层次分析法判断矩阵求权值以及一致性检验程序

层次分析法判断矩阵求权值以及一致性检验程序
层次分析法判断矩阵求权值以及一致性检验程序

function [w,CR]=mycom(A,m,RI)

[x,lumda]=eig(A);

r=abs(sum(lumda));

n=find(r==max(r));

max_lumda_A=lumda(n,n);

max_x_A=x(:,n);

w=A/sum(A);

CR=(max_lumda_A-m)/(m-1)/RI;

end

本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。

其中A为判断矩阵,不同的标度和评定A将不同。

m为A的维数

RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。

当CR<0.1时符合一致性检验,判断矩阵构造合理。

下面是层次分析法的简介,以及判断矩阵构造方法。

一.层次分析法的含义

层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。

二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。

(1)层次分析法的原理

层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。其用法是构造判断矩阵,求出其最大特征值。及其所对应的特征向量W,归一化后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。

(2)层次分析法的步骤

a)建立系统的递阶层次结构;

b)构造两两比较判断矩阵;(正互反矩阵)

c)针对某一个标准,计算各备选元素的权重;

d)计算当前一层元素关于总目标的排序权重。

e)进行一致性检验。

小结:层次分析法的思路与步骤如图

层次分析法的思路与步骤

三. 模糊综合评价法的思路和步骤

模糊综合评价法是一种基于模糊数学的综合评标方法。该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

构建评价指标体系

对风险系统进行科学评价,需要首先分析各风险因素的构成和相互关系,在定性分析的基础上,建立一套科学合理的风险评价指标体系,即层次结构模型。该模型分为目标层、准则层和指标层三个层次组成。因为房地产行业的特殊性,开发项目不同,风险不同,而且其开发的不同阶段也面临不同的风险因素。本为根据对房地产投资风险因素的构成分析,我们得出房地产投资风险实际上是一个由多层次、多因素构成的系统。根据风险识别得出的主风险因素,进一步查找各主风险因素的来源,从而得出相应的子风险因素,即构成本项目风险评价的指标体系,指标体系是以房地产投资风险因素为主要依据,建立房地产投资风险层次模型。构建该指标体系时,不考虑各层次风险的具体划分,以适应不同情况下房地产投资风险的评价。

四.确定各评价指标的权重

①建立权重判断矩阵

在构建层次结构模型之后,可聘请专家利用问卷法、专家调查法等方法,从最上面的准则层开始向下,逐步确定各层因素相对于上一层各因素的重要性权数。层次分析法在确定各层不同因素相对于上一层各因素的重

要性时,利用两个因素之间两两比较的方法,即1-9标度法。若针对上一层AK 而言,本层次有关元素B1,B2,…,Bn 之间的相对重要性为:Bi 与Bj 的相对重要性为Bij, Bij,通常为1-9标度,此时Bij,取1,2,。。。,9及其倒数,1-9标度的含义为:

表5-17 标度含义

判断矩阵的形式表示见表5-18

一化处理,使其满足

∑W=1,即可求出Bi 对于Ak 的相对重要程度,即权重。

A 计算判断矩阵

B 每一行数值的乘积Mi,并计算其n 次方根:

(5-8)

B 、计算的权数

(5-9)

C 、计算判断矩阵的最大特征根

(5-10)

③判断矩阵的一致性检验

在评价过程中,评价者是不可能对所有因素的数值进行精确判断的,根据会存在误差,这就会导致判断矩阵的特征值会产生偏差。在构造判断矩阵时,并不要求判断具有完全一致性,但是要求判断具有大体的一致性却是必须的,否则将无法进行分析。因此,在求出最大特征根λmax 后,还要进行一致性检验。

A、计算一致性指标CI

CI=(λmax-n)/(n-1) (4-11)

当λmax稍大于n,其余特征根均接近于零,此判断矩阵才具有满意的一致性,此事应用特征根方法所得的权重向量W才能符合实际。在一般情况下,判断矩阵阶数n越大,其CI值就越大。为了度量不同阶判断矩阵的一致性,引入了判断矩阵的平均随机一致性指标RI值。对于1-9阶矩阵,RI值见表5-19所示。

CR=CI/RI (5-12)

若计算随机一致性比例CR?0.1,即认为判断矩阵具有满意的一致性,否则就需要重新调整判断矩阵直至满足一致性。

C 计算权重,层次排序

各级指标对上一级指标的权重计算出来以后,即可从最上一级开始,自上而下求出各级指标关于评价目标的综合权重。

系统权重向量计算公式为:

U=W*V (5-13)

其中,W是根据指标层C的风险因素相对准则层B的风险因素的特征向量集,V是准则层B的风险因素相对评判目标A的系统风险的特征向量,U是指标层C的风险因素相对于评判目标A的系统特征向量,此公式表示某一级指标的综合权重是该指标的权重和上一级指标的组合权重的乘积值。要计算某一级的综合权重,必须先知道上一级的综合权重,因而综合权重总是由最高级开始,一次往下推算的。

层次分析法判断矩阵求权值以及一致性检验程序

function [w,CR]=mycom(A,m,RI) [x,lumda]=eig(A); r=abs(sum(lumda)); n=find(r==max(r)); max_lumda_A=lumda(n,n); max_x_A=x(:,n); w=A/sum(A); CR=(max_lumda_A-m)/(m-1)/RI; end 本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。 其中A为判断矩阵,不同的标度和评定A将不同。 m为A的维数 RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。 当CR<0.1时符合一致性检验,判断矩阵构造合理。 下面是层次分析法的简介,以及判断矩阵构造方法。

一.层次分析法的含义 层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。 二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。 (1)层次分析法的原理 层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。其用法是构造判断矩阵,求出其最大特征值。及其所对应的特征向量W,归一化后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。 (2)层次分析法的步骤 a)建立系统的递阶层次结构; b)构造两两比较判断矩阵;(正互反矩阵) c)针对某一个标准,计算各备选元素的权重; d)计算当前一层元素关于总目标的排序权重。 e)进行一致性检验。 小结:层次分析法的思路与步骤如图

基于Matlab的层次分析法与运用

基于Matlab的层次分析法与运用 摘要:本文通过使用Matlab软件进行编程,在满足同一层次中各指标对所有的下级指标均产生影响的假定条件下,实现了层次分析法的分析运算。本程序允许用户自由设定指标层次结构内的层次数以及各层次内的指标数,通过程序的循环,用户只需输入判断矩阵的部分数据,程序可依据层次分析法的计算流程进行计算并作出判断。本程序可以方便地处理层次分析法下较大的运算量,解决层次分析法的效率问题,提高计算机辅助决策的时效性。 关键词:Matlab层次分析法判断矩阵决策 在当前信息化、全球化的大背景下,传统的手工计算已不能满足人们高效率、高准确度的决策需求。因此计算机辅助决策当仁不让地成为了管理决策的新工具、新方法。基于此,本文在充分发挥计算机强大运算功能的基础上,选用美国MathWorks公司的集成数学建模环境Matlab R2009a作为开发平台,使用M语言进行编程,对计算机辅助决策在层次分析法中的运用进行讨论。试图通过程序实现层次分析法在计算机系统上的运用,为管理决策探索出新的道路职称论文。 1 层次分析法的计算流程 根据层次分析法的相关理论,层次分析法的基本思想是将复杂的决策问题进行分解,得到若干个下层指标,再对下层指标进行分解,得到若干个再下层指标,如此建立层次结构模型,然后根据结构模型构造判断矩阵,进行单排序,最后,求出各指标对应的权重系数,进行层次总

排序。 1.1 构造层次结构模型在进行层次分析法的分析时,最主要的步骤是建立指标的层次结构模型,根据结构模型构造判断矩阵,只有判断矩阵通过了一致性检验后,方可进行分析和计算。其中,结构模型可以设计成三个层次,最高层为目标层,是决策的目的和要解决的问题,中间层为决策需考虑的因素,是决策的准则,最低层则是决策时的备选方案。一般来讲,准则层中各个指标的下级指标数没有限制,但在本文中设计的程序尚且只能在各指标具有相同数量的下级指标的假定下,完成层次分析法的分析,故本文后文选取的案例也满足这一假定。 1.2 建立判断矩阵判断矩阵是表示本层所有因素针对上一层某一个因素的相对重要性的比较给判断矩阵的要素赋值时,常采用九级标度法(即用数字1到9及其倒数表示指标间的相对重要程度),具体标度方法如表1所示。 1.3 检验判断矩阵的一致性由于多阶判断的复杂性,往往使得判断矩阵中某些数值具有前后矛盾的可能性,即各判断矩阵并不能保证完全协调一致。当判断矩阵不能保证具有完全一致性时,相应判断矩阵的特征根也将发生变化,于是就可以用判断矩阵特征根的变化来检验判断的一致性程度。在层次分析法中,令判断矩阵最大的特征值为λmax,阶数为n,则判断矩阵的一致性检验的指标记为:⑴ CI的值越大,判断矩阵的一致性越差。当阶数大于2时,判断矩阵的一致性指标CI与同阶平均随机一致性指标RI之比称为随机一致性

层次分析法一致性检验

层次分析法(Analytic Hierarchy Process,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家T. L. Saaty 教授于70年代初期提出的一种简便、灵活而又实用的多准则决策方法。 §1 层次分析法的基本原理与步骤 人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。运用层次分析法建模,大体上可按下面四个步骤进行: (i)建立递阶层次结构模型; (ii)构造出各层次中的所有判断矩阵; (iii)层次单排序及一致性检验; (iv)层次总排序及一致性检验。 下面分别说明这四个步骤的实现过程。 1.1 递阶层次结构的建立与特点 应用AHP分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。在这个模型下,复杂问题被分解为元素的组成部分。这些元素又按其属性及关系形成若干层次。上一层次的元素作为准则对下一层次有关元素起支配作用。这些层次可以分为三类: (i)最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。 (ii)中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。 (iii)最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。 递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。每一层次中各元素所支配的元素一般不要超过9个。这是因为支配的元素过多会给两两比较判断带来困难。 下面结合一个实例来说明递阶层次结构的建立。 例1 假期旅游有、、3个旅游胜地供你选择,试确定一个最佳地点。在此问题中,你会根据诸如景色、费用、居住、饮食和旅途条件等一些准则去反复比较3个侯选地点。可以建立如下的层次结构模型。 目标层选择旅游地 准则层景色费用居住饮食旅途 措施层 1.2 构造判断矩阵 层次结构反映了因素之间的关系,但准则层中的各准则在目标衡量中所占的比重

层次分析法实例与步骤

层次分析法实例与步骤 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: *目标层(最高层):指问题的预定目标; *准则层(中间层):指影响目标实现的准则; *措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。

AHP中判断矩阵一致性改进的一种新方法

系统工程理论与实践 SYSTEMS ENGINEERING----THEORY & PRACTICE 2000 Vol.20 No.2 P.122-125 AHP中判断矩阵一致性改进的一种新方法 李梅霞 摘要: 通过分析诱导矩阵与判断矩阵不一致性的关系,提 出了一种新的改进判断矩阵一致性的方法。 关键词: 诱导矩阵; 一致性; 和积法 中图分类号: O223 A New Method for Improving the Consistency of the Comparis on Matrix in AHP LI Mei-xia (Changwei Teachers College, Weifang 261043) Abstract: In this paper, a new method for improv ing the consistency of comparison matrix was presented by analyzing the relatio nship between the induced matrix and the inconsistency of comparison matrix. Keywords: induced matrix; consistency; ANC 1 引言 T.L. Saaty于70年代提出的层次分析法(AHP)为解决多目标决策问题提供了很大的方便,在 社 会、经济、管理中得到了广泛应用。其关键步骤是由专家给出判断矩阵,然后计算排序向量 。因此专家给出的判断矩阵是否能具有满意的 一致性是一个很重要的问题。它直接影响到由此判断矩阵得到的排序向量是否能真实地反映 各比较方案之间的客观排序。因此,对判断矩阵一致性的改进是AHP中一个很重要的内容。 文献[1~3]中提出了几种一致性改进的方法,取得了一定的效果。但是有些方法比较复 杂,有些方法缺乏一定的理论依据,因此寻求一种更好的改进判断矩阵一致性的方法仍具有 重要意义。本文首先定义了一种特殊的矩阵——诱导矩阵,然后通过分析诱导矩阵与判断矩 阵不一致性的关系,提出了一种新的改进判断矩阵一致性的方法。通过多例验证,该方法简 单有效且符合实际。 2 问题的提出 为以后叙述方便,记Ω={1,2,…,n}。 设A=(a ij)n× n为判断矩阵,若其元素满足a ij>0, a ji=1/a ij, a ii=1, i,j∈Ω,则称A为正互反矩阵。若此正互反矩阵又满足a ij=a ik/a jk, i, j, k∈Ω, 则称A为完全一致性矩阵。一般情况下,专家给出 的判断矩阵 很难满足完全一致性条件。文献[4]中指出当时即认为A具有满意的一致性。因此当专家给出的判断矩阵不具有满意一致 性时,可通过征求专家意见,应用合理的方法对判断矩阵的元素进行适当调整,从而使判 断矩阵达到满意的一致性。 文献[5]中指出,“和积法”是一种比较好的计算判断矩阵排序向量的方法。其步骤为 :设

模糊层次分析法

模糊层次分析法理论基础 FAHP及计算过程层次分析法(AHP)是20世纪70年代美国运筹学家T.L. Saaty教授提出的一种定性与定量相结合的系统分析方法,该方法对于量化评价指标,选择最优方案提供了依据,并得到了广泛的应用。然而, AHP存在如下方面的缺陷:检验判断矩阵是否一致非常困难,且检验判断矩阵是否具有一致性的标准CR < 0. 1缺乏科学依据;判断矩阵的一致性与人类思维的一致性有显著差异。为此,本文结合模糊数学理论,首先介绍了模糊层次分析法(Fuzzy - AHP) FAHP ,然后用FAHP对公共场所安全性指标权重进行了处理。 1. 1 模糊一致矩阵及有关概念[4 ,5 ] 1. 1. 1 定义1. 1 设矩阵R = ( rij) n×n ,若满足: 0 ≤( rij) ≤ 1 , ( i = 1 ,2 , ……n , j = 1 ,2 , ……n),则称R 为模糊矩阵 1. 1. 2 定义1. 2 若模糊矩阵R = ( rij) n×n ,若满足: Πi , j , k 有rij= rik - rij + 0. 5 ,则称模糊矩阵R 为模糊一致矩阵。 1. 1. 3 定理1. 1 设模糊矩阵R = ( rij) n×n是模糊一致矩阵,则有 (1) Πi ( i = 1 ,2 , …n) ,则rij = 0. 5 ; (2) Πi , j ( i = 1 ,2 , …n , j = 1 ,2 , …n) ,有rij + rji= 1 ; (3) R 的第i 行和第i 列元素之和为n ; (4)从R 中划掉任一行及其对应列所得的矩阵仍然是模糊一致矩阵; (5) R 满足中分传递性,即当λ≥0. 5 时,若rij≥λ, rjk ≥λ,则rij ≥λ;当λ≤0. 5 时,若rij ≤λ, rjk ≤λ,则rij ≤λ。(证明见文献1) 。 1. 1. 4 定理1. 2 模糊矩阵R = ( rij) n×n是模糊一致矩阵的充要条件是任意指定行和其余各行对应元素之差是一个常数。 1. 1. 5 定理1. 3 如果对模糊互补矩阵 F = ( f ij) n×n按行求和,记为ri = 6nk = 1f ik ( i = 1 ,2 , …, n) ,并施之如下数学变换:rij =ri - rj2 m + 0. 5 (1),则由此建立的矩阵是模糊一致的。 1. 2 模糊一致判断矩阵的建立 模糊一致判断矩阵的建立R 表是针对上一层某元素,本层次与之有关元素之间相对重要性的比较,假定上一层次元素T 同下一层次元素a1 , a2 ,…, an 有关系,则模糊一致判断矩阵可表示为: rij的实际意义是:元素ai 和元素aj 相对于元素T 进行比较时, ai 和aj 具有模糊关系“…比…重要得多”的隶属度,表1采用0. 1~0. 9 数量标度来说明其模糊关系。

层次分析法(正反矩阵)

1、建立递阶层次结构; 所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。 层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。其用法是构造判断矩阵,求出其最大特征值。及其所对应的特征向量W,归一化后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。 2、构造两两比较判断矩阵;(正互反矩阵) 例:购物层次分析模型 对各指标之间进行两两对比之后,然后按9分位比率排定各评价指标的相对优劣顺序,依次构造出评价指标的判断矩阵A。 其中 为判别矩阵, 要素

与要素 重要性比较结果,并且有如下关系: 有9种取值,分别为1/9, 1/7, 1/5, 1/3, 1/1, 3/1, 5/1, 7/1, 9/1,分别表示 要素对于 要素的重要程度由轻到重。 3、针对某一个标准,计算各备选元素的权重; 关于判断矩阵权重计算的方法有两种,即几何平均法(根法)和规范列平均法(和法)。 (1)几何平均法(根法) 计算矩阵A各行各个元素的乘积,得到一个n行一列的矩阵B; 计算矩阵每个元素的n次方根得到矩阵C; 对矩阵C进行归一化处理得到矩阵D; 该矩阵D即为所求权重向量。 (2)规范列平均法(和法) 矩阵A每一列归一化得到矩阵B; 将矩阵B每一行元素的平均值得到一个一列n行的矩阵C; 矩阵C即为所求权重向量。 AHP (Analytic Hierarchy Process)层次分析法是美国运筹学家T. L. Saaty 教授于二十世纪70年代提出的一种实用的多方案或多目标的决策方法,是一种定性与定量相结合的决策分析方法。常被运用于多目标、多准则、多要素、多层次的非结构化的复杂决策问题,特别是战略决策问题,具有十分广泛的实用性。用AHP分析问题大体要经过以下五个步骤:

层次分析法矩阵权重和,根,特征值法,c语言计算

// ???óè¨??2010.cpp : ?¨ò?????ì¨ó|ó?3ìDòμ?è??úμ??£ #include "stdafx.h" //vs2010ò?é?°?±?óD′??? #include"stdio.h" #include"math.h" void sum(int N,double a[13][13]) { double sum[13]={0},pro[13]={0}; int i,j,k; for(i=0;i

} for(k=0;k

层次分析法

层次分析法(AHP) AHP(Analytic Hierarchy Process)方法,是由20世纪70年代由美国著名运筹学学家T.L.Satty提出的。它是指将决策问题的有关元素分解成目标、准则、方案等层次,在此基础上进行定性分析和定量分析的一种决策方法。这一方法的特点,是在对复杂决策问题的本质、影响因素及其内在关系等进行深入分析之后,构建一个层次结构模型,然后利用较少的定量信息,把决策的思维过程数学化,从而为求解多准则或无结构特性的复杂决策问题提供了一种简便的决策方法。 AHP十分适用于具有定性的,或定性定量兼有的决策分析。这是一种十分有效的系统分析和科学决策方法,现在已广泛地应用在企业信用评级、经济管理规划、能源开发利用与资源分析、城市产业规划、企业管理、人才预测、科研管理、交通运输、水资源分析利用等方面。 一、递阶层次结构的建立 一般来说,可以将层次分为三种类型: (1)最高层:只包含一个元素,表示决策分析的总目标,因此也称为总目标层。 (2)中间层:包含若干层元素,表示实现总目标所涉及的各子目标,包含各种准则、约束、策略等,因此也称为目标层。 (3)最低层:表示实现各决策目标的可行方案、措施等,也称为方案层。 典型的递阶层次结构如下: 一个好的递阶层次结构对解决问题极为重要,因此在建立递阶层次结构时,应注意到: (1)从上到下顺序地存在支配关系,用直线段(作用线)表示上一层次因素与下一层次因素之间的关系,同一层次及不相邻元素之间不存在支配关系。 (2)整个结构不受层次限制。 (3)最高层只有一个因素,每个因素所支配元素一般不超过9个,元素过多可进一步分层。 (4)对某些具有子层次结构可引入虚元素,使之成为典型递阶层次结构。 二、构造比较判断矩阵 设有m个目标(方案或元素),根据某一准则,将这m个目标两两进行比较,把第i个目标(i=1,2,…,m)对第j个目标的相对重要性记为a ij,(j=1,2,…,m),这样构造的m阶矩阵用于求解各个目标关于某准则的优先权重,成为权重解析判断矩阵,

层次分析法实例与步骤(精)讲课教案

层次分析法实例与步 骤(精)

层次分析法实例与步骤 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构

层次分析法判断矩阵求权值以及一致性检验程序

fun cti on [w,CR]=mycom(A,m,RI) [x,lumda]二eig(A); r=abs(sum(lumda)); n=fin d(r==max(r)); max_lumda_A=lumda( n,n); max_x_A=x(:,n); w=A/sum(A); CR=(max_lumda_A-m)/(m-1)/RI; end 本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行 致性检验。 其中A为判断矩阵,不同的标度和评定A将不同。 m为A的维数 RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。 RI值 当CRV0.1时符合一致性检验,判断矩阵构造合理下面是层次分析法的简介,以及判断矩阵构造方法。

一?层次分析法的含义 层次分析法(The analytic hierarchy process )简称AHP,在20 世纪70年代中期由美国运筹学家托马斯塞蒂(「L.Saaty )正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。 二?层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。 (1)层次分析法的原理 层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。这里所谓优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量 描述的决策问题。其用法是构造判断矩阵,求出其最大特征值。及其所对应的特征向量W,归一化后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。 (2)层次分析法的步骤 a)建立系统的递阶层次结构; b)构造两两比较判断矩阵;(正互反矩阵)

层次分析法判断矩阵求权值以及一致性检验程序(20210228092245)

function [w,CR]=mycom(A z m z RI) [x,lumda]=eig(A); r=abs(sum(lumda)); n=find(r==max(r)); max_lumda_A=1umda(n,n); max_x_A=x(:,n); w=A/sum(A); CR=(max_lumda_A-m)/(m-1)/RI; end 木matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。 其中A为判断矩阵,不同的标度和评定A将不同。 m为A的维数 RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。 RI值 当CR<0.1时符合一致性检验,判断矩阵构造合理。下而是层次分析法的简介,以及判断矩阵构造方法。

一?层次分析法的含义 层次分析法(The analytic hierarchy process)简称AHP,在20 世纪70 年代中期由美国运筹学家托马斯?塞蒂(T.L.Saaty)正式提出。它是一种 定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。它的应用己遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。 二?层次分析法的基木思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。 (1)层次分析法的原理 层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。这里所谓“优先权重"是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。其用法是构造判断矩阵,求出其最大特征值。及其所对应的特征向量W,归一化后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。 (2)层次分析法的步骤 a)建立系统的递阶层次结构; b)构造两两比较判断矩阵;(正互反矩阵) c)针对某一个标准,计算各备选元素的权重; d)计算当前一层元素关于总目标的排序权重。 e)进行一致性检验。 小结:层次分析法的思路与步骤如图

层次分析法的基本步骤和要点

层次分析法的基本步骤和要点 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。

层次分析法例题94055

。数 学 建 模 作 业 班级:高分子材料与工程 姓名:林志许、朱金波、任宇龙

。 学号:1211020115、1211020126、1211020134 层次分析法 某物流企业需要采购一台设备,在采购设备时需要从功能、价格与可维护性三个角度进行评价,考虑应用层次分析法对3个不同品牌的设备进行综合分析评价和排序,从中选出能实现物流规划总目标的最优设备,其层次结构如下图所示。以A 表示系统的总目标,判断层中1B 表示功能,2B 表示价格,3B 表示可维护性。1C ,2C ,3C 表示备选的3种品牌的设备。 解题步骤: 1、标度及描述 人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度。 为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而2、4、6、8表示上述两判断级之间的折衷值。 目标层 判断层 方案层 图 设备采购层次结构图

注:a ij 表示要素i与要素j相对重要度之比,且有下述关系: a ij =1/a ji ; a ii =1; i,j=1,2,…,n 显然,比值越大,则要素i的重要度就越高。 2、构建判断矩阵A 判断矩阵是层次分析法的基本信息,也是进行权重计算的重要依据。根据结构模型,将图中各因素两两进行判断与比较,构造判断矩阵: ●判断矩阵B A-(即相对于物流系统总目标,判断层各因素相对重要性比较)如表1所示; ●判断矩阵C B- 1(相对功能,各方案的相对重要性比较)如表2所示; ●判断矩阵C B- 2(相对价格,各方案的相对重要性比较)如表3所示; ●判断矩阵C B- 3(相对可维护性,各方案的相对重要性比较)如表4所示。 B A- C B- 1 C B- 3 3、计算各判断矩阵的特征值、特征向量及一致性检验指标 一般来讲,在AHP法中计算判断矩阵的最大特征值与特征向量,必不需

层次分析法的基本步骤和要点

层次分析法的基本步骤与要点 结合一个具体例子,说明层次分析法的基本步骤与要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案就是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即就是多准则决策问题,考虑运用层次分析法解决。 1、建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求就是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些就是主要的准则,有些就是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次与组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该就是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标就是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益与环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。

层次分析法判断矩阵程序

先确定判断矩阵; 然后用以下程序就好了: %层次分析法的matlab程序%%%%diertimoxingyi clc,clear disp('输入判断矩阵');% 在屏幕显示这句话 A=input('A=');% 从屏幕接收判断矩阵 [n,n]=size(A);% 计算A的维度,这里是方阵,这么写不太好 x=ones(n,100);% x为n行100列全1的矩阵 y=ones(n,100);% y同x m=zeros(1,100);% m为1行100列全0的向量 m(1)=max(x(:,1));% x第一列中最大的值赋给m的第一个分量 y(:,1)=x(:,1);% x的第一列赋予y的第一列 x(:,2)=A*y(:,1);% x的第二列为矩阵A*y(:,1) m(2)=max(x(:,2));% x第二列中最大的值赋给m的第二个分量 y(:,2)=x(:,2)/m(2);% x的第二列除以m(2)后赋给y的第二列 p=0.0001;i=2;k=abs(m(2)-m(1));% 初始化p,i,k为m(2)-m(1)的绝对值 while k>p% 当k>p是执行循环体 i=i+1;% i自加1 x(:,i)=A*y(:,i-1);% x的第i列等于A*y的第i-1列 m(i)=max(x(:,i));% m的第i个分量等于x第i列中最大的值 y(:,i)=x(:,i)/m(i);% y的第i列等于x的第i列除以m的第i个分量 k=abs(m(i)-m(i-1));% k等于m(i)-m(i-1)的绝对值 end a=sum(y(:,i));% y的第i列的和赋予a w=y(:,i)/a;% y的第i列除以a t=m(i);% m的第i个分量赋给t disp('权向量:');disp(w);% 显示权向量w disp('最大特征值:');disp(t);% 显示最大特征值t %以下是一致性检验 CI=(t-n)/(n-1);% t-维度再除以维度-1的值赋给CI RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];% 计算的标准 CR=CI/RI(n);% 计算一致性

一种检验判断矩阵一致性的偏差矩阵方法(1)

收稿日期:2006-10-12 作者简介:王万军(1974-),男,甘肃天水人,讲师. 文章编号:1006-4869(2007)01-0063-02一种检验判断矩阵一致性的偏差矩阵方法 王万军 (甘肃联合大学数学与信息科学学院,甘肃兰州730000) 摘 要:提出了一种适合层次分析法中一致性检验的偏差矩阵方法,该方法无需进行复杂的数学运算,只需根据判断矩阵的偏差矩阵即可进行检验.通过实例分析,证明是一种有效实用的方法. 关键词:判断矩阵;偏差矩阵;一致性检验 中图分类号:O223 文献标识码:A A D ev iation Matrix Meth od for C h eck ing the C onsistency of Judg emen t Matrix WANG Wan jun (Mathematics and Information Colle ge,Gansu Association University,Lanzhou 730000,China) Abstract:A deviation matrix method of the consistency check in AHP is given.According to deviation matrix of judgement matrix,it can carry out the consistency check without complex mathematical calculation.Examples show that the ne w method is effective,practical and convenient. Key words:judgement matrix;de viation matrix;consistency check 1977年Saaty T L 提出了层次分析法(AHP)[1,2],它是一种实用的多准则决策方法,该方法广泛地应用在各行业的决策分析中.众所周知,AHP 中最关键的是如何建立较为准确有效的判断矩阵,但常因为两元素比较产生逆序出现一致性较差或总排序权重数较小而难以比较,特别地当待评指标较多时更易出现此情况.由于决策者认识的多样性和客观事物的复杂性,各决策者对决策对象有不同的偏好,从而给出的决策判断矩阵,并不能与实际相吻合得很好,因此要对AHP 进行一致性的检验和必要的校正.对此文献[3-4]进行了较多地研究,但还是比较复杂.本文通过改进的方法,给出了一种构造判断矩阵的偏差矩阵判断方法,该方法更加直观、准确地判断矩阵的一致性,弥补了以往检验中存在的以下几点不足:第一,AHP 中一致性比例C R 应小于0.1的规定缺乏必要的理论根据,并且矩阵阶数越高,这一满足性就越难达到;第二,一致性比例的计算要用到判断矩阵的特征根,其求解较困难,并且对于一个不具有满意一致性的判断矩阵求特征根是一种浪费.本文提出的方法克服了以上不足,通过实例与已有的AHP 计算结果相比较发现该方法既简洁又有效,是一种实用的一致性检验方法. 1 一致性概念及其检验方法 定义1 判断矩阵A =(a ij )n n ,若对 i,j N ,有a ii =1,a i j =1/a ij ,则称A 为互反矩阵. 定义2 若判断矩阵A =(a i j )n n 为互反阵,如果a i j >0,则称A 为正互反矩阵. 定义3 若判断矩阵A =(a i j )n n 为正互反矩阵,对 i,j ,k N ,如果满足a ij a jk =a jk ,则称A 为完全一致性矩阵. 第26卷 第1期 2007年2月 南昌工程学院学报Journal of Nanchang Ins titute of Technology Vol.26 No.1Feb.2007

相关文档
最新文档