17_电器领域不确定度的评估指南_CNAS-GL08

CNAS—GL08

电器领域不确定度的评估指南中国合格评定国家认可委员会

二〇〇六年六月

电器领域不确定度的评估指南

1 概论

1.1 研究不确定度的意义

长期以来,误差和误差分析一直是计量学领域的一个重要组成部分。由于测量实验方法和实验设备的不完善,周围环境的影响,以及受人们认识能力所限等,测量和实验所得数据和被测量真值之间,不可避免地存在着差异,即误差。目前,人们普遍认为,即使对完全已知或猜测的误差因素进行补偿、修正后,所得结果依然只能是被测量的一个估计值,即对如何用测量结果更好地表示被测量的值仍有怀疑。这时,不确定度概念作为测量史上的一个新生事物出现了。只有伴随不确定度的定量陈述,测量结果才可以说是完整的。

不确定度,顾名思义即测量结果的不能肯定程度,反过来也即表明该结果的可信赖程度。它是测量结果质量的指标。不确定度愈小,所述结果与被测量真值越接近,质量越高,水平越高,其使用价值也越高;不确定度越大,测量结果的质量越低,水平越低,其使用价值也越低。在报告物理量的测量结果时,必须给出相应的不确定度,一方面便于使用它的人评定其可靠性,另一方面也增强了测量结果之间的可比性。

测量不确定度必须正确评定。不确定度如果评定过大,会使用户认为现有的测量水平不能满足需要而去购买更加昂贵的仪器,导致不必要的投资,造成浪费,或对检定实验室的服务工作产生干扰;不确定度评定过小,会因要求过于严格对产品质量、生产加工造成危害,使企业蒙受经济损失。

鉴于不确定度的重要性,寻求一种便于使用、易于掌握且普遍认可的计算和表示不确定度的方法具有很大意义。正如国际单位制(SI)的普遍应用使所有的科学与技术测量趋于一致那样,不确定度计算和表达在全世界范围内的一致,也将使得科学、工程、商业、工业和管理方面的测量结果的重要性易于理解和说明。也只有这样,才便于对不同国家所作的测量进行比较。在当今全球市场一体化的时代,这项研究是必然的也是必须的。

不确定度在本质上是由于测量技术水平、人类认识能力所限造成的。同时它也是判定基准标准精度、检测水平高低以及测量质量的一个重要依据。在ISO/IEC导则25“校准实验室与测试实验室能力的通用要求”中指明,校准实验室的每份证书或报告必须包含有

关校准或测试结果不确定度的说明。

随着不确定度理论的推广与深入研究,现在,它不仅已成为计量科学领域的一个重要分支,在其它领域如质量管理和质量保证中,也得到了重视和应用。ISO9001中对测量结果的不确定度均有明确要求。

1.2 不确定度研究的国际动态

1927年,海森堡提出了量子力学中的不确定关系,又称测不准关系,1970年前后,一些计量学和其它领域学者,逐渐使用不确定度一词,但含义不清。1978年A.S.Hornby 等所编词典(The Advanced Learner’s Dictionary English-English-Chinese)指出:不确定度(Uncertainty)为变化、不可靠、不确知、不确定。

鉴于国际间理解和表示不确定度的不一致,1978年5月,国际计量局(BIPM)发出了不确定度征求意见书。1980年国际计量局在讨论了各国及国际专业组织意见后,提出了实验不确定度建议书INC-1(1980)2实验不确定度表示。1986年国际计量委员会(CIPM)第75届会议决定推广INC-1,提出了建议书1(CI-1986):在CIPM赞助进行的工作中不确定度的表示。

同年,由国际标准化组织ISO,国际电工委员会(IEC),国际计量委员会(CIPM),国际法制计量组织(OIML)组成了国际不确定度工作组,负责制定在标准化、检定、实验室认可及计量服务中使用的测量不确定度指南。

国际不确定度工作组经多年研究、讨论,征求各国及国际专业组织意见,反复修改,1993年制定了《测量不确定度表示指南》(简称指南GUM)。指南得到了BIPM、OIML、ISO、IEC及国际理论与应用化学联合会(IUPAC),国际理论与应用物理联合会(IUPAP),国际临床化学联合会(IFCC)的批准,由ISO出版成为国际组织的重要权威文献。

GUM自1993年出版以来,在世界范围内得到了广泛的应用和发行。美国标准与技术研究院(NIST)于1993年制定了基于GUM的《NIST评定与表示测量结果不确定度准则》,所有NIST报告均以它为依据。欧洲实验室认证合作体(EAL),加拿大国家研究委员会(NEC),北美测量标准协作体(NORAMET),北美校准合作体(NACC),英国国家实验室认可委会员(NAMAS)都已采用GUM。我国有关部门及人士对此也极为重视,中国计量科学院于1996年11月制定了《测量不确定度规范》。1999年1月国家质量技术监督局发布了国家计量技术规范JJF 1059—1999《测量不确定度评定与表示》。

GUM的颁布与实施,使不确定度的评定与表示在世界范围内有了统一标准,从而推

动不确定度的研究和应用进入一个新阶段。

1.3 应用范围

GUM 指南文件建立了评定和表示不确定度的规则。它可用于各种准确度等级的测量,并可用于从基础研究到商业活动的各种场合。本指南应用于电器检测不确定度评定。

2 基本概念

2.1 不确定度的定义及说明

测量不确定度的定义为:与测量结果相联系参数,表征合理地赋予被测量量值的分散性。

由于测试技术的不完善,人类认识能力所限,被测量的“真值”是不可知的,在实际工作中能得到的仅是“合理赋予被测量的值”,且不止一个,可以是多个。这些值的分散性就是不确定度。它表示出测量结果的范围,被测量的真值以一定的概率落于其中。

对不确定度的定义有以下几点补充说明:

(1)众所周知,对同一被测量进行多次重复测量,由于误差因素的影响,各个测得值一般皆不相同。它们围绕着测量列的算术平均值有一定的分散,此分散说明了测量列中单次测得值的不可靠。误差理论中提出用标准差σ来表征这种不可靠性。 ()112--=

∑=n x x n i i σ

x ——算术平均值 n ——测量次数

标准差σ越小,分散度就小;反之,分散度就越大。

在不确定度应用中,我们依然采用标准差σ作为表征分散性的参数,也可以是标准差的给定倍数k σ,(k 必须说明),或是具备某置信水平的区间的半宽度。例如:多个值中95%落于区间],[+-a a 内,则具有置信水准p =95%,区间半宽度为

()-+-a a 2

1,表征分散性的参数也即为()-+-a a 21。 (2)测量不确定度一般包括许多分量。有些分量可由系列测量结果的统计分布评定,并用实验标准差表征。另外一些分量是根据经验或其它信息,通过假定的概率分布计算出

来,也可用标准差表征。不确定度的这两类分量除了它们的评定方法不同外,并无计量学上的本质区别。两种计算方法实际上也都是基于概率分布的(前者确切已知,后者通过假设确定)。用任何一种方法得到的不确定度分量均可用标准差定量。

(3)不确定度是测量结果的一个参数,这里的测量结果应是被测量值的最佳估计。通常对一被测量进行多次重复测量,在剔除具有明显粗大误差的量值后,取测量列的算术

平均值(n x x i ∑=)作为最终测量结果。如果有确切已知的系统误差,还应对算术平均值再

进行补偿修正,才能作为被测量值的最佳估计。

(4)全部不确定度分量,应包含由系统效应产生的分量,如修正值本身的不确定度和参考标准具有的不确定度都会影响结果的分散性。

(5)不确定度恒为正值。

2.2 不确定度的基本术语

2.2.1标准不确定度(Standard uncertainty)

以标准差表征的测量结果不确定度。

2.2.2(不确定度的)A 类评定(Type A evaluation of uncertainty)

用对观测列进行统计分析的方法来评定标准不确定度。

2.2.3(不确定度的)B 类评定(Type B evoluation of unertainty )

用不同于对观测列进行统计分析的方法来评定不确定度。

2.2.4合成标准不确定度(Combined standard uncertainty )

测量结果由其它量值得来时,按其它量的方差或协方差算出的标准不确定度。记为()y u c ,也可简记为()y u u c 或。

2.2.5扩展不确定度(Expanded uncertainty )

用于确定测量结果区间的量。合理赋予被测量的值分布的大部分可望落于该区间。扩展不确定度有时也称为展伸不确定度、范围不确定度。

由于合理赋予被测量的值不只一个,而是多个。具有一定分散性,对测量结果y 而言,若其扩展不确定度为U ,则被测量的值将以一定概率包含于区间],[U y U y +-中。

2.2.6包含因子(Coverage factor )

为获得扩展不确定度;对合成标准不确定度所乘的数字因子,记为k 。包含因子有时也称为覆盖因子。

2.2.7置信概率(Level of confidence)

扩展不确定度确定的测量结果区间包含合理赋予被测量值分布的概率,记为p,有时也称为置信水准、置信水平。

2.2.8自由度(Degrees of freedom)

在方差计算中,和的项数减去对和的限制条件数,记为ν。

自由度反映相应实验标准差的可靠程度,自由度越大,可靠程度越高。

2.2.9相对不确定度(Relative uncertaitny)

不确定度除以测量结果的绝对值,

()

y

y

u

c(设|y|≠0)。

测量结果的不确定度有时可以用相对不确定度表示。

2.3 两组概念的辨析

2.3.1 误差与不确定度

误差与不确定度是计量学中两个相互关联又相互区别的概念。人们提出这两个概念的目的都是为了寻求如何以实验和测量所得结果来更恰当、更准确地体现被测量的真实情况。

误差为测得值与被测量真值之差。即误差=测得值-真值。

不确定度是被测量值可能出现的范围。

2.3.1.1. 二者的联系

误差与不确定度都是由相同因素造成的:随机效应和系统效应。

随机效应是由于未预料到的变化或影响量的随时间和空间变化所致。它引起了被测量重复观测值的变化。这种效应的影响不能借助修正进行补偿,但可通过增加观测次数而减小。其期望值为零。

系统效应是由固定不变的或按确定规律变化的因素造成的。但由于人类认识的不足,也不能确切知道其数值,因此也无法完全清除,但通常可以减小。系统效应产生的影响有些是可以识别的,有些是未知的,如果已知影响能定量给出,而且其大小对测量所要求的准确度而言有意义的话,则可采用估计的修正值或修正因子对结果加以修正。

由于随机效应和系统效应的存在,使得被测量的真值无法确知,每个测量结果也都具有一定的不可靠性,导致误差和不确定度的产生。

2.3.1.2. 二者区别

a. 误差是相对被测量真值而言的,它是测量结果与真值之差,由于真值的不可知性,实际上误差也只能是个理想概念,不可能得到它的准确值。

不确定度以测量结果本身为研究对象,其含义不是“与真值之差”或“误差限”、“极限误差”,而是表示由于随机影响和系统影响的存在而对测量结果不能肯定的程度,表征被测量值可能出现的范围。它是以测量结果为中心,以标准差或其倍数,或某置信区间半宽度确定的被测量的取值范围。确保真值以一定概率落于其中。因而,它是测量结果的一个量化属性。

b. 误差和不确定度的分类方法截然不同。

误差根据其性质可分为两类:随机误差和系统误差。

随机误差:测量结果与重复性条件下对同一量进行无限多次测量所得结果的平均值之差。随机误差大抵是由于随机影响造成的。注意,观察列的平均值的实验标准差并不是平均值的随机误差,而恰恰是随机影响引起的平均值的不确定度,这些效应产生的平均值的随机误差不可能准确知道。

系统误差:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量真值之差。系统误差是由已知系统影响和未知系统影响产生的,通过对已知系统影响的修正可以减小,但不可能为零。同时,修正值或修正因子的不完善,也会导致测量结果的不确定度,但不是由于系统影响补偿不理想而产生的误差。

不确定度按照分量的评定方法分为A类B类,但并非“随机”和“系统”的代用词。用A类或B类评定方法均可得到已知系统影响修正值的不确定度,随机影响的不确定度计算也是如此。两种评定方法均基于概率分布,得到的分量在本质上不存在差异。实际应用中,无须将它们与随机或系统对应起来。

c. 误差取一个符号,非正即负。不确定度恒为正值。当由方差得出时,取其正平方根。

图1 被测量值、误差及不确定度关系

d. 不确定度是由随机影响和对系统影响结果的不完善修正产生的。在计算测量结果的不确定度时,不会考虑到未被认识的系统影响,但这种影响会导致误差的出现。因此,即使计算出来的不确定度很小,仍不能保证测量结果的误差很小。或者说,测量结果的不确定度未必是测量结果接近被测量值的指示值,它仅为与目前可用的知识相符的最佳值接近程度的近似性估计。不确定度不能用于测量结果和真值之间的差异显示,但可用于测量结果之间的比较。不确定度越小,则测量结果质量越高。

在测量中若没有忽略任何明显的系统影响时,才能认为测量结果即为被测值的可靠估计值,其合成标准不确定度即为可能误差的可靠量度。

被测量值、误差及不确定度关系如图1所示。

2.3.2 准确度与不确定度

测量准确度(Accuracy of measurement)表示测量结果与被测量真值之间的一致程度。由于真值的不可知,它也只能是个定性概念而绝不能把它定量地表达为一个量值。但可以说准确度高或低。

不确定度则是被测量值分散性的一个量度,它不仅包括系统影响也包括随机影响,以一个定量的数据确定了被测量的取值范围,即所有量值可能出现的范围。它是以测量结果

为中心,而并非是相对真值而言。因此是个可以量化的属性。

对于测量仪器来说,要表达其准确度,只能用等别或级别,如准确度为0.1级,准确度为3等。而决不能有诸如准确度为±10mA ,相对准确度为±2310-5等类表达方式。

2.4 测量值的基本分布

在同一条件下,对某量进行多次重复测量,由于测量不确定度的影响,所得各个结果之间具有分散性,且呈现一定的分布规律,常见有以下几种:

2.4.1 正态分布

测量值x 服从期望μ标准差σ的正态分布,记为

()σμ,~N x

正态分布()σμ,N ,如图2所示,其测量值具有以下特点:

(1)单峰性:距μ近的值比距μ远的值出现的概率大;

(2)对称性:比μ大某量的测量值出现的机会等于比μ小同一量的测量值出现的机会;

(3)有界性:在一定的测量条件下,很大或很小的测量值不会出现。

(4)抵偿性:各测量值的平均值随测量次数增大而趋于期望μ。

设正态分布()σμ,N ,其概率密度函数f(x)为:

图2 正态分布

()()22

221

σμπσ--=x e x f

f(x)具有以下性质:

(1)曲线关于μ=x 对称;

(2)当μ=x 时取到最大值。

欲使x 落于区间],[σμσμk k +-的置信概率为p ,即

()p dx x f k k =?+-σμσμ

可通过查正态分布密度函数数值表得出对应一定p 的k 值,常见如下表:

表2-1 常见正态分布密度函数表

正态分布()σμ,N 中以μ为被测量的数学期望,一般以测量列的算术平均值估计。对被测量进行一系列等精度测量,由于存在偶然效应,其测得值皆不相同,应以全部测得值的算术平均值作为最后测量结果。如图3所示,μ越大被测量值越大(如第3条曲线);反之,则越小。(如第1条曲线μ=0)。

测量列中的各个不同测得值围绕着算术平均值有一定的发散,此分散度说明了测量列中单次测得值不可靠性,正态分布()σμ,N 中的σ即是这种不可靠性的评定标准,称为标准差。σ的数值小,该测量列相应小的误差就占有优势,任一单次测得值对算术平均值的分散度就小,测量的可靠性就大,即测量精度高;(如第1条曲线);反之,测量精度就低。(如第2条曲线)

正态分布是测量中的基本分布。理论研究表明,若测量值受到大量的、独立的、大小可比的多个效应的影响,则该测量值服从正态分布。

2.4.2 均匀分布

在测量实践中,均匀分布是经常遇到的一种分布,其主要特点是:测量值在某一范围 图3 正态分布比较

3

2121μμμσσ<=<

中各处出现的机会一样,即均匀一致。故又称为矩形分布或等概率分布,如图4所示。

测量值x 服从均匀分布],[+-a a U ,其中-a -为x 出现的下界,+a 为x 出现的上界,

其概率分布密度函数: ()??

???-=-+01a a x f

其它+-≤≤a x a 记为~x ],[+-a a U

若测量值服从均匀分布],[+-a a U ,则其期望E 为区间],[+-a a 的中点,

2

+-+=a a E 而其标准差为

()-+-=

a a 321σ

图4 均匀分布

遵从均匀分布或假设为均匀分布的测量值为:

(1) 数据切尾引起的舍入误差;

例如:测量结果要求保留到小数点后3位,将实测或算出的数据第4位按四舍五入原则舍去,则存在舍入误差0.0005;

(2) 电子计算器的量化误差数字或仪器在±1单位以内不能分辨的误差;

(3) 摩擦引起的误差;

(4) 仪表度盘刻度误差或仪器传动机构的空程误差;

(5) 平衡指示器调零不准引起的误差,此项误差和仪器的调节精度人员操作有关;

(6) 数字示值的分辨率;

显示装置的分辨率指显示装置能有效辨别的最小示值差,一般即为最小显示单位,设

为?,则其标准差:

32?

=u

(7) 人员瞄准误差;

用人眼进行瞄准时的精度与人眼的分辨本领指标线的形状和对准方式有关。当用两条实线重合时准瞄准精度为±60″3250mm (明视距离);用两条实线线端对准,瞄准精度为±(10″~20″)3250mm ;用一虚线压一实线或轮廓边缘瞄准精度为±(20″~30″)3250mm ;用双线对移跨单位线,瞄准精度为±5″3250mm 。以上数据均是直接由人眼观测时的数据。

(8) 人员读数误差;

有因为视差引起的读数误差或读取非整数刻度值时,由于估读不准引起的误差,一般为最小分度的10

1。 2.4.3 梯形分布

测量值的出现机会在中间各处一样,在两边直线下降,在边缘为零则称其服从梯形分布,如图5所示,概率密度函数为:

()?????

??????-+=042121212

a a x a a a x f 其它121221a a x a a a a x +≤≤-≤≤

图5 梯形分布

若测量值服从梯形分布,则其

期望 0=E

标准差 322

21a a +=σ

两独立均匀分布,[][]2121,,,~,,~ξξξξ+=≠--y b a b b a a U 则服从梯形分布。

2.4.4 三角分布

若测量值出现和机会在中点最大,随即自中点向两边直线下降,在边缘处为0,则称其服从三角分布,如图6所示。两独立均匀分布[]a a U ,~,21-ξξ,

图6 三角分布

则21ξξη+=服从三角分布。在实际测量中若整个测量过程必须进行两次才能完成,而每次测量均服从相同的均匀分布,则总的结果服从三角分布,其概率密度函数为:

()()()??

???-+=0//22a x a a a x x f 其它a x x a <≤<≤-00

其标准差、期望为:

6

a E ==σ 服从三角分布的情况有:

① 两独立同均匀分布之和或差;

② 由数值舍入或分辨率影响的两测量值之和或差;

③ 用替代法检定标准元件时两次调零不准的影响。

2.4.5 反正弦分布

均匀分布变量的正弦或余弦函数服从反正弦分布。

测量值x 服从[]a a ,-上反正弦的分布,如图7所示,其概率密度函数为:

()?????-=0

12

2x a x f π 其它a x a ≤≤-

图7 反正弦分布

其期望与标准差为:

a E 2

10

==σ 服从反正弦分布的情况有:

(1) 度盘偏心引起的测角误差;

(2) 正弦噪声引起的误差;

(3) 无线电失配引起的误差。

3 不确定度的评定

3.1 不确定度来源

从影响测量结果的因素考虑,测量结果的不确定度一般来源于:被测对象、测量设备、测量环境、测量人员和测量方法。

3.1.1

a 被测量的定义不完善

被测量即受到测量的特定量,深刻全面理解被测量定义是正确测量的前提。如果定义

本身不明确或不完善,则按照这样的定义所得出的测量值必然和真实之间存在一定偏差。

b 实现被测量定义的方法不完善

被测量本身明确定义,但由于技术的困难或其它原因,在实际测量中,对被测量定义的实现存在一定误差或采用与定义近似的方法去测量。例如:器具的输入功率是器具在额定电压,正常负载和正常工作温度下工作时的功率。但在实际测量中,电压是由稳压源提供的,由于稳压源自身的精度影响,使得器具的工作电压不可能精确为额定值,故测量结果中应考虑此项不确定因素。故只有对被测量的定义和特点,仔细研究、深刻理解,才能尽可能减小采用近似测量方法所带来的误差或将其控制在一个确定范围内。

c 测量样本不能完全代表定义的被测量

被测量对象的某些特征如:表面光洁度,形状、温度膨胀系数、导电性、磁性、老化、表面粗糙度、重量等在测量中有特定要求,但所抽取样本未能完全满足这些要求,自身具有缺陷,则测量结果具有一定的不确定度。

d 被测量不稳定误差

被测量的某些相关特征受环境或时间因素影响,在整个测量过程中保持动态变化,导致结果的不确定度。

3.1.2 测量设备

计量标准器、测量仪器和附件以及它们所处的状态引入的误差。计量标准器和测量仪器校准不确定度,或测量仪器的最大允差或测量器具的准确度等级均是测量不确定度评定必须考虑的因素。

3.1.3

a 在一定变化范围或不完善的环境条件下测量

2温度2振动噪声2供给电源的变化

2温度2空气组成、污染2热辐射

2大气压2空气流动

b 对影响测量结果的环境条件认识不足

由于对相关环境条件认识不足,致使测量中或分析中忽视了对某些环境条件的设定和调整,造成不确定度。

3.1.4 测量人员

a 模拟式仪器的人员读数误差即估读误差,读取带指针仪表或带标线仪器的示值,即

读取非整数刻度值时,由于估读不准而引起的误差。

b 人员瞄准误差

采用显微镜或等光学仪器通过使视场中的两个几何图形重合来对线进行测量,对线准确度与操作者经验和对线形状有关。

c 人员操作误差

如测量时间的控制、测点的布置。该项取决于人员的经验、能力、知识及工作态度、身体素质等。

3.1.5 测量方法

a 测量原理误差

测量方法本身就存在一定的原理误差,对被测量定义实现不完善。例如在产品的电气强度试验中,由于耐压试验台自身内阻影响,使得加于样品两端的电压低于实际设定值。这样必然造成试验结果存在一定的不确定度。

b 测量过程

2测量顺序

应严格按照测量规范规定的进行。遗漏或颠倒某一操作过程都有可能造成测量结果的误差,甚至使测量失去意义。

2测量次数

一般来说测量次数不同,测量精度也不同,增加测量次数,可以提高测量精度。但n 已减少得非常缓慢。此外,由于测量次数愈大,也愈难保证测量条件的恒>10以后,

x

定,从而带来新的误差,因此一般情况下取n=10以内较为适应。

2测量所需时间

有的测量规定必须在一定条件下,一定时间内完成超出则结果不准确。如器具潮态试验后的泄漏电流测试必须在5s内完成。

2测量点数

操作规范规定测量若干点,但实际检测中,为节省时间或出于其它考虑减少或增加了测量点数,也对最终结果有影响。如在噪声测试中。

2瞄准方式

测量方法不同,采用的测量仪器不同,对应的瞄准方式也不同,如采取目测或用光学瞄准,其瞄准精度必然不同。

2方向性

测量结果须在一定稳态下获得,实验中以不同方向趋于稳态,对于有些测量设备,如具有滞后或磁滞性的仪器读数是不同的。

c 数据处理

2测量标准和标准物质的赋值不准

标准器具本身不可避免存在着制造偏差,它是由更高一级的标准来检定的,这些高一级的标准本身也存在着误差。

2物理常数或从外部资料得到的数据不准

外部资料中提供的数据很多,是由以前的测量为基础或单纯凭经验得出的,不可避免地存在着误差。

2算法及算法实现

采用不同的算法处理数据,如计算标准差 ,分别运用白塞尔法和极差法,所得结果必然不同。

2有效位数

数据有效位数不同,精度不同,应根据测量要求或所采用的测量设备而定。

2舍入

由于数字运算位数有限,数值舍入或截尾造成不确定度。

2修正

有些系统误差是可以修正的,但由于对误差因素本身的认识不充分,修正值也必然存在着不确定度。

工业企业的计量部门在工业生产中起着质量把关的作用。因此必须正确评定测量结果的不确定度,既不能过大,也不能过小,以保证产品质量,又不会造成误判。首先应充分考虑测量设备、测量人员、测量环境、测量方法等方面众多来源带来的不确定度分量,作到不遗漏、不重复、不增加。并正确评定其数值,其中设备来源不确定度可经过量值溯源,由上一级计量基标准的不确定度取得;也可利用所得到的检定校准证书,测试证书或有关规范所给的数据;方法不确定度经过研究和评定,其不确定度影响可能很小。

评定不确定度的原则和框架,不能代替人的思维、理智和专业技巧。它取决于对测量和被测量的本质的深入了解和认识。因此,测量结果的不确定度评定的质量和实用性,主要取决于对不确定度影响量的认识程度和细致而中肯的分析。

3.2 测量模型及不确定度的传播律

3.2.1 测量模型

许多情况下,被测量Y 并非直接测得,而是由其它N 个已知量 ,,21X X N X ,通过函数关系f 来确定,即:

()N X X X f Y 21,=

为简便起见,同一符号既表示物理量(被测量),又代表该量可能的观测结果(随机变量)。

例1:导线直径为d ,电阻率为ρ,匝数为N 的线圈,其电阻值为:

24d Nl R πρ=

l ——线圈平均匝长

注:测量过程的数学模型与测量程序有关。

例2:电阻法测温升是利用金属导体的电阻随温度变化的特性,通过测量温度变化前后导体的电阻值,根据经验公式计算出导体的温升值。

()()1211

125.234t t t R R R T --+?-=? R 2——试验结束时绕组电阻;

R 1——试验开始时绕组电阻;

t 2 ——试验结束时冷却空气温度;

t 1 ——试验开始时绕组温度。

说明:

(1) 决定输出量Y 的输入量N X X X 21,本身可视为被测量,也可与其它的量,如修正因子有关,因而导致一个不能写出显式的复杂函数关系。另外,f 也能通过试验确定,或采取经验公式进行计算。

(2) 一组输入量N X X X 21,可有以下两种:

——其值和不确定度可在现行的测量过程中直接测得,例如:可根据单次观测、重复观测或经验调整得到,其中包括测量仪器读数的修正值及环境温度、大气压和湿度等影响量的修正值。

——其值和不确定度是由外部原因带入测量过程的量,如检定计量标准、标准物质、物理

常数等。

(3) 设N X X X 21,的估计值为N x x x 21,,输出量Y 的估计值为y ,则:

()N x x x f y 21,=

注:

(1) 每个输入估计值如对y 有较大系统影响,应作适当修正。

(2) 在计算测量结果的不确定度时,这里的测量结果应是被测量Y 的最佳估计值。通常是进行一系列的重复观测,得到n y y y 21,,Y 的最佳估计值:

∑===n

k k y n y y 1

1 也就是说y 被看作是Y 的n 次独立观测值k y 的算术平均值y ,如果有修正量,还必须将其加入y ,才能作为最终观测结果。

注:在处理测量列之前,首先要将其中所有异常值加以剔除,可依据国家标准GB4883-85进行判断和处理。

3.2.2 不确定度的传播律

每个输入估计值i x 的估计标准偏差,称为标准不确定度,用()i x u 表示,通过A 类方法或B 类方法求出。

估计值y 的估计标准偏差称为合成标准不确定度,用()y u c 表示。它是由各输入值的标准不确定度按不确定度传播律得出的。

(1) 非相关输入量

当输入量N X X X 21,相互独立时,则不确定度传播公式为:

()()∑=????????=N i i i c x u x f y u 122

2 [1] 式中i

x f ??是方程()N x x x f y 21,=的偏导数,常被称为传播系数或灵敏度系数,记作i c 。[1]式又可以写作:

()()[]()∑∑====N

i i N i i i c y u x u c y u 1212

2 [2] 式中 ()()i i i x u c y u =

例3:对例1来说,24d Nl R πρ=,d 、ρ、N 相互独立,则其传播系数及合成标准

三米直尺法检测平整度作业指导书

三米直尺法检测平整度作 业指导书 This manuscript was revised by the office on December 10, 2020.

T0931-2008三米直尺法检测平整度作业指导书 一目的和适用范围及标准 本方法规定用三米直尺测定路表面的平整度。定义三米直尺基准面距离路表面的最大间隙表示路基路面的平整度,以mm计。 本方法适用于测定压实成型的路面各层表面的平整度,以评定路面的施工质量及使用质量,也可用于路基表面成型后的施工平整度检测。 二仪具与材料 本试验需要下列仪具与材料: (1)3m直尺:硬木或铝合金钢制,底面平直,长3m。 (2)最大间隙测量器具: 楔形塞尺:木或金属制的三角形塞尺,有手柄。塞尺的长度与高度之比不小于10,宽度不大于15mm,边部有高度标记,刻度精度不小于或等于0.2mm,也可使用其他类型的量尺。 深度尺:金属制的深度测量尺,有手柄。深度尺测量杆端头直径不小于10mm,刻度精度小于或等于。 (3)其它:皮尺或钢尺、粉笔等。 三方法与步骤 准备工作 (1)按有关规范规定选择测试路段。

(2)在测试路段路面上选择测试地点:当为施工过程中质量检测需要时,测试地点根据需要确定,可以单杆检测;当为路基路面工程质量检查验收或进行路况评定需要时,应连续测量10尺。除特殊需要者外,应以行车道一侧车轮轮迹(距车道线80~100cm)作为连续测定的标准位置。对旧路已形成车辙的路面,应取车辙中间位置为测定位置,用粉笔在路面上做好标记。 (3)清扫路面测定位置处的污物。 测试步骤 (1)在施工过程中检测时,按根据需要确定的方向,将3m直尺摆在测试地点的路面上。 (2)目测3rn直尺底面与路面之间的间隙情况,确定间隙最大的位置。 (3)用有高度标线的塞尺塞进间隙处,量测其最大间隙的高度(mm);或者用深度尺在最大间隙位置量测直尺上顶面距地面的深度,该深度减去尺高即为测试点的最大间隙的高度,精确至。 四计算 单杆检测路面的平整度计算,以3m直尺与路面的最大间隙为测定结果。连续测定10次时,判断每个测定值是否合格,根据要求计算合格百分率,并计算10个最大间隙的平均值。 五报告

灌砂法压实度试验操作规程

灌砂法压实度试验操作规程 一、在试验地点,选一块平坦表面,并将其清扫干净,其面积不得小于基板面积。将基板放在此平坦表面上。如表面的粗糙度较大,则将盛有量砂的灌砂筒放在基板中间是圆孔上。打开灌砂筒开关,让砂流入基板的中孔内,直到储砂筒内的砂不再下流时关闭开关。取下灌砂筒,并称筒内砂的质量,准确至1g。 二、取走基板,将留在试验地点的量砂收回,重新将表面清扫干净。将基板放在清扫干净的表面上,沿基板中孔凿洞(洞的直径与灌砂筒一致)。在凿洞过程在中,不使凿出的试样丢丢失,并随时将凿松的材料取出,放在已知质量的塑料袋内,不使水分蒸发。也可放在大试样盒内。试洞的深度应等于测试层厚度,但不得有下和层材料混入,最后将洞内的全部凿松材料取出。对土基或基层,为防止试样盘内材料的水分蒸发,可分几次乘取材料的质量。全部取出材料的总质量,准确至1g。 三、从挖出的全部试样中取有代表性的样品,放入铝盒或洁净的搪瓷盘中,测定其含水量。样品数量如下:用小灌砂筒测定时,对于细粒土,不少于100g;对于各种中粒土,不少于500g。用大灌砂筒测定时,对于细粒土,不少于200g;对于各种中粒土,不少于1000g。对于粗粒土或水泥、石灰、粉煤灰等无机结合料稳定材料,将取出的全部材料烘干,且不少于2000g,称起质量,准确至1g。

四、将基板安放在试洞上,将灌砂筒安放在基板中间(储砂筒内放满砂至要求质量),使灌砂筒的下口对准基板的中孔及试洞。打开灌砂筒开关,让砂流试坑内。在此期间,勿碰动灌砂筒。直到储砂筒内的砂不再下流时,关闭开关。仔细取走灌砂筒,称量筒内剩余砂的质量,准确至1g。 五﹑取出试筒内的量砂,以备下次试验时再用。若量砂的湿度已发生变化或量砂中混有杂质,则重新烘干,过筛,并放置一段时间,使其与空气的湿度达到平衡后再用。

测量不确定度评定作业指导书(含表格)

测量不确定度评定作业指导书 (IATF16949/ISO9001-2015) 1.目的: 规定了测量不确定度的评定方法,保证实验室对测量结果进行不确定度评定和报告出具。 2.适用范围: 适用于各检测项目的不确定度评定与表示。 3.依据的技术文件: JJF1059.1Y2012 测量不确定度的评定与表示。 4. 不确定度的评定方法: 测量不确定度评定依据JJF 1059.1-2012《测量不确定度评定与表示》进行,应对由仪器设备、人员、试验环境、试验方法等各方面可能引入的不确定度分量进行全面分析,然后根据JJF 1059.1-2012的要求合成不确定度,作出正确的分析报告。不确定度愈小,分析测试结果与真值愈靠近,其质量愈高,数据愈可靠。因此,测量不确定度就是对测量结果质量和水平的定量表征。 5.测量不确定度评定的步骤: 5.1一般评定不确定度的流程如下:

5.2建立测量的数学模型 测量的数学模型是指测量结果与其直接测量的量、引用的量以及影响量等有关量之间的数学函数关系。当被测量Y由N个其他量X1、X2、…、XN的函数关系确定时,被测量的数学模型为: Y = f (X1、X2、…、XN) 5.3测量不确定度的来源 一般应从被测量、样本离散性、环境、人员、仪器设备、方法、试剂、用于数据计算的常量及其他参量、测量方法及测量重复性等方面考虑不确定度来源。详细介绍如下: 1、对被测量的定义不完整或不完善 若在定义要求的温度和压力下测量,就可避免由此引起的不确定度。 2、实现被测量定义的方法不理想 如上例,被测量的定义虽然完整,但由于测量时温度和压力实际上达不到定义的要求(包括由于温度和压力的测量本身存在不确定度),使测量结果中引入了不确定度。

米直尺法检测平整度作业指导书新编完整版

米直尺法检测平整度作 业指导书新编 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

T0931-2008三米直尺法检测平整度作业指导书 一目的和适用范围及标准 本方法规定用三米直尺测定路表面的平整度。定义三米直尺基准面距离路表面的最大间隙表示路基路面的平整度,以mm计。 本方法适用于测定压实成型的路面各层表面的平整度,以评定路面的施工质量及使用质量,也可用于路基表面成型后的施工平整度检测。二仪具与材料 本试验需要下列仪具与材料: (1)3m直尺:硬木或铝合金钢制,底面平直,长3m。 (2)最大间隙测量器具: 楔形塞尺:木或金属制的三角形塞尺,有手柄。塞尺的长度与高度之比不小于10,宽度不大于15mm,边部有高度标记,刻度精度不小于或等于0.2mm,也可使用其他类型的量尺。 深度尺:金属制的深度测量尺,有手柄。深度尺测量杆端头直径不小于10mm,刻度精度小于或等于。 (3)其它:皮尺或钢尺、粉笔等。 三方法与步骤 准备工作 (1)按有关规范规定选择测试路段。 (2)在测试路段路面上选择测试地点:当为施工过程中质量检测需要时,测试地点根据需要确定,可以单杆检测;当为路基路面工程质量

检查验收或进行路况评定需要时,应连续测量10尺。除特殊需要者外,应以行车道一侧车轮轮迹(距车道线80~100cm)作为连续测定的标准位置。对旧路已形成车辙的路面,应取车辙中间位置为测定位置,用粉笔在路面上做好标记。 (3)清扫路面测定位置处的污物。 测试步骤 (1)在施工过程中检测时,按根据需要确定的方向,将3m直尺摆在测试地点的路面上。 (2)目测3rn直尺底面与路面之间的间隙情况,确定间隙最大的位置。 (3)用有高度标线的塞尺塞进间隙处,量测其最大间隙的高度(mm);或者用深度尺在最大间隙位置量测直尺上顶面距地面的深度,该深度减去尺高即为测试点的最大间隙的高度,精确至。 四计算 单杆检测路面的平整度计算,以3m直尺与路面的最大间隙为测定结果。连续测定10次时,判断每个测定值是否合格,根据要求计算合格百分率,并计算10个最大间隙的平均值。 五报告 单杆检测的结果应随时记录测试位置及检测结果。连续测定10尺时,应报告平均值、不合格尺数、合格率。

测量不确定度的方法

测量不确定度评定U,p,k,u代表什么? 当测量不确定度用标准偏差σ表示时,称为标准不确定度,统一规定用小写拉丁字母“u”表示,这是测量不确定度的第一种表示方式。但由于标准偏差所对应的置信水准(也称为置信概率)通常还不够高,在正态分布情况下仅为68.27%,因此还规定测量不确定度也可以用第二种方式来表示,即可以用标准偏差的倍数kσ来表示。这种不确定度称为扩展不确定度,统一规定用大写拉丁字母U表示。于是可得标准不确定度和扩展不确定度之间的关系: U=kσ=ku 式中k为包含因子。 扩展不确定度U表示具有较大置信水准区间的半宽度。包含因子有时也写成kp的形式,它与合成标准不确定度uc(y)相乘后,得到对应于置信水准为p的扩展不确定度Up=kpuc(y)。 在不确定度评定中,有关各种不确定度的符号均是统一规定的,为避免他人的误解,一般不要自行随便更改。 在实际使用中,往往希望知道测量结果的置信区间,因此还规定测量不确定度也可以用第三种表示方式,即说明了置信水准的区间的半宽度a来表示。实际上它也是一种扩展不确定度,当规定的置信水准为p时,扩展不确定度可以用符号Up表示。 测量不确定度评定步骤? 评定与表示测量不确定度的步骤可归纳为 1)分析测量不确定度的来源,列出对测量结果影响显著的不确定度分量。 2)评定标注不确定度分量,并给出其数值ui和自由度vi。 3)分析所有不确定度分量的相关性,确定各相关系数ρij。 4)求测量结果的合成标准不确定度,则将合成标准不确定度uc及自由度v . 5)若需要给出展伸不确定度,则将合成标准不确定度uc乘以包含因子k,得展伸不确定度 U=kuc。 6)给出不确定度的最后报告,以规定的方式报告被测量的估计值y及合成标准不确定度uc 或展伸不确定度U,并说明获得它们的细节。 根据以上测量不确定度计算步骤,下面通过实例说明不确定度评定方法的应用。 我们单位的不确定度都是我写,其实计算不确定度,并写出报告,整体来说也就分几个步骤, 一、概述 二、数学模型 三、输入量的标准不确定度评定 这里面就包括数学模型里所有影响结果的参量,找出所有影响因素,计算各个影响量的标准不确定度,其中又分为A类评定和B类评定 这个按B类评定进行计算,影响万用表的因素也很多,比如万用表的仪器设备检定证书中如果有不确定度,可以直接用,如果没有,就看给出的允许误是多少,用这个数字除以根号3,得出误差的标准不确定度。还有要考虑温湿度的影响,以及人为读数误差(不知道你们那个万用表是不是人工读数),基本上万用表就考虑这些因素差不多了,你就是一个万用表的读书不确定度,一般按正态分布,K取根号3,一般会把标准不确定度先转换成相对标准不确定度,这样都变成无量纲的,方便后边合成。 四、计算合成不确定度 五、计算扩展不确定度 六、最后的不确定度表示 一般试验室能力验证,查的就是不确定度报告,按这个格式就可以

路基压实度测定方法与及其操作规程

路基压实度测定方法与及其操作规程 灌砂法 1 目的和适用范围 1.1 本试验法适用于在现场测定基层(或底基层)、砂石路面及路基土的各种材料压实层的密度和压实度检测,但不适用于填石路堤等有大孔洞或大孔隙的材料压实层的压实度检测。 1.2 用挖坑灌砂法测定密度和压实度时,应符合下列规定: (1)当集料的最大粒径小于13.2mm、测定层的厚度不超过150mm时,宜采用φ100mm的小型灌砂筒测试。 (2)当集料的最大粒径等于或大于13.2mm,但不大于31.5mm,测定层的厚度不超过200mm时,应用φ150mm 的大型灌砂筒测试。 2 仪具与材料技术要求 本试验需要下列仪具与材料: (1)灌砂筒:有大小两种,根据需要采用。型式和主要尺寸见图1及表1。当尺寸与表中不一致,但不影响使用时,亦可使用。储砂筒筒底中心有一个圆孔,下部装一倒置的圆锥形漏斗,漏斗上端面开口,直径与储砂筒底中心有一个圆

孔,漏斗焊接在一块铁板上,铁板中心有一圆孔与漏斗上开口相接。在储砂筒筒底与漏斗顶端铁板之间设有开关。开关为一薄铁板,一端与筒底及漏斗铁板铰接在一起,另一端伸出筒身外,开关铁板上也有一个相同直径的圆孔。 图1 灌砂筒和标定罐(尺寸单位:mm)(2)金属标定罐:用薄铁板制作的金属罐,上端周围有一罐缘。 (3)基板:用薄铁板制作的金属方盘,盘的中心有一圆孔。 (4)玻璃板:边长约500--600mm的方形板。

(5)试样盘:小筒挖出的试样可用饭盒存放。大筒挖出的试样可用300mm×500mm×400mm的搪瓷盘存放。 (6)天平或台秤:称量10--15kg,感量不大于1g。用于含水量测定的天平精度,对细粒土、中粒土、粗粒土宜分别为0.01g、0.1g、1.0g。 (7)含水量测定器具:如铝盒、烘箱等。 (8)量砂:粒径0.3~0.6mm清洁干燥的砂,约20-40kg,使用前须洗净、烘干,并放置足够的时间,使其与空气的湿度达到平衡。 (9)盛砂的容器:塑料桶等。 (10)其它:凿子、螺丝刀、铁锤、长把勺、长把小簸箕、毛刷等。 表1 灌砂仪的主要尺寸要求

D65亮度测量不确定度评定作业指导书

D65亮度测量不确定度评定 作业指导书 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

D65亮度测量不确定度评定作业指导书 1.目的 规定了D65亮度测量不确定度的评定方法,保证实验室对测量结果进行不确定度评定和报告出具。 2.适用范围 适用于检测中心D65亮度项目的不确定度评定与表示。 3.依据的技术文件 JJF1059.1-2012 《测量不确定度的评定与表示》、GB/T27418-2017《测量不确定度的评定与表示》、CNAS-CL01-G003:2019《测量不确定度评定要求》、GB/T 7974-2013《纸、纸板和纸浆蓝光漫反射因素D65亮度的测定(漫射/垂直法,室外日光条件)》、LFJC-CX-17《测量不确定度控制程序》。 4.测量不确定度评定的步骤 4.1一般评定不确定度的流程如下 图1 评定测量不确定度的流程图 4.2建立测量的数学模型 D65亮度数学模型 - =b B

式中:B-样品D65亮度,%; - b -所测10次样品的平均D65亮度,%。 4.3测量不确定度的来源 图2 D65亮度、D65荧光亮度测量不确定度来源 分析D65亮度测量不确定度来源并制作因果图,不同因素及其影响参数如上图1所示。 D65亮度测量结果受环境温度与湿度、纸样本身的不均匀性、仪器校准和重复测量等影响。测量过程在恒温恒湿环境条件下进行,温湿度控制符合标准要求,因此环境温度与湿度对纸张的D65亮度测量结果的不确定度影响很小,可以忽略不计。纸样本身的不均匀性,使在不同位置上D65亮度存在不相同的现象,通过在纸张横幅方向均匀取样,及对所取试样进行重复测量,使得其对不确定度的影响包含在重复性的影响量中。因此纸张D65亮度测量结果的不确定度主要来源于以下几个方面:测量重复性引入的不确定度分量;仪器校准引入的不确定度分量。 4.4评定标准不确定度分量 4.4.1 白度测定仪仪器校准产生的不确定度)(1- b u 4.4.1.1零点漂移校准引入的不确定度)(1 - b u (零点漂移) 零点漂移技术指标要求不大于0.1,认为是均匀分布,所以 温度 湿度 环境 纸张均匀性 仪器校准 重复测量 示值漂移 零点漂移 重复性 准确度

三米直尺法检测平整度作业指导书

三米直尺法检测平整度 作业指导书 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

T0931-2008三米直尺法检测平整度作业指导书 一目的和适用范围及标准 本方法规定用三米直尺测定路表面的平整度。定义三米直尺基准面距离路表面的最大间隙表示路基路面的平整度,以mm计。 本方法适用于测定压实成型的路面各层表面的平整度,以评定路面的施工质量及使用质量,也可用于路基表面成型后的施工平整度检测。 二仪具与材料 本试验需要下列仪具与材料: (1)3m直尺:硬木或铝合金钢制,底面平直,长3m。 (2)最大间隙测量器具: 楔形塞尺:木或金属制的三角形塞尺,有手柄。塞尺的长度与高度之比不小于10,宽度不大于15mm,边部有高度标记,刻度精度不小于或等于0.2mm,也可使用其他类型的量尺。 深度尺:金属制的深度测量尺,有手柄。深度尺测量杆端头直径不小于10mm,刻度精度小于或等于。 (3)其它:皮尺或钢尺、粉笔等。 三方法与步骤 准备工作 (1)按有关规范规定选择测试路段。

(2)在测试路段路面上选择测试地点:当为施工过程中质量检测需要时,测试地点根据需要确定,可以单杆检测;当为路基路面工程质量检查验收或进行路况评定需要时,应连续测量10尺。除特殊需要者外,应以行车道一侧车轮轮迹(距车道线80~100cm)作为连续测定的标准位置。对旧路已形成车辙的路面,应取车辙中间位置为测定位置,用粉笔在路面上做好标记。 (3)清扫路面测定位置处的污物。 测试步骤 (1)在施工过程中检测时,按根据需要确定的方向,将3m直尺摆在测试地点的路面上。 (2)目测3rn直尺底面与路面之间的间隙情况,确定间隙最大的位置。 (3)用有高度标线的塞尺塞进间隙处,量测其最大间隙的高度(mm);或者用深度尺在最大间隙位置量测直尺上顶面距地面的深度,该深度减去尺高即为测试点的最大间隙的高度,精确至。 四计算 单杆检测路面的平整度计算,以3m直尺与路面的最大间隙为测定结果。连续测定10次时,判断每个测定值是否合格,根据要求计算合格百分率,并计算10个最大间隙的平均值。 五报告

测量不确定度的评定方法.

测量不确定度的评定方法 鉴于测量不确定度在检测,校准和合格评定中的重要性和影响,考虑到试验机行业应用测量不确定度时间不长,现就有关测量不确定度概念、测量不确定度的评定和表示方法,谈谈学习体会。奉献给同行业人员。由于本人学识浅薄,力不从心,有不妥或错误处,期望批评指正。 (一)测量不确定度的概念 《测量不确定度表示指南》(GUM),即国际指南,给出的测量不确定度的定义是:与测量结果相关联的一个参数,用以表征合理地赋予被测量之值的分散性。 其中,测量结果实际上指的是被测量的最佳估计值。被测量之值,则是指被测量的真值,是为回避真值而采取的。我国计量技术规范JJF1059—1999《测量不确定度评定与表示》中,亦推荐这一用法(见该规范2.3注4)。 须知,真值对测量是一个理想的概念,如何去估计它的分散性?实际上,国际指南(GUM)所评定的并非被测量真值的分散性,也不是其约定真值的分散性,而是被测量最佳估计值的分散性。 关于测量不确定度的定义,过去曾用过: ① 由测量结果给出的被测量估计的可能误差的度量; ② 表征被测量的真值所处范围的评定。 第①种提法,概念清楚,只是其中有“误差”一词,后来才改为第②种提法。现行定义与第②种提法一致,只是用被测量之值取代了真值,评定方法相同、表达式也一样,并不矛盾。 至于参数,可以是标准差或其倍数,也可以是给定置信概率的置信区间的半宽度。用标准差表示测量不确定度称为测量标准不确定度。在实际应用中如不加以说明,一般皆称测量标准不确定度为测量不确定度,甚至简称不确定度。 用标准差值表示的测量不确定度,一般包括若干分量。其中,一些分量系用测量列结果的统计分布评定,并用标准差表示:而另外一些分量则是基于经验或其他信息而判定的(主观的或先验的)概率分布评定,也以标准差值表示。可见,后者有主观鉴别的成分,这也是在定义中使用“合理地赋予”的主要原因。 为了和传统的测量误差相区别,测量不确定度用u(不确定度英文uncertainty的字头)来表示,而不用s。 应当指出,用来表示测量不确定度的标准差,除随机效应的影响外,还包括已识别的系统效应不完善的影响,如标准值不准、修正量不完善等。 显然,测量结果中的不确定度,并未包括未识别的系统效应的影响。尽管未识别的系统效应会使测得值产生某种系统偏差。 所以,可以概括地说,测量不确定度是由于随机效应和已识别得系统效应不完善的影响,而对被测量的测得值不能确定(或可疑)的程度。(注:这里的测得值,系指对已识别的系统效应修正后的最佳估计值)。 (二)不确定度的来源 在国际指南(GUM)中,将测量不确定度的来源归纳为10个方面: ① 对被测量的定义不完善; ② 实现被测量的定义的方法不理想; ③ 抽样的代表性不够,即被测量的样本不能代表所定义的被测量; ④ 对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善; ⑤ 对模拟仪器的读数存在人为偏移; ⑥ 测量仪器的分辨力或鉴别力不够; ⑦ 赋予计量标准的值或标准物质的值不准; ⑧ 引用于数据计算的常量和其他参量不准; ⑨ 测量方法和测量程序的近似性和假定性; ⑩ 在表面上看来完全相同的条件下,被测量重复观测值的变化。 上述的来源,基本上概括了实践中所能遇到的情况。其中,第①项如再加上理论认识不足,即对被测量的理论认识不足或定义不完善似更充分些;第⑩项实际上是未预料因素的影响,或简称之为“其他”。 可见,测量不确定度一般来源于随机性和模糊性。前者归因于条件不充分,而后者则归因于事物本

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

平整度试验作业指导书

4、平整度试验作业指导书 平整度试验检测1--3人,每10公里每车道用时1.5-3小时。 车载式激光平整度仪测定平整度试验方法 1目的与适用范围 1.1本方法适用于各类车载式激光平整度仪在新建、改建路面工程质量验收和无严重坑槽、车辙等病害及无积水、积雪、泥浆的正常通车条件下连续采集路段平整度数据。 1.2本方法的数据采集、传输、记录和处理分别由专用软件自动控制进行。 2仪具与材料技术要求 ⑴测试系统 测试系统由承载车辆、距离传感器、纵断面高程传感器和主控制系统组成。主控制系统对测试装置的操作实施控制,完成数据采集、传输、存储与计算过程。 ⑵设备承载车要求 根据设备供应商的要求选择测试系统承载车辆。 ⑶测试系统基本技术要求和参数

①测试速度:30~100km/h。 ②采样间隔:500mm。 ③传感器测试精度:≤0.5mm。 ④距离标定误差:<0.1%。 ⑤系统工作环境温度:0~60℃。 3方法与步骤 3.1 准备工作 ⑴设备安装到承载车上以后应按本方法第5条的规定进行相关性试验。 ⑵根据设备操作手册的要求对测试系统各传感器进行校准。 ⑶检查测试车轮胎气压,应达到车辆轮胎规定的标准气压,车胎应清洁,不得黏附杂物。 ⑷距离测量装置需要现场安装的,根据设备操作手册说明进行安装,确保机械紧固装置安装牢固。 ⑸检查测试系统各部分应符合测试要求,不应有明显的可视性破损。

⑹打开系统电源,启动控制程序,检查各部分的工作状态。 3.2测试步骤 ⑴测试开始之前应让测试车以测试速度行驶5~10km,按照设备使用说明规定的预热时间对测试系统进行预热。 ⑵测试车停在测试起点前50~100m处,启动平整度测试系统程序,按照设备操作手册的规定和测试路段的现场技术要求设置完毕所需的测试状态。 ⑶驾驶员应按照设备操作手册要求的测试速度范围驾驶测试车,宜在50~80km/h之间,避免急加速和急减速,急弯路段应放慢车速,沿正常行车轨迹驶入测试路段。 ⑷进入测试路段后,测试人员启动系统的采集和记录程序,在测试过程中必须及时准确地将测试路段的起终点和其他需要特殊标记的位置输入测试数据记录中。 ⑸当测试车辆驶出测试路段后,测试人员停止数据采集和记录,并恢复仪器各部分至初始状态。 ⑹检查测试数据文件,文件应完整,内容应正常,否则

测量不确定度与《测量不确定度表示指南》

测量不确定度与《测量不确定度表示指南》 摘要:CIPM、BIPM、ISO等国际组织提出了统一的测量准确度的评定方法,制定了“测量不确定度表示指南”等技术规范。测量不确定度的提出对于计量学、经典真值误差概念、误差理论研究和应用、测量结果评定与表示等都具有划时代的意义。本文对“测量不确定度表示指南”进行综述,介绍测量不确定度的提出和发展过程、计量学指南联合委员会(JCGM)关于测量不确定度的工作情况,以及在JCGM/WG1 工作会议上我国提出的关于GUM建议修改意见。 关键词:测量不确定度;测量误差;GUM;JCGM/WG1 1。引言 测量是人们认识自然界量值关系的重要手段,是人类有意识的实践活动。当人们用测量来认识客观存在的量值时,该量值就是被测量,其定义值就是被测量真值。被测量真值是一种客观存在,其关键是被测量真值的定义。通过测量确定的被测量的估计值被称为测量结果。测量结果是人们对客观存在的被测量真值通过测量得到的主观认识。受到需要和客观可能的限制,测量结果与被测量真值间存在差异,即 测量误差。测量误差表征测量结果作为被测量真值估计值的可靠程度,被称为测量准确度,测量准确度评估事实上就是对测量误差进行评估。完整的测量结果的信息中,应该包括测量准确度评估结果,用以判断测量结果的可靠程度[1]。 有测量史以来,测量准确度评估始终处于计 量技术的核心位置。测量不确定度表征被测量真值在某个量值范围的

估计。测量误差虽然不可能准确知道,但常常可以由各种依据估计测量误差可能变动的区间,可以估计测量误差的绝对值上界,这个被估计的变动区间或上界值称为测量不确定度,它是测量结果及其表征测量误差大小的统计特征估计值[2,3]。 测量不确定度的提出引发了经典真值误差概念、误差理论研究和应用、测量结果评定与表示的重大变革。本文拟对“测量不确定度表示指南”进行综述,介绍测量不确定度的提出和发展过程、计量学指南联合委员会(JCGM)第一工作组(WG1)的工作情况,以及我国在JCGM/WG1工作会议上提出的GUM建议修改意见。 2。测量不确定度与测量误差 测量不确定度和测量误差是误差理论中两个重要概念[4],它们都是评价测量结果质量高低的重要指标,都可作为测量结果的精度评定参数。但它们之间又有明显的区别。 从定义上讲,测量误差是测量结果与真值之差,它以真值或约定真值为中心,而测量不确定度是以被测量的估计值为中心。因此测量误差是一个理想的概念,一般不能准确知道,难以定量;而测量不确定度是反映人们对被测量真值在某个量值范围的估计,可以定量评定。 测量误差按其特征和性质分为系统误差、随机误差和粗大误差,并可采取不同措施来减小或消除各类误差对测量的影响。由于各类误差之间并不存在绝对界限,故在分类判别和误差计算时不易准确掌握。测量不确定度不对测量误差进行分类,而是按评定方法分为A类评定和B类评定[5,6],两类评定方法不分优劣,按实际情况的可能性加

测量不确定度分析方法

测量不确定度分析方法 不确定度是表征测量值的分散性并与测量结果相联系的一 个参数,由分析与评定得到。一切测量结果都不可笔尖地存在不确定度,测量结果(数据、报告等)也越来越多采用不确定度来表达其质量和可靠程度。不确定度越小,测量水平越高,测量结果的使用价值越高,反之亦然。为统一对测量结果不确定度的评定与表达方法,国际标准化组织(ISO)等七个国际组织于1993年联合发布了《测量不确定度表示指南》。我国《测量不确定度评定与表示》等同采用此《指南》。 一、测量不确定度的意义 1.基本概念:测量不确定度是表征合理赋予被测量之值的分散性、与测量结果相联系的参数。在测量结果的完整表述中,应包括测量不确定度。 不确定度可以是标准差或其倍数,或是说明了置信水准的区间的半宽。以标准差表示的不确定度称为标准不确定度,以u表示。以标准差的倍数表示的不确定度称为扩展不确定度,以U表示。扩展不确定度表明了具有较大置信概率的区间的半宽度。 2.测量结果的重复性 测量结果的重复性是指在相同测量条件下,对同一被测量进

行连续多次测量所得到结果之间的一致性。这里的相同 测量条件包括:相同的测量程序、相同的观测者、使用相同的测量仪器、相同地点、在短时间内进行重复测量。这些条件也称为“重复性条件”。 测量重复性可以用重复观测结果的实验标准差定量地给出。3.测量结果的复现性 测量结果的复现性是指在改变了的测量条件下,同一被测量的测量结果之间的一致性。这里变化了的测量条件包括:测量原理、测量方法、观测者、测量仪器、参考测量标准、地点、时间、使用条件。这些条件可以改变其中一项、多项或者全部,它们会影响复现性的数值。因此,在复现性的有效表述中,应说明变化的条件。复现性可以用复现性条件下,重复观测结果的实验标准差定量地给出。这里,测量结果通常理解为已修正结果。复现性又称为“再现性” 二、测量误差与测量不确定度的主要区别 测量误差为测量结果减去被测量的真值,是客观存在的一个确定的值,但由于真值往往不知道,故误差无法准确得到。测量不确定度是说明测量分散性的参数,由分析和评定得到,因而与分析者的认识程度有关。误差与不确定度是两个不同的概念,不应混淆或误用。测量结果可能非常接近真值,但由于认识不足,评定得到的不确定度可能较大。也可能测量误差实际上较大,但由于分析估计不足,给出的不确

压实度检测试验作业指导书

压实度检测试验作业指导书 室外试验: 压实度试验检测2人,试验用时25-40分钟。 目的和适用范围 1.1本方法适用于在现场测定基层(或底基层)、砂石路面及路基土的各种材料压实层的密度和压实度检测。但不适用于填石路堤等有大孔洞或大孔隙材料的压实度检测。 1.2用挖坑灌砂法测定密度和压实度时,应符合下列规定: ⑴当集料的最大粒径小于13.2mm、测定层的厚度不超过150mm时,宜采用Φ100mm的小型灌砂筒测试。 ⑵当集料的最大粒径等于或大于13.2mm,但不大于 31.5mm,测定层的厚度不超过200mm,时,应用Φ150mm的大型灌砂筒测试。 2仪具与材料技术要求 本方法需要下列仪具与材料: ⑴灌砂筒:有大小两种,根据需要采用。主要尺寸见表

T 0921。当尺寸与表中不一致,但不影响使用时,亦可使用。上部为储砂筒,筒底中心有一个圆孔。下部装一倒置的圆锥形漏斗,漏斗上端面开口,直径与储砂筒的圆孔相同,漏斗焊接在一块铁板上,铁板中心有一圆孔与漏斗上开口相接。在储砂筒筒底与漏斗顶端铁板之间设有开关。开关为一薄铁板,一端与筒底及漏斗铁板铰接在一起,另一端伸出筒身外,开关铁板上也有一个相同直径的圆孔。 ⑵金属标定罐:用薄铁板制作的金属罐,上端周围有一罐缘。 ⑶基板:用薄铁板制作的金属方盘,盘的中心有一圆孔。 ⑷玻璃板:边长约500~600mm的方形板。 ⑸试样盘:小筒挖出的试样可用饭盒存放,大筒挖出的试样可用300mm×500mm×40mm的搪瓷盘存放。 ⑹天平或台秤:称量10~15kg,感量不大于1g。用于含水率测定的天平精度,对细粒土、中粒土、粗粒土宜分别为 0.01g、0.1g、1.0g。 ⑺含水率测定器具:如铝盒、烘箱等。

平整度作业指导书3

路面平整度测定 作业指导书 文件编号:xxxx 发布日期:2019年01月25日 批准: 审核: 编写: xxxx工程检测有限公司

平整度 1.1 直尺测定平整度试验方法 1.本方法规定用3m直尺测定距离路表面的最大间隙表示路基路面的 平整度,以mm计。 2.本方法适用于测定压实成型的路面各层表面的平整度,以评定路 面的施工质量及使用质量,也可用于路基表面成型后的施工平整度检测。 1.2 仪具与材料 本试验需要下列仪具与材料: (1)3m直尺:硬木或铝合金钢制,底面平直,长3m。 (2)楔形塞尺:木或金属制的三角形塞尺,有手柄,塞尺的长度与高 度之比不小于0,宽度不大于15mm,边部有高度记刻 度精度不小于0.2mm,也可使用其他类型的量尺。(3)其它:皮尺或钢尺、粉笔等。 1.3 方法与步骤 1 准备工作 (1)按有关规范规定选择测试路段。 (2)在测试路段路面上选择测试地点:当为施工过程中质量检测需要 时,测试地点根据需要确定,可以单杆检测;当为路基路面工程质量检查验收或进行路况评定需要时,应连续测量10尺。除特殊需要者外,应以行车道一侧车轮迹(距车道线80--100cm)作为连续测定的标准位置。对旧路已形成车辙的路面,应取车辙中间位

置为测定位置,用粉笔在路面上作好标记。 (3)清扫路面测定位置处的污物。 1.4 测试步骤 (1)在施工过程中检测时,按根据需要确定的方向,将3m直尺摆在测 试地点的路面上。 (2)目测3m直尺底面与路面之间的间隙情况,确定间隙为最大的位 置。 (3)用有高度的塞尺塞进间隙处,量记其最大间隙的高度(mm),准确 至0.2mm。 (4)施工结束后检测时,按现行《公路工程质量检验评定标准 (JTJ071-94)的规定,每1处连续检测10尺,按上述(1)--(3)的步骤测记10个最大间隙。 1.5 计算 单杆检测路面的平整度计算,以3m直尺与路面的最大间隙为测定结果。连续测定10尺时,判断每个测定值是否合格,根据要求计算合格百分率,并计算10个最大间隙的平均值。 1.6.报告 单杆检测的结果应随时记录测试位置及检测结果。连续测定10 尺时,应报告平均值、不合格尺数、合格率。 2.1 连续式平整度仪测定平整度试验方法 1.本方法规定用连续式平整度仪量测路面的不平整度的标准差(б),

测量不确定度要求的实施指南

测量不确定度要求的实施指南 1 概述 1993年由国际计量局(BIPM)、国际标准化组织(ISO)、国际电工委员会(IEC)、国际法制计量组织(OIML)、国际理论与应用化学联合会(IUPAC)、国际理论与应用物理联合会(IUPAP)、国际临床化学联合会(IFCC) 7个国际组织联合发布《测量不确定度表示指南》(Guide to the Expression of Uncertainty in Measurement)简称GUM。为了保持与国际化发展和要求的同步,我国1999发布并实施JJF 1059-1999《测量不确定度评定与表示》。中国合格评定国家认可委员会在对检测实验室的认可中,对测量不确定度的评定提出了要求:对于检测实验室要求制定与检测工作特点相适应的测量不确定度的评定程序,并将其应用于不同类型的检测工作;当不确定度与检测结果的有效性或应用有关,当用户有要求,当影响对规范限度的符合性,当测试方法有规定和认可委员会有要求时,检测报告应该提供测量结果的不确定度。这对实验室的检测工作程序,对检测技术的质量控制和实验室规范性管理提出了更高的要求。 1.1、测量不确定度(uncertainty of a measurement) 表征合理地赋予测量之值的分散性,与测量结果相联系的参数。 (1) “合理”——是指在统计控制状态下的测量才能称之为合理的。所谓统计控制状态就是一种随机状态,即处于重复性条件下或重现性条件下的测量状态。 (2) “分散性”——指测量结果的分散性,即为一个量值区间,测量结果可以是假定概率分布的估算。 (3) “相联系”——更确切的翻译应为“与.....一起”。因此,不确定度是和测量结果一起,用来表明在给定条件下对被测量进行测量时,测量结果所可能出现的区间。测量不确定度是真值所处范围的评定参数。 测量结果的完整表达 一般来讲,可用y’=y±U表示,y是测量结果,U是扩展不确定度,测量结果的完整表达y’,可用图0表示。 ----此参数可以是诸如标准差或其倍数,或说明了臵信水准的区间的半宽度。 ----测量不确定度由多个分量组成。其中一些分量可用测量列结果的统计分布估算,并用实验标准差表征。另一些分量则可用基于经验或其他信息的假定概率分布估算,也可用标准差表征。 ----不确定度是对测量结果而言,用于表达这个结果的分散程度,是一个定量概念,可用数字来描述。不确定度越小,测量的水平越高,质量越高,其实用价值也越高;反之亦然。

施工作业指导书、工作流程

目录 、施工作业指导书 (1) 路基施工作业指导书 (2) 测量施工放样作业指导书 (25) 冲击式压路机施工作业指导书 (37) 路基排水防护工程砌体施工作业指导书 (41) 路基封层施工作业指导书 (47) 小型预制构件施工作业指导书 (58) 桥梁工程施工作业指导书 (67) 钢筋混凝土箱涵施工作业指导书 (105) 砂砾垫层施工作业指导书 (117) 路面基层施工作业指导书 (122) 沥青混凝土路面施工作业指导书 (145) 水泥砼路面施工作业指导书 (170) 房建工程施工作业指导书 (182) 绿化工程施工作业指导书 (195) 交通工程施工作业指导书 (202) 机电工程施工作业指导书 (218) 、工作流程图 (234) 质量管理机构运作程序图 (235) 质量控制程序图 (236) 质量检查程序图 (237) 质量事故处理程序图 (238) 工程质量审批程序图 (239) 工程质量验收程序图 (240)

施工管理流程图 (241) 检测试验程序图 (242) 标准试验工作程序图 (243) 工艺试验工作程序图 (244) 验证试验工作程序图 (245) 抽样试验、验收试验工作程序图 (246)

,、施工作业指导书 路基施工作业指导书 1. 总则 1.1 制定目的:为确保公路路基的施工质量,规范路基施工作业程序,提高施工质量标准,提升管理,保证工程工期与施工进度,特制定本作业指导书。 1.2 适用范围:本作业指导书适用于京加公路讷河至嫩江段公路建设项目。 1.3解释权限:解释权归国道G111线工程建设指挥部。 2. 工期目标: 2.1 基底下处理:2007年完成100%,回填结束。 2.2 路基填筑: 2.2.1 2007年完成总量30%以上,即每个标段8万m3以上。(不含下处理) 2.2.2 2008 年5月31 日前完成总量60%以上,6月30日前完成总量90%以上,7 月31 日前完成总量100%。 2.2.3 路基成型的时间:2007年全线填筑两层以上。2008年5月31日前路基成型段完成总里程20%,6月30前成型路基成型段完成总里程50%。 2.2.4 挖方的完成时间:2007年完成总量100% 3. 质量目标:

作业指导书(范本)

作业指导书控制页: *注:班组工程师负责每项目上交一本已执行完成的、并经过完善有完整签名的作业指导书。

重要工序过程监控表 作业指导书(技术措施)修改意见征集表 回收签名(日期):

目录 1 编制依据及引用标准 (1) 2 工程概况及施工范围 (1) 2.1工程概况 (1) 2.2施工范围 (1) 3 施工作业人员配备与人员资格 (1) 3.1参加作业人员配置 (1) 3.2对参加人员的素质要求 (1) 4 施工所需机械装备及工器具量具、安全防护用品配备 (1) 5 施工条件及施工前准备工作 (2) 6 作业程序、方法及要求 (3) 6.1作业程序流程图 (3) 6.2作业方法及要求 (3) 6.3专项技术措施 (4) 7 质量控制及质量验收 (5) 7.1质量控制标准 (5) 7.2中间控制见证点设置 (5) 7.3中间工序交接点设置 (5) 7.4工艺纪律及质量保证措施 (5) 8 安全文明施工及环境管理要求和措施 (6) 表8-1职业健康安全风险控制计划 (7) 表8-2环境因素及控制措施 (8)

1 编制依据及引用标准 1.1《火电施工质量检验及评定标准》(1998年版热工仪表及控制装置篇);1.2《电力建设施工及验收技术规范》(热工仪表及控制装置篇); 1.3公司《质量、安全健康、环境管理手册》Q/501-218.01-2005; 1.4设计院图纸 1.5《电力建设安全工作规程》DL5009.1-2002第一部分:火力发电厂部分;1.6《火力发电机组施工工艺手册》Q/501-103.01-2006 1.7《中华人民共和国工程建设标准强制性条文》电力工程部分(2006年版); 1.8本工程施工组织总设计 2 工程概况及施工范围 2.1工程概况:(根据具体工程写) 2.2施工范围:(根据具体工程写) 3 施工作业人员配备与人员资格 3.1参加作业人员配置: 参加作业人员配置表 3.2对参加人员的素质要求: 3.2.1对DCS系统有一定的了解; 3.2.2能熟练使用电焊、火焊焊具,且具备国家认可的相应资格证书; 3.2.3对盘台的安装规程、规范、验评标准等有一定的了解; 3.3.4熟悉盘台安装的一般施工程序。 4 施工所需机械装备及工器具量具、安全防护用品配备

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法

4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影 响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i

相关文档
最新文档