纳米金刚石薄膜,它是为了区别粒径尺寸在几十到几百纳米之间的纳米金刚石薄膜而提出的一个全新概念。首先它的粒径尺寸一般在3~10nm ,且晶粒大小不受薄膜厚度的影响(纳米金刚石薄膜的粒径一般随着薄膜厚度的增加而增大,当薄膜厚度达到1μm 左右时,变成微米金刚石薄膜);另外它的制备工艺条件也不同于一般纳米金刚石薄膜,是由Ar 、H e 等稀有气体与碳源在一种 少氢的环境中通过各种工艺制备而获得的[1-6] ;而且超纳米金刚石薄膜除了具备微米和纳米金刚石薄膜所具有的优异的物理化学性能外,还具有更优异的表面性能(如低的表面粗糙度、摩擦系数和粘附性能等),同时还具有优异的电学性 能(如场发射性能等)[2-6] 。 相比于国外对超纳米金刚石研究的逐渐深入,国内对此方面的研究则相对较少[6],对于超纳米金刚石薄膜的制备,特别是利用微波等离子化学气相沉积法制备超纳米金刚石薄膜的研究国内还未见报道。因此,本实验详细探讨了利用微波等离子体化学气相沉积法制备高质量的超纳米金刚石薄膜的过程,并利用扫描电镜(SEM )、原子力显微镜(AFM )及拉曼光谱(Ram an )对制备的薄膜进行了相关的表征。 1 实验 1.1 实验装置 在自行研制的石英钟罩式M PCVD 装置上制备超纳米 金刚石薄膜,其主要结构如图1所示,微波频率2.45GH z ,额定功率1.5kW ,采用红外测温仪测量样品温度。 图1 石英钟罩式MPCVD 装置的结构简图Fig .1 S tru ct ural sketch of bell jar -typ e MPCVD setup 1.2 实验工艺 要制备高质量的超纳米金刚石薄膜,必须在沉积初期具有很高且均匀的成核密度[7]。为此实验采用对10m m ×10mm 镜面抛光的n 型Si (100)单晶基片两步机械研磨预处理方法来增强成核:先用粒度为0.5μm 的金刚石微粉对基片 · 54·材料导报:研究篇 2009年7月(下)第23卷第7期

纳米金刚石应用及分散方法简介

纳米金刚石应用及分散方法简介 金刚石粉体在工业上作为一种超硬材料,被广泛应用于切削、磨削、耐磨涂层、抛光等领域。本文将重点介绍纳米金刚石微粉在抛光领域的应用及其分散方法。欧美俄等国开展纳米金刚石研究较早,具备了纳米金刚石抛光液、抛光膏的生产能力,国内在纳米金刚石抛光液制备领域的研究刚起步。技术水平与国外相比还有一定的差距。 一、纳米金刚石在抛光领域应用简介 纳米金刚石抛光液以其优异的性能广泛应用于半导体硅片抛光、计算机硬盘基片、计算机顶头抛光、精密陶瓷、人造晶体、硬质合金、宝石抛光等领域。俄罗斯用纳米金刚石抛光石英、光学玻璃等,其抛光表面粗糙度达到1nm.纳米金刚石的应用显示出很多优点。由于超细、超硬,使得光学抛光中的难题迎刃而解。 精细抛光是光学抛光中的难题,原工艺方法是把磨料反复使用,需要几十小时,效率很低。现在使用了纳米金刚石,使抛光速度大大提高。抛光相同的工件所需的时间仅需十几小时至几十分钟,效率提高数十倍至数百倍。 二、纳米金刚石分散问题探讨 纳米金刚石颗粒表面的大量原子悬空键使其化学活性大大提高,非常大的表面积,使其有巨大的表面能,容易形成硬的难以解聚的团聚体是不可避免的。所以纳米金刚石在介质中散稳定性差,容易发生团聚,使其在应用过程中受到严重制约。也就是说,纳米金刚石抛光液制备的关键技术是纳米金刚石在介质中的长期稳定分散及粒度的均一性、这是一道世界性技术难题。 纳米金刚石干粉团粒度平均达2μm.纳米金刚石表而含有大量有机官能团,主要为一OH(羟基)、一C=O(羰基)、一COOH(羧基)以及一些含氮的

基团,所占面积可达颗粒表面的10%~25%.这些含氧活性基团和含氮活性物质可与许多有机化合物反应或吸附。为纳米金刚石在油或水介质中的分散提供了基础。 纳米金刚石的分散技术一般分物理分散和化学分散。物理分散又可分为超声分散、机械搅拌分散和机械研磨分散。化学分散又可分为化学改性分散、分散剂分散。纳米金刚石抛光液的分散过程就是使纳米金刚石聚集体在抛光液中呈原始单体状态弥散分布于液相的过程。 分散过程主要包括两个步骤: 一是,颗粒在液相中的浸湿, 二是,使原生颗粒稳定分散而不产生团聚或使已形成的团聚破解成较小的团聚或原始单体颗粒。 我国一些行业专家对纳米金刚石在水介质中的稳定分散工艺及其机理进行了探索,认为采用机械化学处理对金刚石进行表面改性,利用高剪切搅拌、高能超声振动磨等机械力与聚合物表面活性剂的协同效应,在有效地粉碎纳米金刚石的同时,对纳米金刚石表面,尤其是粉碎过程中新的表面进行改性,调节颗粒表面亲水疏水性,实现纳米金刚石在介质中的稳定分散。 基于这项研究成果,使用硅烷偶联剂KH-570和高聚物JQ-3表面改性过的纳米金刚石,以超声作为分散手段,将其分散在乙醇中,得到了平均粒径51.7nm的胶体溶液、两种高聚物分散剂复配使用,可以明显提高纳米金刚石在乙醇中的分散性和稳定性,为国产油性抛光液的制备奠定了基础。

简析纳米金刚石在功能材料领域中的应用

简析纳米金刚石在功能材料领域中的应 用 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 新材料的研发是我国重点发展的高新技术领域之一,而纳米材料又是其中的佼佼者。据权威机构推测,2010年全世界纳米材料市场规模已超过2000亿美元。随着国际科技进步及工业向高精尖发展,纳米技术已成各国竞相发展的重要领域之一。其中,碳纳米材料由于其独特的理化性质,近年来在纳米科学及纳米技术的发展中得到了广泛的关注。其应用范围从起初的涂料、润滑油、聚合物添加剂、电子器件、传感器和电化学领域扩展到了生物医学领域。目前已有的研究表明,纳米金刚石可用于生物标签、生物成像、药物传输、基因治疗、癌症诊断与治疗等生物医学领域。纳米金刚石指的是粒径在1~100nm的金刚石晶粒存在形态,其兼有金刚石、纳米材料的特性,例如高硬度、高耐腐蚀性、高热导率、低摩擦系数、低表面粗糙度、大的比表面积、高的表面活性等。根据其存在形式,纳米金刚石可以分为单分散的纳米金刚石粒子和纳米金刚石多晶两类。纳米金刚石粒子可以看作由

块材金刚石切割出的纳米尺寸的金刚石团簇;纳米金刚石聚晶有聚晶颗粒和膜两种存在形式。纳米金刚石粉的比表面积为300~400m2/g,还有大量的结构缺陷和表面官能团等,这些性能使得其在开发具有特殊性能的新材料方面有较大的潜力。 以上优异性能使得纳米金刚石除作为传统机械加工的精密抛光及润滑用材料以外,在化工催化及生物医学上展现出了良好的应用前景。但纳米金刚石的团聚及除杂问题是制约纳米金刚石使用的两大难题。 1纳米金刚石的制备和特性 从空间尺度分类,纳米金刚石分为纳米金刚石膜、一维金刚石纳米棒和二维金刚石纳米片,三维纳米金刚石聚晶颗粒以及零维纳米金刚石单晶颗粒。纳米金刚石薄膜是利用CVD 方法生长出的纳米级晶粒组成的金刚石膜,其制备参数与传统微米尺度金刚石薄膜不同,是通过金刚石的二次成核,获得致密的、晶粒尺寸为纳米级的金刚石薄膜。晶粒尺寸小于10nm的金刚石膜又称为超纳米金刚石膜,这种薄膜光滑、致密、无孔,是制备生物传感器以及生物医学仪器的关键材料。一维金刚石纳米棒或金刚石纳米纤维可以通过氢等离子体长时间处理碳纳米管来获得。二维金刚石纳米片可在Au–Ge合金和纳米金刚石膜基底上通

纳米材料的制备方法与应用要点

纳米材料的制备方法与应用 贾警(11081002) 蒙小飞(11091001) 1引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得。铁纳米微粒以来,由于纳米材料有明显不同于体材料和单个分子的独特性质—小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子轨道效应等,以及其在电子学、光学、化工、陶瓷、生物和医药等诸多方面的重要价值。引起了世界各国科学家的浓厚兴趣。几十年来,对纳米材料的制备、性能和应用等各方面的研究取得了丰硕的成果。纳米材料指其基本组成颗粒尺寸为纳米数量级,处于原子簇和宏观物体交接区域的粒子。颗粒直径一般为1~100nm之间。颗粒可以是晶体,亦可以是非晶体。由于纳米材料具有其特殊的物理、机械、电子、磁学、光学和化学特性,可以预见,纳米材料将成为21世纪新一轮产业革命的支柱之一。 2纳米材料的制备方法 纳米材料有很多制备方法,在此只简要介绍其中几种。 2.1溶胶-凝胶法 溶胶-凝胶法是材料制备的是化学方法中的较为重要的一种,它提供一种再常温常压下合成无机陶瓷、玻璃、及纳米材料的新途径。溶胶-凝胶法制备纳米材料的主要步骤为选择要制备的金属化合物,然后将金属化合物在适当的溶剂中溶解,然后经过溶胶-凝胶过程而固化,在经过低温处理而得到纳米粒子。 2.2热合成法 热合成法制备纳米材料是在高温高压下、水溶液中合成,在经过分离和后续处理而得到纳米粒子,水热合成法可以制备包括金属、氧化物和复合氧化物在内的产物。主要集中在陶瓷氧化物材料的制备中。 2.3有机液相合成 有机液相合成主要采用在有机溶剂中能稳定存在金属、有机化合物及某些具有特殊性质的无机化合物为反应原料,在适当的反应条件下合成纳米材料。通常这些反应物都是对水非常敏感,在水溶剂中不能稳定存在的物质。最常用的反应方式就是在有机溶剂中进行回流制备。 2.4惰性气体冷凝法 惰性气体冷凝法是制备清洁界面的纳米粉体的主要方法之一。其主要过程是在真空蒸发室内充入低压惰性气体,然后对蒸发源采用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体。原料气体分子与惰性气体分子碰撞失去能量,凝集形成纳米尺寸的团簇,然后骤冷。该方法制备的纳米材料纯度高,工艺过程中无其它杂质污染,反应速度快,结品组织好,但技术设备要求高。 2.5反相胶束微反应器法

金刚石微粉化学镀镍技术概述

金刚石微粉化学镀镍技术概述 摘要:传统金刚石微粉镀覆难以做到镀覆镍层的完整性,存在镀覆的镍层厚度不均匀,并且无法避免金刚石颗粒之间的粘连,镀覆金刚石微粉过程中及镀覆后金刚石微粉中混杂大量的镍粉,镍铠科技推出的金刚石微粉化学镀镍工艺流程,在传统工艺流程的基础上,优化前处理流程,采用成熟的高磷化学镀镍工艺,实现多周期镀镍,在大幅度提高镀覆品质的情况下,降低镀覆成本,减少镀镍废液的抛弃。 关键词:金刚石线锯;金刚石微粉;金刚石微粉镀覆;金刚石微粉化学镀镍; 前言 金刚石粉体化学镀镍是个很早就实用化的工艺技术,早期称为金刚石金属化镀覆,上世纪70年代后期与化学镀镍有关的技术书籍,在非金属、难镀材料化学镀镍有相关章节的介绍,当时的金刚石镀覆后主要用于金刚石刀具、金刚石砂轮的复合镀,以增强金刚石与刀具、磨具基体的把持力(我们称为结合力)。目前的通行的工艺流程基本上还是遵循了传统的工艺流程(除油-粗化-敏化-钯活化-化学镀镍)。 自2015年以来,随着光伏产业大量推广应用金刚石线锯取代传统的砂浆+钢线切割硅材料,金刚石线锯作为一个相对冷僻的产品,一下子火热起来,光伏行业的有关行业的报告指出,目前的金刚石线锯市场产量产值大约每年在数百亿元的量级,最近四年来,专门生产金刚石线锯的上市公司近十家,没有上市的规模化金刚石线锯生产企业数十家,由此而带来了金刚石线锯线材连续镀行业的大发展,作为金刚石线锯的主要材料——金刚石微粉,金刚石微粉化学镀镍也伴随此风口,近年来成为了一个飞速发展的工艺技术。 金刚石及金刚石微粉:这里所说的金刚石是人造金刚石晶体,由石墨和触媒在六面顶压机的模具中,在高温高压下人工生产出来的,密度在3.5克/立方厘米,具有天然金刚石的物理化学性能,是目前硬度最高的材料,往往用于高硬度刀具、磨具的生产。人造金刚石晶体经过破碎、粒径分选、形状分类分级后,作为确定了规格的金刚石微粉,应用于金刚石线锯的,目前的常规使用粒径从5微米到50微米之间,分类级别大致为(5—10、8—12、10—20、20—30、30—40、40—50、单位是微米),遵循粗线使用大粒径金刚石,细线使用小粒径金刚石的模式,2019年5月份,金刚石线锯行业在南京召开了年度行业会议,会上的报告说明,规模化生产的金刚石线锯母线最小直径已经达到了50微米(5丝),用于硅材料切割,用于稀土永磁体切割的金刚石线锯最小母线直径是120微米(12丝)。

磁性纳米材料的制备及应用前景

磁性纳米材料的制备及应用前景 摘要:磁性纳米材料因其具有独特的性质,在现代社会中有着广泛的应用,并越来越受到人们的关注。本文主要介绍了磁性纳米材料的制备及应用前景,概述了纳米磁性材料的制备方法,如机械球磨法,水热法,微乳,液法,超声波法等,总结了纳米磁性材料在实际中的应用,并对其研究前景进行了展望。 Abstract: magnetic nanomaterials due to their unique properties, in the modern society has a wide range of applications, and people pay more and more attention. This paper mainly introduces the magnetic nanometer material preparation and application prospect of nano magnetic materials, summarized the preparation methods, such as mechanical ball milling method, hydrothermal method, microemulsion, liquid method, ultrasonic method, summarizes the nanometer magnetic materials in practical application, and the research prospect.

前言 纳米材料因其尺寸小而具有普通块状材料所不具有的特殊性质,如表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,从而与普通块状材料相比具有较优异的物理、化学性能。磁性纳米材料由于其在高密度信息存储,分离,催化,靶向药物输送和医学检测等方面有着广泛的应用,已经受到了广泛关注。磁性复合纳米材料是以磁性纳米材料为中心核,通过键合、偶联、吸附等相互作用在其表面修饰一种或几种物质而形成的无机或有机复合材料。由于社会的发展和科学的进步,磁性纳米材料的研究和应用领域有了很大的扩展。磁性材料在信息存储、传感器和磁流体等传统学科领域有着重要的应用。随着纳米材料科学与技术的发展,纳米磁性材料的应用开发日益引起人们的关注,特别是在提高 信息存储密度、微纳米器件和生物医学领域的应用潜力巨大。目前普遍采用化学法制备铁氧体磁性纳米颗粒,具体有溶胶~凝胶法、化学共沉淀法等,而由于生物合成的磁性纳米颗粒表现出更优良的性质。 1.磁性纳米材料的特点 量子尺寸效应:材料的能级间距是和原子数N 成反比的,因此,当颗粒尺度小到一定的程度,颗粒内含有的原子数N 有限,纳米金属费米能级附近的电子能级由准连续变为离散,纳米半导体微粒则存在不连续的最高被占据分子轨道和最低未被占据的分子轨道,能隙变宽。当这能隙间距大于材料物性的热能,磁能,静电能,光子能等等时,就导致纳米粒子特性与宏观材料物性有显著不同。例如,导电的金属在超微颗粒时可以变成绝缘体,磁矩的大小和颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子尺寸效应的宏观表现。 小尺寸效应:当粒子尺度小到可以与光波波长,磁交换长度,磁畴壁宽度,传导电子德布罗意波长,超导态相干长度等物理特征长度相当或更小时,原有晶体周期性边界条件破坏,物性也就表现出新的效应,如从磁有序变成磁无序,磁矫顽力变化,金属熔点下降等。 宏观量子隧道效应:微观粒子具有穿越势垒的能力,称为量子隧道效应。而在马的脾脏铁蛋白纳米颗粒研究中,发现宏观磁学量如磁化强度,磁通量等也具有隧道效应,这就是宏观量子隧道效应。它限定了磁存储信息的时间极限和微电子器件的尺寸极限。 2. 磁性复合纳米材料的制备方法 2.1水热合成法 水热合成法是液相中制备纳米粒子的一种新方法。一般是在100~300摄氏度温度下和高气压环境下使无机或有机化合物与水化合,通过对加速渗透析反应和物理过程的控制,得到改进的无机物,再过滤,洗涤,干燥,从而得到高纯,超细的各类微粒子。研究发现以FeC13为铁源,AOT为表面活性剂,N2H4·H20(50%)为还原剂水热合成 Fe3O4纳米颗粒时,反应温度和时间,表面活性剂和还原剂浓度对最终产物的尺寸形貌、分散性和磁性有明显影响。还有通过调节水热反

相关文档
最新文档