220kV变电站继电保护设计正文

220kV变电站继电保护设计正文
220kV变电站继电保护设计正文

前言

继电保护的发展是随着电力系统和自动化技术的发展而发展的.几十年来,随着我国电力系统向高电压、大机组、现代化大电网发展,继电保护技术及其装置应用水平获得很大提高。在20世纪50年代及以前,差不多都是用电磁型的机械元件构成。随着半导体器件的发展,陆续推广了利用整流二极管构成的整流型元件和半导体分立元件组成的装置。70年代以后,利用集成电路构成的装置在电力系统继电保护中得到广泛的运用。到80年代,微型机在安全自动装置和继电保护装置中逐渐应用。

在电力系统中,由于雷击或鸟兽跨接电气设备、设备制造上的缺陷、设计和安装的错误、检修质量不高或运行维护不当等原因,往往发生各种事故。为了保证电力系统安全可靠地运行,电力系统中的各个设备必须装设性能完善的继电保护装置。继电保护是利用被保护线路或设备故障前后某些突变的物理量为信息量,当突变量达到一定值时,起动逻辑控制环节,发生相应的跳闸脉冲或信号。

继电保护虽然种类很多,但是一般由测量部分、逻辑部分、执行部分三部分组成。测量部分是测量被保护元件工作状态的一个或几个物理量,并和已给的整定值进行比较,从而判断保护是否应该起动。逻辑部分是根据测量部分输出量的大小、性质、出现的顺序或它们的组合、使保护装置按一定的逻辑程序工作,最后传到执行部分。执行部分是根据逻辑部分送的信号,最后完成保护装置所担负的任务。如发生信号,跳闸或不动作等。

继电保护的基本性能要求是选择性、速动性、灵敏性、可靠性。随着新技术、新工艺的采用,继电保护硬件设备的可靠性、运行维护方便性也不断得到提高。继电保护技术将达到更高的水平。

由于编者水平和时间所限,文中疏漏和不足之处在所难免,恳请老师批评指正。

目录

摘要 (1)

第1章设计说明书 (2)

第2章主变压器保护设计 (3)

2.1 主变压器保护设计 (3)

2.2 变压器容量选择 (4)

2.3 变压器主保护 (8)

2.4 过电流保护 (13)

2.5 接地保护 (14)

2.6 其他保护 (16)

第3章母线保护 (19)

3.1 母线保护设计分析 (19)

3.2 220kV侧母线保护 (20)

3.3 110kV侧母线保护 (21)

3.4 10kV侧母线保护 (23)

3.5 微机母线保护 (23)

第4章线路保护 (25)

4.1 线路保护分析 (25)

4.2 220kV线路保护 (25)

4.3 110kV线路保护 (28)

4.4 10kV线路保护 (32)

总结 (37)

参考文献 (38)

致谢 (39)

摘要

本文的内容有设计说明书、主变压器的保护、母线保护及线路保护。设计说明书简要的说明设计的性质、内容等。主变压器的保护设计,其中主要对主变压器的主保护、后备保护及其它保护进行设计分析,并阐述其优缺点。设计中所使用的保护有:气体保护、纵差动保护、过电流保护、接地保护、过负荷保护、励磁保护、断路器失灵保护、微机保护等。

整定值的计算有110kV及10kV的短路电流计算。

【关键词】:变电站;主变压器保护;母线保护;线路保护

第一章设计说明书

主变压器的保护设计,其中主要对主变压器的主保护、后备保护及其它保护进行设计分析,并阐述其优缺点。第二章为主变压器配置的保护有:气体保护、纵差动保护、过电流保护、接地保护、过负荷保护、励磁保护、断路器失灵保护、变压器温度保护、冷却故障保护等。第三章为母线保护,虽然母线处于变电站内,发生故障的几率相对于其他设备小,但母线发生故障时,接于母线上的所有元件都要断开,会造成大面积停电。此外枢纽变电所的高压母线故障,如果动作迟缓,将会导致电力系统的稳定性遭到破坏,从而使事故扩大,因此,为母线选择合适的保护方式是本部分的重点。为母线配置我保护有:220kV侧母线为元件固定连接的母线完全差动保护;110kV侧母线为完全电流差动保护、10kV侧母线为后备保护。为全部母线配备微机保护。第四部分为线路保护,电力线路如果继电保护配置不当,保护将不能正确动作,(误动或拒动),从而会扩大事故停电范围,给国民经济带来严重后果,有时还会造成人身和设备安全事故,因此合理选择保护方式也是非常必要的。220kV线路为高频保护和电流平衡保护、110kV线路是以电流平衡保护为主,零序保护做后备的保护、10kV线路为接地零序电流保护。

第2章主变压器保护设计

本设计主要针对变电站变压器保护配置进行设计分析,变压器是变电站重要设备之一。它的安全运行直接关系到变电站安全、稳定、经济运行,特别是枢纽变电站一旦因故障损坏或者导致线路停电,造成的损失将无法估计,因此必须针对变压器可能出现的故障和异常工作情况,根据其容量、数量和重要程度,装设相应动作可靠,性能良好的继电保护,防止故障的发生,其中主要对主变压器的主保护、后备保护及其它保护进行设计分析,并阐述其优缺点。

2.1 主变压器保护设计分析

一、主变压器保护设计目的

大型变压器的造价昂贵,一旦发生故障遭到损坏,其检修难度大,时间长,会造成巨大的经济损失,特别是单台容量占系统容量比例很大的情况下,发生故障后突然切除变压器,将给电力系统造成很大的扰动,因此,在考虑大型变压器继电保护的整体配置时,除了保证其安全运行外,还应最大限度地缩小故障影响范围,特别要防止保护装置误动作或拒绝动作,这样,不仅要求有性能良好的保护继电器,还要求在继电保护的整体配置上尽量完善、合理。

二、主变压器保护设计原则

变压器继电保护整体配置设计时,必须清楚其可能发生的故障及异常运行状态,针对其可能发生的故障及异常运行状态进行相应的保护配置:

(一)变压器可能发生的故障:

①油箱内部故障:绕组相间短路,接地短路匝间短路,及铁芯烧损。

②油箱外部故障:主要是套管及引出线上发生相间短路和接地短路

(二)变压器的不正常工作状态:

①由外部短路引起过电流

②由于电动机自启动及尖峰负荷等原因引起的过电流

③由于油箱漏油造成油面降低

④由于外加电压过高或频率降低引起的过励磁

三、主变压器保护配置

变压器的保护可以分为短路保护和异常运行保护两类。短路保护用以反应被保护范围内发生的各种类型的短路故障,作用于断路器跳闸。为了防止保护装置或者断路器拒动,又有主保护和后备保护之分。异常运行保护用以反应各种可能给机组造成危害的异常工况,此保护作用于发信号,这类保护一般只装设一套专用继电器,不设后备保护。

根据《继电保护和安全自动装置技术规程》规定变压器一般应装设下列继电保护装置:

(一)反应变压器油箱内部故障和油面降低的气体保护(容量在800kVA及以上的油浸式变压器和400kVA及以上的车间内油浸式变压器,均应装设气体保护)。

(二)反应变压器绕组、引出线的相间短路,中性点直接接地侧绕组、引出线和套管的接地短路,以及绕组匝间短路的电流速断保护或纵联差动保护。(容量在10000kVA及以上或6300kVA以上并列运行变压器应装设纵联差动保护,以代替电流速断保护)。

(三)反应外部相间短路的过电流保护、复合电压启动的过电流保护、负序电流保护和阻抗保护

(四)反应中性点接地的电力网中,外部单相接地短路的零序电流保护。

(五)变压器其他保护,如过负荷、过励磁、变压器高压侧断路器失灵保护、温度保护、冷却器故障保护等。

2.2变压器容量选择

一、主变压器容量选择原则

(一)主变压器容量一般按变电站建成后5~10年的规划负荷选择,并应考虑变压器正常工作和事故时过负荷能力。

(二)根据变电站所带负荷的性质和电网结构来确定主变压器的容量。对于有重要

负荷的变电站;应考虑当一台变压器停运时,其余变压器容量在计及过负荷能力后的允许时间内应保证对一、二级负荷的供电。

二、变压器容量选择整定计算

变压器保护装置应根据变压器容量、数量配置相应保护,由原始资料分析该变电站

主变压器为两台三绕组降压变压器,主要向110kV 线路负荷、10kV 线路负荷、站用电负荷供电,据《220kV ~500kv 变电所所用电设计技术规程》规定,220kv 所用电宜从主变压器低压侧分别引接两台容量相同,可互为备用,分列运行的所用工作变压器,只有一台主变压器时,其中一台所用变压器宜从所外电源引线,本设计中主变压器为两台三绕组降压变压器,变电所所用电宜从主变压器低压侧分别引入,因此所用电可当作10kV 线路负荷来处理,110kV 、10kV 线路负荷情况如下表:

10kV 等效负荷

4000 0.9 名称

最大负荷(KW ) 功率因素Cos θ 氮肥厂

4000 0.85 机械厂

4000 0.85 纺织厂

3000 0.85 化工厂

3000 0.85 造纸厂

2500 0.85 水厂 6000 0.85

110kV 线 路 负 荷 名 称 最大负荷(MW) 功率因数 Cos 石化厂 32 0.9 炼油厂 36 0.9 甲县变 25 0.9 乙县变 28 0.9 丙县变 15 0.9 丁县变

26 0.85

建材厂 3000 0.85

A 变 4000 0.85

B 变 4000 0.9

110kV 断路器冬天 4 1

室外配电装置照明 15 1

室内照明 8 1

110kV 线路最大有功功率:

KW 000162

10×26)+15+28+25+36+(32P 31==

110kV

线路最大无功功率:

KVar Cos Sin Cos Sin Cos Sin P 444.82004

10×6210×15)+28+25+36+(32 Q 2

2

31131=+=?=θθ

θθθ

θ

其中9.01=θCos ,85.02=θCos D 变 3000 0.9

主变风扇 0.15×66 0.85

主充电机 16 0.85

浮充电机 15 0.85

蓄电池进风 1.5 0.85

蓄电池排风 2 0.85

锅炉房水泵 2 0.85

空 压 机 20 0.85

载 波 室 2 1

220kV 配电装置电源 18 1

110kV 配电装置电源 18 1

220kV 断路器冬天加热 4 1

由于110kV 线路各负荷间同时系数为0.9, 110kV 负荷的最大输出复功率:

j 73804145800 )444.82004

j 162000(9.0S ~1+=+?=

10kV 线路负荷最大有功功率:

K W 4.406354

.13540500

815441818220221.51516 66

0.1510×3)444362.5334(4P 32=+=+++++++++++++?+++++++++++=

10kV 线路负荷最大无功功率

KVar Cos Sin Cos Sin Cos Sin Cos Sin Cos Sin Cos Sin P 835.23117 4.2556615000 )20225.115166615.0( 10×)365.23344(10×3)44(4 Q 221122

22311

32=?+=?

++++++?+++++++++++=?=θθθθθθθθθθθ

θ

上叙10kV 等效负荷间同时系数取为0.85,其中9.01=θCos ,85.02=θCos ,变

电站旋转设备的功率因数取85.0=θCos ,非旋转设备功率因数取1=θCos 。

10kV 负荷的最大输出复功率:

j 19650.1634540.09 )3117.835

2j 4.40635(85.0S ~2+=+?=

已知110kV 、10kV 线路负荷同时系数为0.9,主变压器总输出复功率:

j 84108.744 162306.081 j 19650.16)

34540.09

j 73804145800(9.0 )

S ~S ~(9.0S ~21+=+++?=+?=

主变压器的总最大视在功率:

KVA 66.182804 84108.744

162306.081S 2

2max =+=

根据规定,对装有两台主变压器的变电所应能在一台主变停运时,另一台容量在及

过负荷力允许时间内,仍能够保证一类及二类负荷连续供电,变压器总容量一般有:

max 7.0S S N =

其中max S 为变电所最大负荷,这样可以保证对70%负荷的供电,考虑到变压器40%

的事故过负荷能力,则可以保证对98%负荷供电。

MVA S S 96.1277.0max

1==台

考虑将来的负荷可能会超出本来预算,为了有所发展的余地,选择的主变压器的容

量为150MVA 。

2.3变压器主保护

一、气体保护

(一)气体保护定义

油浸式变压器是利用变压器油作为绝缘盒冷却介质,当变压器内部发生短路故障

时,故障点局部产生高温,使油温升高体积膨胀,甚至沸腾,油内溶解的空气就会被排出,变成气泡上升;故障点产生电弧,使变压器油及其他绝缘材料分解,产生气体(含气体成分),从油箱向油枕流动,反应这种气流与油流动作得的保护称为气体保护。本次设计中每一台变压器额定容量为150MVA 。根据规程规定须装设气体保护。

(二)气体保护原理

气体保护原理接线图2-1:

图2-1

气体保护的测量继电器为气体继电器,气体继电器安装在油箱与油枕之间的连接管

道中,这样油箱内的气体都要通过瓦斯继电器,为了便于气体的排放,安装时需要有一定的倾斜度,变压器顶盖与水平间应有1%~1.5%的坡度,连接管道应有2%~4%的坡度。

气体继电器油三种形式,即浮筒式、挡板式即开口杯与挡板构成的复合式。运行经

验表明,浮筒式气体继电器存在着一些严重的缺点,如防震性差,且浮筒的密封性能不良使浮筒失去浮力,使水银触点闭合造成误动作等。而用挡板代替下浮筒的挡板式气体继电器,仍保留上浮筒且克服了浮筒渗油的缺点,运行比较稳定,可靠性相对提高,但当变压器油面严重下降时,动作速度不快,因此目前通常采用开口杯与挡板构成的复合式气体继电器(801 QJ ),该继电器用磁力干簧触点代替水银触点,。

正常运行时,继电器内上开口杯内充满了油。在轴一侧的开口杯,同时受到杯内油

的重力即油对开口杯浮力的作用。在轴另一侧的平衡锤,有重锤的重力及油对重锤的浮力。这些力平衡的结果,由于开口杯侧产生的力矩小于平衡锤的力矩,开口杯处于上升位置。和开口杯固定在一起的永久磁铁位于干簧接点的上方,干簧接点可靠断开。

变压器内部发生轻微故障时,产生的气体在继电器上部,迫使油面下降。开口杯在

气体中的重量加上杯内油的重量所产生的力矩,超过平衡锤的力矩,使开口杯随着油面降低而下沉。当永久磁铁靠近干簧接点时,接点闭合,延时发出“轻瓦斯动作”信号。

变压器内部发生严重故障时,产生大量气体,强烈油流冲击挡板,当油流速度达到

整定值时,挡板被冲击到一定位置,永久磁铁靠近干簧接点,接点闭合后发出重瓦斯跳闸脉冲,经信号继电器KS 启动出口中间继电器KOM ,跳开变压器两侧断路器。

变压器严重漏油使油面降低时,开口杯下沉到一定位置,干簧接点闭合,同样发出

“轻瓦斯动作”信号。

气体保护动作后,观察分析从继电器上部排气口收集的气体,可判断故障的性质,气体保护能反应油箱内各种故障,且动作迅速,灵敏度高,特别对于变压器绕组的匝间短路(当短路匝数很少时),灵敏度好于其他保护,所以气体保护是大、中、小型变压器必不可少的油箱内部故障最有效地主保护。但气体保护不能够反应油箱外的引出线和套管上的如何故障。因此不能够单独作为变压器的主保护,尚须与纵差动保护或电流速

断保护配合使用。

二、纵差动保护

(一)纵差动保护定义

纵差动保护是用辅助导线(或称引导线)将被保护设备两侧的电量连接起来,比较被保护设备始端与末端电流的大小及相位,在设备两侧装设电流互感器,两侧电流互感器一次回路的正极性端均置于远离设备的一侧,二次回路用电缆同极性相连,差动继电器则并联在电流互感器二次侧的环路上,在正常运行情况下,引导线中形成环流,称为纵差动保护。

(二)纵差动保护原理

根据《继电保护和安全自动装置技术规程》的规定,容量在10000kVA及以上或6300kVA以上并列运行变压器应装设纵联差动保护,以代替电流速断保护。本次设计中,两台压器额定容量150MVA并列运行,它用来反应变压器绕组、套管及引出线的各种故障,且与气体保护配合作为变压器的主保护,使保护的性能更加全面和完善。

三绕组变压器差动保护原理接线图如图2-2:

图2-2

由此可见,变压器差动保护是通过比较变压器各侧电流的大小和相位而构成的保护,各侧电流互感器所包围的区域为差动保护的保护范围,保护区内故障,继电器动作于跳闸;保护区外故障时,继电器不动作,因此,在满足选择性要求的同时,不需要于相邻元件的保护在整定值上相配合,从而构成不带延时的速动保护,用来反应变压器绕组、套管及引出线的各种故障。

(三)差动回路不平衡电流

变压器差动保护在正常运行和外部故障时,理想情况下流入差动继电器的电流为零,保护装置不动作,但实际上变压器差动保护与其他设备差动保护相比,在正常和外部短路时的故障行为有很大不同,因为变压器差动回路中不平衡电流大,形成不平衡电流的因素多,所以必须采取措施躲过不平衡电流或减小不平衡电流的影响,形成不平衡电流的因素及所采取的措施:

1.变压器励磁涌流形成不平衡电流

变压器空载合闸或外部故障切除后电压恢复过程中由于变压器铁芯中的磁通急剧增大,是铁芯瞬间饱和,出现数值很大的励磁电流,此电流通过变压器的一次绕组,进入差动回路形成不平衡电流,如不采取措施纵差动保护将会误动作。励磁涌流的特点如下:

①其值在初始很大,可达额定电流的5~10倍。

②还有大量非周期分量和高次谐波分量,且随时间衰减。

③其波形有间断角。

根据励磁涌流的特点可采取如下措施减小不平衡电流的影响:

①利用延时动作或提高保护动作值来躲过励磁涌流。

②利用励磁涌流中的非周期分量,采取速饱和变流器的差动继电器构成差动。

③利用励磁涌流波形中的二次谐波分量,采用二次谐波制动的差动继电器。

④利用励磁涌流中波形间断的特点,采用具有鉴别间断角差动继电器构成差动

保护或对称识别原理构成的差动保护

2.变压器各侧接线组别不同引起不平衡电流

由于变压器连接组别为11

0d

YN,由于三角形侧的电流超前于星型侧同一电流

yn

/

/

30如果各侧电流互感器都按通常接线接成星型,则使变压器各侧电流互感器二次电流的数值相等,在差动回路中会出现不平衡电流

I,如图2-3:

umb

图2-3

为了消除不平衡电流,可采用相位补偿法,即将变压器星型侧的电流互感器的二次侧接成星型,从而将电流互感器二次侧的电流相位校正过来。

⒊电流互感器的实际变比与计算变比不等引起的不平衡电流

由于电流互感器都是标准化的定型产品,所以选择电流互感器的变比于计算变比往往不相等,因此,在差动回路中会引起不平衡电流。

这种不平衡电流的影响,可采用电流补偿法来消除,将电流互感器二次电流大的那一侧,经电流变换器TAA变换后,是TAA的输出与另一侧电流互感器电流大小相等,从而消除电流互感器的实际变比与计算变比不等引起的不平衡电流。如图2-4:

图2-4

4.各侧互感器型号不同,产生不平衡电流

此不平衡电流是由于两侧电流互感器的相对误差引起的,型号相同相对误差较小,型号不同相对误差较大,它们的特性差别较大,估引起较大的不平衡电流。此不平衡电

流应在保护的整定计算中予以考虑,即适当增大保护的动作电流,其具体做法是在不平衡定电流计算中引入互感器同型系数,用以平衡由于各侧互感器型号不同,产生不平衡电流的影响。

⒌变压器调压分接头改变产生的不平衡电流

带负荷调节的变压器在运行中常常需要改变分接头来条电压,这样就改变了变压器变比,原已调整平衡的差动保护又会出现新的不平衡电流,一般再用提高差动保护动作电流的方法来解决。

由于各种因素的存在,三绕组变压器差动保护不平衡电流比较大,为减小外部短路不平衡电流影响,提高保护的灵敏度,一般采用带制动特性的差动继电器构成差动保护。

2.4 过电流保护

为了反映外部短路引起的变压器过电流和作为变压器主保护的后备保护,根据变压器容量的不同和系统短路电流的不同,须装设不同的过电流保护,三绕组在外部故障时应尽量减小停电范围,因此在外部发生短路时,要求仅断开故障侧的断路器,而使另外两侧继续运行。二内部发生故障时,过电流保护应起到后备作用。为此,三绕组变压器的过电流保护按如下原则配置,单侧电源的三绕组变压器,一般只装设两套过电流保护,一套装在负荷侧,如下图所示‖侧,起整定的动作时间t2应比其他两侧的时限都小,动作后断开QF2,另一套装于电源侧(I侧),他设有两个时限t3和t1,在时限配合上要求t2

图2-5

2.5接地保护

对中性点直接接地电网中的变压器。在其高压侧装设接地(零序)保护,用来反应接地故障,并作为变压器主保护的后备保护和相邻元件的接地故障的后备保护。

拟建变电所的主变压器接线组别为:YN0/yn0/d11的三绕组降压变压器两台。其主变压器220kV、110kV侧的中性点均采用经间隙接地和直接接地方式,实际运行只一台直接接地。必要时可以可相互切换为直接接地运行,因此,可以根据其接地方式来配置不同的保护。

变压器直接接地运行时,其接地保护可采用两段式零序电流保护。

变压器非直接接地运行,而是通过放电间隙接地时,不仅须装设两段式零序电流保护,还须装设零序电流保护零序电压保护。非直接接地运行变压器当发生单相接地故障(差动保护拒动),放电间隙放电,为了避免放电时间过长,还应装设专门反应间隙放电电流的零序电流保护,其任务是及时切除变压器,防止间隙长时间放电,造成中性点绝缘破坏。如果万一放电间隙拒动,变压器中性点出现工频过电压,为此还须设置零序

电压保护,当放电间隙拒动时,由零序电压保护切除变压器。如图2-6:

图2-6

变压器中性点接地运行时,隔离开关QS 合上,两段式零序电流保护投入工作。第

I 段与相邻元件接地保护I 段配合,以t1(0.5s )延时断开高压侧分母联断路器,以)(12t t t ?+延时断开变压器各侧断路器。第II 段与相邻元件接地保护后备段配合,以t3

和t4的延时分别断开母联断路器和各侧断路器。

变压器中性点不接地运行时,隔离开关QS 打开,当发生单相接地故障且失去中性

点时,中性点不接地的变压器的中性点将出现工频过电压,放电间隙击穿,放电电流使零序电流元件启动,瞬时跳开变压器,见故障切除,当放电间隙拒动时,零序电压保护启动将变压器切除,其动作之应低于变压器中性点绝缘的耐压水平。

一、接地保护配置

(一)变压器直接接地运行时,其接地保护可采用两段式零序电流保护。

(二)变压器非直接接地运行,而是通过放电间隙接地时,不仅须装设两段式零序

电流保护,还须装设零序电流保护零序电压保护。

非直接接地运行变压器当发生单相接地故障,放电间隙放电,为了避免放电时间过

长,还应装设专门反应间隙放电电流的零序电流保护,其任务是及时切除变压器,防止间隙长时间放电,造成中性点绝缘破坏。如果万一放电间隙拒动,变压器中性点出现工频过电压,为此还须设置零序电压保护,当放电间隙拒动时,由零序电压保护切除变压器。

二、工作原理

变压器中性点接地运行时,隔离开关QS 合上,两段式零序电流保护投入工作。如

图2-7,第I 段与相邻元件接地保护I 段配合,以t1(0.5s )延时断开高压侧分母联断路器,以)(12t t t ?+延时断开变压器各侧断路器。第II 段与相邻元件接地保护后备段配

合,以t3和t4的延时分别断开母联断路器和各侧断路器。

图2-7

变压器中性点不接地运行时,隔离开关QS 打开,当发生单相接地故障且失去中性

点时,中性点不接地的变压器的中性点将出现工频过电压,放电间隙击穿,放电电流使零序电流元件启动,瞬时跳开变压器,见故障切除,当放电间隙拒动时,零序电压保护启动将变压器切除,其动作之应低于变压器中性点绝缘的耐压水平。

2.6其 他 保 护

一、过负荷保护

变压器过负荷通常只对称性过负荷,变压器的过负荷保护反应变压器对称过负荷引

起的过电流,通常过负荷保护只用一个电流继电器,接于任一相电流之中(一般为B 相电流),经过延时动作于信号。本次设计的变压器由高压侧向中、低压侧传送功率的降压变压器,至少要在高压侧和低压侧装设过负荷保护过负荷保护的动作电流按躲过变压器额定电流N I 即

TN r rel op I K K I )/(

式中:rel K 为可靠系数,通常取1.05:r K 为返回系数,通常取0.85。

微机保护中,过负荷保护保护通常设有3段,并且均取B 相电流,一般I 用于发告

警信号,II 段用于启动风扇冷却器,III 段用于闭锁有载调压。

二、过励磁保护

变压器过电压时会使发生发生过励磁,使铁芯饱和,铁损增加,温度增加,造成绕

组绝缘损坏、油质污染,同时变压器励磁电流激增,可以引起差动误动作。因此必须装设过励磁保护,通常装设反时限过励磁保护,过励磁倍数越大,允许的过励磁持续时间越短。

三、主变压器高压侧断路器失灵保护

电力系统中,有时会出现系统故障、继电保护动作而断路器拒绝动作的情况。这种

情况下,可导致设备烧毁,扩大事故范围,甚至使系统得稳定运行遭到破坏。因此,对于较重要的设备,应装设断路器失灵保护。

断路器失灵保护有称后备接线,它是防止因断路器拒绝动而扩大事故的一项措施,断路器失灵保护的工作原理是,当线路、变压器或母线发生短路并伴随断路器失灵时。相应的继电保护动作,出口中间继电器发出断路器跳闸脉冲。由于短路故障未被切除,故障元件的继电器仍处于动作状态,此时利用装设在故障元件上的故障判别元件,来判别断路器仍处于合闸状态。如故障元件出口中间继电器触点和故障判别元件的触点同时闭合时,失灵保护被启动。在经过一个时限后失灵保护出口继电器动作,跳开与失灵的断路器相连的母线上的各个断路器,将故障切除。

保护由启动元件、时间元件、闭锁元件和出口回路组成,为了提高保护动作的可靠

性,启动元件必须同时具备下列两个条件才能启动:

(1)故障元件的保护出口继电器动作后不返回

(2)在故障保护元件的保护范围内短路依然存在,即失灵判别元件启动。

为防止失灵保护误动作,在失灵保护接线中加设了闭锁元件,常用的闭锁元件由负序电压。零序电压和低电压继电器组成,通过“与”门构成断路器失灵保护的跳闸出口回路。

四、变压器温度保护

变压器运行中,总有部分损失(如铜损、铁损、介质损失等)时变压器各部分温度升高,绕组温度过高时会加速绝缘的老化,缩短使用寿命,绕组温度越高,持续时间越长,会造成绝缘老化的速度越快,使用期限越短。因此变压器必须冷却系统,保证在规定的环境温度下按额定容量运行时,使变压器温度不超过极限值。变压器温度保护在冷却系统发生个故障或其他原因引起变压器温度超过极限值时,发出告警信号(以便采取措施),或者延时作用于跳闸。

五、冷却器故障保护

当冷却器引起变压器温度超过安全期限时,并不是立即将变压器退出运行,常常允许其运行一段时间,以便处理冷却器故障,这期间变压器可以降负荷运行,使变压器温度恢复到正常水平,若在规定时间内温度不能降至正常水平,才切除变压器,。

冷却器故障保护一般监测变压器绕组的负荷电流,并与温度保护配合使用,构成两段时限保护。

当变压器冷却发生故障时,温度升高,超过限值后温度保护首先动作,发出报警的同时开放冷却器故障保护出口。这时变压器电流若超过保护Ⅰ段整定值,先按继电器固有延时动作于减负荷,使变压器负荷降低,促使变压器温度下降,若温度保护返回,则变压器维持在较低负荷下运行,一减少停运机会;若温度保护仍不能返回,即说明减负荷无效,为保证变压器的安全,变压器冷却器故障保护将亿II段延时t动作于解列或程序跳闸,延时时间t值的大小通常按失去冷却系统后,变压器允许运行时间整定。

变电站继电保护培训

变电站、继电保护基础知识 培训资料 二零一二二月

第一章变电站基础知识 1. 电力系统概述: 1.1 电力系统定义: 电力系统是电能生产、变换、输送、分配、消费的各种设备按照一定的技术和经济要求有机组成的一个统一系统的总称。简言之,电力系统是由发电机、变压器、输电线路、用电设备组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。 1.2 电力系统的构成 动力系统是由锅炉(反应堆)、汽轮机(水轮机)、发电机等生产电能的设备,变压器、输电线路等变换、输送、分配电能的设备,电动机、电热电炉、家用电器、照明等各种消耗电能的设备以及测量、保护、控制乃至能量管理系统所组成的统一整体。 煤

1.3电力系统的电压等级 1.3.1 额定电压等级 我国国家标准规定的部分标准电压(额定电压)如下表: T +5% -5% 通常取线路始末电压的算术平均值作为用电设备以及电力网的额定电压。 由于用电设备的允许电压偏移为±5%,而延线路的电压降落一般为10%,这就要求线路始端电压为额定值的105%,以保证末端电压不低于95%。发电机往往接于线路始端,因此发电机的额定电压为线路的105%。通常,6.3KV 多用于50MW 及以下的发电机;10.5KV

用于25~100MW的发电机;13.8KV用于125MW的汽轮发电机和72.5MW 的水轮发电机;15.75KV用于200MW的汽轮发电机和225MW的水轮发电机;18KV用于300MW的汽轮发电机。 变压器的一次额定电压:升压变压器一般与发电机直接相连,故与发电机相同,见表中有“*”降压变压器相当于用电设备,故与线路相同。 变压器的二次额定电压:考虑到变压器内部的电压降落一般为5%,故比线路高5%~10%。只有漏抗很小的、二次测线路较短和电压特别高的变压器,采用5%。 习惯上把1KV以上的电气设备称为高压设备反之为低压设备。 1.3.2 电压等级的使用范围: 500、330、220KV多半用于大电力系统的主干线;110KV既用于中小电力系统的主干线,也用于大电力系统的二次网络;35、10KV既用于大城市或大工业企业内部网络,也广泛用于农村网络。大功率电动机用3、6、10KV,小功率电动机用220、380V;照明用220、380V。 1.4电力系统中性点的运行方式 1.4.1 中性点非直接接地系统 小电流接地系统,也称小接地短路电流系统。 供电可靠性高,但对绝缘水平要求高。电压等级较高的系统,绝缘费用在设备总价格中占相当大比重,故多用于60KV级以下的系统。

220KV变电站设计毕业

引言 随着经济的腾飞,电力系统的发展和负荷的增长,电力网容量的增大,电压等级和综合自动化水平也不断提高,科学技术突飞猛进,新技术、新电力设备日新月异,该地原有变电所设备旧,占地较大,自动化程度不高,为满足该地区经济的持续发展和人民生活的需要,电网正在进行大规模的改造,对变电所的设计提出了更高、更新的要求。建设新的变电所,采用先进的设备,使其与世界先进变电所接轨,这对提高电力网的供电可靠性,降低线路损耗,改善电能质量,增加电力企业的经济效益有很大的现实意义。 1、绪论 由于经济社会和现代科学技术的发展,电力网容量的增大,电压等级的提高,综合自动化水平的需求,使变电所设计问题变得越来越复杂。除了常规变电所之外,还出现了微机变电所、综合自动化变电所和无人值班变电所等。目前,随着我国城乡电网建设与改革工作的开展,对变电所设计也提出了更高、更新的要求。 1.1 我国变电所发展现状 变电技术的发展与电网的发展和设备的制造水平密切相关。近年来,为了满足经济快速增长对电力的需求,我国电力工业也在高速发展,电网规模不断扩大。目前我国建成的500kV变电所有近200座,220kV变电所有几千座;500kV电网已成为主要的输电网络,大经济区之间实现了联网,最终将实现全国联网。电气设备的制造水平也在不断提高,产品的性能和质量都有了较大的改进。除空气绝缘的高压电气设备外,GIS、组合化、智能化、数字化的高压配电装置也有了新的发展;计算机监控微机保护已经在电力系统中全面推广采用;代表现代输变电技术最高水平的750kV直流输电,500kV交流可控串联补偿也已经投入商业运行。

我国电网供电的可靠性近年来也有了较大的提高,在发达国家连续发生严重的电网事故的同时,我国电网的运行比较稳定,保证了经济的高速发展。 1.2 变电所未来发展需要解决的问题 在未来,随着经济的增长,变电技术还将有新的发展,同时也给电力工程技术人员提出了一些需要解决的问题,例如:高压、大容量变电所深入负荷中心进入市区所带来的如何减少变电所占地问题、环境兼容问题;电网联系越来越紧密,如何解决在事故时快速切除隔离故障点,保证电力系统安全稳定问题;系统短路电流水平不断提高,如何限制短路电流问题;在保证供电可靠性的前提下,如何恰当的选择主接线和电气设备、降低工程造价问题等。 1.3 地区变电所的未来发展 变电所实现无人值班是一项涉及面广、技术含量高、要求技术和管理工作相互配套的系统工程。它包括:电网一、二次部分、变电所装备水平、通信通道建设、调度自动化系统的建立以及无人值班变电所的运行管理工作等。所以要实现变电所的无人值班,必须满足一定的条件,主要有以下几个方面: ⑴变电所的基础设施要符合要求。如:主接线力求简单,运行方式改变易实现,变压器要具有调压能力(可以是有载调压变压器或由调压器与无载调压变压器相配合来实现调压),主开断设备要具有较高的健康水平,操作机构要能满足远方拉合要求等。另外,所还要具备一定的基础自动化水平,用以完成对一些辅助性设备实现控制(如主变风扇的开停、电容器的投切等),以减轻调度端的工作量。 ⑵调度自动化系统在达到部颁发的《县级电网电力调度自动化规》中所要求的功能的基础上,通过扩展“遥控”、“遥调”,实现“四遥”功能,达到实用

220KV电网线路继电保护设计及整定计算

1.1 220KV 系统介绍 KV 220系统由水电站1W ,2W 和两个等值的KV 220系统1S 、2S 通过六条 KV 220线路构成一个整体。整个系统最大开机容量为MVA 29.1509,此时1W 、2W 水电厂所有机组、变压器均投入,1S 、2S 两个等值系统按最大容量发电,变压器均投入;最小开机容量位MVA 77,1007,此时1W 厂停MVA 302 机组,2W 厂停 MVA 5.77机组一台,1S 系统发电容量为MVA 300,2S 系统发电容量为MVA 240。 KV 220系统示意图如图1.1所示。 1.2 系统各元件主要参数 (1) 发电机参数如表1.1所示: 表1.1 发电机参数 电源 总容量(MVA ) 每台机额定功率 额定电压 额定功率 正序 图1.1 220kV 系统示意图

最大 最小 (MVA ) (kV ) 因数cos φ 电抗 W 1厂 295.29 235.29 235.29 15 0.85 0.35 2*30 11 0.83 0.25 W 2厂 310 232.5 4*77.5 13.8 0.84 0.3 S 1系统 476 300 115 0.5 S 2系统 428 240 115 0.5 对水电厂12 1.45X X =,对于等值系统12 1.22X X = (2) 变压器参数如表1.2所示: 表1.2 变压器参数 变电站 变压器容量(MVA ) 变比 短路电压(%) Ⅰ-Ⅱ Ⅰ-Ⅲ Ⅱ-Ⅲ A 变 20 220/35 10.5 B 变-1 240 220/15 12 B 变-2 60 220/11 12 C 变 3*120 220/115/35 17 10.5 6 D 变 4*90 220/11 12 E 变 2*120 220/115/35 17 10.5 6 (3) 输电线路参数 KM AB 60=,上端KM BC 250=,下端KM BC 230=,KM CD 185=, KM CE 30=,KM DE 170=;KM X X /41.021Ω==,103X X =,080=ΦL 。 (4) 互感器参数 所有电流互感器的变比为5/600,电压互感器的变比为100/220000。由动稳定计算结果,最大允许切除故障时间为S 2.0。 2 整定计算 2.1 发电机保护整定计算 2.1.1 纵联差动保护整定计算 (1)发电机一次额定电流的计算 式中 n P ——发电机额定容量; θ c o s ——发电机功率因数; n f U 1——发电机机端额定电压; (2)发电机二次额定电流的计算 式中 f L H n ——发电机机电流互感器变比; (3)差动电流启动定值cdqd I 的整定:

220KV变电站变压器运行及其继电保护措施 艾岳武

220KV变电站变压器运行及其继电保护措施艾岳武 发表时间:2018-04-19T10:47:32.497Z 来源:《电力设备》2017年第33期作者:艾岳武 [导读] 摘要:随着我国社会经济的飞速发展,有效的推动了现代化和城乡一体化建设发展,人们对电力系统的提出了较高的要求。 (国网吉林省电力有限公司辽源供电公司吉林辽源 136200) 摘要:随着我国社会经济的飞速发展,有效的推动了现代化和城乡一体化建设发展,人们对电力系统的提出了较高的要求。目前,在我国电力系统中,220KV变电站是主要的组成部分,其运行效率对整个电网系统的安全和稳定有着直接的影响。但是220KV变电站变压器的运行存在一定的问题,不能满足人们的生活需求。对此,本文针对220KV变电站变压器的运行故障进行分析,同时提出相应的继电保护措施。 关键词:220KV变电站;变压器运行;继电保护 电网是维系国家在经济领域中一切活动的核心环节,也是改善人民的物质生活条件,为社会带来经济上快速革新的最有力工具。而变压器作为电力系统中非常重要的一部分,其能否安全运行直接影响着电网是否能高效、安全的运行。变压器若是发生故障,给电力系统带来的损害将是相当严重的。所以对变电站变压器采取保护措施尤为重要。首先变电站是国家的财产,是一个国家服务行业的代表性机构,主要担负的社会功能就是供电。对于变电站的保护,不仅要求供电技术能力上的精确,也要求在每一个细节处做到最好。外部环境对变电站的影响也是极其重要的,空气湿度和气候干燥直接影响输出源。所以也要对其基本保护措施加以重视。我们不仅要做好变压器的管理维护工作,保证其安全高效的运行,同时也要做好对其运行状况的记录工作,及时发现问题,并妥善解决,消除潜在隐患,保障电力系统的正常运转。继电保护装置就是为了及时发现故障并进行切除而装设的一种对变压器和变电站甚至整个电力系统的保护装置。本文针对 220 k V 变电站变压器的运行和继电保护措施的相关问题作进一步的探讨分析。 1、变电站概况 变电站是改变电压的场所。为了将发电厂发出来的电能输送到较远的地方,必须把电压升高,变为高压电,到用户附近再按需要把电压降低,该升降电压的工作靠变电站来完成。变电站的主要设备是开关和变压器。按规模大小不同,又可称为变电所、配电室等。变电站就是中转站,它支配着一个国家所有电力的分配情况。而电力又是驱动现代性国家、城市转型和发展的主要源动力之一,第二产业和第三产业都需要电力作支撑,对电力的制造和输出,是衡量一个国家发展程度的重点考核标准,变电站同时也是体现国家经济结构的标志之一。对电力的需求虽然不再以变电站作为核心,各种发电的方式随着相关科技成果的普及使用也越来越为更多的人所接受和熟知,但作为国家经济驱动的源头,变电站依然在电力供应方面占有举足轻重的地位,国家支柱产业的领头集团无一不与电网有着千丝万缕的联系和深入的合作,同时,其可被看作是经济发展与产业结构优化的缩影。 2、变压器运行继电存在的问题 变压器是变电站的主要设备,可分为升压变压器和降压变压器。主要通过电磁场对电压进行主体调节,按分接头切换方式,对输电线路中的负荷进行控制调节。在这个过程中,变压器可能出现变电问题,导致变电后电压不稳、电压未达到固定值等问题,对输电造成阻碍。 2.1变压器运行电压异常 变电器在进行运转的过程中受很多因素影响,例如气体、温度、水分等。这些在很大程度上对我国变电站变压器的输电进行阻断,导致输电电压出现异常。其气体状况可能导致信号存在跳跃现象,导致变压器油箱发生内部故障,整体油面出现异常;当变压器负荷或者外部出现短路现象时,很容易引起变压器温度升高,导致变压器油面降低,出现电压不稳状况。除此之外,变压器还容易出现负荷过重导致的电压问题。由于变压器的负荷过重,通过电荷量过大,导致整体内部信号、磁场出现问题,很容易使变压器对内部电压的调节出现混乱,导致电压不稳,导致变压器对电力系统造成的损失。 2.2变压器继电干扰异常 目前我国使用的 220k V 变电站变压器中,保护继电装置受到电磁干扰的主要因素有:电网出现短路故障;客观干扰,例如人为因素或自然因素等;变压器的内部结构出现问题导致故障发生;工作人员没有妥善施工处理,在施工时接触到外壳设备,导致内部设备或其它设备出现放点干扰。当变电站变压器受到电磁干扰时,整个输电线路都会受到干扰甚至出现阻断的现象。电磁干扰源通过各种渠道和受到干扰的回路、设备相连接,形成的闭合的回路,这样会超负荷的增加变压器的输电电压,使变压器发生严重故障。变压器的辐射干扰来源主要分为高压开关场的干扰和移动设备幅射干扰两个方面,而在 220k V 变电站变压器中,都是采取直接在开关场中安装继电保护设备以及自动控制设备的方法,如此一来,造成电磁干扰的主要原因就来自于高压开关场。 3、220k V变电站变压器继电保护措施 3.1运行保护 在对变压器采取运行保护知识,大多是借助于继电保护装置,综合应用继电保护手段,以促使 220k V 变电站的变压器能够得以正常运行。如在某一 220k V 变电站当中其变压器运行保护完全按照继电保护运行原则,先对装置性能进行检查,以保障其能够切实具备相应的防护性能,对继电保护装置行为予以规范化处理,确定有关安全行为的主要方式;之后确定继电保护的装置运行范围,促成一体化操作的达成,确定继电保护装置能够达到较好的工作效率;最终就针对继电保护装置加强维护工作,以确保其能够给予变压器的正常运行提供以良好的基础保障,避免变压器发生短路等有关故障问题。 3.2状态保护 为了消除 220k V 变电站变压器状态异常带来的不良影响,相关工作人员应该针对常见的风险因素,采取相应的机电保护措施,强化继电保护装置过流继电保护、气体保护、差动保护等性能。针对跳闸引起的故障,应该深入研究故障产生的原因,并改善 220k V 变电站变压器运行条件,使 220k V 变电站变压器免受跳闸故障的影响。此外,油箱也是变压器运行当中容易出现问题的部分,相关工作人员应该制定相应的预防措施,并根据日常的检查情况,对潜在的风险因素加以排除,保证 220k V变电站变压器具有良好的运行状态。 3.3抗干扰措施 为了确保 220KV 以上变电站继电保护和自动装置的正常运行,应该保证二次电子设备本身具有基本的抗电磁干扰能力,在设计和建设变电站的过程中采取措旅,确保传送到二次设备上的电磁干扰低于这些设备的承受水平。第一,在干扰源处降低干扰。降低设备的接地

变电站及线路继电保护设计和整定计算

继电保护科学和技术是随电力系统的发展而发展起来的。电力系统发生短路是不可避免的,为避免发电机被烧坏发明了断开短路的设备,保护发电机。由于电力系统的发展,熔断器已不能满足选择性和快速性的要求,于1890年后出现了直接装于断路器上反应一次电流的电磁型过电流继电器。19世纪初,继电器才广泛用于电力系统保护,被认为是继电保护技术发展的开端。1901年出线了感应型过电流继电器。1908年提出了比较被保护元件两端电流的电流差动保护原理。1910年方向性电流保护开始应用,并出现了将电流与电压相比较的保护原理。1920年后距离保护装置的出现。1927年前后,出现了利用高压输电线载波传送输电线路两端功率方向或电流相位的高频保护装置。1950稍后,提出了利用故障点产生的行波实现快速保护的设想。1975年前后诞生了行波保护装置。1980年左右工频突变量原理的保护被大量研究。1990年后该原理的保护装置被广泛应用。与此同时,继电保护装置经历了机电式保护装置、静态继电保护装置和数字式继电保护装置三个发展阶段。20世界50年代,出现了晶体管式继电保护装置。20世纪70年代,晶体管式保护在我国被大量采用。20世纪80年代后期,静态继电保护由晶体管式向集成电路式过度,成为静态继电保护的主要形式。20世纪60年代末,有了用小型计算机实现继电保护的设想。20世纪70年代后期,出现了性能比较完善的微机保护样机并投入系统试运行。80年代,微机保护在硬件结构和软件技术方面已趋成熟。进入90年代,微机保护以在我国大量应用。20世纪90年代后半期,继电保护技术与其他学科的交叉、渗透日益深入。为满足电网对继电保护提出的可靠性、选择性、灵敏性、速动性的要求,充分发挥继电保护装置的效能,必须合理的选择保护的定值,以保持各保护之间的相互配合关系。做好电网继电保护定值的整定计算工作是保证电力系统安全运行的必要条件。 电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断注入新活力。未来继电保护的发展趋势是向计算机化、网络化保护、控制、测量、数据通信一体化智能化发展。 随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。其发展将出现原理突破和应用革命,发展到一个新的水平。这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

变电所继电保护

目录工程概况1 第一章35KV变电所继电保护2 1.1继电保护的重要性2 1.2继电保护的基本原理2 1.3继电保护装置的任务2 1.4对继电保护的基本要求3 第二章35KV变电所继电保护设计3 2.1三段式电流保护原理3 2.2线路的保护整定计算4 第三章继电保护装置的选择7 3.1电流互感器的确定7 3.2电压互感器的选定7 3.3中间继电器8 3.4电流继电器8 3.5时间继电器8 3.6信号继电器9 3.7熔断器9 参考文献10 致谢词11

工程概况 目前国家正致力于打造强力的电网建设力度,以实现资源优化配置,使全国的电力供应得到更好的发展。我国是产电地区主要是在西部,而西部并不发达,所以要把电力送到东部地区,使全国经济能更好的发展。为了保证电力的输送更加的可靠,就要求一次系统的坚强、科学与合理,此外对一次系统的操控需要二次系统提出了更高的要求,这就促使了二次系统的技术发展与进步。 变电所二次系统主要是由继电保护和微机监控(远动技术)所形成,发电厂与变电所自动化技术获得了显著的发展与进步。变电所综合自动化技术将继电保护、测量系统、控制系统、调节系统、信号系统和远动系统等多个独立的功能系统配成的综合系统。对于本设计中,主要是针对35KV变电所继电保护的结构、运行的设计。 主变压器型号的选定为HKSSPZ-25000-35/10,额定电流为0.412/38.49KA,所用变压器额定电压为35/0.23KV(50-100KVA)。 本设计采用两台35KV的变压器并联供电方式,总共引出线两组线进入变电室内。通过电流、电压互感器再次取电源给其相应的电气元件回路。 继电保护的基本要求是可靠性、选择性、快速性、灵敏性,即通常所说的“四性”这些要求之间,有的相辅相成、有的相互制约,需要对不同的使用条件分别进行协调。 第一章35KV变电所继电保护 继电器是一种反应与传递信息的自动电气元件,是电力系统保护与生产自动化的自动、远动、遥控测和遥讯等自动装置的重要组成部分。 变电所继电保护能够在变电站运行过程中发生故障(三相短路、两相短路、单相接地等)和出现不正常现象时(过负荷、过电压、低电压、低周波、瓦斯保护、超温、控制与测量回路断线等),迅速有选择性发出跳闸命令将故障切除或发出报警,从而减少故障造成的停电范围和电气设备的损坏程度,保证电力系统稳定运行。 1.1 继电保护的重要性 电力规程规定:任何电力设备(线路、母线、变压器等)都不允许在无继电保护的状态下运行。所有运行设备都必须有两套交、直流输入和输出回路相互独立,并分别控制不同断路器的继电保护装置进行保护。当任一套继电保护装置或任一组断路器拒绝动作时,能有另一套继电保护装置操作另一组断路器切除故障。在所有情况下,要求这两套继电保护装置和断路器所取的直流电源都有不同的熔断器供电。可见,虽然继电保护不是电力系统的一次设备,但在保证一次设备安全运行方面担负着不可或缺的重要角色。 1.2 继电保护的基本原理 电力系统发生故障时,会引起电流的增加和电压的降低,以及电流、电压间相位角的变化。因此,利用故障时参数与正常运行时的差别,就可以构成各种不同原理和类型的继电保护。 变电所继电保护是根据变配电站运行过程中发生故障时,在整定时间内,有选择的发出跳闸命令或报警信号。 可靠系数为一个经验数据,计算继电器保护动作值时,要将计算结果再乘以可靠系数,

220kV变电站设计

引言 发电厂及电力系统的毕业设计是培养学生综合运用所学理论知识,独立分析和解决工程实际问题的初步能力的一个重要环节。 本设计是根据毕业设计的要求,针对220/60KV降压变电所毕业设计论文。本次设计主要是一次变电所电器部分的设计,并做出阐述和说明。论文包括选择变电所的主变压器的容量、台数和形式,选择待设计变电所所含有的各种电气设备及其各项参数,并且通过计算,详细的校验了公众不同设备的热稳定和动稳定,并对其选择进行了详尽的说明。同时经过变压器的选择和变电所所带负荷情况,确定本变电所电气主接线方案和高压配电装置及其布置方式,同时根据变电所的电压等级及其在电力网中的重要地位进行继电保护和自动装置的规划设计,最后通过对主接线形式的确定及所选设备的型号绘制变电所的断面图、平面图、和继电保护原理图,同时根据所绘制的变电所平面图计算变电所屋外高压配电装置的防雷保护,并绘制屋外高压配电装置的防雷保护图。

第一篇毕业设计说明书 1 变电所设计原始资料 1.1 设计的原始资料及依据 (1) 待设计变电所建成后主要向工业用户供电,电源进线为220KV两回进线,电压等级为220/60KV。 (2) 变电所地区年平均温度14℃,最高温度36℃,最低温度-20℃。 (3) 周围空气无污染。 (4) 出线走廊宽阔,地势平坦,交通方便。 (5) 变电所60KV负荷表: (重要负荷占总负荷的80%,负荷同时率为0.7,线损率5%,Tmax=5600小时) 表1.1 变电所60kV负荷表 序号负荷名称最大负荷(KW)功率 因数出线 方式 出线 回路数 附注 近期远期 1 建成机械厂18000 25000 0.95 架空 2 有重要负荷 2 化肥厂8000 10000 0.95 架空 2 有重要负荷 3 重型机械厂10000 13000 0.95 架空 2 有重要负荷 4 拖拉机厂15000 20000 0.9 5 架空 2 有重要负荷 5 冶炼厂10000 15000 0.95 架空 2 有重要负荷 6 炼钢厂12000 18000 0.95 架空 2 有重要负荷 (6)电力系统接线方式如图所示: 图1.1 电力系统接线方式图 系统中所有的发电机均为汽轮发电机,送电线路均为架空线,单位长度正序电抗为0.4欧姆/公里

220KV变电站继电保护设计

本/专科毕业设计(论文) 题目:220KV变电站继电保护设计 专业:电气工程及其自动化 年级: 学生姓名: 学号: 指导教师: 2012年9月

220KV变电站继电保护设计 摘要:电力系统由发电厂、变电所、输电线路和用户组成。变电所是联系发电厂和用户的中间环节,起着转换和分配电能的作用。变电所根据它在电力系统中的地位,变电所分为枢纽变电所、中间变电所、地区变电所、终端变电所。本设计主要对变电站的继电保护进行分析设计,通过合理的继电保护装置来了提高供电的安全可靠性。本变电站的电压等级为220kV,站内安装两台240MVA变压器,其中220kV线路为两进两出;110kV线路为8条出线;10kV线路为10条出线。 关键字:220kV 变电站继电保护

目录 引言 (4) 1 设计说明书 (5) 2 主变压器保护设计 (5) 2.1主变压器保护设计分析 (6) 2.2变压器容量选择 (7) 2.3变压器主保护 (7) 2.4压器后备保护 (10) 2.5变压器其他保护 (15) 3 母线保护 (16) 3.1母线保护设计分析 (16) 3.2 220kV母线保护 (16) 3.3 110kV母线保护 (16) 4 线路保护 (16) 4.1线路保护设计分析 (16) 4.2 220kV线路保护 (16) 4.3 110kV线路保护 (16) 4.4 10kV线路保护 (16) 结语 (16) 致谢 (17) 参考文献 (17)

引言 随着电力系统和自动化技术的不断发展,继电保护技术也在不断的发展.几十年来,目前,我国的电力系统正在不断向高电压、大机组、现代化大电网的发展方向前进,与之相伴的继电保护技术及其保护装置的应用水平也在大幅提升。继电保护的发展按时间经历了三个时代, 20世纪50年代及以前,继电保护装置大多以电磁型的机械元件、整流型元件和半导体元件构成; 70年代以后出现了集成电路构成的继电保护装置并在电力系统中得到广泛的运用;80年代,微机保护逐渐应用,继电保护逐渐走向了数字化与智能化,保护的可靠性也在不断提高。 在电力系统实际运行中,由于雷击、设备制造上的缺陷、设计和安装的错误、运行维护不当等不可抗拒因素,往往会导致各种故障的发生。而性能完善的继电保护装置合理的应用就可大大提高电力系统安全运行的可靠性,减少因停电造成的损失。继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信息量进行数值整定,当突变量达到一定值时,自动启动控制环节,发出相应的动作信号。 无论什么继电保护装置,一般由测量部分、逻辑部分、执行部分三部分组成。测量部分是测量被保护元件工作状态的一个或几个物理量,并和已给的整定值进行比较,从而判断保护是否应该起动。逻辑部分是根据测量部分输出量的大小、性质、出现的顺序或它们的组合、使保护装置按一定的逻辑程序工作,最后传到执行部分。执行部分是根据逻辑部分送的信号,最后完成保护装置所担负的任务。如发生信号,跳闸或不动作等。继电保护装置的基本要求体现在选择性、速动性、灵敏性、可靠性四个方面。 随着技术与工艺的不断进步与更新换代,继电保护装置的可靠性、运行维护方便性等性能也将不断提升,进而促进电力系统的安全可靠性到达一个更高的水平。

110kv变电站继电保护课程设计

110kv变电站继电保护课程设计 110kV变电站继电保护设计 摘要 继电保护是电网不可分割的一部分,它的作用是当电力系统发生故障时,迅速 地有选择地将故障设备从电力系统中切除,保证系统的其余部分快速恢复正常运行; 当发生不正常工作情况时,迅速地有选择地发出报警信号,由运行人员手工切除那些继续运行会引起故障的电气设备。可见,继电保护对保证电网安全、稳定和经济运行,阻止故障的扩大和事故的发生,发挥着极其重要的作用。因此,合理配置继电保护装置,提高整定和校核工作的快速性和准确性,对于满足电力系统安全稳定的运行具有十分重要的意义。 继电保护整定计算是继电保护工作中的一项重要工作。不同的部门其整定计算 的目的是不同的。对于电网,进行整定计算的目的是对电网中已经配置安装好的各种继电保护装置,按照具体电力系统的参数和运行要求,通过计算分析给出所需的各项整定值,使全网的继电保护装置协调工作,正确地发挥作用。因此对电网继电保护进行快速、准确的整定计算是电网安全的重要保证。 关键词:110kV变电站,继电保护,短路电流,电路配置 目录 0 摘 要 .................................................................... 第一章电网继电保护的配置 ............................................... 2 1.1 电网继电保护的作 用 .................................................. 2 1.2 电网继电保护

的配置和原理 ............................................ 2 1.3 35kV线 路保护配置原则 ................................................ 3 第二章3 继电保护整定计算 .................................................2.1 继电保护整定计算的与基本任务及步骤 . (3) 2.2 继电保护整定计算的研究与发展状况 .................................... 4 第三章线路保护整定计 算 ................................................. 5 3.1设计的原始材 料分析 ................................................... 5 3.2 参数计 算 ............................................................ 6 3.3 电流保护的整定计算 .................................................. 7 总结 .. (9) 1 第一章电网继电保护的配置 1.1 电网继电保护的作用 电网在运行过程中,可能会遇到各种类型的故障和不正常运行方式,这些都可 能在电网中引起事故,从而破坏电网的正常运行,降低电力设备的使用寿命,严重的将直接破坏系统的稳定性,造成大面积的停电事故。为此,在电网运行中,一方面要采取一切积极有效的措施来消除或减小故障发生的可能性:另一方面,当故障 一旦发生时,应该迅速而有选择地切除故障元件,使故障的影响范围尽可能缩小,这一任务是由继电保护与安全自动装置来完成的。电网继电保护的基本任务在于: 1(有选择地将故障元件从电网中快速、自动切除,使其损坏程度减至最轻,并 保证最大限度地迅速恢复无故障部分的正常运行。 2(反应电气元件的异常运行工况,根据运行维护的具体条件和设各的承受能 力,发出警报信号、减负荷或延时跳闸。

变电站继电保护

景新公司变电站继电保护知识手册 编写人:唐俊 编写日期:2009年2月5号

目录 1.主变差动保护-----------------------------------(4) 2.主变气体保护-----------------------------------(5) 3.主变过流保护-----------------------------------(6) 4.中性点间隙接地保护------------------------------(6) 5.零序保护--------------------------------------(7) 6.母线差动保护-----------------------------------(9) 7.距离保护-------------------------------------(10) 8.备用电源自投----------------------------------(11) 9.重合闸---------------------------------------(13) 10.母线充电保护-------------------------------(15) 11.故障录波----------------------------------(15) 12.电流闭锁失压保护---------------------------(17) 13.低周减载----------------------------------(17) 14.过电流保护---------------------------------(17) 15.阶段式过电流保护---------------------------(18) 16.复合电压闭锁过电流保护----------------------(18) 17.过电压保护---------------------------------(19) 18.速断过流保护-------------------------------(19) 19.过负荷保护--------------------------------(19) 20.速断保护----------------------------------(19) 21.电流速断保护-------------------------------(20)

220KV电网继电保护设计毕业设计说明书

毕业设计(论文)220KV电网继电保护设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

引言 本文研究的是关于220KV电网继电保护。通过本次设计掌握和巩固电力系统继电保护的相关专业理论知识,熟悉电力系统继电保护的设计步骤和设计技能,根据技术规范,选择和论证继电保护的配置选型的正确性并培养自己在实践工程中的应用能力、创新能力和独立工作能力。 本次设计是根据内蒙古工业大学电力学院本科生毕业要求而进行的毕业设计。此次设计的主要内容是220KV电网继电保护的配置和整定,设计内容包括:计算系统中各元件参数;确定输电线路上TA,TV变比的选择及变压器中性点接地的选择;绘制电力系统等值阻抗图,确定系统运行方式并进行短路计算;确定电力系统继电保护的主保护和后备保护的选择及整定计算:主保护采用两套独立的、厂家不同的、能保护线路全长的保护装置(第一套CSC-103B光纤纵差保护;第二套PSL-603(G)分相电流差动保护),后备保护采用相间距离保护和接地零序电流保护;输电线路的自动重合闸采用单相自动重合闸方式。 由于各种继电保护适应电力系统运行变化的能力都是有限的,因而,对于继电保护整定方案的配合不同会有不同的保护效果,如何确定一个最佳的整定方案,将是从事继电保护工作的工程技术人员的研究课题。总之,继电保护既有自身的整定技巧问题,又有继电保护配置与选型的问题,还有电力系统的结构和运行问题。尤其,对于本文中220KV高压线路分相电流差动保护投运前的现场试验,一直是困扰技术人员的一个问题,由于线路两端距离的限制,现场试验不能像试验室那样方便。另外,光纤保护在长距离和超高压输电线路上的应用还有一定的局限性,在施工和管理应用上仍存在不足,但是从长远看,随着光纤网络的逐步完善、施工工艺和保护产品技术的不断提高,光纤保护将占据线路保护的主导地位。

220kV变电所变压器差动保护设计

课程设计(论文) 一、设计题目:220kV变电所变压器差动保护设计 二、原始资料 某降压变压器采用差动保护,系统等值网络图如图所示。 图1 网络结构示意图 三、设计内容: 1. 对变压器T1进行继电保护配置; 2. 结合变压器差动保护装置选型,对其工作原理进行分析; 3.对差动保护进行整定计算; 4.线路保护均采用微机保护装置。 I

220KV变电所变压器差动保护设计 四、设计成品要求: 1、保护装置配置说明 2、所配保护基本原理说明 3、保护整定计算详细计算说明 4、按要求绘制的有关图纸 五、编写设计说明书 1.格式 1)参考教材(前言、目录、正文、结论、参考文献等) 2)格式规范(参看毕业设计(论文)撰写规范》) 2.内容:设计内容全面,说明部分条理清晰,计算过程详略得当。 1)原始资料分析 2)保护配置方案 3)保护原理说明 4)保护整定计算方案 5)整定计算过程 6)画出保护的原理图、交流展开图、直流展开图。 3.课程设计说明书装订顺序为:封面、任务书、成绩评审意见表、前言、目录、正文、结论、参考文献、附录。 六、时间进度安排

课程设计(论文) 七、参考书目录 1.《电力系统继电保护》谷水清中国电力出版社2.电网继电保护装置运行整定规程 3.《电力工程设计手册(一)》中国电力出版社 4.《电力工程设计手册(二)》中国电力出版社 5.继电保护和安全自动装置技术规程 GB/T 14285—2006 III

220KV变电所变压器差动保护设计 前言 继电保护的发展是随着电力系统和自动化技术的发展而发展的.几十年来,随着我国电力系统向高电压、大机组、现代化大电网发展,继电保护技术及其装置应用水平获得很大提高。在20世纪50年代及以前,差不多都是用电磁型的机械元件构成。随着半导体器件的发展,陆续推广了利用整流二极管构成的整流型元件和半导体分立元件组成的装置。 在电力系统中,由于雷击或鸟兽跨接电气设备、设备制造上的缺陷、设计和安装的错误、检修质量不高或运行维护不当等原因,往往发生各种事故。为了保证电力系统安全可靠地运行,电力系统中的各个设备必须装设性能完善的继电保护装置。 继电保护虽然种类很多,但是一般由测量部分、逻辑部分、执行部分三部分组成。测量部分是测量被保护元件工作状态的一个或几个物理量,并和已给的整定值进行比较,从而判断保护是否应该起动。逻辑部分是根据测量部分输出量的大小、性质、出现的顺序或它们的组合、使保护装置按一定的逻辑程序工作,最后传到执行部分。执行部分是根据逻辑部分送的信号,最后完成保护装置所担负的任务。如发生信号,跳闸或不动作等。 继电保护的基本性能要求是选择性、速动性、灵敏性、可靠性。随着新技术、新工艺的采用,继电保护硬件设备的可靠性、运行维护方便性也不断得到提高。继电保护技术将达到更高的水平。

10kV变电所继电保护设计和分析报告

继电保护毕业设计 课题:110kV变电所继电保护设计及分析导师: 姓名: 班级: 日期:2011年3月10日

前言 电力生产过程有别于其他工业生产过程的一个重要特点,就是它的生产、输送、变换、分配、消费的几个环节是在同一个时间内同步瞬间完成。电力生产过程要求供需严格动态平衡,一旦失去平衡生产过程就要受到破坏,甚至造成系统瓦解,无法维持正常生产。随着经济的快速发展,负荷大幅度增加,使得电网规模不断扩大,高电压、大机组、长距离输电、电网互联的趋势,使电网结构越来越复杂,加强电力资源的优化配置,最大限度满足电力需求,保证电网的安全稳定成为人们探讨的问题之一。虽然系统中有可能遭受短路电流破坏的一次设备都进行了短路动、热稳定度的校验,但这只能保证它们在短时间内能承受住短路电流的破坏。时间一长,就会无一例外地遭受破坏。而在供电系统中,要想完全杜绝电路事故是不可能的。继电保护是一种电力系统的反事故自动装置,它能在系统发生故障或不正常运行时,迅速,准确地切除故障元件或发出信号以便及时处理。可见继电保护是任何电力系统必不可少的组成部分,对保证系统安全运行、保证电能质量、防止故障的扩大和事故的发生,都有极其重要的作用。因此设置一定数量的保护装置是完全必要的,以便在短路事故发生后一次设备尚未破坏的数秒内,切除短路电流,使故障点脱离电源,从而保护短路回路内的一次设备,同时迅速恢复系统其他正常部分的工作。随着变电站继

电保护技术进一步优化,大大提高了整个电网运行的安全性和稳定性,大大降低运行检修人员的劳动强度,继电保护技术将引起电力行业有关部门的重视,成为变电站设计核心技术之一。

220kv电网继电保护设计

220kv电网继电保护设计

目录 一、题目 (1) 二、系统中各元件的主要参数 (2) 三、正序、负序、零序等值阻抗图 (4) 四、继电保护方式的选择与整定计算 (6) (A)单电源辐射线路(AB)的整定计算 (6) (B)双回线路BC和环网线路主保护的整定计算 11 (C)双回线路CE、ED、CD主保护的整定计算(选做)12 (D)双回线路和环网线路后备保护的整定计算(选做) 14 五、220kV电网中输电线路继电保护配置图 (22)

一、题目 选择图1所示电力系统220kV线路的继电保护方式并进行整定计算。图1所示系统由水电站W、R和两个等值的110kV系统S、N,通过六条220kV线路构成一个整体。整个系统的最大开机总容量为1509.29MVA,最小开机总容量为1007.79 MVA,两种情况下各电源的开机容量如表1所示。各发电机、变压器容量和连接方式已在图1中示出。 表1 系统各电源的开机情况

图1 220kV系统接线图 二、系统中各元件的主要参数 计算系统各元件的参数标么值时,取基准功率S b=60MVA,基准电压U b=220kV,基准电流I b=3 b b S U=0.157kA,基准电抗x b = 806.67。 (一)发电机及等值系统的参数 用基准值计算所得的发电机及等值系统元件的标么值参数见表2所列。 表2 发电机及等值系统的参数 发电机或系统发电机及系统的总 容量MVA 每台机额定 功率MVA 每台机额 定电压 额定功 率因数 正序电抗负序电抗

cos 注:系统需要计算最大、最小方式下的电抗值;水电厂发电机2 1.45d x x '=,系统2 1.22d x x '=。 (二) 变压器的参数 变压器的参数如表3所列。 表3 变压器参数

10kV变电站继电保护标准设计

沈阳地区10kV变电站继电保护标准设计浅谈 摘要:本文介绍了沈阳地区10kV变电站继电保护标准设计的概况,阐述了二次设备的组合方式及10kV间隔保护的具体配置方案,统一端子排及编号的设计原则,对一些复杂的接线形式及连锁问题提出了一些解决方法,供设计参考。 关键词:10kV变电站继电保护设计统一原则 1 引言:沈阳地区由于历史原因一直存在配电网自动化水平不高,二次设计标准不统一,二次设备配置不合理等诸多问题。随着沈阳地区配电网改造步伐的加快,对电气二次设备可靠性,二次设备配置及接线合理性的要求会越来越高,是配电网自动化能否实现的关键因素。 将二10kV变电站次设计典型化,模块化是工程设计的方向。 2 总体思路 在对10kV变电站设计电气二次设计中我们发现,由于用户的需要不同主接线的形式多种多样,有单电源,双电源,有不带母线、有单母线、分段母线等等,这样如果规定变电站主接线做总体的标准设计难度非常大。在设计中我们总结出无论哪种接线样式其间隔开关柜的样式都为确定,这样我们将标准设计分块化,既以间隔为标准,将固有的间隔电气二次回路设计成标准样式,不同的接线样式也是固有的间隔组成,这样根据间隔的标准设计完成整个变电站的设计工作。 3 保护的配置原则 对继电保护装置的基本要求有四点:即选择性、灵敏性、速动性和可靠性。按照工厂企业10KV供电系统和民用住宅的设计规范要求,在10KV的供电线路、配电变压器和分段母线上一般应设置以下保护装置: (1) 10KV线路应配置的继电保护 10KV线路一般均应装设过电流保护。当过电流保护的时限不大于0.5s~0.7s,并没有保护配合上的要求时,可不装设电流速断保护;自重要的变配电所引出的线路应装设瞬时电流速断保护。当瞬时电流速断保护不能满足选择性动作时,应装设略带时限的电流速断保护。 (2)10KV配电变压器应配置的继电保护 1)当配电变压器容量小于400KV A时:一般采用高压熔断器保护; 2)当配电变压器容量为400~630KV A,高压侧采用断路器时,应装设过电流保

相关文档
最新文档