G69 电力系统电压和无功电力技术导则(试行) SD 325-89

G69 电力系统电压和无功电力技术导则(试行) SD 325-89
G69 电力系统电压和无功电力技术导则(试行) SD 325-89

中华人民共和国能源部部标准

SD 325-89

电力系统电压和无功电力技术导则(试行)

中华人民共和国能源部1989-03-20 发布1989-08-01 实施

1 总则

1.1 电压是电能质量的重要指标。电压质量对电力系统的安全与经济运行,对保证用户安全

生产和产品质量以及电器设备的安全与寿命,有重要的影响。本导则规定了电力系统各级母

线和用户受电端电压的允许偏差值以及电压与无功调整的技术措施。

1.2 电力系统的无功补偿与无功平衡,是保证电压质量的基本条件。有效的电压控制和合理

的无功补偿,不仅能保证电压质量,而且提高了电力系统运行的稳定性和安全性,充分发挥

了经济效益。

1.3 电力系统各部门(包括自备电厂和用电单位)在进行规划、设计、基建、运行及用电管理

等方面的工作时,应遵守本导则。

2 名词、术语

2.1 系统额定电压

电力系统各级电压网络的标称电压值。

系统额定电压值是:220V、380V、3kV、6kV、10kV、35kV、63kV、110kV、220kV、330kV、500kV。

其中,220V 为单相交流值,其余均为三相交流值。

2.2 电压偏差

由于电力系统运行状态的缓慢变化,使电压发生偏移。其电压变化率小于每秒1%时的

实际电压值与系统额定电压值之差。

2.3 无功电源

发电机实际可调无功出力、线路充电功率、以及包括电业部门及电力用户无功补偿设备

在内的全部容性无功容量。

2.4 自然无功负荷

电力用户补偿前的无功负荷、发电厂(变电所)厂用无功负荷、以及各级电压网络变压器

和电抗器及线路的无功消耗之总和。

2.5 无功补偿设备

包括电业及电力用户网络中的并联电容器、串联电容器、并联电抗器、同期调相机和静

止型动态无功补偿装置。

2.6 无功补偿容量

电业部门及电力用户无功补偿设备的全部容性无功和感性无功容量。

2.7 逆调压方式

在电压允许偏差值范围内,供电电压的调整使电网高峰负荷时的电压值高于电网低谷负

荷时的电压值。

3 基本要求

3.1 电力系统各级网络,必须符合电压允许偏差值的要求。

3.2 电力系统的无功电源与无功负荷,在高峰或低谷时都应采用分(电压)层和分(电)区基本

平衡的原则进行配置和运行,并应具有灵活的无功电力调节能力与检修备用。

3.3 在规划、设计电力系统时,必须包括无功电源及无功补偿设施的规划。

在发电厂和变电所设计中,应根据电力系统规划设计的要求,同时进行无功电源及无功

补偿设施的设计。

3.4 电力系统应有事故无功电力备用,以保证负荷集中地区在下列运行方式下,保持电压稳

定和正常供电,而不致出现电压崩溃。

3.4.1 正常运行方式下,突然失去一回线路、或一台最大容量无功补偿设备、或本地区一台

最大容量发电机(包括发电机失磁)。

3.4.2 在正常检修方式下,发生 3.4.1 条所述事故,允许采取必要的措施,如切负荷、切并

联电抗器等。

3.5 无功补偿设备的配置与设备类型选择,应进行技术经济比较。220kV 及以上电网,应考

虑提高电力系统稳定的作用。

3.6 加强受端系统最高一级电压网络的联系及电压支持,创造条件尽可能提高该级系统短路

容量,对保持电压正常水平及防止电压失稳具有重要意义。配电网络则应采用合理的供电半

径。

3.7 要按照电网结构及负荷性质,合理选择各级电压网络中升压和降压变压器分接开关的调

压范围和调压方式。电网中的各级主变压器,至少应具有一级有载调压能力,需要时可选用

两级有载调压变压器。

4 电压允许偏差值

4.1 用户受电端的电压允许偏差值

4.1.1 35kV 及以上用户供电电压正负偏差绝对值之和不超过额定电压的10%。

4.1.2 10kV 用户的电压允许偏差值,为系统额定电压的±7%。

4.1.3 380V 用户的电压允许偏差值,为系统额定电压的±7%。

4.1.4 220V 用户的电压允许偏差值,为系统额定电压的+5%~-10%。

4.1.5 特殊用户的电压允许偏差值,按供用电合同商定的数值确定。

4.2 发电厂和变电所的母线电压允许偏差值

4.2.1 500(330)kV 母线:正常运行方式时,最高运行电压不得超过系统额定电压的+110%;

最低运行电压不应影响电力系统同步稳定、电压稳定、厂用电的正常使用及下一级电压的调节。

向空载线路充电,在暂态过程衰减后线路末端电压不应超过系统额定电压的 1.15 倍,

持续时间不应大于20min。

4.2.2 发电厂和500kV 变电所的220kV 母线:正常运行方式时,电压允许偏差为系统额定电压的0~+10%;事故运行方式时为系统额定电压的-5%~+10%。

4.2.3 发电厂和220(330)kV 变电所的110~35kV 母线:正常运行方式时,电压允许偏差为

相应系统额定电压的-3%~+7%;事故后为系统额定电压的±10%。

4.2.4 发电厂和变电所的 10(6)kV 母线:应使所带线路的全部高压用户和经配电变压器供电 的低压用户的电压,均符合 4.1.2、4.1.3、4.1.4、4.1.5 各条款中的规定值。 5 无功电力平衡和补偿

5.1 330~500kV 电网,应按无功电力分层就地平衡的基本要求配置高、低压并联电抗器,

以补偿超高压线路的充电功率。一般情况下,高、低压并联电抗器的总容量不宜低于线路充

电功率的 90%。高、低压并联电抗器的容量分配应按系统的条件和各自的特点全面研究决定。 5.2 330~500kV 电网的受端系统,应按输入有功容量相应配套安装无功补偿设备。其容量

(kvar)宜按输入容量(kW)的 40%~50%计算。分别安装在由其供电的 220kV 及以下变电所中。

5.3 220kV 及以下电网的无功电源安装总容量,应大于电网最大自然无功负荷,一般可按最 大自然无功负荷的 1.15 倍计算。

5.4 220kV 及以下电网的最大自然无功负荷,可按式(1)计算

Q D = KP D (1)

式中 Q D

——电网最大自然无功负荷,kvar ;

P D

——电网最大有功负荷,kW ;

K ——电网最大自然无功负荷系数。

电网最大有功负荷,为本网发电机有功功率与主网和邻网输入的有功功率代数和的最大 值。

K 值与电网结构、变压级数、负荷组成、负荷水平及负荷电压特性等因素有关,应经过 实测和计算确定(实例和计算方法见附录 A),也可以参照表 1 中的数值估算。 5.5 220kV 及以下电网的容性无功补偿设备总容量,可按式(2)计算

Q C = 115Q D ? Q G ? Q R ? Q L (2)

式中 Q C ——容性无功补偿设备总容量;

Q D

——最大自然无功负荷;

Q G

——本网发电机的无功功率;

Q R ——主网和邻网输入的无功功率;

Q L

——线路和电缆的充电功率。

5.6 电网的无功补偿水平用无功补偿度表示,可按式(3)计算

Q C W =

式中 W B

——无功补偿度,kvar/kW ; B P D (3)

Q C

——容性无功补偿设备容量,kvar ;

P D

——最大有功负荷(或装机容量),kW 。

注:本网中发电机有功功率比重较大时,宜取较高值;主网和邻网输入有功功率比重较大时,宜取较低值。

5.7 220kV 及以下电压等级的变电所中,应根据需要配置无功补偿设备,其容量可按主变压

器容量的0.10~0.30 确定。在主变压器最大负荷时,其二次侧的功率因数不小于表2 中所列数值,或者由电网供给的无功功率与有功功率比值不大于表 2 中所列数值。

注:①由发电厂直接供电的变电所,其供电线路较短时,功率因数可取表2 中较低值,其它变电所的功率因数应取较高值。

②经技术经济比较合理时,功率因数可高于表中上限值。

5.8 10(6)kV 配电线路上宜配置高压并联电容器,或者在配电变压器低压侧配置低压并联电

容器。电容器的安装容量不宜过大,一般约为线路配电变压器总容量的0.05~0.10,并且

在线路最小负荷时,不应向变电所倒送无功。如配置容量过大,则必须装设自动投切装置。5.9 电力用户的功率因数应达到下列规定。

5.9.1 高压供电的工业用户和高压供电装有带负荷调整电压装置的电力用户,功率因数为

0.90 以上。

5.9.2 其他100kVA(kW)及以上电力用户和大、中型电力排灌站,功率因数为0.85 以上。5.9.3 趸售和农业用电,功率因数为0.80 以上。

5.10 对发电机(包括汽轮发电机、水轮发电机和抽水蓄能发电机)的要求。

5.10.1 发电机额定功率因数(迟相)值,应根据电力系统的要求决定:

a.直接接入330~500kV 电网处于送端的发电机功率因数,一般选择不低于0.9;处于

受端的发电机功率因数,可在0.85~0.9 中选择。

b.直流输电系统的送端发电机功率因数,可选择为0.85;交直流混送的可在0.85~0.9

中选择。

c.其它发电机的功率因数可按0.8~0.85 选择。

5.10.2 发电机吸收无功电力的能力:

a.新装机组均应具备在有功功率为额定值时,功率因数进相0.95 运行的能力。

b.对已投入运行的发电机,应有计划地按系列进行典型的吸收无功电力能力试验,根据

试验结果予以应用。

5.10.3 水轮发电机的调相。远离负荷中心的,一般不考虑调相。处在受端系统内的,经技

术经济比较认为有必要时,应配备有关调相运行的设施进行调相运行。

5.11 变电所的并联电容器组,应具备频繁投切功能,并装设自动控制装置,经常保持变电

所二次母线的功率因数在表2 规定的范围内。

5.12 在系统轻负荷时,对110kV 及以下的变电所,当电缆线路较多且在切除并联电容器组后,仍出现向系统侧送无功电力时,应在变电所中、低压母线上装设并联电抗器;对220kV 变电所,在切除并联电容器后,其一次母线功率因数高于0.98 时,应装设并联电抗器。

5.13 用户的并联电容器组,应安装按功率因数和电压控制的自动控制装置,并应有防止向

系统送无功功率的措施。

5.14 在计算并联电容器和并联电抗器等无功补偿设备的实际出力时,应扣除由于各种原因

而影响的容量。

5.15 无功电源中的事故备用容量,应主要储备于运行的发电机、调相机和静止型动态无功

补偿装置中,以便在电网发生因无功不足可能导致电压崩溃事故时,能快速增加无功电源容

量,保持电力系统的稳定运行。

在电网电压支撑点和220kV 枢纽变电所中,应有适当的无功补偿设备备用容量,以便在

运行方式变化时,仍然保持电压符合第 4.2 条的规定。

6 无功补偿设备的选用

6.1 并联电容器和并联电抗器是电力系统无功补偿的重要设备,应优先选用此种设备。

6.2 当发电厂经过长距离的线路(今后不再П接中间变电所)送给一个较强(短路容量较大)

的受端系统时,为缩短线路的电气距离,宜选用串联电容器,其补偿度一般不宜大于50%,并应防止次同步谐振。

6.3 当220~500kV 电网的受端系统短路容量不足和长距离送电线路中途缺乏电压支持时,为提高输送容量和稳定水平,经技术经济比较合理时,可采用调相机。

6.3.1 新装调相机组应具有长期吸收70%~80%额定容量无功电力的能力。

6.3.2 对已投入运行的调相机应进行试验,确定吸收无功电力的能力。

6.4 电力系统为提高系统稳定、防止电压崩溃、提高输送容量,经技术经济比较合理时,可在线路中点附近(振荡中心位置)或在线路沿线分几处安装静止补偿器;带有冲击负荷或负荷波动、不平衡严重的工业企业,本身也应采用静止补偿器。

7 网络结构

7.1 电力系统规划、设计中,应对主要负荷集中地区的最高一级电压电网(包括电源),加强

网络联结及电压支持(增大短路容量),逐步形成坚固的受端系统。

7.2 受端变电所应深入市区,靠近负荷中心。为了提高可靠性,可采用双T(三T)或环路布置断环运行等结构方式,在事故运行方式时,也应满足有关电压的要求。

7.3 各级配电线路的最大允许电压损失值,可参照下列数值选用:

110~10kV 线路首末端(正常方式) 5%

380V 线路(包括接户线) 5%

220V 线路(包括接户线) 7%

7.4 10kV 及以下网络的供电半径,应根据电压损失允许值、负荷密度、供电可靠性并留有

一定裕度的原则予以确定。

8 变压器调压方式及调压范围的选择

8.1 各级变压器的额定变压比、调压方式、调压范围及每档调压值,应满足发电厂、变电所

母线和用户受电端电压质量的要求,并考虑电力系统10~15 年发展的需要。

8.2 升压变压器高压侧的额定电压,220kV 及以下电压等级者,宜选1.1 倍系统额定电压。

330kV、500kV 级变压器高压侧的额定电压,宜根据系统无功功率分层平衡要求,经计算论

证后确定。

8.3 降压变压器高压侧的额定电压,宜选系统额定电压。中压侧和低压侧的额定电压,宜选

1.05 倍系统额定电压。

8.4 发电机升压变压器,一般可选用无励磁调压型。330kV、500kV 级升压变压器,经调压

计算论证可行时,也可采用不设分接头的变压器。

8.5 发电厂的联络变压器,经调压计算论证有必要时,可选用有载调压型。

8.6 330kV、500kV 级降压变压器宜选用无励磁调压型,经调压计算论证确有必要且技术经

济比较合理时,可选用有载调压型。

8.7 直接向10kV 配电网供电的降压变压器,应选用有载调压型。经调压计算,仅此一级调

压尚不能满足电压控制的要求时,可在其电源侧各级降压变压器中,再采用一级有载调压型

变压器。

8.8 电力用户对电压质量的要求高于本导则4.1 条规定的数值时,该用户的受电变压器应选

用有载调压型。

8.9 变压器分接开关调压范围应经调压计算确定。无励磁调压变压器一般可选±

2×2.5%(10kV 配电变压器为±5%)。对于有载调压变压器,63kV 及以上电压等级的,宜选

±8×(1.25~1.5)%;35kV 电压等级的,宜选±3×2.5%。位于负荷中心地区发电厂的升压变压

器,其高压侧分接开关的调压范围应适当下降 2.5%~5.0%;位于系统送端发电厂附近降压

变电所的变压器,其高压侧调压范围应适当上移2.5%~5%。

9 电力系统电压的调整和监测

9.1 各级变压器分接开关的运行位置,应按保证发电厂和变电所母线以及用户受电端的电压

偏差不超过允许值(满足发电机稳定运行的要求)、并在充分发挥无功补偿设备的经济技术效

益及降低线损的原则下,通过优化计算确定。

9.2 为保证用户受电端电压质量和降低线损,220kV 及以下电网电压的调整,宜实行逆调压

方式。

9.3 当发电厂、变电所的母线电压超出允许偏差范围时,首先应按无功电力分层、分区就地

平衡的原则,调节发电机和无功补偿设备的无功出力。若电压质量仍不符合要求时,再调整

相应有载调压变压器的分接开关位置,使电压恢复到合格值。

9.4 发电厂、变电所的无功补偿和调压设备的运行调整,应按9.1、9.2、9.3 条规定的原则

实行综合优化控制。

9.5 为了掌握电力系统的电压状况,采取有效的措施,以保证电压质量,应在具有代表意义

的发电厂、变电所和配电网络中,设置足够数量的电压监测点;在各级电压等级的用户受电

端,设置一定数量的电压考核点。

9.6 电压监测应使用具有连续监测和统计功能的仪器或仪表,其测量精度应不低于1 级。

9.7 电压质量统计的时间单位为“分”,其计算公式为

电压质量合格率( ) = 1?

电压超限时间

100

附 录 A

电压监测总时间

× 0 (4)

A.1 K 值的确定原则

电网自然无功负荷系数 K 值的计算

电网自然无功负荷系数 K ,为电网自然无功负荷 Q 与有功负荷 P 的比值。此值与电网

结构、电压层次、用电器的有功负荷特性和无功负荷特性等因素有关。计算电网最大无功负 荷时的 K 值,应按全年不同季节及运行方式下、最大无功负荷所对应的自然无功负荷系数

K 的平均值确定,同时应记录被测电网的供电电压 U 、发电机的有功出力 P G

和无功出力 Q G

邻网输入(输出)的有功功率

P R

和无功功率 Q R

电网中实际投运的无功补偿设备总出力 Q C

和线路充电功率 Q L

。 A.2 K 值的计算公式

(

+

+

)

?

K =

Q G Q R

+

Q C Q L

× 105U N

( P G

+ P R

)

式中 α——电压有功负荷系数; β——电压无功负荷系数;

U N

——系统额定电压。

A.3 K 值的简化计算公式

U

(A-1)

经测定,目前我国几大电网的电压有功负荷系数与电压无功负荷系数为:α=0.3~0.9; β=2.0~3.0。

一般可取:α=0.5;β=2.5。

此时电网自然无功负荷系数 K 值的计算公式可简化为

( +

)

2

11 Q G Q R + Q C + Q L U N

K = ( P G

+ P R

)

× U

(A-2)

附加说明:

_____________________

本标准由能源部节能司提出并归口。

本标准主要起草人:宋森、汪延宗、卢本平、徐德生、蒙定中、陈明光、汪启槐、谢世

璋。

电力系统过电压及接地装置

课程设计 设计题目:电力系统过电压与接地装置 班级:电气化铁道技术1132 姓名:刘浩 学号:201108023211 指导教师:赵永君 二〇一三年六月十九日 摘要 本课程设计中和运用高电压技术、电力系统过电压、接地技术等知识,采用理论与实践相结合的方法,研究电力系统各种过电压防护措施研究接地装置的测量方法和降阻方式,设计电力系统的接地装置等。 关键词:内部过电压雷电过电压接地保护 前言 电力系统在特定条件下所出现的超过工作电压的异常电压升高,属于电力系统中的一种电磁扰动现象。电工设备的绝缘长期耐受着工作电压,同时还必须能够承受一定幅度的过电压,这样才能保证电力系统安全可靠地运行。研究各种过电压的起因,预测其幅值,

并采取措施加以限制,是确定电力系统绝缘配合的前提,对于电工设备制造和电力系统运行都具有重要意义。 为了保护电力系统、用电设备和人员的安全,往往采用接地的方式来保证设备和人员的安全。本课程设计根据《高电压技术》简单的对电力系统的过电压与接地装置进行研究。 电力系统过电压与接地装置 一、电力系统过电压 在电力系统中,由于雷电、电磁能量的转换会使系统电压产生瞬间升高,其值可能大大超过电气设备的最高工频运行电压。其对电力系统的危害是很大的。电力系统过电压主要分以下几种类型:雷电过电压、工频过电压、操作过电压、谐振过电压。 1内部过电压 1.1工频过电压 系统中在操作或接地故障时发生的频率等于工频(50Hz)或接近工频的高于系统最高工作电压的过电压。特点是持续时间长,过电压倍数不高,一般对设备绝缘危险性不大,但在超高压、远距离输电确定绝缘水平时起重要作用当系统操作、接地跳闸后的数百毫秒之内,由于发电机中磁链不可能突变,发电机自动电压调节器的惯性作用,使发电机电动势保持不变,这段时间内的工频过电压称为暂时工频过电压。随着时间的增加,发电机自动电压调节器产生作用,使发电机电动势有所下降并趋于稳定,这时的工频过电压称为稳态工频过电压。

电力系统过电压复习题

1、试分析雷击杆塔时影响耐雷水平的各种因素的作用,工程实际中往往采用哪些措施 来提高耐雷水平 2、输电线路有哪些防雷措施?试分析各种防雷措施的作用。 3、什么是彼德逊法则?其适用范围如何 4、电弧接地过电压产生的原因是什么,影响电弧接地过电压的因素有哪些,如何消除 电弧接地过电压? 评价消弧线圈限制电弧接地过电压的作用 5、变电站入侵雷电波防护设计的原则是什么?对于接线复杂的变电所该如何处理避 雷器的安装位置?阀型避雷器与被保护设备间的电气距离对其保护作用有何影响? 6、断路器的并联电阻为什么可以限制空载分、合闸过电压?它们对并联电阻值的要求 有何区别? 7、什么是电力系统的绝缘配合? 绝缘配合的方法有哪几种? 8、说明直配电机防雷保护的基本措施及其原理。(P175) 9、断路器的并联电阻为什么可以限制空载分、合闸过电压?它们对并联电阻值的要求 有何区别? 10、试分析中性点运行方式对绝缘水平的影响? 11、试求线路、电感、电容的贝瑞隆等值电路,并描述用贝瑞隆法计算电力系统过 电压的具体步骤。(P225) 12、试分析冲击电晕对线路波过程的影响。 由于电晕要消耗能量,消耗能量的大小又与电压的瞬时值有关,故将使行波发生衰减的同时伴随有波形的畸变。 冲击电晕对雷电波波形影响的原因: 雷电冲击波的幅值很高,在导线上将产生强烈的冲击电晕。研究表明,形成冲击电晕所需的时间非常短,大约在正冲击时只需0.05,在负冲击时只需0.01;而且与电压陡度的关系非常小。由此可以认为,在不是非常陡峭的波头范围内,冲击电晕的发展主要只与电压的瞬时值有关。但是不同的极性对冲击电晕的发展有显著的影响。当产生正极性冲击电晕时,电子在电场作用下迅速移向导线,正空间电荷加强距离导线较远处的电场强度,有利于电晕的进一步发展;电晕外观是从导线向外引出数量较多较长的细丝。当产生负极性电晕时,正空间电荷的移动不大,它的存在减弱了距导线较远处的电场强度.使电晕不易发展;电晕外观上是较为完整的光圈。由于负极性电晕发展较弱,而雷电大部分是负极性的,所以在过电压计算中常以负极性电晕作为计算的依据。 13、试说明在何种情况下,保护变电所的避雷针可装设在变电所构架上,何种情况

电力系统过电压考试复习汇编

当电力系统进行操作或发生接地故障时,就会在由电气设备构成的集中参数电路中产生电磁暂态过程,引起系统电压的升高或产生过电流。 当电力系统中某一点突然发生雷电过电压或操作过电压时,这一变化并不能立即在系统其它各点出现,而要以电磁波的形式按一定的速度从电压或电流突变点向系统其它部位传播。 电磁波在分布参数电路中传播产生的暂态过程,简称波过程。 一般架空单导线线路的波阻抗Z?500 Q,分裂导线波阻抗Z?300 Q 冲击电晕对导线耦合系数的影响 发生冲击电晕后,在导线周围形成导电性能较好的电晕套,在这个电晕区内充满电荷,相当于扩大了导线的有效半径,因而与其它导线间的耦合系数也增大。 冲击电晕对波阻抗和波速的影响冲击电晕将使线路波阻抗减小、波速减小 冲击电晕对波形的影响冲击电晕减小波的陡度、降低波的幅值的特性,有利于变电所的防雷保护。最大电位梯度出现在绕组的首端。冲击电压波作用于变压器绕组初瞬,绕组首端的电位梯度是平均电位梯度的a I倍。a l越大,电位分布越不均匀,相应绕组的抗冲击能力越差。(危及变压器绕组的首端匝间绝缘) 最大电位梯度均出现在绕组首端,其值等于 a U0,对变压器绕组的纵绝缘(匝间绝缘) 有危害。 绕组内的波过程除了与电压波的幅值有关外,还与作用在绕组上的冲击电压波形有关。过电压 波的波头时间越长(陡度越小),由于电感分流的影响,振荡过程的发展比较和缓,绕组各点的最大对地电压和纵向电位梯度都将下降;反之则振荡越激烈。波尾也有影响,在短波作用 下,振荡过程尚未充分激发起来时,外加电压已经大为减小,导致绕组各点的对地电压和电位 梯度也比较低。 变压器绕组内部保护的关键措施是:改善绕组的初始电位分布,使初始电位分布尽可能地接 近稳态电位分布。这可有效地降低作用在绕组纵绝缘上的电位梯度,并削弱振荡,减小振荡过 电压的幅值。 (1)补偿对地电容C0dx 的影响;(静电环)(2)增大纵向电容K0/dx (纠结式绕组)绕组匝间绝缘所承受的冲击电压为Uab= alab/v 侵入波的陡度愈大,每匝线圈的长度愈长,或波速愈小,则作用在匝间的电压也愈大。为了限 制匝间电压以保护绕组的匝间绝缘,必须采取措施来限制侵入电机的波的陡度。

电力系统过电压

电力系统过电压 一、单选题 1.一般地,电力系统的运行电压在正常情况下不会超过(B)。P215 A、额定线电压 B、允许最高工作电压 C、绝缘水平 D、额定相电压 2.电力系统过电压分成两大类(D)。P216 A、外部过电压和短路过电压 B、外部过电压和大气过电压 C、操作过电压和短路过电压 D、雷电过电压和内部过电压 3.外部过电压,与气象条件有关,又称为(B)。p216 A、气象过电压 B、大气过电压 C、污秽过电压 D、条件过电压 4.电力系统过电压分成两大类(B)。P216 A、外部过电压和短路过电压 B、内部过电压和大气过电压 C、操作过电压和短路过电压 D、雷电过电压和大气过电压 5.云中的水滴受强烈气流的摩擦产生电荷,而且小水滴带(B)。P216 A、正电 B、负电 C、静电 D、感应电 6.在两块异号电荷的雷云之间,当(D)达到一定值时,便发生云层之间放电。P216 A、电流 B、电压 C、距离 D、电场强度 7.雷电直接击中建筑物或其他物体,造成建筑物、电气设备及其他被击中的物体损坏,雷电的这种破坏形式称为(A)。 p216 A、直击雷 B、感应雷 C、雷电波侵入 D、雷电的折射与反射 8.雷电放电时,强大的雷电流由于静电感应和电磁感应会使周围的物体产生危险的过电压,造成设备损坏、人畜伤 亡。雷电的这种破坏形式称为(B)。P217 A、直击雷 B、感应雷 C、雷电波侵入 D、雷电的折射与反射 9.防雷设施及接地装置是(D)。P217 A、将导线与杆塔绝缘 B、将导线与与大地连接 C、将电流引入大地 D、将雷电流引入大地 10.安装在烟囱顶上的避雷针直径不应小于下列数值(D)。p217 A、10mm B、12mm C、16mm D、20mm 11.下列避雷针高度为h,其影响系数描述正确的是(A)。P218 A、h<30m时P=1 B、h>30m时P=1 C、h<30m时P=5.5/h D、以上都可以 12.为防止直接雷击架空线路,一般多采用(B)。P219 A、避雷针 B、避雷线 C、避雷器 D、消雷器 13.避雷线一般用截面不小于(D)镀锌钢绞线。P219 A、25mm2 B、50mm2 C、75mm2 D、35mm2 14.下列关于避雷线保护角描述正确的是(D)。P219? A、保护角越小,越容易出现绕击 B、山区的线路保护角可以适当放大 C、保护角大小与线路是否遭受雷击无关 D、多雷区的线路保护角适当缩小 15.电气设备附近遭受雷击,在设备的导体上感应出大量与雷云极性相反的束缚电荷,形成过电压,称为(B)。老书 P168 A、直接雷击过电压 B、感应雷过电压 C、雷电反击过电压 D、短路过电压 16.与FZ型避雷器残压相比,FS型避雷器具有(D)特点。老书P181 A、残压低 B、体积小 C、有均压电阻 D、残压高 17.阀型避雷器阀电阻片具有(A)特性。P221

电力系统电压调整及控制

13.1基本概念及理论 电压控制:通过控制电力系统中的各种因素,使电力系统电压满足用户、设备和系统运行的要求。 13.1.1电压合格率指标 我国电力系统电压合格指标: 35kV及以上电压供电的负荷:+5% ~ -5% 10kV及以下电压供电的负荷:+7% ~ -7% 低压照明负荷: +5% ~ -10% 农村电网(正常) +7.5% ~ -10% (事故) +10% ~ -15% 按照中调调规: 发电厂和变电站的500kV母线在正常运行方式情况下,电压允许偏差为系统额定电压的0% ~ +10%; 发电厂的220kV母线和500kV变电站的中压侧母线在正常运行方式情况下,电压允许偏差为系统额定电压的0% ~ +10%;异常运行方式时为系统额定电压的-5% ~ +10%。 220kV变电站的220kV母线、发电厂和220kV变电站的110kV ~ 35kV母线在正常运行方式情况下,电压允许偏差为系统额定电压的-3% ~ +7%;异常运行方式时为系统额定电压的±10%。 带地区供电负荷的变电站和发电厂(直属)的10(6)kV母线正常运行方式下的电压允许偏差为系统额定电压的0% ~ +7%。 13.1.2负荷的电压静特性

负荷的电压静态特性是指在频率恒定时,电压与负荷的关系,即U=f(P,Q)的关系。 13.1.2.1 有功负荷的电压静特性 有功负荷的电压静特性决定于负荷性质及各类负荷所占的比重。电力系统有功负荷的电压静态特性可用下式表示 13.1. 2.2无功负荷的电压静特性 异步电动机负荷在电力系统无功负荷中占很大的比重,故电力系统的无功负荷与电压的静态特性主要由异步电动机决定。异步电动机的无功消耗为 ― 异步电动机激磁功率,与异步电动机的电压平方成正比。 ―异步电动机漏抗的无功损耗,与负荷电流平方成正比。 在电压变化引起无功负荷变化的情况下,无功负荷变化与电压变化之比称为 无功负荷的电压调节效应系数()。它等于,其变化范围比的变化范围大,且与有无无功补偿设备有关。 阐述电力系统电压和无功平衡之间的相互关系。 13.1.3.1电压与无功功率平衡关系 电压与无功功率平衡关系:有网络结构与参数确定的情况下,电压损耗与输送的有功功率以及无功功率均有关。由于送电目的地,输送的有功功率不能改变,线路电压损耗取决于输送的无功功率的大小。如果输送无功功率过多,则线路电压损耗可能超过最大允许值,从而引起用户端电压偏低。

高压电工入网考试题单选题 (电力系统过压)

六、单选题(电力系统过压) 1. 电力系统过电压分成(A.外部过电压和内部过电压)两大类。 2. 下列关于保护变压器的角型间隙安装位置描述正确的是(C.高压熔断器的内侧)。 3. 为防止直接雷击高大建筑物,一般多采用(A.避雷针)。 4. 烟囱顶上的避雷环采用镀锌圆钢或镀锌扁钢,其尺寸不应小于下列数值:(C.圆钢直径12mm;扁钢厚度4mm,截面积100mm2)。 5. (D.避雷器)用来防护高压雷电波侵入变、配电所或其他建筑物内,损坏被保护设备。 6. 普通阀型避雷器由于阀片热容量有限,所以只允许在(A.大气过电压)下动作。 7. 下列避雷针高度为h,其影响系数描述正确的是(A.h<30m时P=1)。 8. 外部过电压,与气象条件有关,又称为(B.大气过电压)。 9. 在防雷装置中用以接受雷云放电的(B.金属导体)称为接闪器。 10. 在高杆塔增加绝缘子串长度,线路跳闸率(A.降低)。 11. 屋顶上单支避雷针的保护范围可按保护角(A.60°)确定。 12. 独立避雷针及其接地装置与道路的距离应(A.大于)3m。 13. 阀型避雷器都由火花间隙和阀电阻片组成,装在密封的瓷套管内。火花间隙用铜片冲制而成,每对间隙用 (C.0.5~1.0mm)厚的云母垫圈隔开。 14. 35~110kV线路电缆进线段为三芯电缆时,避雷器接地端应与电缆金属外皮连接,其末端金属外皮应 (D.直接接地)。 15. 雷季经常运行的进出线路1条时,10kV避雷器与变压器的最大电气距离是(D.15)m。 16. 氧化锌避雷器的阀片电阻具有非线性特性,在(B.电压超过其启动值时),其阻值很小,相当于“导通”状态。 17. 一般地,电力系统的运行电压在正常情况下不会超过(B.允许最高工作电压)。 18. 其他接地体与独立避雷针的接地体之地中距离不应(B.<)3m。 19. 以下过电压中(C.操作过电压)属于内部过电压。 20. 多雷区,如变压器高压侧电压在35kV以上,则在变压器的(D.高、低压侧)装设阀型避雷器保护。 21. 无续流管型避雷器安装时其轴线与水平方向的夹角应(A.不小于45°)。 22. 下列关于保护间隙特点描述正确的是(B.灭弧能力小)。 23. 同等高度的避雷针,平原的保护范围(B.大于)山区的保护范围。 24. 雷季经常运行的进出线路3条时,10kV避雷器与变压器的最大电气距离是(A.27)m。 25. 雷电放电时,强大的雷电流由于(A.静电感应和电磁感应)会使周围的物体产生危险的过电压,造成设备损 坏、人畜伤亡。雷电的这种破坏形式称为感应雷。 26. 在土壤率不大于100Ω·m的地区,独立避雷针接地电阻不宜超过(A.10Ω)。 27. 下列关于低压阀型避雷器特点描述正确的是(D.串联的火花间隙和阀片少)。 28. 单支避雷针的高度为h,其地面保护半径是(B.1.5h)。 29. 在防雷装置中用以接受雷云放电的金属导体称为(A.接闪器)。 30. 内部过电压是在电力系统内部(D.能量)的传递或转化过程中引起的过电压。 31. 为防止直接雷击架空线路,一般多采用(B.避雷线)。 32. 金属氧化锌避雷器特点有动作迅速、(A.无续流)、残压低、通流量大。 33. 在腐蚀性较强的场所引下线应适当(B.加大截面)或采用其他防腐措施。 34. 与FZ型避雷器残压相比,FS型避雷器具有(A.残压低)的特点。 35. 管型避雷器由(B.产气管、内部间隙和外部间隙)三部分组成。 36. 单支避雷针的保护范围是一个(C.近似锥形空间)。 37. 下列关于避雷线保护角描述正确的是(D.多雷区的线路保护角适当缩小)。 38. 金属氧化性避雷器应安装垂直,每一个元件的中心线与避雷器安装中心线的垂直偏差不应大于该元件高度的 (B.1.5%)。 39. 下列关于氧化锌避雷器特点描述正确的是(D.残压低)。 40. 对于需要频繁投切的高压电容器,为了防止断路器触头弹跳和重击穿引起操作过电压,有时需要并联 (C.金属氧化物避雷器)。 41. 金属氧化性避雷器应(C.垂直立放)保管。 42. 外部过电压通常指(C.雷电)过电压。

电力系统内部过电压分析

能源建设 电力系统内部过电压分析 441022 湖北襄阳城郊供电公司(湖北襄阳) 朱国军 【摘 要】电力系统的工作可靠性是和过电压的大小密切相关的。过电压是指超过正常运行电压并可使电力系统绝缘或保护设备损坏的电压升高。内部过电压分为两大类,因操作和故障引起的瞬间电压升高,称为稳态过电压;而在瞬间过程完毕后出现的稳态性质的工频电压升高和谐振现象称为暂态过电压。内部过电压的能量来源于电网本身,并在额定电压的基础上产生,故其幅值大体与额定电压的大小成正比,并且具有统计性质。 【关键词】内部过电压;操作过电压;暂时过电压 1、稳态过电压分为工频过电压和谐振过电压 1.1工频过电压 操作过电压是在工频过电压Ug的基础上振荡产生的,Ug越高,操作过电压的幅值越高。其次,避雷器的额定电压决定于连接点的工频过电压,后者越高,则避雷器的额定电压和相应的残压也越高。由此可知,工频过电压间接地决定了电网的操作和雷电冲击绝缘水平。 常见的几种重要的工频过电压有:空载线路电容效应引用的电压升高;不对称短路时正常相上的工频电压升高;甩负荷引起发电机加速而产生的电压升高等。 1)空载长线路中的电容效应电容效应是指在电感、电容的串联回路中,当容抗大于感抗时,在电源电动势E的作用下,容性电流在感抗上的压降把容抗压降抬高的一种现象。 2)不对称接地引起的工频过电压当线路中发生不对称接地时,通过相见的电磁耦合,可能使健全相的工频电压有所升高。统计表明,单相接地是主要的故障形式,所引起的电压升高一般最为严重,乃是选择避雷器额定电压的主要依据。 1.2谐振过电压 电力系统中存在着许多电感和电容元件,如电力变压器、互感器、发电机、消弧线圈、电抗器、线路电感等均可作为电感元件,而线路导线对地和相间电容、补偿用的并联和串联电容器组、高压设备的杂散电容均可作为电容器。当系统进行操作或发生故障时,这些电感、电容元件可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系统中某些部分(或元件)出现严重的谐振过电压。谐振过电压的持续时间要比操作过电压长得多.甚至可稳定存在,直到破坏谐振条件为止。谐振过电压幅值可能很大,理论上可以达到无穷,实际数值小于3倍。 1)线性谐振 谐振回路由不带铁芯的电感元件(如输电线路的电感、变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈,其铁芯中有气隙)和系统中的电容元件所组成.在正弦电源作用下,当系统自振频率与电源频率相等或接近时,可能产生线性谐振。 消弧线圈产生的线性谐振:类似于间歇性接地,接有消弧线圈的系统,只要让消弧线圈工作于脱谐度不大的状态,即可使补偿网络对地容抗大于感抗,当故障时如断路器非全相动作、线路发生单相或两相断线时,容抗更大,不满足谐振条件,不会发生严重的过电压。 2)铁磁谐振过电压线性谐振的参数条件 ,铁磁谐振 ,对于一定的 值(Lo为铁芯线圈的初始电感),在很大的C值范围内(即 都有可能产生谐振)都可能产生谐振。有可能是工频的谐振,也有可能是高频谐波和分频谐波,如2、3、5次等高频谐波或1/2、1/3、1/5次等分频谐波。 在电力系统中,因导线的折断、断路器非全相动作等严重的运行状态出现的铁磁谐振过电压,都属于断线谐振过电压。现象:系统中心点位移、负载变压器相序可能反转、绕组电流急剧增加、铁芯有响声、导线有电晕声,多会发生传递过电压。非全相运行时,可能组成多种多样的串联谐振回路,这些回路中的电感是空载或轻载运行的负载变压器的励磁电感以及消弧线圈的电感等。电容是导线对地和相间的部分电容,电感线圈对地杂散电容等。在一定的参数配合激发条件下,可能会产生基频、分频或高频谐振。基频谐振时,会出现三相对地电压不平衡,例如一相升高、两相降低;或两相升高、一相降低;或三相同时升高的现象。在负载变压器侧会使三相绕组电压的负序分量占主要的成分,造成相序反倾。实践证明,有可能产生2、3、5次高频谐波。 谐振过电压幅值可能很大,理论上可以达到无穷。分频谐振由于频率为工频的一半,互感器的励磁阻抗下降了一半,使铁芯元件的励磁电流大大增加,互感器严重饱和,过电压被限制了,实际数值小于2倍,除非有弱绝缘设备,一般不危险的。 2、暂态过电压通常为操作过电压 电力系统中的电容、电感元件均为储能元件。当有操作故障使其工作状态发生变化时,将产生振荡性的过渡过程。在此过程中,由于电感元件中储存的磁能会在某一瞬间转化为电场能存储与电容元件之中,将产生数倍于电源电压的过渡过程过电压,即所谓的操作过电压。它是在几毫秒至几十毫秒后消失的暂态过电压。 形成操作过电压的能量来源于电力系统本身,因此这类过电压的幅值与系统的额定电压大致成正比。通常用系统运行量高相电压幅值的倍数来表示过电压的大小。操作过电压的大小与电气设备特性,尤其是断路器的特性,以及系统结构、运行参数、操作或故障形式等因素有关,具有明显的随机性。 在非有效接地系统中,操作过电压有间歇电弧接地过电压(弧光接地过电压)、开断感性负载过电压、投切容性负载过电压等。 1)空载线路分闸过电压 切空线是电力系统中常有的操作。在开断过程中,若断路器发生重燃,使线路积累了电荷,并引起电磁振荡,会出现过电压。这种过电压不止幅值高,且持续时间长,可达0.5~1个工频周期以上,是220kV及以下电网确定操作绝缘水平的依据。 2)空载线路合闸过电压空载线路合闸过电压是决定超高压电网绝缘水平的重要因素。合空线过电压有两种不同的形式。其一是计划性的合闸操作,合闸后,线路各点电压由零值过渡到由电容效应决定的工频稳态电压从而出现振荡过电压。另一种是重合闸操作,由于残余电压的存在,三相重合闸过电压要比计划性合闸过电压更为严重。 3)空载变压器分闸过电压 在电力系统运行中,常有电感性负载的分闸操作,在这些操作过程中可能会出现幅值较高的过电压。 4)解列过电压在多电源供电系统中,由于某种原因(如线路发生接地故障)而失去稳定时,线路两侧电源的电动势将产生相对摆动(失步)。为了避免事故扩大而将系统解列,则可能会在单端的空载线路上出现解列过电压。 54《科技与企业》杂志 2011年10月(上)

电力系统无功电压综合控制

电力系统无功电压综合控制 【摘要】本文通过对无功功率对用户和电力系统安全稳定电能质量经济运行至关重要性;电力系统无功电源及无功补偿原则;电压--无功调节实现方法、实现方式和控制调整策略及泉州地区无功电压调整和控制分析。泉州地区的电压无功控制采用ACV智能控制系统,此系统可对电压、功率因数和网损进行优化控制。 【关键词】无功电压无功电源VQC A VC调整方法调整策略 无功功率对用户和电力系统安全稳定、电能质量和经济运行至关重要。从电力系统潮流计算和电力系统综合负荷电压静态特性得知,电压与无功功率密切关系。无功功率不足系统电压将下降,反之将上升。过高电压和过低电压将影响到用户和电力系统本身的正常工作。电压过高,用户的用电设备的绝缘将受到威胁;电压过低,用户的电器设备的正常工作受到影响。特别是电动机负荷,电压过低,电动机的转矩将成平方级的下降,正在运行的电动机可能停转,带重负荷的电动机可能起动不了,严重影响到用电设备的正常工作。对于电力系统本身,电压过低除了影响到电力系统的发电厂辅机正常工作外,还影响到电力系统电压的稳定问题。故电力系统电压保持在质量范围里至关重要。 1.电力系统无功电源及无功补偿原则 1.1电力系统无功电源 电力系统无功电源有同步发电机、电力电容器、同步调相机、静止补偿器及电力线路。发电机通过改变励磁电流改变发电机无功的输出。根据发电机P Q曲线图得知,同步发电机要多发无功功率,势必要少发有功功率。对于小电力系统或孤立运行的电力系统的调压很有效,对大电力系统一般只作为辅助的调压措施。电力电容器并网只能发出无功,不能吸收无功,调压是有级的,但它价廉实用,它广泛应用于电力系统变电站母线的调压和负荷侧的调压。同步调相机也是靠改变其励磁电流为过励或欠励来改变输出或吸收无功大小,它既能发出无功又能吸收无功,调压是连续的,但旋转的无功补偿设备需要大量的维护,故应用较少。静止补偿器是对电力电容器的改进,它可通过可控的电抗元件来调节无功功率,它既能发出无功又能吸收无功,调压也是连续的,它是新型的无功功率补偿设备,补偿成本较高,主要是设备贵重,目前泉州供电公司有两个变电站采用此无功补偿设备。 1.2电力系统无功补偿原则 电力系统无功功率补偿原则是分层分区就地平衡。对于220kV以上电网是分层平衡,对于110kV以下是分区就地平衡。从潮流计算或从功率损耗计算可知,电力系统无功功率不远距离输送,远距离输送将增加有功损耗。

电力系统过电压知识点总结

第四章 1.地面落雷密度:一个雷电日每 km2 的地面上落雷的次数(次/雷电日·km 2 )。落雷密度为单位时间单位面积的地面平均落雷次数 2.保护设备与被保护设备的伏秒特性应如何配合?为什么?答案:保护设备的伏秒特性应始终低于被保护设备的伏秒特性。这样,当有一过电压作用于两设备时,总是保护设备先击穿,进而限制了过电压幅值,保护了被保护设备。 3. ZnO 避雷器的主要优点有哪些?答案:ZnO 避雷器的主要优点有无间隙、无续流、电气设备所受过电压可以降低、通流容量大、ZnO 避雷器特别适用干直流保护和 SF6 电器保护等优点。适于大批量生产,造价低,经济性能好。 4.跨步电压:人的两脚着地点之间的电位差称为跨步电压。(取跨距为 0.8m)工作接地中,对人身安全造成威胁的电位差包括接触电位差和跨步电位差人所站的地点与接地设备之间的电位差称为接触电势 5.内部过电压倍数:内部过电压倍数:内部过电压幅值与最大运行相电压幅值之比。 6.【简答题】什么叫做操作过电压?答案:电力系统是由电源、电阻、电感、电容等元件组成的复杂系统,当开关操作,或事故状态引起系统拓扑结构发生改变时,各储能元件的能量重新分配并发生振荡,在设备上将会产生数倍于电源电压的过渡过程的过电压,称为操作过电压。电力系统由于操作从一种稳定工作状态通过震荡转变到另一种工作状态的过渡过程所产生的过电压称为操作过电压。 7.简述电力系统中操作过电压的种类。答案:①间歇电弧接地过电压②空载变压器分闸过电压③空载线路分闸过电压④空载线路合闸过电压一种是计划性的合闸操作,另一种是自动重合闸操作⑤电力系统解列过电压 8.在不同电压等级中起主导作用的操作过电压类型?答案:(一)6~10kV,35~60kV:电弧接地过电压;(二)110~220kV:切空载变压器,切除空载线路过电压;(三)330~500kV:合空载线路过电压。 9.电弧接地过电压:在中性点绝缘的电网中发生单相接地时,将会引起健全相得电压升高到线电压。如果单相接地为不稳定的电弧接地,即接地点的电弧间歇性地熄灭和重燃,则在电网健全相和故障相上将会产生很高的过电压,一般把这种过电压称为电弧接地过电压。 10.影响电弧接地过电压的因素有哪些?答案:(一)电弧熄灭与重燃时的相位;(二)系统的相关参数(相间电容、线路损耗);(三)中性点接地方式。 11.电弧接地过电压的发展过程和幅值大小都与什么有关?答案:电弧过电压的发展过程和幅值大小都与熄弧的时间有关,存在两种熄弧时间:(1)电弧在过渡过程中的高频振荡电流过零时即可熄灭(2)电弧要等到工频电流过零时才能熄灭 12.什么叫做截流?答案:流过电感的电流在到达自然零点前被断路器强行切断,称为强制熄弧,使得储存在电感中的磁场能量被强迫转化为电场能,导致电压的升高。当采用灭弧能力很强的断路器切断很小的励磁电流时,工频励磁电流的电弧可能在自然过零前被强制熄灭,甚至电流在接近幅值 m I 时被突然截断,这就是断路器的截流现象。 13.为什么说切空载变压器容易发生截流现象?答案:切断 100A 以上的交流电流时,电弧通常都是在工频电流自然过零时熄灭的;但当被切断的电流较小时(空载变压器的激磁电流很小,一般只是额定电流的 0.5%~4%,约数安到数十安),电弧提前熄灭,亦即电流会在过零之前就被强行切断。 14.断路器的性能和变压器的参数是怎么影响切空变压器的?答案:切断小电流电弧时,性能差的断路器,由于切断电流能力不强,切除空载变压器时过电压较低;而切除小电流电弧时性能好的断路器,由于切流能力强,切除空载变压器过电压较高。另外,当断路器的灭弧能力差时,切流后在断路器触头间容易引起电弧重燃,而这种电弧重燃与切空线相反,使变压器侧的电容中电场能量向电源释放,从而降低了过电压。使用相同断路器,即使是在相同的截流能力下,当变压器的电容越大和电感越小时,过电压会降低。 15.如何限制切空载变压器的过电压?答案:(一)在断路器的变压器侧加装阀式避雷器。(二)在断路器的主触头上并联一线性或非线性电阻。(三)需频繁进行变压器的分合闸操作的场合可采用:在电弧炉变压器的低压绕组侧并接三相整流电路,直流回路中接有大容量电解电容。 16.在不同电压等级中起主导作用的操作过电压类型?答案:(一)6~10kV,35~60kV:电弧接地过电压;(二)110~220kV:切空载变压器,切除空载线路过电压;(三)330~500kV:合空载线路过电压。

浅谈变电站电压及无功的综合控制

浅谈变电站电压及无功的综合控制 发表时间:2019-07-02T14:04:29.703Z 来源:《防护工程》2019年第6期作者:梁华银李毛根 [导读] 通过调节有载调压变压器分接开关和投切并联电容器组,实现调节电压合格和无功平衡的目的。 国网安徽省电力有限公司宿州供电公司安徽省 234000 摘要:以变电站为单位,自动调节电压和无功功率就地平衡,变电站电压和无功控制主要是采用有载调压变压器和补偿并联电容器组,通过调节有载调压变压器分接开关和投切并联电容器组,实现调节电压合格和无功平衡的目的。 关键词:变电站;电压;无功;控制 1电力系统调压的措施 1.1利用发电机调压 发电机的端电压可以通过改变发电机励磁电流的办法进行调整,这是一种经济,简单的调压方式。在负荷增大时,电网的电压损耗增加,用户端电压降低,这时增加发电机励磁电流,提高发电机的端电压;在负荷减小时,电力网的电压损耗减少,用户端电压升高,这时减少发电机励磁电流,降低发电机的端电压。按规定,发电机运行电压的变化范围在发电机额定电压的-5%~+5%以内。 1.2电压无功自动控制装置 在以往的变电站运行中,常常是采用人工的方式进行相关的电压无功调控,这种陈旧老套的控制方法不但需要耗费变电站值班人员的大量精力,加重了其负担,增大了工作量,同时也不能很好的实现电压无功控制的目的。这是因为人工调节的主观因素太大,如果值班人员的判断或操作失误,就会严重影响到调控的合理性,不利于变电站的稳定电力供应。随着人们对供电质量的要求更高,大多数变电站都是采用的无人值班变电站,这样以来,人工操控电压无功就很难实现。 1.3利用无功功率补偿调压 改变变压器分接头调压虽然是一种简单而经济的调压手段,但改变分接头位置不能增减无功功率。当整个系统无功功率不足引起电压下降时,要从根本改变系统电压水平问题,就必须增设新的无功电源。无功功率补偿调压就是通过在负荷侧安装同步调相机、并联电容器或静止补偿器,以减少通过网络传输的无功功率,降低网络的电压损耗而达到调压的目的。 1.4改变输电线路的参数调压 从电压损耗的计算公式可知改变网络元件的电阻R和电抗X都可以改变电压损耗,从而达到调压的目的。变压器的电阻和电抗已经由变压器的结构固定,不宜改变。一般考虑改变输电线路的电阻和电抗参数以满足调压要求。但减少输电线路的电阻意味着增加导线截面。多消耗有色金属。所以一般不采用此方法。 2 变电站电压无功控制方式 目前,变电站电压无功控制方式主要有3种:集中控制方式、分散控制方式和关联分散控制方式。 2.1 集中控制方式 集中控制是指在调度中心根据采集的各项数据,通过遥控装置对各个变电站的调压设备、无功补偿设备统一进行控制。从理论上讲,集中控制方式应该是保持配电网电压合格、无功平衡的最佳方案。但它对调度中心的要求相对较高,在软件方面要求配备实时控制软件,在硬件方面要求配电中心达到“三遥”的水平,最好在各个配电中心针对这一环节配备单独的智能模块。目前,各地变电站的基础设施条件和智能化水平参差不齐:有的地方相对发达一些,设备比较先进,智能化水平较高;有的地方相对落后一些,设备比较陈旧,基本没有自动化装置;有的地方变电站各方面建设虽然比较先进,但是缺少相关操作人才,也难以实现集中控制。因此,当前要想实现整个电力系统全部采用集中控制方式还是比较困难的,只能在相对发达的地区先建设一部分,逐步在其他地区循序渐进地推开。 2.2 分散控制方式 分散控制方式是指在每个变电站专门建设一台电压无功自动控制平台,该装置根据采集的数据,自动调节分接头位置或投切并联电容器组,从而实现对电压调节装置和无功补偿设备的控制,当主变压器负荷发生变化时,保证该变电站供电半径内配电网电压质量合格、无功功率合格。分散控制的优点是控制简易、投入较小,符合当前我国大部分地区的基本情况;缺点是难以实现整个地区大面积的统一操控。随着计算机、通信技术在电力行业的应用越来越广泛,实现对整个地区进行集中控制是大势所趋,分散控制装置由于其自身的条件所限,逐步会被淘汰,但在局部地区其使用还具有一定的优越性。 2.3 关联分散控制方式 集中控制方式理论上能够及时掌握整个地区变电站的相关情况并进行最好的集中控制,但是此控制方式对变电站的软硬条件的要求比较高,需要投入更多资金,并且由于多个变电站在一个调度中心进行集中操作管理,控制系统比较复杂,操作难度较大,一旦发生问题,影响很大。目前,国内大部分地区应用比较广泛的是分散控制方式,但此控制方式不能实现整个地区的集中管理。关联分散控制方式是指在正常运行情况下,由安装在各变电站的控制装置根据编好的控制程序进行调控。在保障整个系统安全可靠运行的前提下,分别计算出正常运行、紧急情况、系统运行方式发生大变动时的调控范围,由调度中心根据采集的数据情况直接进行操作或修改变电站母线电压和无功功率值,以满足辖区内电力系统安全、可靠运行的要求。关联分散控制的最大优点是无论在正常情况下还是在紧急状态下,都能有效保障辖区内的供电可靠性和经济性。关联分散控制装置要求必须满足对受控厂站分析、判断和控制的强大通信功能,以及时将采集到的信息报告给调度中心,并执行好调度中心下达的各项调控命令。 3 变电站电压无功综合控制方式调节判据 变电站电压无功综合控制调节判据分为以下5个方面:1)按功率因数控制;2)按电压控制;3)按电压综合控制有载分接开关和电容器组;4)按电压和功率因数复合控制;5)按电压、时间序列复合控制。 3.1 按功率因数控制 根据功率因数的大小,来确定投切并联电容容量。如果功率因数低于确定值则通过自动控制装置投入电容,如果高于确定值则通过自动控制装置切除电容。此办法没有把电容对母线电压的影响考虑进来,并且当变压器负荷较小时,可能存在自动控制装置动作频繁的问

电力系统过电压复习题目_答案

电力系统过电压数值仿真计算 1 我国1974年在西北地区建成刘(家峡)- 天(水)- 关(中)首条330kV输电线路,1981年建成平(顶山)- 武(昌)第一条500kV线路,2005年西北地区建设的第一条750kV 线路投入运行,交流1000kV和直流 800kV输电系统正在积极推进中。 2 电力系统电压等级的提高,意味着设备绝缘水平提高。电力系统的绝缘包括发电厂、变电所电气设备的绝缘以及线路的绝缘。他们在运行中除承受正常运行时的工作电压外,还将承受各类过电压,如工频过电压、操作过电压以及雷电过电压。通常情况下,由于电力系统电磁暂态产生的过电压在确定绝缘水平中起决定性作用。 3 在电力系统中,由于断路器的操作、故障或其他原因,使系统参数发生变化,引起电网内部电磁能量的转化或传递,产生电压升高称为内部过电压。内部过电压分为两类操作过电压、暂时过电压。把频率为工频或接近工频的过电压称为工频过电压,它是由系统中长线的电容效应、不对称接地故障、甩负荷引起的。对因系统的电感、电容参数配合不当,出现的各类持续时间长、波形周期性重复的谐振现象及其电压升高称为谐振过电压。 4 所谓绝缘配合,就是综合考虑电气设备在电力系统中可能承受的各种电压(工作电压及过电压)、保护装置的特性和设备绝缘对各种作用电压的耐受特性,合理的确定设备必要的绝缘水平,以使设备的造价、维修费用和设备绝缘故障引起的事故损失降低,达到在经济上和安全运行上总体效益最高的目的。 5 电力系统过电压的研究方法暂态网络分析仪(TNA)、计算机的数值计算、系统的现场实测。 6 目前在世界范围内,使用计算机数字仿真技术研究电力系统电磁暂态现象有哪些程序?EMTP、PSCAD/EMTDC (1)Dommel_Bergeron_Method编制了EMTP(Electro_Magnetic_Transient_Program),在世界范围内获得了广泛的使用。 (2)加拿大曼尼托巴(Manitoba)直流输电研究中心开发完善并形成了PSCAD/EMTDC(Electro_Magnetic_Transients_Including_DC),在世界范围内获得了成功的使用。 7 输电线路参数包括线路的电阻、电抗、电导、电纳。 8 请画出单相无损线路的等值电路。 9 请画出凸极式同步发电机稳态运行时的相量图和等值电路。

变电站电压无功综合控制策略的分析

变电站电压无功综合控制策略的分析 发表时间:2019-03-13T14:42:09.377Z 来源:《河南电力》2018年18期作者:李亚雄苏力[导读] 电压是衡量电网电能质量的重要指标之一。电压过高或者过低,都会影响到电力系统中各类电力设备的正常运行。 (华电电力科学研究院有限公司中南区域中心湖北武汉 430000)摘要:电压是衡量电网电能质量的重要指标之一。电压过高或者过低,都会影响到电力系统中各类电力设备的正常运行。而电力系统的电压水平与无功功率有着十分密切的关系,故维持电网中的无功功率平衡可以有效地提高电能质量,并保证电力系统的安全、可靠、经济运行。本文结合智能变电站中电压无功综合控制子系统的目标,介绍了一些学者提出的电压无功控制综合策略的内容,分析它们各自所 具有的特点,最后结合已有成果对这一领域的发展进行了展望。 关键词:电压无功控制;无功补偿;控制策略;智能变电站 引言 我国国民经济不断发展,工业贡献了其中非常重要部分。工业的发展离不开合格的电能质量。改善电压质量可以有效地节约能源,防止电力系统电压出现崩溃以及提高电网的安全运行水平。由于电力系统中无功功率与电压水平紧密相关,变电站往往通过补偿无功功率实现系统中无功功率的平衡。 无功补偿的作用主要有以下几点[1]: 1)提高供用电系统及负载的功率因数,降低设备容量,减少功率损耗。 2)稳定受电端及电网的电压,提高供电质量。在长距离输电线中合适的地点设置动态无功补偿装置还可以改善输定系统的稳定性,提高输电能力。 3)在电气化铁道等三相负载不平衡的场合,通过适当的无功补偿可以平衡三相的有功及无功负载。 1 无功补偿的方法 电网无功补偿方案有以下4种:变电站集中补偿、低压集中补偿、配电线路固定补偿和用户终端分散补偿。 变电站集中补偿的装置包括同步调相机、并联电容器、静止补偿器等。这种补偿方式一般将装置集中接在变电站的10kV母线上,其优点是便于实现自动投切,利用率高,降低了事故出现的概率,有效减少电网的无功负荷。但是该方式不能解决下一级电网的网损或线损,因此10kV配电网降损不能采取这种补偿方案。 目前无功补偿的方式主要是220kV、110kV、35kV变电站低压侧集中补偿,以及在配电台区装设固定联接的电容器补偿和高压配电线路分散补偿。220kV变电站、110kV变电站配置的无功补偿容量较大,而35kV变电站及配电台区配置无功补偿容量偏小,大部分无功补偿装置采用的是手动投切[2]。 2 变电站自动化 变电站在电力系统中占有非常重要的地位。变电站是否正常运行,对电力系统的安全、稳定运行起到决定性的作用。在当今我国大力提倡智能电网的背景下,进一步提高变电站自动化和发展变电站智能化已成为电力系统研究中的热点。 在IEC61850标准中,对变电站自动化系统SAS的定义为:变电站自动化系统就是在变电站内提供包括通信基础设施在内的自动化。 变电站自动化系统中的子系统有监控子系统,继电保护子系统,自动控制子系统等。 3 变电站电压无功综合控制子系统 变电站自动化系统需要保证设备的安全、可靠运行以及提高电能质量。为此,在变电站自动化系统中,需要电压无功综合控制子系统,低频低压减负荷控制子系统,单相接地选线控制子系统,备用电源自投控制子系统等。这些系统均采用了独立的自动装置。 3.1 电压无功综合调控的意义 电压无功综合调控的目的是:维持供电电压在给定范围内;保持电力系统达到合适的无功平衡;在保证电压质量合格的前提下尽量降低电能损耗。 目前,在我国变电站应用最广泛的调压方式是结合并联补偿电容器组与有载调压变压器来对电压和无功功率进行调节。对补偿电容器进行投切操作,可以改变电力系统中的无功分布,从而提高电能质量,改善功率因数,减少网络中的电能与电压损耗。而通过切换有载调压变压器的分接头位置就可以改变变压器的变比,从而对电压进行调整。 3.2 电压无功综合控制的实现 目前我国变电站主要使用基于微机技术的电压无功综合控制系统(VQC)来解决电压和无功的调节问题。常用的VQC有两类:变电站监控系统实现的电压无功控制和独立的VQC成套装置。 利用变电站监控系统实现电压无功控制,是通过在变电站自动化系统站控层监控机中装设VQC控制软件实现的。该软件通过RTU远动装置获取到模拟量、开关量等信息后对所得信息进行分析和计算,从而确定所采取的调控决策,发出调控指令交由RTU远动装置进行执行,故而这种VQC也被称为基于RTU的VQC控制系统。 独立的VQC成套装置则包括独立的微计算机系统和模拟量采集、信号采集I/O系统以及控制输出回路,同时具有测量、显示、统计、打印功能和专门的控制软件,故其可以独立地对变电站的电压和无功进行控制。 4 变电站电压无功综合控制策略 对电压无功进行控制时,采用传统的功率因数补偿法容易对电网造成过补偿。经过理论研究和实践证明后,变电站的电压无功综合控制选取无功功率Q为无功控制量。因此,所谓电压无功综合控制,即根据电压和无功功率这两个判别量来对电压和无功进行综合调节。 变电站电压无功综合控制的目标是在保证电压合格和无功功率基本平衡的前提下,尽可能少地对并联电容器进行投切以及对有载分接开关进行调节。为了更好地实现这个目标,不断有学者对现有电压无功综合控制策略进行修正,从而提出新的策略。 4.1 基于区域图的控制策略

电压综合无功控制

1.电压、无功综合控制的目标 电力系统中电压和无功功率的调整对电网的输电能力、安全稳定运行水平和降低电网损耗有极大的影响。因此,要对电压和无功功率进行综合调控,保证实现包括电力企业和用户在内的总体运行技术指标和经济指标达到最佳。其具体的调控目标如下: (1)维持供电电压在规定的范围内,根据前能源部颁发的《电力系统电压和无功电力技术导则》(简称《导则》)规定,各级供电母线电压的允许波动范围(以额定电压为基准)规定如下: 1)500(330)kv变电站的220kv母线,正常时0%~+10%,事故时-5%~+10%。 2)220kv变电站的35~110kv母线,正常时-3%~+7%,事故时±10%。 3)配电网的10kv母线,电压合格范围为10.0~10.7kv。 (2)保持电力系统稳定和合适的无功功率。主输电网络应实现无功分层平衡;地区供电网络应实现无功分区就地平衡,才能保证各级供电母线电压(包括用户入口电压)在《导则》规定范围内。 (3)保证在电压合格的前提下使电能损耗最小。为了达到以上目标,必须增强对无功功率和电压的调控能力,充分利用现有的无功补偿设备和调压设备(调压机、静止补偿器、补偿电容器、电抗器、有载调压变压器等)的作用,对他们进行合理的优化调控,本文中我们主要用到静止无功补偿器。 电力系统的长期运行经验和研究、计算的结果表明,造成系统电压下降的主要原因是系统的无功功率不足或无功功率分布不合理。所以,对发电厂而言,主要的调压手段是调整发电机的励磁;对变电站来说,主要的调压手段是调节有载调压变压器分接头位置和控制无功无功补偿电容器。在这里我想向大家介绍一种新型无功补偿器—静止无功补偿器。 上述两种调节和控制的措施,都有调整电压和改变无功分布的作用,但它们的作用原理和后果有所不同。有载调压变压器可以在带负荷的情况下切换分接头位置,从而改变变压器的变比,起到调整电压和降低损耗的作用。调压措施本身不产生无功功率,但系统消耗的无功功率与电压水平有关,因此在系统无功功率不足的情况下,不能用改变变比的办法来提高系统的电压水平;否则电压水平调得越高,该地区的无功功率越不足,反而导致恶性循环。所以在系统缺乏无功的情况下,必须利用补偿电容器进行调压。控制无功补偿电容器的投切,既能补偿系统的无功功率,又可以改变网络中无功功率的分布,改善功率因数,减少网损

相关文档
最新文档