3.物体的平衡解题方法与技巧

3.物体的平衡解题方法与技巧
3.物体的平衡解题方法与技巧

3、物体的平衡解题方法与技巧

【基本知识】

一、平衡状态与平衡条件:

1.平衡状态:静止或匀速直线运动状态(实质:加速度a=0)

2.平衡条件:F合=0

二、重要推论:

1.物体在三个不平行的力的作用下处于平衡,则这三个力必为共点力。(表示这三个力的矢量首尾相接,恰能组成一个封闭三角形)

2.质点在n个力的作用下处于平衡,则其中任一力必与其余n-1个力的合力等大反向。(表示这三个力的矢量首尾相接,恰能组成一个封闭三角形)

3.若物体平衡,将物体受的所有力分解到任意两条直线方向,则任一直线方向合力均为0。(正交分解法与斜交分解法的依据)

三、解平衡问题的一般步骤:

1.正确选择研究对象

2.分析研究对象的受力,画出受力示意图

3.将研究对象受力进行等效处理(合成、按效果分解、正交分解等等)

4.用平衡条件列式求解

【方法技巧】

一、熟练按步骤解题:

【例1】用两根绳悬挂一个重10N的小球,已知绳AO与天花板夹角为30°,绳BO与天花板夹角为45°,求两根绳分别受到的拉力。

二、三力平衡的动态分析:

1.三角形一条边确定,另一条边方向已知,求第三条边的最小值

【例2】已知质量为m、电荷为q的小球,在匀强电场中由静止释放后沿直线OP向斜下方运动(OP和竖直方向成θ角),那么所加匀强电场的场强E的最小值是多少?

【例3】重为G的物体系在OA、OB两根等长的轻绳上,轻绳的A端和B端挂在半圆形的支架BAD上,如图2(a)所示,若固定A端的位置,将OB绳子的B端沿半圆支架从水

平位置逐渐移至竖直位置C的过程中,则以下说法正确的是()

A、OB绳上的拉力先增大后减小

B、OB绳上的拉力先减小后增大

C、OA绳上的拉力先减小后增大

D、OA绳上的拉力一直逐渐减小

2.相似三角形法

【例4】如图所示,在半径为R的光滑半球面正上方距球心h处悬挂一定滑

轮,重为G的小球A用绕过滑轮的绳子被站在地面上的人拉住。人拉动绳

子,在与球面相切的某点缓慢运动到接近顶点的过程中,试分析半球对小球

的支持力N和绳子拉力F如何变化。

【例5】如图所示整个装置静止时,绳与竖直方向的夹角为30o。AB连线

与OB垂直。若使带电小球A的电量加倍,带电小球B重新稳定时绳的

拉力多大?

三、稳态速度问题:

【例6】当物体从高空下落时,空气阻力随速度的增大而增大,因此经过一段距离后将匀速下落,这个速度称为此物体下落的稳态速度。已知球形物体速度不大时所受的空气阻力正比于速度v ,且正比于球半径r ,即阻力f=krv ,k 是比例系数。对于常温下的空气,比例系数k =3.4×10-4Ns/m 2。已知水的密度3

100.1?=ρkg/m 3,重力加速度为10=g m/s 2。求半径r =0.10mm 的球形雨滴在无风情况下的稳态速度。(结果保留两位有效数字)

四、临界与极值问题:

【例7】轻绳AB 总长l ,用轻滑轮悬挂重G 的物体。绳能承受的最大拉

力是2G ,将A 端固定,将B 端缓慢向右移动d 而使绳不断,求d 的最大

可能值。

【例8】如图所示,物体的质量为2 kg,两根轻细绳AB 和AC 的一端固定于竖直墙上,另一端系于物体上(∠BAC=θ=60°),在物体上另施加一个方向与水平线也成θ角

的拉力F,若要使绳都能伸直,求拉力F 的大小范围.

五、注意寻找几何关系:

【例9】如图所示,在“共点力合成”实验中,橡皮条一端固定于P 点,另一端连接两个弹簧秤,分别用F 1与F 2拉两个弹簧秤,将这端的结点拉至O 点.现让F 2大小不变,方向沿顺时针方向转动某一角度,要使这端的结点仍位于O 点,则F 1的大小及图中β角相应作如下哪些变化才有可能? ( )

A.增大F 1的同时增大β角

B.增大F 1而保持β角不变

C.增大F 1的同时减小β角

D.减小F 1的同时增大β角

【例10】两光滑平板MO 、NO 构成一具有固定夹角θ0=75°的V 形槽,一

球置于槽内,用θ表示NO 板与水平面之间的夹角,如图所示。若球对

板NO 压力的大小正好等于球所受重力的大小,则下列θ值中哪个是正

确的?( )

A .15°

B .30°

C .45°

D .60°

【例11】如下图所示,用两根等长的细线将小球a 与小球b 悬挂于天花板上,小球a 的质量为小球b 的质量的两倍。现对小球a 施加一个大小为4F 的水平向右的力,同时对小球b 施加一大小为F 的水平向左的力。重新平衡后的情境可能是下图中的( )

六、估算题技巧:

【例12】江阴长江大桥主跨 1385 m ,桥下通航高度为50 m ,两岸的桥塔高 196 m ,桥的东西两侧各有一根主缆横跨长江南北两岸,绕过桥塔顶鞍座由南北锚锭固定,简化模型的

剖面图如图,整个桥面共 4.0×103 t ,都悬在这两根主缆

上,若地面及桥塔对桥面的支持力不计, g 取10m/s 2,

则每根主缆承受的拉力约为 ( )

A . 2 .4×107N

B . 5×107N

C .1.2×l08N D. 2.4×108N

《物体的平衡》课后练习

1.如下图所示,木块在水平桌面上,受水平力F 1 =10N ,F 2 =3N 而静止,当撤去F 1后,木块仍静止,则此时木块受的合力为( )

A .0

B .水平向右,3N

C .水平向左,7N

D .水平向右,7N

2.一物体静置于斜面上,如图所示,当斜面的倾角θ逐渐增大

而物体仍静止于斜面上时,( )

A . 物体所受重力和支持力的合力逐渐增大.

B . 物体所受重力、支持力和静摩擦力的合力逐渐增大.

C . 物体所受重力和静摩擦力的合力逐渐增大.

D . 物体所受重力对O 点的力矩逐渐增大.

3.如图所示,在倾角为θ的固定光滑斜面上,质量为m 的物体受外力F 1 和F 2 的作用,F 1方向水平向右,F 2方向竖直向上.若物体静止在斜面上,则下列关系正确的是 ( )

A.F 1sin θ+F 2cos θ=mgsin θ,F 2≤mg

B.F 1cos θ+F 2sin θ=mgsin θ,F 2≤mg

C.F 1sin θ-F 2cos θ=mgsin θ,F 2≤mg

D.F 1cos θ-F 2sin θ=mgsin θ,F 2≤mg

4.五本书相叠放在水平桌面上,用水平力F 拉中间的书C 但未拉动,各书仍静止(如图)。关于它们所受摩擦力的情况,以下判断中正确的是 ( )

A .书e 受两个摩擦力作用

B .书b 受到一个摩擦力作用

C .书c 受到一个摩擦力作用

D .书a 不受摩擦力作用

5.如图所示的装置中,绳子与滑轮的质量不计,摩擦不计,悬点a 与b

之间的距离大于两轮的直径,两个物体的质量分别为m 1和m 2,若装置处

于静止状态,则( )

A . m 2可以大于m 1.

B . m 2必定大于m 1/2.

C . m 2必定要等于m 1/2

D . θ1与θ2必定相等.

6.如图所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗口是光滑的。一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球,当它们处于平衡状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=60°。

两小球的质量比1

2m m 为:( )

A .33

B .32

C .23

D .22

7.如图所示,整个装置处于静止状态,A 、B 两球由一根跨过

定滑轮C 的轻绳相连接,A 为一带孔的小球,穿在光滑固定的

竖直杆OD 上,且A 球与斜面不接触,B 与斜面的接触面光滑,

C 处滑轮摩擦不计,C 、B 之间的绳与竖直方向成30°角,C 、

A 之间的绳与斜面平行,斜面倾角θ为30°,则A 、

B 两球质

量的比值为 ( )

A .4/ 3

B .1

C . 3

D .1/ 3

8.如图所示,一段橡皮绳的一端系于O 点,另一端系一物块,橡皮绳的原长为OA ,橡皮绳竖直时物块在B 点且对地有压力。现于O 点正下方A 点钉一表面光滑的钉子后,用水平力F 将物块从B 点拉至C 点,在物块由B 点运动到C 点的过程中地面对

物块的摩擦力( )

A .变大

B .变小

C .为变

D .先变大后变小

9.图中弹簧秤、绳和滑轮的重量均不计,绳与滑轮间的摩擦力不计,物体的重力都是G,在图甲、乙、丙三种情况下,弹簧秤的读数分别是F

1、F

2、

F 3,则 ( )

A.F 3 > F 1 = F 2

B. F 3 = F 1 > F 2

C. F 1 = F 2 = F 3

D. F 1 > F 2 = F 3

10.如图所示,用光滑的粗铁丝做成一直角三角形,BC 边水平,AC 边竖直。在AB 和AC 两边上分别套有用细线连接的铜环,当它们静止时,细线跟AB 所成

的角度的大小为(细线长度小于BC) ( )

A.θ=α

B. θ>α

C. θ<α

D. α=π/2

11.如图所示,质量分别为1m 、2m 的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(1m 在地面,2m 在空中),力F 与水平方向成θ角。则1m 所受支持力N 和摩擦力f 正确的是( )

A .12sin N m g m g F θ=+-

B .12cos N m g m g F θ=+-

C .cos f F θ=

D .sin f F θ=

12.如图所示,一质量为M 、倾角为θ的斜面体静止放在水平地面上,质量为m 的小木块(可视为质点)放在斜面上,现用一平行于斜面、大小恒定的拉力F 作用于小木块,拉力在斜面所在的平面内绕小木块旋转一周的过程中,斜面体和木块始终保持静止状态,下列说法中正确的是: ( )

A.小木块受到斜面的最大摩擦力为22)sin (θmg F +

B.小木块受到斜面的最大摩擦力为F - mgsin θ

C.斜面体受到地面的最大摩擦力为F

D.斜面体受到地面的最大摩擦力为Fcos θ

13.如图所示,小圆环A 吊着一个质量为m 2的物块并套在另一个竖直放置的大圆环上,有一细线一端拴在小圆环A 上,另一端跨过固定在大圆环最高点B 的一个小滑

轮后吊着一个质量为m 1的物块.如果小圆环、滑轮、绳子的大小和质量以

及相互之间的摩擦都可以忽略不计,绳子又不可伸长,若平衡时弦AB 所对

应的圆心角为α,则两物块的质量比m 1∶m 2应为( ) A.2cos α

B.2sin α

C.2sin 2α

D.2cos 2α

14.如图所示,一根轻弹簧上端固定在O 点,下端拴一个钢球P ,球处于静止状态。现对球施加一个方向水平向右的外力F ,使球缓慢偏移,在移动中的每一个时刻都可以认为钢球处于平衡状态,若外力F 的方向始终水平,移动中弹簧与竖直方向的夹角θ < 90°,且弹簧的伸长量不超过其弹性限度。则下图给出的弹簧伸长量x 与cos θ的函数关系图象中,最接近实际的是 ( )

15.截止到2007年年底,我国高速公路通车里程5.3万公里,居世界第二,如图所示,在修建高速公路的路基时,允许的边坡倾角最大值叫做“自然休止角”,如果边坡倾角超过自然休止角α会导致路基不稳定.关于α与土壤颗粒之间的动摩擦因数μ的

关系,下列说法中正确的是 ( )

A.tan α>μ

B.tan α=μ

C.tan α<μ

D. α与μ无关

16.在固定于地面的斜面上垂直安放一个挡板,截面为 14

圆的柱状物体甲放在斜面上,半径与甲相等的光滑圆球乙被夹在甲与挡板之间,没有与斜面接触而处于静止状态,如图所示。现在从球心O 1处对甲施加一平行于斜面向下的力F ,使甲沿斜面方向极其缓慢地移动,直至甲与挡板接触为止。设乙对挡板的压力F

1,甲对斜面的压力为F 2,

在此过程中( )

A .F 1缓慢增大,F 2缓慢增大

B .F 1缓慢增大,F 2缓慢减小

C .F 1缓慢减小,F 2缓慢增大

D .F 1缓慢减小,F 2缓慢不变

17.如图(甲)所示,将一条轻而柔软的细绳一端拴在天花板上的A 点.另一端拴在竖直墙上的B 点,A 和B 到O 点的距离相等,绳的长度是OA 的两倍。

图(乙)所示为一质量可忽略的动滑轮K ,滑轮下悬挂一质量为m

的重物,设摩擦力可忽略,现将动滑轮和重物一起挂到细绳上,在

达到平衡时,绳所受的拉力是多大?

18.倾角为37°的斜面体靠在固定的竖直挡板P 的一侧,一根轻绳跨过固定在斜面顶端的定滑轮,绳的一端与质量为m

A =3kg 的物块A 连接,另一端与质量

为m B =1kg 的物块B 连接。开始时,使A 静止于斜面上,B 悬空,

如图所示。现释放A ,A 将在斜面上沿斜面匀加速下滑,求此过

程中,挡板P 对斜面体的作用力的大小。(所有接触面产生的摩

擦均忽略不计,sin37°=0.6,cos37°=0.8,g =10m/s 2)

19.如图所示,质量为m 的物体A 压在放于地面上的竖直轻弹簧B 上,现用细绳跨过定滑轮将物体A 与另一轻弹簧C 连接,当弹簧C 处于水平位置且右端位于a 点

时,弹簧C 刚好没有发生变形,已知弹簧B 和弹簧C 的劲度系数分别为k 1

和k 2,不计定滑轮、细绳的质量和摩擦.将弹簧C 的右端由a 点沿水平方

向拉到b 点时,弹簧B 刚好没有变形,求a 、b 两点间的距离.

20.如图所示,倾角α=60°的斜面上,放一质量为1 kg 的物体,用k=100 N/m 的轻质弹簧平行于斜面拉着,物体放在PQ 之间任何位置都能处于静止状态,而超过这一

范围,物体就会沿斜面滑动,若AP=22 cm,AQ=8 cm,试求物体与斜面间的

最大静摩擦力的大小.(取g =10 m/s 2)

《物体的平衡》巩固练习参考答案

1.A

2.A

3.B

4.ACD

5.ABD

6.A

7.D

8.C

9.B 10.C

11.AC 12.C 13.C 14.D 15.B 16.D

17.

mg 33 18. F = 4.8N 19. mg k k )11(21

20.7 N

物体平衡问题的解题方法及技巧

《物体平衡问题的解题方法及技巧》 课堂实录 陈光旭(兴山一中湖北443700)物体平衡问题是高考考查的一个热点,在选择题、计算题甚至实验题中都有考查和应用。如2010安徽卷第18题、2010广东卷第13题、2010山东卷第17题、2010新课标全国卷第18题等等…… 由于处于平衡状态的物体,它的受力和运动状态较为单一,往往为一些同学和老师所忽视。但作为牛顿第二定律的一种特殊情况,它又涵盖了应用牛顿第二定律解决动力学问题的方法和技巧,所以解决好平衡问题是我们解决其它力学问题的一个基石。 物体的平衡是力的平衡。受力分析就成了解决平衡问题的关键!从研究对象来看,物体的平衡可分为单体平衡和多体平衡;从物体的受力来看,又可分为静态平衡和动态平衡。 一、物体单体平衡问题示例: 例一:(2010新课标全国卷18)如图一,一物块置于水平地面上,当用与水平方向成600角的力F1拉物块时,物块做匀速直线运动;当改用与水平方向成300的力F2推物块时,物块仍做匀速直线运动。若F1和F2的大小相等,则物块和地面间的动摩擦因数为:

F 2 A :2-3 B.3-1 C.3/2-1/2 D.1-3/2 解析:将F 1分解到水平方向和竖直方向,如图二,水平方向受力平衡: F 1COS600=Fu 竖直方向:FN -F 1=mg 同理,对F 2进行分解,建立方程组,解出结果为A 在解决这类问题时,我们用的方法就是将物体受到的力,分解到物体的运动方向和垂直与物体的运动方向,列出两个平衡方程,解出未知问题。这种方法不光对平衡问题适用,对非平衡问题同样适用。 例二:如图三,光滑小球放在一 带有圆槽的物体和墙壁之间,处于静 止状态,现将圆槽稍稍向右移动一 点,则球对墙的压力和对物体的压力 如何变化? 解析:这是单体的动态平衡问题 图一 图二 图三

化学平衡中的等效平衡的类型及解题思路

化学平衡中的等效平衡的类型及解题思路等效平衡的概念 相同条件下,同一可逆反应体系,不管从正反应开始,还是从逆反应开始,达到平衡时,任何相同物质的含量(体积分数、质量分数或物质的量分数)都相同的化学平衡互称等效平衡。可分为“全等效”平衡和“相似等效”平衡。判断等效平衡的方法:使用极限转化的方法将各种情况变换成同一反应物或生成物,然后观察有关物质的数量是否相当。 等效平衡的类型 各种不同类型的等效平衡的解题思路 一、恒温恒容(定T、V)的等效平衡 1.在定T、V条件下,对于反应前后气体体积改变的反应:若改变起始加入情况,只要通过可逆反应的化学计量数比换算成平衡时左右两边同一边物质的物质的量与原平衡相同,则二平衡等效。 2.在定T、V条件下,对于反应前后气体体积不变的反应:只要反应物(或生成物)的物质的量的比例与原平衡相同,则二平衡等效。 二、恒温恒压(定T、P)的等效平衡 在定T、P条件下:若改变起始加入情况,只要通过可逆反应的化学计量数比换算成平衡时左右两边同一边物质的物质的量之比。 即:对于反应前后气体体积发生变化的可逆反应而言,恒容容器中要想达到同一平衡状态,投料量必须相同;恒压容器中要想达到同一平衡状态,投料量可以不同,但投入的比例得相同。 例1.在一个固定体积的密闭容器中,加入2molA和1molB,发生反应2A(g)+B(g)2C(g),达到平衡时,C的物质的量浓度为K mol/L,若维持容器体积和温度不变,按下列配比作为起始物质, A.4 molA+2 molB B.2 molA+1 molB+2 molC C.2 molC+1 molB D.2 molC E.1 molA+0.5 molB+1 molC ①达到平衡后,C的物质的量浓度仍是K mol/L的是(DE) ②A项平衡时,c(C)与2K mol/L的关系? 分析:→ 扩大一倍若平衡不动,则[C]=2K mol/L, 现右移∴>2K mol/L

等效平衡问题及解题技巧

1、定义:在相同条件下(定温定容或定温定压),对同一可逆反应,由于起始 有关物质的量“相当”,无论从正反应幵始还是从逆反应幵始, 均可达到平衡, 且任何组分的含量(通常为百分含量)相同,这样的平衡互称为等效平衡 2、等效平衡的类型及建立等效平衡的条件 规律一:恒温恒容条件下,对于任何(无论反应前后气体分子数是否相同 ) 可逆反应,如果起始加入物质的物质的量不同 ,按化学方程式中的化学计量关 系换算成同一方向的物质(即“一边倒”)后,各组分的物质的量与原平衡相同 则两平衡等效,平衡时,同种组分的体积分数、物质的量浓度、物质的量均相同 (也可叫全等平衡)。 mA(g)+nB(g) — p C(g)+qD(g) 起始① mmol nmol 0 0 起始② 0 P mol qmol 上述两种情况投料不同,但是将②中投料“左边倒”后,四种物质的物质的 量均同①相同, 因此两种情况可达到等效平衡,平衡时,同种组分(如 A )的体积分数、物质 的量浓度、物质的量均相同。 例1.在一固定体积的密闭容器中通入 2molA 和ImolB 发生反应 2A(g)+B(g) = l3C(g)+D(g) 反应达到平衡时,测得 C 的物质的量浓度为wmol/L.若维持容器的容积不 专题

变,按下列四种配比做起始浓度,达平衡后,C的浓度仍维持wmol/L的是

2C(g)达到平衡时,C 的质量分数为co %,在相同条件下按下列情况充入物质达到 平衡时C 的质量分数仍为 o %勺是() ,2molB ,2molC 例3、在一个固定体积的密闭容器中,保持一定浓度,进行以下反应:4A(g)+5B(g) —=4C(g)+6D(g),已知加入4molA 和5molB 时,反应进行到一定程度时,反应 混合物就处于平衡状态,现在该容器中,保持温度不变,令 初始加入的A,B,C,D 的物质的量,如果a,b,c,d 取不同的数值,它们必须满足 定关系,才能保证达到平衡时,反应混合物中几种物质的百分含量仍跟上述 平衡时完全相同,请填写下列空白: (1) 若 a=0,b=0,贝y c= ,d=. (2) 若 a=1,则 b= ,c= ,d= (3) a,b,c,d 取值必须满足的一般条件是(请用方程式表示,其中一个只含 和c,另一个只含b 和c ): 规律二:恒温恒压条件下,对于任何(无论反应前后气体分子数是否相同 可逆反应,如果起始加入物质的物质的量不同 ,按化学方程式中的化学计量关 系“一边倒”后,各组分的物质的量之比与原平衡相同 ,则两平衡等效,平衡 时,同种组分的体积分数、物质的量浓度相同,但物质的量不同。 A 4molA+2molB 、2molA+1molB+3molC+1molD C 、3molC+1molD+1molB D 、3molC+1molD 例2、在固定体积的密闭容器中,加入 2molA,1molB,发生反应:A(g)+B(g)丨—| a,b,c,d 分别代表

高中物理《力的平衡问题》常用解题方法

《力的平衡》常用解题方法【专题概述】 1 处理平衡问题的常用方法 2.一般解题步骤 (1)选取研究对象:根据题目要求,选取一个平衡体(单个物体或系统,也可以是结点)作为研究对象. (2)画受力示意图:对研究对象进行受力分析,画出受力示意图. (3)正交分解:选取合适的方向建立直角坐标系,将所受各力正交分解. (4)列方程求解:根据平衡条件列出平衡方程,解平衡方程,对结果进行讨论. 3.应注意的两个问题 (1)物体受三个力平衡时,利用力的分解法或合成法比较简单. (2)解平衡问题建立坐标系时应使尽可能多的力与坐标轴重合,需要分解的力尽可能少.物体受四个以上的力作用时一般要采用正交分解法 【典例精讲】 方法1 直角三角形法 用直角三角法解答平衡问题是常用的数学方法,在直角三角形中可以利用勾股定理、正弦函数、余弦函数等数学知识求解某一个力,若力的合成的平行四边形为菱形,可利用菱形的对角线互相垂直平分的特点进行求解.

【典例1】如图所示,石拱桥的正中央有一质量为m 的对称楔形石块,侧面与竖直方向的夹角为α,重力加速度为g ,若接触面间的摩擦力忽略不计,则石块侧面所受弹力的大小为 A.2 sin αmg B.2 cos αmg C.21 mgtan α D.21 mgcot α 【答案】 A 直角三角形,且∠OCD 为α,则由21mg =F N sin α可得F N =2sin αmg ,故A 正确. 方法2 相似三角形法 物体受到三个共点力的作用而处于平衡状态,画出其中任意两个力的合力与第三个力等值反向的平行四边形中,可能有力三角形与题设图中的几何三角形相似,进而得到力三角形与几何三角形对应边成比例,根据比值便可计算出未知力的大小与方向. 【典例2】 如图所示,一个重为G 的小球套在竖直放置的半径为R 的光滑圆环上,一个劲度系数为k ,自然长度为L(L<2R)的轻质弹簧,一端与小球相连,另一端固定在圆环的最高点,求小球处于静止状态时,弹簧与竖直方向的夹角φ.

化学人教版高中选修4化学反应原理全方位总结化学等效平衡解题技巧

全方位总结化学等效平衡解题技巧 一、概念 在一定条件(恒温恒容或恒温恒压)下,同一可逆反应体系,不管是从正反应开始,还是从逆反应开始,在达到化学平衡状态时,任何相同组分的百分含量(体积分数、物质的 量分数等)均相同,这样的化学平衡互称等效平衡(包括“相同的平衡状态”)。 概念的理解: (1)外界条件相同:通常可以是①恒温、恒容,②恒温、恒压。 (2)“等效平衡”与“完全相同的平衡状态”不同:“完全相同的平衡状态”是指在达到平 衡状态时,任何组分的物质的量分数(或体积分数)对应相等,并且反应的速率等也相同, 但各组分的物质的量、浓度可能.不同。而“等效平衡”只要求平衡混合物中各组分的物质的量分数(或体积分数)对应相同,反应的速率、压强等可以不同 (3 )平衡状态只与始态有关,而与途径无关,(如:①无论反应从正反应方向开始,还是从 逆反应方向开始②投料是一次还是分成几次③反应容器经过扩大一缩小或缩小一扩大的过程,)只要起始浓度相当,就达到相同的平衡状态。 二、等效平衡的分类 在等效平衡中比较常见并且重要的类型主要有以下三种: I类:恒温恒容下对于反应前后气体体积发生变化的反应来说(即△ V M 0的体系):等价 转化后,对应各物质起始投料的物质的量与原平衡起始态相同。 II类:恒温恒容下对于反应前后气体体积没有变化的反应来说(即△ V=0的体系):等价 转化后,只要反应物(或生成物)的物质的量的比例与原平衡起始态相同,两平衡等效。 III类:恒温恒压下对于气体体系等效转化后,要反应物(或生成物)的物质的量的比例 与原平衡起始态相同,两平衡等效。 解题的关键,读题时注意勾画出这些条件,分清类别,用相应的方法求解。我们常采用 “等价转换”的方法,分析和解决等效平衡问题 三、例题解析 I类:在恒温恒容下,对于化学反应前后气体体积发生变化的可逆反应,只改变起始加入物质的物质的量,如果通过可逆反应的化学计量数之比换算成化学方程式的同一边物质的物质的量与原平衡相同,则两平衡等效。 例1:在一定温度下,把2mol SO2和1mol O2通入一定容积的密闭容器中,发生如下反应, 2SO2 * O2==2SO3,当此反应进行到一定程度时反应混合物就处于化学平衡状态。现在该容器中维持温度不变,令a、b、c分别代表初始时加入的S02、02、SO3的物质的 量(mol),如果a、b、c取不同的数值,它们必须满足一定的相互关系,才能保证达到平衡状态时,反应混合物中三种气体的百分含量仍跟上述平衡完全相同。请填空: (1)_____________________________ 若a=0, b=0,贝卩c= 。 (2)__________________________ 若a=0.5,贝H b= , c= 。 (3)a、b、c的取值必须满足的一般条件是_____________ ,___________ 。(请用两个方程式表示,其中一个只含a和c,另一个只含b和c) 解析:通过化学方程式:2SO2 92=2S03可以看出,这是一个化学反应前后气体 分子数不等的可逆反应,在定温、定容下建立的同一化学平衡状态。起始时,无论怎样改变SO?、。2、SO3的物质的量,使化学反应从正反应开始,还是从逆反应开始,或者从正、逆反应同时开始,但它们所建立起来的化学平衡状态的效果是完全相同的,即它们之间存在等 效平衡关系。我们常采用“等价转换”的方法,分析和解决等效平衡问题。

化学平衡图像解题技巧总结

化学平衡图像学案 一、速度-时间图: 可用于: 1) 已知引起平衡移动的因素,判断反应是吸热或放热,反应前后气体体积的变化。 2) (已知反应)判断引起平衡移动的因 素。 练习4、对于达 到平衡的可逆反应:X + Y 二= 图所示。据此分析 X 、Y 、W 、Z 的聚集状态是 A. Z 、W 均为气态,X 、Y 中有一种为气体 B. Z 、W 中有一种为气体,X 、Y 均为气体 C. X 、Y 、Z 均为非气体,W 为气体 引起平衡移动的因素是 平衡向 ______ 方向移 动。 v 2、 t l tl t2 v 正 tl 已知对某一平衡改变温度时有如下图变化, 则温度的变化是 _______________ (升高或降低), 平衡向 ______ 反应方向移动, t2 * t 正反应是 ____________ 热反应。 练习1、对于反应A(g)+3B(g) , ? 2C(g)+D(g)(正反应放热)有如下图所示的变化,请分析 引起平衡移动的原因可能是什么?并说明理由。 由于v 正、v 逆均有不同程度的增大,引起平衡移动的原因 可能是 ___ 此题中引起平衡移动的因素是 练习 2、对于 mA (界nB(g) pC(g)+qD(g), 改变压强时有如右图变化,则压强变化是 或减小), 平衡向 _______________ 反应方向移动, m+n ___ (>、 <、 (增大 =)p+q 。 练习 3、对于反应 mA(g)+nB(g) , * pC(g)+qD(g) 如右图所示的变化,请分析 tl 时的改变原因可能是什 么?并说明理由。 tl t2 t v 正=v 逆 1、 v 正 v 逆 t 2 I v 正 v 逆 引起平衡移动的因素是 平衡向 ______ 方向移动。 例 3、 v 逆 v 逆 v 正: v 正 v 逆° t tl

等效平衡解题技巧与训练

等效平衡解题技巧 一、概念 等效平衡:在一定条件(恒温恒容或恒温恒压)下,同一可逆反应体系,不管是从正反应开始,还是从逆反应开始,在达到化学平衡状态时,任何相同组分的百分含量(体积分数、物质的量分数等)均相同,这样的化学平衡互称等效平衡(包括“相同的平衡状态”)。 概念的理解: (1)外界条件相同:通常可以是①恒温、恒容,②恒温、恒压。 (2)“等效平衡”与“完全相同的平衡状态”不同: “完全相同的平衡状态” 是指在达到平衡状态时,任何组分的物质的量分数(或体积分数)对应相等,并且反应的速率等也相同,但各组分的物质的量、浓度可能不同。而“等效平衡”只要求平衡混合物中各组分的物质的量分数(或体积分数)对应相同,反应的速率、压强等可以不同 (3)平衡状态只与始态有关,而与途径无关,(如:①无论反应从正反应方向开始,还是从逆反应方向开始②投料是一次还是分成几次③反应容器经过扩大—缩小或缩小—扩大的过程,)只要起始浓度相当,就达到相同的平衡状态。 二、等效平衡的分类 在等效平衡中比较常见并且重要的类型主要有以下三种: I类:恒温恒压下对于气体体系等效转化后,若反应物(或生成物)的物质的量的比例与原平衡起始态相同,两平衡等效。 II类:恒温恒容时对于反应前后气体体积发生变化的反应来说(即△V≠0的体系):等价转化后,对应各物质起始投料的物质的量与原平衡起始态相同,两平衡等效。 III类:恒温恒容时对于反应前后气体体积没有变化的反应来说(即△V=0的体系):等

价转化后,只要反应物(或生成物)的物质的量的比例与原平衡起始态相同,两平衡等效。 解题的关键,读题时注意勾画出这些条件,分清类别,用相应的方法求解。我们常采用“等价转换”的方法,分析和解决等效平衡问题 等价转换:通过可逆反应的化学计量数之比换算成化学方程式的同一边物质的物质的量 三、例题解析 一、恒温恒压时,改变起始时加入物质的物质的量,只要按化学计量数之比换算成化学方程式的同一边物质的物质的量之比与原平衡相同,达到平衡状态后与原平衡等效。 例1:如图所示,在一定温度下,把2体积N 2和6体积H 2 通入一个带有活塞的容积可变的容 器中,活塞的一端与大气相通,容器中发生以下反应:(正反应放热),若反应达到平衡后,测得混合气体的体积为7体积。据此回答下列问题: (1)保持上述反应温度不变,设a、b、c分别代表初始加入的N 2、H 2 和NH 3 的体积,如 果反应达到平衡后混合气体中各气体的体积分数仍与上述平衡相同,那么: ①若a=1,c=2,则b=_________。在此情况下,反应起始时将向_________(填“正” 或“逆”)反应方向进行。 ②若需规定起始时反应向逆反应方向进行,则c的取值围是_________。 (2)在上述装置中,若需控制平衡后混合气体为6.5体积,则可采取的措施是_________,原因是_____ ____。 二、恒温恒容时,分两种状况: 1. 恒温恒容时,对于化学反应前后气体体积发生变化的可逆反应,只改变起始加入物质 的物质的量,如果转换后的同一边物质的物质的量与原平衡的相同,则两平衡等效。 例2:在一定温度下,把2mol SO 2和1mol O 2 通入一定容积的密闭容器中,发生如下反应 2SO 2 + O 2 2SO 3 ,当此反应进行到一定程度时反应混合物就处于化学平衡状态。现在该容 器中维持温度不变,令a、b、c分别代表初始时加入的SO 2、 O 2 、SO 3 的物质的量(mol), 如果a、b、c取不同的数值,它们必须满足一定的相互关系,才能保证达到平衡状态时,反应混合物中三种气体的百分含量仍跟上述平衡完全相同。请填空: (1)若a = 0,b = 0,则c =___________。

等效平衡问题及解题技巧

等效平衡问题及解题技 巧 Revised as of 23 November 2020

专题一、等效平衡问题 1、定义:在相同条件下(定温定容或定温定压),对同一可逆反应,由于起始有关 物质的量“相当”,无论从正反应开始还是从逆反应开始,均可达到平衡,且任何组分的含量(通常为百分含量)相同,这样的平衡互称为等效平衡。 2、等效平衡的类型及建立等效平衡的条件 规律一: 恒.温.恒.容.条件下,对于任何 ...., ..(无论反应前后气体分子数是否相同)可逆反应如果起始加入物质的物质的量不同,按化学方程式中的化学计量关系换算成同一方向的物质(即“一边倒”)后,各组分的物质的量与原平衡相同,则两平衡等效,平衡时,同种组分的体积分数、物质的量浓度、物质的量均相同(也可叫全等平衡)。 如: mA(g)+nB(g)pC(g)+qD(g) 起始① mmol nmol 0 0 起始② 0 0 pmol qmol 上述两种情况投料不同,但是将②中投料“左边倒”后,四种物质的物质的量均同①相同, 因此两种情况可达到等效平衡,平衡时,同种组分(如A)的体积分数、物质的量浓度、物质的量均相同。 例1.在一固定体积的密闭容器中通入2molA和1molB发生反应 2A(g)+B(g)3C(g)+D(g) 反应达到平衡时,测得C的物质的量浓度为wmol/L.若维持容器的容积不变,按下列四种配比做起始浓度,达平衡后,C的浓度仍维持wmol/L的是() A、4molA+2molB B、2molA+1molB+3molC+1molD C、3molC+1molD+1molB D、3molC+1molD

高中化学等效平衡问题的解题技巧

高中化学等效平衡问题的解题技巧 等效平衡问题是指利用等效平衡(相同平衡或相似平衡)来进行的有关判断和计算问题,即利用与某一平衡状态等效的过渡平衡状态(相同平衡)进行有关问题的分析、判断,或利用相似平衡的相似原理进行有关量的计算。所以等效平衡也是一种思维分析方式和解题方法。这种方法往往用在相似平衡的计算中 关于概念的理解: (1)外界条件相同:通常可以是①恒温、恒容,②恒温、恒压。 (2)“等效平衡”与“完全相同的平衡状态”不同:“完全相同的平衡状态”是指在达到平衡状态时,任何组分的物质的量分数(或体积分数)对应相等,并且反应的速率等也相同,但各组分的物质的量、浓度可能不同。而“等效平衡”只要求平衡混合物中各组分的物质的量分数(或体积分数)对应相同,反应的速率、压强等可以不同。 (3)平衡状态只与始态有关,而与途径无关,(如:①无论反应从正反应方向开始,还是从逆反应方向开始②投料是一次还是分成几次③反应容器经过扩大—缩小或缩小—扩大的过程,)只要起始浓度相当,就达到相同的平衡状态。 等效平衡的条件和判断: (1)恒温恒容下,改变起始加入物质的物质的量,如通过

可逆反应的化学计量数换算成同一半边的物质的物质的量与原平衡相等,则达平衡后与原平衡等效 (2)恒温恒容下,对于反应前后都是气体且物质的量相等的可逆反应,只要反应物(或生成物)的物质的量的之比与原平衡相同,两平衡等效 (3)恒温恒压下,改变起始加入物质的物质的量,只要按化学计量数,换算成同一半边的物质的物质的量之比与原平衡相同,则达平衡后与原平衡等效 不同条件下的等效平衡问题: 1.对于一般可逆反应,在恒温、恒容条件下建立平衡,改变起始时加入物质的物质的量,如果能够按化学计量数换算成同一半边的物质的物质的量与原平衡相同,则两平衡等效。 如:按下列三条途径,在恒温、恒容下建立的平衡等效3H2(g)+N2(g)=2NH3(g) Ⅰ3mol1mol0 Ⅱ002mol Ⅲabc Ⅲ中,应满足:b+c/2=1,a+3c/2=3。 例1.一可逆反应:2A(g)+3B(g)=xC(g)+4D(g),若按下列两种配比,在同温、同体积的密闭容器中进行反应。 有

高考化学常见题型解题技巧——化学平衡中的常见解题方法及思路(8)

化学平衡中的常见解题方法及思路 有关化学平衡的知识,是高考考查的重点知识之一,掌握常见的平衡解题的一些方法及思路,将对解题起着事半功倍的效果。最常见的几种解题方法和思路有如下几种: 一、“开、转、平”法 写出可逆反应到达平衡的过程中,各物质的开始、转化,平衡时的物质的量,然后据条件列方程即可。 例1(1999,全国)X 、Y 、Z 为三种气体,把amolX 和bmolY 充入一密闭容器中,发生反应X+2Y 2Z ,达到平衡时,若它们的物质的量满足n x +n y =n z ,则 Y 的转化率为 A 、%1005?+b a B 、%1005)(2?+b b a C 、%1005)(2?+b a D 、%1005?+a b a 解析:设在反应过程中,X 转化了kmol , 则 X + 2Y 2Z 开:amol bmol 0 转:kmol 2kmol 2kmol 平:(a -k )mol (b -2k )mol 2kmol 据条件列出方程:a -k+b -2k=2k 解得: k= 5 b a + 故Y 的转化率为=?+?%10052b b a %1005)(2?+b b a 选B 。 二、分割法 将起始加入量不相同的两化学平衡可分割成相同的起始加入量,然后再并起来。 例 2 在相同条件下(T -500K ),有相同体积的甲、乙两容器,甲容器中充入1gSO 2和1gO 2,乙容器中充入2gSO 2和2gO 2下列叙述错误的是: A 、化学反应速率乙>甲 B 、平衡后的浓度乙>甲 C 、SO 2的转化率乙>甲 D 、平衡后SO 2的体积分数乙>甲 解析:将乙容器里的2gSO 2和2gO 2,可分割为两个1gSO 和1gO 2,然后分别充入与甲等体积的丙、丁两容器,这样甲、丙、丁三容器建立平衡的途径及平衡状态一样,而乙容器这时可看成丙、丁两容器合并起来,这其实就是一个加压的过程,故平衡2SO 2+O 2SO 3向正方向进行,所以乙中化学反应速率快,SO 2的转化率大,平衡后的浓度乙大,而平衡后的SO 2的体积分数乙中小。 选D 。

物体的动态平衡问题解题技巧

物体的动态平衡问题解题技巧 一、总论 1、动态平衡问题的产生——三个平衡力中一个力已知恒定,另外两个力的大小或者方向不断变化,但物体仍然平衡,典型关键词——缓慢转动、缓慢移动…… 2、动态平衡问题的解法——解析法、图解法 解析法——画好受力分析图后,正交分解或者斜交分解列平衡方程,将待求力写成三角函数形式,然后由角度变化分析判断力的变化规律; 图解法——画好受力分析图后,将三个力按顺序首尾相接形成力的闭合三角形,然后根据不同类型的不同作图方法,作出相应的动态三角形,从动态三角形边长变化规律看出力的变化规律。 3、动态平衡问题的分类——动态三角形、相似三角形、圆与三角形(2类)、等腰三角形等 二、例析 1、第一类型:一个力大小方向均确定,一个力方向确定大小不确定,另一个力大小方向均不确定——动态三角形 【例1】如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为F N1,球对木板的压力大小为F N2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中 A .F N1始终减小,F N2始终增大 B .F N1始终减小,F N2始终减小 C .F N1先增大后减小,F N2始终减小 D .F N1先增大后减小,F N2先减小后增大 解法一:解析法——画受力分析图,正交分解列方程,解出F N1、F N2随夹角变化的函数,然后由函数讨论; 【解析】小球受力如图,由平衡条件,有 0sin 2N =-mg F θ 0cos 1N 2N =-F F θ 联立,解得:θsin 2N mg F =,θ tan 1N mg F = 木板在顺时针放平过程中,θ角一直在增大,可知F N1、F N2都一直在减 小。选B 。 解法二:图解法——画受力分析图,构建初始力的三角形,然后“抓住不变,讨论变化”,不变的是小球重力和F N1的方向,然后按F N2方向变化规律转动F N2,即可看出结果。 【解析】小球受力如图,由平衡条件可知,将三个力按顺序首尾相接,可形 成如右图所示闭合三角形,其中重力mg 保持不变,F N1的方向始终水平向右, 而F N2的方向逐渐变得竖直。 则由右图可知F N1、F N2都一直在减小。 【拓展】水平地面上有一木箱,木箱与地面间的动摩擦因数为μ(0<μ<1)。现对木箱施加一拉力F ,F N2 mg F N1 F N1 F N2 mg θ

高中化学等效平衡问题及解题技巧 人教版

1、定义:在相同条件下(定温定容或定温定压),对同一可逆反应,由于起始有关物质的 量“相当”,无论从正反应开始还是从逆反应开始,均可达到平衡,且任何组分的含量(通常为百分含量)相同,这样的平衡互称为等效平衡。 2、等效平衡的类型及建立等效平衡的条件 规律一: 恒温恒容 ....条件下,对于任何 ....,如果 ..(无论反应前后气体分子数是否相同)可逆反应 起始加入物质的物质的量不同,按化学方程式中的化学计量关系换算成同一方向的物质(即“一边倒”)后,各组分的物质的量与原平衡相同,则两平衡等效,平衡时,同种组分的体积分数、物质的量浓度、物质的量均相同(也可叫全等平衡)。 如: mA(g)+nB(g)pC(g)+qD(g) 起始①mmol nmol 0 0 起始②0 0 pmol qmol 上述两种情况投料不同,但是将②中投料“左边倒”后,四种物质的物质的量均同①相同, 因此两种情况可达到等效平衡,平衡时,同种组分(如A)的体积分数、物质的量浓度、物质的量均相同。 例1.在一固定体积的密闭容器中通入2molA和1molB发生反应 2A(g)+B(g)3C(g)+D(g) 反应达到平衡时,测得C的物质的量浓度为wmol/L.若维持容器的容积不变,按下列四种配比做起始浓度,达平衡后,C的浓度仍维持wmol/L的是() A、4molA+2molB B、2molA+1molB+3molC+1molD C、3molC+1molD+1molB D、3molC+1molD 例2、在固定体积的密闭容器中,加入2molA,1molB,发生反应:A(g)+B(g)2C(g)达到平衡时,C的质量分数为ω%,在相同条件下按下列情况充入物质达到平衡时C的质量分数仍为ω%的是() A.2molC B.3molC C.4molA,2molB D.1mola,2molC 例3、在一个固定体积的密闭容器中,保持一定浓度,进行以下反应:4A(g)+5B(g) 4C(g)+6D(g),已知加入4molA和5molB时,反应进行到一定程度时,反应混合物就处于平衡状态,现在该容器中,保持温度不变,令a,b,c,d分别代表初始加入的A,B,C,D的物质的量,如果a,b,c,d取不同的数值,它们必须满足一定关系,才能保证达到平衡时,反应混合物中几种物质的百分含量仍跟上述平衡时完全相同,请填写下列空白: (1)若a=0,b=0, 则c= ,d= . (2)若a=1,则b= ,c= ,d= (3)a,b,c,d取值必须满足的一般条件是(请用方程式表示,其中一个只含a和c,另一个只含b和c): , . 规律二:恒温恒压 ..(无论反应前后气体分子数是否相同)可逆反应 ....,如果....条件下,对于任何 起始加入物质的物质的量不同,按化学方程式中的化学计量关系“一边倒”后, 各组分的物质的量之比与原平衡相同,则两平衡等效,平衡时,同种组分的体积分数、物质的量浓度相同,但物质的量不同。 如: mA(g) + nB(g) pC(g) + qD(g) 起始①mmol nmol 0 0

高考化学三轮冲刺最后30天之考前争分系列热点突破四化学反应速率与化学平衡图像解题方法学案

化学反应速率与化学平衡图像解题方法[突破方法] 1.化学平衡图像题的思维流程 2.解题步骤 3.解题技巧 (1)“定一议二”原则 在化学平衡图像中,了解纵轴、横轴和曲线所表示的三个物理量的意义。在确定横轴所表示的物理量后,讨论纵轴与曲线的关系,或在确定纵轴所表示的物理量后,讨论横轴与曲线的关系。 如反应2A(g)+B(g)2C(g)达到化学平衡时,A的平衡转化率与压强和温度的关系如图1所示[纵轴为A的平衡转化率(α),横轴为反应温度(T)]。

定压看温度变化,升高温度曲线走势降低,说明A的转化率降低,平衡向逆反应方向移动,正反应是放热反应。 定温看压强变化,因为此反应是反应后气体体积减小的反应,压强增大,平衡向正反应方向移动,A的转化率增大,故p2>p1。 (2)“先拐先平数值大”原则 对于同一化学反应在化学平衡图像中,先出现拐点的反应先达到平衡状态,先出现拐点的曲线表示的温度较高(如图2所示,α表示反应物的转化率)或压强较大[如图3所示,φ(A)表示反应物A的体积分数]。 图2:T2>T1,正反应放热。 图3:p1

等效平衡的三种题型及解法

等效平衡的三种题型及解法 等效平衡归纳为以下三种题型: 完全等效平衡,这类等效平衡问题的特征是在同T、P、V的条件下,同一化学反应经过不同的反应过程最后建立的平衡相同。解决这类问题的方法就是构建相同的起始条件。下面看例题一: 【例题一】:温度一泄,在一个容器体积恒圧密闭容器内,发生合成氨反应:N2+3H2 2NH3。若充入lmolN2和3molH2,反应达到平衡时NH3的体积百分含量为W%。若改变开始时投入原料的量,加入amolN2, bmolH2, cmolNH3,反应达到平衡时,NH3的体积百分含量仍为W%,则: ①若a=b=O. c= ②若a=0.75, b= , c= ③若温度、压强恒定,则a、b、c之间必须满足的关系是 分析:通过阅读题目,可以知道建立平衡后两次平衡之间满足同T、P、V,所以可以断定是完全等效平衡,故可以通过构建相同的起始条件来完成。 N2 + 3H2 2NH3 起始条件I : lmol 3mol 0 起始条件II: amol bmol cmol (可以把cmolNH3全部转化为N2, H2) 转化:0.5cmol 1.5cmol cmol 构建条件:(a+O.5c) mol (b+1.5c) mol 0 要使起始条件I和起始条件II建立的平衡一样,那么必须是起始条件I和构建条件完全相同。则有:(a+O.5c) mol = lmol (b+1.5c) mol = 3mol 其实这两个等式就是③的答案,①②的答案就是代入数值计算即可。 不完全等效平衡,这类等效平衡问题的特征是在同T、P不同V的条件下,同一化学反应经过不同的反应过程最后建立的平衡中各成分的含量相同。解决这类问题的方法就是构建相似的起始条件,务量间对应成比例。下而看例题二: 【例题二】:恒温恒压下,在一个可变容积的容器中发生中下反应:A (g) +B(g) = C(g) (1)若开始时放入lmolA和ImolB,到达平衡后,生成amolC,这时A的物质的量为mol。 (2)若开始时放入3molA和3molB.到达平衡后,生成C的物质的量为mol。 (3)若开始时放入xmolA、2molB和ImolC,到达平衡后,A和C的物质的量分别是y mol 和3amol,则%= , y=,平衡时,B的物质的量(选填一个编号) 甲:大于2mol乙:等于2mol丙:小于2mol T:可能大于,等或小于2mol 作出判断的理由是。(4)若在(3)的平衡混合物中再加入3molC,待到达平衡后,C的物质的屋分数是。分析:通过阅读题目,可以知道建立平衡后两次平衡之间满足同T、P不同V,所以可以断定是不完全等效平衡,故可以通过构建相似的起始条件各量间对应成比例来完成。解答过程如下: A (g) + B(g) = C(g) (1)起始条件I : lmol ImolO 平衡I : (1-a ) mol (1-a ) mol amol (2)起始条件I【:3mol 3mol 0 平衡II: 3 (1-a ) mol 3 (1-a ) mol 3amol (各量间对应成比例) (3)起始条件III: x mol 2mol 1 mol 平衡III: 3 (1-a ) mol 3 (1-a ) mol 3amol 可见,起始条件II与起始条件III建立的是完全等效平衡,因此可通过构建相同的起始条件求得X的值。 A (g) +B(g) = C(g)

求解共点力平衡问题的常见方法(经典归纳附详细答案)

求解共点力平衡问题的常见方法 共点力平衡问题,涉及力的概念、受力分析、力的合成与分解、列方程运算等多方面数学、物理知识和能力的应用,是高考中的热点。对于刚入学的高一新生来说,这个部分是一大难点。 一、力的合成法 物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等,方向相反; 1.(2008年·广东卷)如图所示,质量为m 的物体悬挂在轻质支架上,斜梁OB 与竖直方向的夹角为θ(A 、B 点可以自由转动)。设水平横梁OA 和斜梁OB 作用于O 点的弹力分别为F 1和F 2,以下结果正确的是( ) A.F 1=mgsinθ B.F 1= sin mg q C.F 2=mgcosθ D.F 2=cos mg q 二、力的分解法 在实际问题中,一般根据力产生的实际作用效果分解。 2、如图所示,在倾角为θ的斜面上,放一质量为m 的光滑小球,球被竖直的木板挡住,则球对挡板的压力和球对斜面的压力分别是多少? 3.如图所示,质量为m 的球放在倾角为α的光滑斜面上,试分析挡板AO 与斜面间的倾角β多大时,AO 所受压力最小。 三、正交分解法 解多个共点力作用下物体平衡问题的方法 物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解: 0x F =合,0 y F =合. 为方便计算,建立坐标系时以尽可能多的力落在坐标轴上为原则 . θ

4、如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60° 角时,物体静止。不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。 四、相似三角形法 根据平衡条件并结合力的合成与分解的方法,把三个平衡力转化为三角形的三条边,利用力的三角形与空间的三角形的相似规律求解. 5、 固定在水平面上的光滑半球半径为R ,球心0的正上方C 处固定一个小定滑轮,细线一端拴一小球置于半球面上A 点,另一端绕过定滑轮,如图5所示,现将小球缓慢地从A 点拉向B 点,则此过程中小球对半球的压力大小N F 、细线的拉力大小T F 的变化情况是 ( ) A 、N F 不变、T F 不变 B. N F 不变、T F 变大 C , N F 不变、T F 变小 D. N F 变大、T F 变小 6、两根长度相等的轻绳下端悬挂一质量为m 物体,上端分别固定在天花板M 、N 两点,M 、N 之间距离为S ,如图所示。已知两绳所能承受的最大拉力均为T ,则每根绳长度不得短于____ 。 五、用图解法处理动态平衡问题 对受三力作用而平衡的物体,将力矢量图平移使三力组成一个首尾依次相接的封闭力三角形,进而处理物体平衡问题的方法叫三角形法;力三角形法在处理动态平衡问题时方便、直观,容易判断. 7、如图4甲,细绳AO 、BO 等长且共同悬一物,A 点固定不动,在手持B 点沿圆弧向C 点缓慢移动过程中,绳BO 的张力将 ( ) A 、不断变大 B 、不断变小 C 、先变大再变小 D 、先变小再变大 六.矢量三角形在力的静态平衡问题中的应用 若物体受到三个力(不只三个力时可以先合成三个力)的作用而处于平衡状态,则这三个力一定能构成一个力的矢量三角形。三角形三边的长度对应三个力的大小,夹角确定各力的方向。 8.如图所示,光滑的小球静止在斜面和木版之间,已知球重为G ,斜面的倾角为θ,求下列情况

等效平衡的类型及解题思路

化学平衡中的等效平衡的类型及解题思路 [等效平衡的概念] 相同条件下,同一可逆反应体系,不管从正反应开始,还是从逆反应开始,达到平衡时,任何相同物质的含量(体积分数、质量分数或物质的量分数)都相同的化学平衡互称等效平衡。可分为“全等效”平衡和“相似等效”平衡。判断等效平衡的方法:使用极限转化的方法将各种情况变换成同一反应物或生成物,然后观察有关物质的数量是否相当。[等效平衡的类型] 在一定条件下(恒温恒容或恒温恒压),对同一可逆反应,起始时加入物质的物质的量不同,达平衡时的状态规律如下表: [各种不同类型的等效平衡的解题思路] 一、恒温恒容(定T、V)的等效平衡 1.在定T、V条件下,对于反应前后气体体积改变的反应:若改变起始加入情况,只要通过可逆反应的化学计量数比换算成平衡时左右两边同一边物质的物质的量与原平衡相同,则二平衡等效。 2.在定T、V条件下,对于反应前后气体体积不变的反应:只要反应物(或生成物)的物质的量的比例与原平衡相同,则二平衡等效。

二、恒温恒压(定T、P)的等效平衡 在定T、P条件下:若改变起始加入情况,只要通过可逆反应的化学计量数比换算成平衡时左右两边同一边物质的物质的量之比。 即:对于反应前后气体体积发生变化的可逆反应而言,恒容容器中要想达到同一平衡状态,投料量必须相同;恒压容器中要想达到同一平衡状态,投料量可以不同,但投入的比例得相同。 例1.在一个固定体积的密闭容器中,加入2molA和1molB,发生反应2A(g)+B(g) 2C(g),达到平衡时,C的物质的量浓度为K mol/L,若维持容器体积和温度不变,按下列配比作为起始物质, A.4 molA+2 molB B.2 molA+1 molB+2 molC C.2 molC+1 molB D.2 molC E.1 molA+ molB+1 molC ①达到平衡后,C的物质的量浓度仍是K mol/L的是( DE ) ② A项平衡时,c(C)与2K mol/L的关系 分析:→ 扩大一倍若平衡不动,则[C]=2K mol/L,现右移∴>2K mol/L ③平衡时各选项中C的平衡浓度c(C)的大小顺序。 分析:C项,相当于D、E项达平衡基础上,再加1molB,右移,c(C)增大, A=B>C>D=E ④若令a、b、c分别代表初始加入的A、B、C的物质的量,如果a、b、c取不同的数值,它们必须满足一定的相互关系,才能保证达到平衡时,反应混合物中三种气体的百分含量仍跟上述平衡时完全相同,填写: Ⅰ若a=0,b=0,则c=__2___。 Ⅱ若a=,b=0,则,c=。 Ⅲa、b、c的取值必须满足的一般条件是(用两个方程式表示,一个只含a、c,另一个只含b、c):_a+c=2___;___b+c/2=1____。

动态平衡问题常见解法

动态平衡问题 苗贺铭 动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。因此,本文对动态平衡问题的常见解法梳理如下。 所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都处于平衡状态,动态平衡问题中往往是三力平衡。即三个力能围成一个闭合的矢量三角形。 一、图解法 方法:对研究对象受力分析,将三个力的示意图首尾相连构成闭合三角形。然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形的边长,各力的大小及变化就一目了然了。 例题1如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始 缓慢地转到水平位置.不计摩擦,在此过切程中( ) A.F N1始终减小 B. F N2始终减小 C. F N1先增大后减小 D. F N2先减小后增大 解析:以小球为研究对象,分析受力情况:重力G、 墙面的支持力和木板的支持力,如图所示:由矢量三 角形可知:始终减小,始终减小。 归纳:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。 二、解析法 方法:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。 例题2.1倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m 一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f的大小变化情况是() A. F N变 大,F f变大 B. F N变小,F f变小 C. F N变大,F f变小 D. F N变小,F f变大 解析:设木板倾角为θ 根据平衡条件:F N=mgcosθ F f=mgsinθ 可见θ减小,则F N变大,F f变小;

相关文档
最新文档