茂捷M8832替换BP2832资料

茂捷M8832替换BP2832资料
茂捷M8832替换BP2832资料

M8832

概述

M8832 是一款高精度降压型 LED 恒流驱动芯片。 芯 片 工 作 在 电 感 电 流 临 界 连 续 模 式 , 适 用 于 85Vac ~265Vac 全范围输入电压的非隔离降压型 LED 恒流电源。 M8832 芯片内部集成 500V 功率开关,采用专利的 驱动和电流检测方式,芯片的工作电流极低,无 需辅助绕组检测和供电,只需要很少的外围元件, 即可实现优异的恒流特性,极大的节约了系统成 本和体积。

M8832 芯片内带有高精度的电流采样电路,同时 采用了专利的恒流控制技术,实现高精度的 LED 恒流输出和优异的线电压调整率。芯片工作在电 感电流临界模式,输出电流不随电感量和 LED 工 作电压的变化而变化,实现优异的负载调整率。 M8832 具有多重保护功能,包括 LED 开路/短路保 护,SEN 电阻短路保护,欠压保护,芯片温度过热 调节等。

M8832 采用 SOP-8 封装。

典型应用

特点

? 电感电流临界连续模式 ? 内部集成 500V 功率管 ? 无需辅助绕组检测和供电 ? 芯片超低工作电流 ? 宽输入电压

? ±3% LED 输出电流精度 ? LED 开路保护 ? LED 短路保护 ? SEN 电阻短路保护 ? 芯片供电欠压保护 ? 过热调节功能 ?

采用 SOP-8 封装

应用

? LED 蜡烛灯 ? LED 球泡灯 ? 其它 LED 照明

图 1 M8832 典型应用图

M8832

管脚封装 管脚描述

极限参数(注 1)

注 1:最大极限值是指超出该工作范围,芯片有可能损坏。推荐工作范围是指在该范围内,器件功能正常,但并不完全保 证满足个别性能指标。电气参数定义了器件在工作范围内并且在保证特定性能指标的测试条件下的直流和交流电参数规 范。对于未给定上下限值的参数,该规范不予保证其精度,但其典型值合理反映了器件性能。

注 2:温度升高最大功耗一定会减小,这也是由 T JMAX , θ JA ,和环境温度 T A 所决定的。最大允许功耗为 P DMAX = (T JMAX - T A )/ θ JA 或是极限范围给出的数字中比较低的那个值。 注 3:人体模型,100pF 电容通过 1.5K Ω 电阻放电。

推荐工作范围

M8832

电气参数(注4, 5) (无特别说明情况下,V DD =15 V, T A =25 ℃)

注4:典型参数值为25?C 下测得的参数标准。

注5:规格书的最小、最大规范范围由测试保证,典型值由设计、测试或统计分析保证。

PK

内部结构框图

应用信息

M8832 是一款专用于 LED 照明的恒流驱动芯片, 应用于非隔离降压型 LED 驱动电源。采用专利的 恒流架构和控制方法,芯片内部集成 500V 功率开 关,只需要极少的外围组件就可以达到优异的恒 值电压进行比较,当 SEN 电压达到内部检测阈值时, 功率管关断。

电感峰值电流的计算公式为:

流特性。而且无需辅助绕组供电和检测,系统成 本极低。

I PK =

400

(mA)

R SEN

启动

系统上电后,母线电压通过启动电阻对 V DD 电容充 电,当 V DD 电压达到芯片开启阈值时,芯片内部控

制电路开始工作。M8832 内置 17V 稳压管,用于 钳位 V DD 电压。芯片正常工作时,需要的 V DD 电流极 低,所以无需辅助绕组供电。

恒流控制,输出电流设置 芯片逐周期检测电感的峰值电流,SEN 端连接到内

部的峰值电流比较器的输入端,与内部 400mV 阈

其中,R SEN 为电流采样电阻阻值。

SEN 比较器的输出还包括一个 350ns 前沿消隐时间。 LED 输出电流计算公式为:

I = I LED

2

其中, I PK 是电感的峰值电流。

V =

V on

储能电感

M8832 工作在电感电流临界模式,当功率管导通 时,流过储能电感的电流从零开始上升,导通时 间为:

短。因此可以根据需要设定的开路保护电压,来 计算退磁时间 Tovp 。

Tovp ≈ L ?VSEN

t =

L ? I PK

其中,

RSEN ?Vovp

IN - V LED

其中,L 是电感量;I PK 是电感电流的峰值;V IN 是 经整流后的母线电压;V LED 是输出 LED 上的电压。 当功率管关断时,流过储能电感的电流从峰值开 VSEN 是 SEN 关断阈值(400mV ) Vovp 是需要设定的过压保护点

然后根据 Tovp 时间来计算 Rovp 的电阻值,公式 如下:

始往下降,当电感电流下降到零时,芯片内部逻 辑再次将功率管开通。功率管的关断时间为:

Rovp ≈ 15*Tovp *10

6

(kohm )

L ? I PK

t off LED

储能电感的计算公式为:

L =

V LED ? (V IN - V LED )

f ? I PK ? V IN

其中,f 为系统工作频率。M8832 的系统工作频 率和输入电压成正比关系,设置 M8832 系统工作 频率时,选择在输入电压最低时设置系统的最低 工作频率,而当输入电压最高时,系统的工作频 率也最高。

M8832 设置了系统的最小退磁时间和最大退磁时 间,分别为 4.5us 和 240us 。由 t OFF 的计算公式可 知,如果电感量很小时,t OFF 很可能会小于芯片的 最小退磁时间,系统就会进入电感电流断续模式, LED 输出电流会背离设计值;而当电感量很大时,

t OFF 又可能会超出芯片的最大退磁时间,这时系统

就会进入电感电流连续模式,输出 LED 电流同样

也会背离设计值。所以选择合适的电感值很重要。 过压保护电阻设置

开路保护电压可以通过 ROVP 引脚电阻来设置,

ROVP 引脚电压为 0.5V 。 当 LED 开路时,输出电压逐渐上升,退磁时间变

保护功能

M8832 内置多种保护功能,包括 LED 开路/短路保 护,SEN 电阻短路保护,V DD 欠压保护,芯片温度过 热调节等。当输出 LED 开路时,系统会触发过压 保护逻辑并停止开关工作。

当 LED 短路时,系统工作在 5KHz 低频,SEN 关断阈 值降低到 200mV ,所以功耗很低。当有些异常的情 况发生时,比如 SEN 采样电阻短路或者变压器饱和, 芯片内部的快速探测电路会触发保护逻辑,系统 马上停止开关工作。

系统进入保护状态后,V DD 电压开始下降;当 V DD 到 达欠压保护阈值时,系统将重启。同时系统不断 的检测负载状态,如果故障解除,系统会重新开 始正常工作。

过温调节功能

M8832 具有过热调节功能,在驱动电源过热时逐

渐减小输出电流,从而控制输出功率和温升,使

电源温度保持在设定值,以提高系统的可靠性。

芯片内部设定过热调节温度点为 150℃。

PCB 设计

在设计 M8832 PCB 时,需要遵循以下指南: 旁路电容

V DD 的旁路电容需要紧靠芯片 V DD 和 GND 引脚。

ROVP 电阻

开路保护电压设置电阻需要尽量靠近芯片ROVP 引脚。

地线

电流采样电阻的功率地线尽可能短,且要和芯片的地线及其它小信号的地线分头接到母线电容的地端。

功率环路的面积

减小功率环路的面积,如功率电感、功率管、母线电容的环路面积,以及功率电感、续流二极管、输出电容的环路面积,以减小EMI 辐射。

NC 引脚

NC 引脚必须悬空以保证芯片引脚间距离满足爬电距离

DRAIN 引脚

增加DRAIN 引脚的铺铜面积以提高芯片散热。

典型参数特性

VDD 启动电压对温度的变化VDD 欠压保护阈值对温度的变化

VDD 启动电流对温度的变化VDD 工作电流对温度的变化

M8832 封装丝印描述

茂捷M5832-15.5V0.45A替换OB2532,SP5610参考资料解析

描述 M5832应用于小功率AC/DC 充电器和电源适配器的高性能离线式脉宽调制控制器。该芯片是一款基于原边检测和调整的控制器,因此在应用时无需TL431和光耦。芯片内置了恒流/恒压两种控制方式,其典型的控制曲线如图1所示。在恒流控制时,恒流值和输出功率可以通过SEN 引脚的限流电阻RS 设定。在恒压控制时,芯片在INV 脚采样辅助绕组的电压,进而调整输出。在恒压控制时还采用了多种模式的控制方式,这样既保证了芯片的高性能和高精度,又保证了高效率。此外,通过内置的线损补偿电路保证了较高的输出电压精度。 典型应用图 典型应用图

特征 管脚描述 恒压和恒流精度可达5% 原边控制模式,无需TL431和光耦 非连续模式下的反激拓扑 准谐振开关模式,减小开关损耗 具有软启动功能 内置前沿消隐电路(LEB) 频率抖动 恒压恒流控制 恒流和输出功率可调 内置初级电压采样控制器 可调式线损补偿 基于系统稳定性的保护功能 ◆欠压锁定 ◆逐周期电流限制 ◆峰值电流限制 ◆过温保护 ◆过压保护和电源箝位 SOT-23-6L无铅封装 应用领域 适用于中小功率AC/DC离线式开关电源 手机/数码摄像机充电器 小功率电源适配器 电脑和电视机的辅助电源 替代线性调节器或RCC

引脚功能描述 极限参数 注:如果器件工作条件超出上述各项极限值,可能对器件造成永久性损坏。上述参数仅仅是工作条件的极限值,不建议器件工作在推荐条件以外的情况。器件长时间工作在极限工作条件下,其可靠性及寿命可能受到影响。 脚位示意图

芯片框图 应用信息 ●描述 M5832是一款低成本、高性价比的脉宽调制控制器,适用于离线式小功率AC/DC电池充电器和电源适配器。它采用原边控制方式,因此不需要TL431和光耦。M5832应用于工作在非连续模式下的反激式系统中,内置的次级恒压采样电路能够提供高精度恒流/恒压控制,很好地满足大多数电源适配器和充电器的要求。 ●启动 M5832供电电源端是VDD。启动电阻提供了从高压端到VDD旁路电容的直流通路,为芯片提供启动电流。M5832的启动电流小于20uA,因此VDD能够很快被充到UVLO(off)以上,从而使芯片快速启动并开始工作。采用较大的启动电阻可以减小整机的待机功耗。一旦VDD超过UVLO(off),芯片就进入软启动状态,使M5832的峰值电流电压逐渐从0V增加到0.9V,用以减轻 在启动时对电路元件的冲击。VDD的旁路电容一直为芯片提供供 电直到输出电压足够高以至于能够支撑VDD通过辅助绕组供电 为止。 ●恒流工作

元器件国产化替代解决方案

元器件国产化替代解决方案 一、为什么要国产化替代 电子元器件是航空航天等高端装备的基本单元,所以,电子元器件的可靠性是保证航空航天装备可靠性的基础。目前国内还有很多航空航天装备采用的是进口电子元器件。这些进口的元器件的使用主要有一下问题存在。 1.研制生产没有保障 目前,电子元器件更新换代周期越来越短。以集成电路为例,按照摩尔定律,每18个月其尺寸缩小一半,而集成度提升一倍。由于元器件的升级换代速度越来越快,以及国外厂商合并重组等原因导致的元器件停产,就给很多已服役和仍在生产的航空航天等高端装备的维护和生产带来了很大的困难。 另外,以美国为首的西方国家形成联盟,长期对我国实行严格的出口限制政策。以美国为例,制定了严格的政策和相关措施限制高新技术及产品出口。美国商务部制定了商品管制清单(Commerce Control List,CCL),严禁将清单内的电子元器件出口到相关国家和地区。这种电子元器件的禁运政策也给我国高性能的航空航天装备的研制和生产造成了较大影响。 2.信息安全隐患 由于西方国家的技术先进性和国家间利益冲突,进口电子元器件可能会在设计、制造、封装、测试等环节被人为植入后门,如IP核可能被嵌入后门、掩膜

制版及高端封装也可植入后门。这些后门可窃取我国装备的数据甚至摧毁设备,并可能进一步通过网络传播病毒和木马,严重影响我国的信息安全。比如,2008年,美国国家安全局的一台发电机控制系统受到攻击后造成物理损坏。2010年,德国发现首个专门针对工业控制系统芯片的破坏性病毒。可见,在国防和信息安全建设中如果不能实现电子元器件的自主可控,则会始终处于受制于人、被动挨打的局面。 3.装备质量风险 由于各种客观因素,航空航天装备使用了部分工业级元器件,这些工业级元器件大多通过代理商购买,无法获取相关的质量证明文件,个别已停产元器件甚至是翻新件。同时,部分大规模集成电路国内也无相应的测试手段。因此,部分进口电子元器件的性能参数、可靠性水平等往往只能随设备进行测试,无法预先开展检测和筛选工作,导致在设备使用过程中可能存在参数异常、早期失效等情况。进口电子元器件存在的质量风险已严重影响了航空航天装备的研制、生产、以及使用。 二、元器件国产化替代中的问题 由于航空航天装备使用进口电子元器件的保障困难,在安全隐患、质量风险等方面的诸多问题,因此,大力推进进口电子元器件的国产化替代,已经成为一项构筑国家信息安全、保卫国家独立外交能力的紧迫而艰巨的任务。虽然,我国已在元器件国产化替代方面加大投入并取得了很大进展,但是由于各单位在元器件国产化替代方面执行力度不一,元器件国产化替代仍存在一些问题。

OrCAD中元件批量替换、更新与修改属性方法

问题一:有时要对原理图中某一个元件批量替换,或者给同一种元件统一添加属性值,这就要用到replace cache和update cache命令。 方法一.批量替换 replace cache 打开cache,选中要替换的元件,如图所示 右键,replace cache

弹出替换对话框 Browse选择元件库,new part name栏选择新的元件,该元件用来替换原来的元件。 Action中选择是否保留原来的属性,如果选择,那么原来的元件编号等信息保留,如果选择replace schematic properties,原来的属性全部丢失,使用元件库中的默认属性替换。OK,执行替换。 方法二.批量更新 update cache 1. 打开cache 2. 选择要更新的元件 3. 右键 update cache 这两个命令很像,但是有区别。 1. replace cache可以改变元件库的连接,选择不同的库即可。可以使不同的元件,也可以在不同的库中。而update cache不能改变原理图中元件和元件库之间的连接关系,只能把新的user properties属性带进来。 2. 如果在元件库中添加了元件的footprint信息,想通过对cache操作带到原理图中,只能用replace cache命令。

问题二:OrCAD原理图中如何批量修改元件封装属性 方法一: 这个方法只能批量修改同一页原理图里的元件封装。 打开要修改的元件所在页,按CTRL+F调出查找对话框,如果要修改所有电阻的封装,其设置如下图所示: 点“OK”后我们看到所有电阻都被选定了(当然其它不是电阻而以R开头命名的元件也被选中了,我们可以最后再单对这类元件进行修改)

oB2532的替换驱动芯片茂捷M5832

描述 M5832 应用于小功率 AC/DC 充电器和电源适配器的高性能离线式脉宽调制控制器。该芯片是一款基于原边检测和调整的控制器,因此在应用时无需 TL431 和光耦。芯片内置了恒流/恒压两种控制方式,其典型的控制曲线如图 1 所示。在恒流控制时,恒流值和输出功率可以通过SEN 引脚的限流电阻RS 设定。在恒压控制时,芯片在 INV 脚采样辅助绕组的电压,进而调整输出。在恒压控制时还采用了多种模式的控制方式,这样既保证了芯片的高性能和高精度,又保证了高效率。此外,通过内置的线损补偿电路保证了较高的输出电压精度。 典型应用图 特征 ● 恒压和恒流精度可达 5% ● 原边控制模式,无需 TL431 和光耦 ● 非连续模式下的反激拓扑 ● 准谐振开关模式,减小开关损耗 典型应用图

极限参数 注:如果器件工作条件超出上述各项极限值,可能对器件造成永久性损坏。上述参数仅仅是工作条件的极限值,不建议器件工作在推荐条件以外的情况。器件长时间工作在极限工作条件下,其可靠性及寿命可能受到影响。 芯片框图 脚位示意图

应用信息 ●描述 M5832是一款低成本、高性价比的脉宽调制控制器,适用于离线式小功率AC/DC电池充电器和电源适配器。它采用原边控制方式,因此不需要 TL431 和光耦。M5832 应用于工作在非连续模式下的反激式系统中,内置的次级恒压采样电路能够提供高精度恒流/恒压控制,很好地满足大多数电源适配器和充电器的要求。 ●启动 M5832供电电源端是 VDD。启动电阻提供了从高压端到 VDD 旁路电容的直流通路,为芯片提供启动电流。 M5832的启动电流小于 20uA,因此 VDD 能够很快被充到UVLO(off)以上,从而使芯片快速启动并开始工作。采用较大的启动电阻可以减小整机的待机功耗。一旦 VDD 超过 UVLO(off),芯片就进入软启动状态,使M5832的峰值电流电压逐渐从 0V 增加到 0.9V,用以减轻在启动时对电路元件的冲击。VDD 的旁路电容一直为芯片提供供电直到输出电压足够高以至于能够支撑 VDD 通过辅助绕组供电为止。 ●恒流工作 M5832的恒压/恒流特征曲线如图1所示。M5832被设计应用 于工作在非连续模式下的反激式系统中。在正常工作时,当 INV 电压低于内部 2.0V 的基准电压好时,系统工作在恒流模式,否 则系统工作在恒压模式。当次级输出电流达到了系统设定的最大

PROE装配中替换组件元件的六种方法

PROE装配中替换组件元件的六种方法 大家对于替换元件的运用,大多都还是停留在最最初级的阶段,对于此命令的运用,并没有将他最大的效率发挥出来! 替换元件远远不是大家想像的那么简单,其功能的强大,只要你能恰当的运用,一定能够让你在设计变更和参考中,更加的游刃有余,得心应手! 替换元件,一共有六种方法: 不相关的元件 通过复制 参考模型 互换 族表 布局 接下来,我们将分别对这六种方法进行叙述和运用!在运用各个方法的同时,我们对其元件替换的自动处理程度和装配参照父子关系的影响作出评定. 命令位置:装配菜单,编辑-----替换 第一种方法:替换为不相关的元件 此种方法,大多数朋友都会,也好理解.相当于将该零件删除,再重新装配一个,只不过不须点击加入元件命令而已(我自己的理解,不一定正确),因此效率很低!因为我们替换元件后,须得为其重新指定约束,如果该元件在装配中没有子特征,重新

指定即可,如果有下属子特征,其替换后的结果将会不堪设想,非常麻烦! 下面我们将演示如何将下图中的screw_1(红色螺丝)替换为screw_2(淡绿色螺丝) 按住CTRL键选择两个screw_1零件,右击,在快捷菜单中,选择替换! 出现替换对话框选择并screw_2(screw_2得存在于当前目录中,这个好像是废话, ,如果不在,则可将其复制到当前目录),打开,确定oK,出现了讨厌的元件定位对话框, 不要怕, ,我们一步步定好约束条件!第二种方法:替换为通过复制 通过复制的意思,就是说把要被替换的元件,复制成一个新的元件,约束条件不变! 通俗一点说:事实上就是产生了一个新的元件,此新元件和被替换的元件是一模一样的,定位约束条件也是一样的!你在这个新元件上增删特征,改变改寸,就变成与被替换元件不一样了,否则就是一模一样的! 有没有必要这样的阐述? 其实自己理解,自己会做,并不是很难,如果你也让别人理解,别人会做,是不是会难一点呢?呵呵!人其实在大多数时候,应该学会换位思考!如此,你会发现更多,当然你也会学习更多! 让你在喧闹的都市,蒙着眼睛生活一天,你是否会发现,盲人的世界会和你以前想的有些许不同?如果你能想想当初挑灯

OB2536-被(茂捷)M5836替代

OB2536- MOJAY(茂捷)M5836替代书 OB2536可以被MOJAY(茂捷)M5836替代, M5836具有电源软启动控制和多种带自动恢复的有效保护,它包含逐周期电流限制,VDD 过压保护,VDD箝位和欠压保护等。另外,M5836还有优良的EMI性能和频率抖动控制特性,使用M5836可获得高精确的恒压恒流特性 极限参数 全电压范围内,恒压调节精度误差<5%,恒流调节精度误差<5%

●原边采样和调节,无需光耦和TL431 ●可编程CV和CC调节 ●可设定恒流和输出功率 ●内置原边反馈恒流控制 ●内置自适应峰值电流调节 ●内置原边变压器电感补偿 ●可外部调整的输出线压降补偿 ●开机软启动 ●内置MOS开关管 ●内置前沿消隐电路(LEB) ●可逐周期电流限制 ●带有回差的欠压锁定(UVLO) ●VDD过压保护(OVP) ●VDD箝位功能 应用领域 适用于中小功率AC/DC离线式开关电源 ●手机充电器 ●数码相机充电器 ●小功率适配器 ●PC、TV等电器的辅助电源 ●线性调节器/替代RCC变换器 ●恒流LED照明 M583X是一颗高性价比开关电源芯片,用于低功耗离线式AC/DC电源适配器与电池充电器。芯片通过原边取样来进行输出电压的调整,由此可以节省光耦与TL431。M583X内置恒流/恒压控制电路,由此获得较高的恒流/恒压精度,可以满足绝大部分电源适配器与电池充电器的使用要求。由于具有恒流特性,因此也可以应用于LED市场。 ●启动电流和启动控制 M583X的启动电流非常低,所以VDD端电容电压可以很快充至开启电压。启动电路中可

以使用一个大阻值的电阻,在满足启动要求的同时,减小工作时的损耗。 ●工作电流 M583X的工作电流低至2.5mA,所以VDD启动电容可以取更小值,同时借助于多工作模式的特点,可以提高整体效率。 ●软启动 M583X内置有软启动功能,可以减少系统上电启动时各元器件的电压应力。当VDD电压达到UVLO(OFF)时,芯片内部电路会将峰值电流阈值电压逐渐提升,具体来说是由接近于0V 提升至正常工作时的0.9V。芯片的每一次重启都会伴随着这个软启动过程。 ●恒流/恒压工作 M583X在充电器应用中,未充电的电池首先在恒流状态下进行充电,当电池将要充满时,充电阶段会转换为恒压模式。在电源适配器的应用中,系统正常只工作于恒压状态。在恒流模式下,系统限定了输出电流,并且不论输出电压如何下降,系统只确保输出电流恒定。而在恒压模式下,系统通过原边取样来进行输出电压的调整。 ●工作原理 为了确保实现M583X的恒流/恒压控制,反激电源系统需要设计工作于断续模式(DCM)下,具体可以参见前面的典型应用图1。当反激系统工作于断续模式下,输出电压可以通过辅助线圈来取样。在功率MOSFET导通阶段,负载由输出端电容Co来提供,此时原边电流上升。当功率MOSFET关断时,原边电流按下述等式1.1 向副边传递: Is=(Np/Ns)Ip (1) 辅助绕组电压如下式: Vaux=(Naux/Ns)×(Vo+ΔV) (2) 通过在辅助线圈与INV(PIN 3)之间设置电阻分 压电路,辅助线圈的电压在每个消磁阶段将结束的时 候被采样,并且这个采样电压将会被保持直到下一个 采样周期。采样电压与内部EA(误差放大器)的参考电压Vref(2.0V)进行比较,它们之间的误差将被放大。EA的输出端COMP反映了负载情况,这个脚上的电压也决定了PWM的开关频率,通过这样一个闭环控制,M583X实现了对恒定输出电压的控制。

PROE装配中替换组件元件的六种方法

PROE装配中替换组件元件的六种方法[复制链接] 大家对于替换元件的运用,大多都还是停留在最最初级的阶段,对于此命令的运用,并没有将他最大的效率发挥出来! 替换元件远远不是大家想像的那么简单,其功能的强大,只要你能恰当的运用,一定能够让你在设计变更和参考中,更加的游刃有余,得心应手! 替换元件,一共有六种方法: 不相关的元件 通过复制 参考模型 互换 族表 布局 接下来,我们将分别对这六种方法进行叙述和运用!在运用各个方法的同时,我们对其元件替换的自动处理程度和装配参照父子关系的影响作出评定. 命令位置:装配菜单,编辑-----替换 第一种方法:替换为不相关的元件 此种方法,大多数朋友都会,也好理解.相当于将该零件删除,再重新装配一个,只不过不须点击加入元件命令而已(我自己的理解,不一定正确),因此效率很低!因为我们替换元件后,须得为其重新指定约束,如果该元件在装配中没有子特征,重新指定即可,如果有下属子特征,其替换后的结果将会不堪设想,非常麻烦! 下面我们将演示如何将下图中的screw_1(红色螺丝)替换为screw_2(淡绿色螺丝) 按住CTRL键选择两个screw_1零件,右击,在快捷菜单中,选择替换! 出现替换对话框选择并screw_2(screw_2得存在于当前目录中,这个好像是废话, ,如果不在,则可将其复制到当前目录),打开,确定oK,出现了讨厌的元件定位对话框, 不要怕, ,我们一步步定好约束条件!第二种方法:替换为通过复制 通过复制的意思,就是说把要被替换的元件,复制成一个新的元件,约束条件不变! 通俗一点说:事实上就是产生了一个新的元件,此新元件和被替换的元件是一模一样的,定位约束条件也是一样的!你在这个新元件上增删特征,改变改寸,就变成与被替换元件不一样了,否则就是一模一样的! 有没有必要这样的阐述? 其实自己理解,自己会做,并不是很难,如果你也让别人理解,别人会做,是不是会难一点呢?呵呵!人其实在大多数时候,应该学会换位思考!如此,你会发现更多,当然你也会学习更多! 让你在喧闹的都市,蒙着眼睛生活一天,你是否会发现,盲人的世界会和你以前想的有些许不同?如果你能想想当初挑灯钻破衣的种种遭遇,再看看论坛上有些朋友有求助帖,你会不会想帮一把? 呵呵,扯远了! 看下图演示我们发现元件没除了名称不同,没有任何变化 当然,这个时候,你可修改screw_1_2.PRT,他已经与screw_1.PRT没有了任何关系!我相信你将screw_1_2.PRT改成screw_2.PRT的模样,没有任何问题 ,你同意吗? 第三种方法:替换为参考模型 准确的说,应该说成:用收缩包络模型替换元件 利用这种替换方法,可用收缩包络模型替换主模型(反之亦然),同时维持所有的有效参照。可用另一收缩包络模型来替换某一收缩包络模型,并保持参照

一款已经成业有20年之久的老牌优秀音频功放类ic芯片

一款已经成业有20年之久的老牌优秀音频功放类ic芯片 伴随着功放ic芯片应用不断广泛。作为国产音频功放生产商的茂捷半导体。在2013年生活生产出第一代音频功放ic芯片M3110,时。国产电源ic芯片,功放ic芯片周围群狼环伺, 作为15W左右高效立体D声,音频功放ic芯片的业界老大哥TPA3110芯片。无不被众多音频功放从业者的创新对象,其中作为后起之秀的AD52068,和国产M3110,是众多跟随者中最为优秀的创新者。 尽管作为一款已经成业有20年之久的老牌优秀音频功放类ic芯片,TPA3110和AD52068以及M3110都对其进行周期性的升级。尽管三大厂商对其音频功放ic芯片升级的目标不同。作为TPA3110的厂商主要是对在克服器高温效果下的性能变换特征。周期大概是3到5年时间。作为AD厂商,则偏重于功放能耗方面的调试。周期大致是2年到3年。作为国产音频功放ic的后来居上者,M3110,在维持封装统一的要求下。对高效转化。能耗控制。温度转换,音频控制。节能环保方面都有着不断的创新与进步,M3110音频功放ic 芯片厂商作为国产电源管理ic的专业科技企业,保持了中国的工匠精神的严谨与中国人所特有勤奋与开拓精神,对每一款旗下的产品都不断的改进,所以M3110的升级周期大致是1.5年到2年之间。 作为茂捷半导的一款老产品M3110,在第四次升级时。为能提高功效。突出对其应用的成品产品特点,优化了M3110的电压工作范围,从以前的1.5V-28V,优化到现在的4.5V-18V 使其在供电的波动区间会大大减少。降低产品的音频功放要求,相对于TPA3110音频效果更好,音质更逼真。在测试时,应用到VR音频系统时。音质更细腻! 茂捷(mojay)官网对M3110本次升级时自2017年3月后对新注入的全新六级能耗标准执行工艺,在音频功效上: 16V供电,当负载为 8Ω、总谐波失真为10%时,2×15W

各种元器件名称及符号

YF是防火阀。 给你提供些资料,绝对有用。可不可以再追加些分数啊? 电路图常用符号: AC 交流电 DC 直流电 FU 熔断器 G 发电机 M 电动机 HG 绿灯 HR 红灯 HW 白灯 HP 光字牌 K 继电器 KA(NZ) 电流继电器(负序零序) KD 差动继电器 KF 闪光继电器 KH 热继电器 KM 中间继电器 KOF 出口中间继电器 KS 信号继电器 KT 时间继电器 KV(NZ) 电压继电器(负序零序) KP 极化继电器 KR 干簧继电器 KI 阻抗继电器 KW(NZ) 功率方向继电器(负序零序) KM 接触器 KA 瞬时继电器;瞬时有或无继电器;交流继电器 KV电压继电器 L 线路 QF 断路器 QS 隔离开关 T 变压器 TA 电流互感器 TV 电压互感器

W 直流母线 YC 合闸线圈 YT 跳闸线圈 PQS 有功无功视在功率 EUI 电动势电压电流 SE 实验按钮 SR 复归按钮 f 频率 Q——电路的开关器件 FU——熔断器 FR——热继电器 KM ——接触器 KA——1、瞬时接触继电器 2、瞬时有或无继电器 3、交流继电器KT——延时有或无继电器 SB——按钮开关 Q——电路的开关器件 FU——熔断器 KM——接触器 KA——1、瞬时接触继电器 2、瞬时有或无继电器 3、交流继电器KT——延时有或无继电器 SB——按钮开关 SA 转换开关 电流表 PA 电压表 PV 有功电度表 PJ 无功电度表 PJR 频率表 PF 相位表 PPA 最大需量表(负荷监控仪) PM 功率因数表 PPF 有功功率表 PW 无功功率表 PR 无功电流表 PAR 声信号 HA 光信号 HS 指示灯 HL 红色灯 HR

茂捷M5576

概述: M5576是一款高集成度、高性能、电流模式PWM控制芯片,离线式AC-DC反激拓扑结构,具备低待机功耗和低成本优点。正常工作下,PWM开关频率处于合理的范围内,在空载或轻载条件下,IC工作在“跳周期模式”来减少开关损耗,从而实现低待机功耗和高转换效率,M5576提供完善的保护功能,包括自动恢复保护、逐周期电流限制(OCP)、过载保护(OLP)、VDD 的欠压锁定(UVLO)、过温保护(OTP)和过电压(固定或可调的)保护(OVP),具备抖频功能,改善系统的EMI性能。 特点: ?软启动功能,减少功率MOSFET的VDS应力 ?跳周期模式控制的改进,提高效率降低待机功耗 ?抖频功能,改善系统EMI性能 ?消除音频噪声 ?65KHz的开关频率 ?完善的保护功能 ?VDD欠压保护 ?逐周的过流阈值设置,恒定输出功率 ?自动恢复式过载保护(OLP) ?自动恢复式过温保护(OTP) ?锁定型的VDD过压保护(OVP) ?锁定型的过温保护(OTP) ?过压保护点OVP通过外部稳压二极管可调 ?采用SOT-23-6和DIP-8封装 应用: ?手机充电器 ?上网本充电器 ?笔记本适配器 ?机顶盒电源 ?各种开放式开关电源

产品规格分类: 典型应用: 图1M5576SR应用图SOT-23-6

图2M5576PR应用图DIP-8 管脚排列图: M5576PR M5576SR 图3DIP-8(顶部视图) 图4SOT-23-6(顶部视图)管脚描述: 芯片使用时极限参数:

注:如果器件工作条件超出上述各项极限值,可能对器件造成永久性损坏。上述参数是工作条件的极限值,不建议器件工作在推荐条件以外的情况。器件长时间工作在极限工作条件下,其可靠性及寿命可能受到影响。 芯片内部框图: 图5M5576内部框图

DXP批量替换元器件样式不改变参数方法整理

相信大多数使用DXP软件的硬件工程师们都会因为公司老版本图纸的元器件原理图样式不符合公司最新标准而苦恼,如何能够将数量众多的电阻、电容进行替换原理图样式,而不改变各自的阻值、容值、PCB封装等重要参数呢? 下面是具体操作步骤: 1、将工程原理图库中电阻样式改为最新公司标准规范画法。 2、在原理图编辑窗口中,点击tools-update from libraries,弹出的对话框如下所示: 3、在上述对话框左侧可以选择需要替换元器件样式的原理图页,全部或部分选中。在左上角schematic sheets对话框中可以点右键选择all on或all off进行快速简便操作。 4、左下角settings 对话框中可以对更新设置进行更改和自定义,此处建议默认选项即可。 5、在右侧components types对话框中,可以选择要进行更新的原理图库器件。同理,可以点右键选择all on或all off进行快速简便操作。此处我们只选择RES这个器件,如下图所示: 6、点击next按钮,出现下面图示的对话框:

7、在上图update from library对话框中,可以看到所有引用RES原理图库器件的电阻列表,在这里我们默认全部选中进行更新替换。同样,此处all off 跟all on操作也是隐藏在右键菜单中。 8、下面的步骤是最重要,最关键的操作。在右侧actions栏中,在Full Repalce列点右键, 选择All Off。这时会出现下图样子,右边三列Graphical、Parameters、Models呈现选中状态: 封装等参数就不会被改变。点击Finish按钮,出现下面图示对话框: 换样式完成,不过电路图会发生些自动改动,电阻位置可能需要手动去调整回原位。

茂捷M5573副边反馈外置MOS兼容绿达GR8837

描述 ?M5573是一款优化的高性能高集成的用于反激式变换器的电流模式PWM控制芯片,具备低待机功耗和低成本的优点。 ?正常工作下,PWM开关频率通过外部电阻可调。在空载或轻载条件下,IC就会工作在“跳周期模式” 来减少开关损耗,从而实现低待机功耗和高转换效率的实现。 ?M5573提供全面的保护,包括自动恢复保护,逐周期电流限制(OCP),过载保护(OLP)、带迟滞功能的VDD欠压保护,和过电压(固定或可调的)保护(OVP)。 ?M5573频率抖动能实现优良的EMI性能。 ?M5573在工作中消除了低于20kHz音频噪声的消除。 ?M5573采用SOT-23-6封装。 典型应用图 典型应用图 特征 ?软启动功能,减少应力功率MOSFETVDS ?降低EMI频率抖动功能 ?跳周期模式控制的改进,提高效率降低待机功耗 ?最小功率的备用电源设计 ?消除音频噪声 ?开关频率通过外部电阻可调 ?综合保护性能 1.带迟滞功能的VDD欠压保护 2.逐周的过流阈值设置,在全电压范围内恒定输出功率 3.过载保护(OLP)与自动恢复 4.自动恢复的VDD过压保护(OVP) 应用领域

?适用于AC/DC反激式变换器?手机充电器,上网本充电器?笔记本适配器 ?机顶盒电源 ?各种开放式开关电源 引脚功能描述 绝对值范围 芯片框图

应用信息 M5573是一款优化的高性能高集成的用于反激式变换器的电流模式PWM控制芯片,具备低待机功耗和低成本的优点,扩展模式大大降低了待机功耗,方案设计适应国际节能的要求。 ●启动电流和启动控制 M5573启动电流非常低,便于获取高于VDD的UVLO值并迅速启动。因此,高阻值启动电阻可减少功率损耗,并能在应用中稳定可靠的启动。 ●工作电流 M5573工作电流低至1.4mA。跳周期模式与工作电流一起扩展能实现较高效率。 ●软启动 M5573在通电时触发一个4ms的软启动来降低启动时的应力。当VDD达到VDD_O,SE尖峰电压由0.15V逐渐升高增至最大。每次重启后都会重新软启动。 ●频率抖动干扰的改进 M5573集成了频率抖动(开关频率调制)功能进行扩频,最大限度地降低了EMI带宽,简化了系统设计。 ●跳周期模式操作 在轻载或空载状态,开关电源的功耗来源于开关MOSFET的损耗、变压器磁心损耗和启动电路损耗,功率损耗的大小在于开关频率的比例。较低的开关频率,能降低功率损耗,从而节约了能源。

电子元件原理资料教学文案

电 子 元 件 原 理 简 介 品质与效率是企业 发展的命脉﹐是公 司永恒的旗帜 工程PE课2005/3/20

前言 为了加强本公司员工的品质观念﹐提高其品质意识﹐加深其对电子组件的认 识﹐提高各员工的工作素质﹐从而达到提高产品品质﹐提高本公司产品市场竞争 力﹐提升产品品牌形象的目的﹐特制订本手册﹐便于各位员工学习了解电子组件 及相关知识﹐并且在生产中积极运用所学知识﹐正确作业﹐同时提高品质和效率 ﹐大家共努力﹐与公司同发展。 2

目录 第一章电阻 (4) 第二章电容 (9) 第三章晶体管 (12) 第四章二极管 (14) 第五章电感 (15) 第六章杂项类 (16) 第七章电阻﹑电容的公式与各种零件符号识别 (17) 第八章静电危害与防护 (20)

第一章电阻(R) 一.电阻的定义及相关概念 用以降低电压,限制电流,并且有一定阻值的组件称为电阻器,简称电阻。 一般用R表示﹐基本单位为欧姆(符号: Ω)﹐常用单位有:欧姆(Ω)﹑千欧(KΩ)和兆欧(MΩ) 其换算关系为1KΩ=103Ω1MΩ=103KΩ1MΩ=106Ω 电阻的额定功率:系指电阻在正常的温度﹑湿度下,正常工作时所能承受的最大消耗功率,即为电阻的额定功率.其基本单位为瓦(W)﹐常用单位有千瓦(KW) 其相关公式P=UI, P=U2/R, P=I2R 二. 电阻的分类及作用: 1.按结构分: (1)固定电阻(R):一般可作降流﹑降压﹑分压﹑作负载等. (2)半可变电阻(S-VR):有控制﹑调整的作用. (3)可变电阻(VR):VR和S-VR在电子中没严格区别,相当电位器,而在Display中一般半可变电阻用VR表示. 2.按我司料号准则分: (1)碳膜电阻(CF) A.一般其功率多为:1/8W﹑1/4W﹑1/2W等. B.其主要作用:阻流﹑阻压﹑分压﹑降压﹑负载. 是目前电子、电器、信息产品使用量最大,价格最便宜,品质稳定性信赖度高之碳膜固定电阻器。此电阻器系以高温真空中分离出有机化合物之碳,紧密附着于瓷棒表面之碳膜为电阻体,而加以适当之接头后切薄而成,并在其表面涂上环氧树脂密封保护之。 我厂料号:210-ABC-DEFG-H ABC-----------电阻值 1R5:1.5ohm 103:10K ohm 100:10ohm 104:100K ohm 102:1Kohm 105:1M ohm DE--------------额定功率 02:1/2W 10:1W 04:1/4W 20:2W 08:1/8W F----------------误差 1:+-1%(F) 2:+-2%(G) 5:+-5%(J) 6:+-10%(K) 7:+-20%(M) 以下各料号所表示具体意思参见料号准则。 (2) 金属氧化皮膜电阻 A.一般其额定功率多为:1/4W﹑1/2W﹑1W﹑2W.5W.10W B.其功率较大,零件软脚一般需加高5mm~13mm,以利于散热, 其料号为213-ABC-DEFG

电子元件的替代选用

普通整流二极管: IN4001-IN4007 IN5401-IN5408 IN5392-IN5397 IN5391-IN5399 IN4931-IN4937 6A1-6A10 RL201-RL207 S5688G 快速整流二极管: FR102 FR108 FR201-FR208 FR302-FR308 FR502-FR508 FR601-FR608 IN4933-IN4937 开关高频二极管: IN4148 IN4150 IN4152 IN4448 IN5711 I6263 IS1555 IS1588 IN914 1s1588 SS83 ISS119 ISS133 ISS176 BA V20 BA V21 BAW56 BAW62 2AK系列 高频检波二极管: 1N60 MA700 ISS86 ISS106 ISS97 ISS99 2AP9 2AP11 稳压二极管 稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。 1、稳压二极管的稳压原理:稳压二极管的特点就是击穿后,其两端的电压基本保持不变。 这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电 压变动时,负载两端的电压将基本保持不变。 2、故障特点:稳压二极管的故障主要表现在开路、短路和稳压值不稳定。在这3种故障中, 前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。常用稳压二极管的型号及稳压值如下表: 型号1N4728 1N4729 1N4730 1N4732 1N4733 1N4734 1N4735 1N4744 1N4750 1N4751

常用电子元器件及封装

1 常用电子元件及封装 1、电阻 使用的贴片电阻封装常见为0603和0805两种,。一般的贴片电阻阻值精度为5%,0603封装电阻功率为1/10W,0805封装电阻功率为1/8W。中发通常100只起售 如图: 直插封装的电阻用于大功率的场合,体积越大的功率越大,一般1/4W的就够用了 2、电容 电容的容值小于等于100nF时,可以使用0603或0805封装贴片陶瓷电容。智能车上最常用的容值为100nF(104),容值精度为20%,耐压50V。 如图:

电容的容值大于100nF时,要根据应用场合的需要来选择使用贴片钽电容、贴片陶瓷电容或直插式铝电解电容。 贴片钽电容特点是贵、稳定、高频特性好。常用的容值为10uF、100uF、470 uF 等,耐压应取工作电压的二倍以上。注意使用时极性不要接反,带杠的是正极。 如图: 贴片陶瓷电容是新兴的替代小型贴片钽电容的产品,小容量(如10uF)价格较贴片钽电容便宜得多,体积基本相同。具有同样良好的高频特性和更低的内阻,但容量随温度变化大,适合用在电源的整流和去耦方面。 如图:

直插式铝电解电容最大的特点就是便宜,和其他电容相比,单位容量价格最低。它也是用于电源的整流和去耦方面,常用的容值为100uF、470uF、1000uF等。缺点是自身带有感性,使用时需并联陶瓷电容以提高高频性能。容值精度较低且随温度变化,寿命相对较短。有极性不可反接,带杠的是负极。 如图: 3、电感 电感使用1315和0808两种直插封装: 1315封装电感如下图:

0808封装电感如下图:

4、二极管

整流二极管(1N4007),高速二极管(FR157、1N4148),肖特基二极管(1N5819、1N5822),瞬态电压抑制二极管(P6KE),必须使用括号内标明的型号或用与之性能相近的型号替换,建议使用贴片封装。 发光二极管(LED)有0603、0805、1206、1210等贴片封装和Φ3、Φ5等直插封装,封装体积越大亮度越高,可承受的电流也越大。颜色自选(蓝、紫、白这三种颜色的LED较贵)。二极管带杠、带点、腿短一端为负极。

基本元器件介绍

基本元器件介绍 一、基本概念 1、单位 长度单位:1m=102cm=103mm=106um=109nm=1012pm 电容单位:1F=103mF=106uF=109nF=1012pF 电阻单位:1Ω=103mΩ=106uΩ=109nΩ=1012pΩ,1MΩ=103kΩ 电感单位:1H=103m H=106u H=109n H=1012p H 1inch(英寸)=2.54cm 1mil(密耳)=1/1000inch=0.0254mm 2、有源元件无源元件概念 有源元件:电子元器件工作时,其内部有电源存在,则称为有源元件。需要外部能源实现其特定功能。一般用于信号放大、转换等。例如:晶体管、MOS管。无源元件:在电路中无需加电源即可在有信号时工作。不需要外加电源条件下,就可以实现其特性的电子元器件。例如:电阻、电容、电感。 3、数字电路基础知识: 用数字信号完成对数字量进行算数运算和逻辑运算的电路,数字电路仅存在逻辑“0”和“1”两种电平信号。 (1)逻辑电平: 数字电压的高、低电平通称为逻辑电平,即数字电路中的“0”和“1”。

I、TTL(Transistor-Transistor Logic)电平:规定+5V为逻辑“1”,0V为逻辑“0”。51单片机使用的是TTL电平。 II、LVTTL(Low Voltage TTL)电平:规定+3.3V为逻辑“1”,0V为逻辑“0”。 一些小模块可以使用LVTTL电平,如摄像头模块或者CH340下载器。 (2)数制: I、二进制Binarysystem(B):基数为2,用0和1两个数码表示,逢二进一。II、八进制Octalsystem(O):基数为8,用0~7表示,逢八进一。 III、十进制Decimalsystem(D):基数为10,用0~9表示,逢十进一。 IV、十六进制Hexadecimalsystem(H):基数为16,用0~F表示,0~9,超过十则用A~F表示。在程序中,习惯在数字之前加0x来表示一个十六进制的数,例如:0xAF,0x7A。 V、二进制、十六进制互相转换:四位二进制数计数从0000~1111,正好对应0~15,因此以四位二进制数为一个单位与十六进制互相转换。

PROE装配中替换组件元件的六种办法

精心整理PROE装配中替换组件元件的六种方法 大家对于替换元件的运用,大多都还是停留在最最初级的阶段,对于此命令的运用,并没有将他最大的效率发挥出来! 替换元件远远不是大家想像的那么简单,其功能的强大,只要你能恰当的运用,一定能够让你在设计变更和参考中,更加的游刃有余,得心应手! 互换 族表 布局 接下来, . 个,只不过不须点击加入元件命令而已(我自己的理解,不一定正确),因此 效率很低!因为我们替换元件后,须得为其重新指定约束,如果该元件在装 配中没有子特征,重新指定即可,如果有下属子特征,其替换后的结果将会 不堪设想,非常麻烦!

下面我们将演示如何将下图中的screw_1(红色螺丝)替换为 screw_2(淡绿色螺丝) 按住CTRL键选择两个screw_1零件,右击,在快捷菜单中,选择替换! 出现替换对话框选择并screw_2(screw_2得存在于当前目录中,这个好像是废话,,如果不在,则可将其复制到当前目录),打开,确定oK,出现了讨厌的元件定位对话框,不要怕,,我们一步步定好约束条件!第二种方法:替 件不变 ,改变改寸, ,应该 论坛上有些朋友有求助帖,你会不会想帮一把? 呵呵,扯远了! 看下图演示我们发现元件没除了名称不同,没有任何变化 当然,这个时候,你可修改screw_1_2.PRT,他已经与screw_1.PRT没有了任何关系!我相信你将screw_1_2.PRT改成screw_2.PRT的模样,没有任何问题,你同意吗?

[u][color=#1e4b7e]第三种方法:替换为参考模型 准确的说,应该说成:用收缩包络模型替换元件 利用这种替换方法,可用收缩包络模型替换主模型(反之亦然),同时维持所有的有效参照。可用另一收缩包络模型来替换某一收缩包络模型,并保持参照 它可能是"收缩包络"零件(带有要替换模型的外部"收缩包络"特征的零 收缩包络" 懂了吗 好吧, [u][color=#1e4b7e]出现特征对话框,打开参考模 型,screw_1.PRT[/color][/u] [u][color=#1e4b7e][/color][/u] [u][color=#1e4b7e]设置放置条件!一般情况我们选择缺省,是因为这两个元件的坐标,及构建的特征的位置差不多相同,当然,你也可以用现有

常用电子元件资料全

第二节常用电子元器件型号命名法及主要技术参数一.电阻器和电位器 1.电阻器和电位器的型号命名方法 (1)精密金属膜电阻器 R J 7 3 第四部分:序号 第三部分:类别(精密) 第二部分:材料(金属膜) 第一部分:主称(电阻器) (2) 多圈线绕电位器 W X D 3 第四部分:序号 第三部分:类别(多圈) 第二部分:材料(线绕) 第一部分:主称(电位器) 2 (1) 额定功率 电阻器在电路中长时间连续工作不损坏,或不显著改变其性能所允许消耗的最大功率称为电阻器的额定功率。电阻器的额定功率并不是电阻器在电路中工作时一定要消耗的功率,而是电阻器在电路工作中所允许消耗的最大功率。不同类型的电阻具有不同系列的额定功

(2) 标称阻值 阻值是电阻的主要参数之一,不同类型的电阻,阻值围不同,不同精度的电阻其阻值系列亦不同。根据国家标准,常用的标称电阻值系列如表3所示。E24、E12和E6系列也适用于电位器和电容器。 (3) 允许误差等级 3.电阻器的标志容及方法 (1)文字符号直标法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,额定功率、允许误差等级等。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值,其文字符号所表示的单位如表5所示。如1R5表示1.5W,2K7表示2.7kW, RJ71-0.125-5k1-II 允许误差±10% 标称阻值(5.1kW) 额定功率1/8W 型号 1/8W,标称阻值为5.1kW,允许误差为±10%。 (2)色标法:色标法是将电阻器的类别及主要技术参数的数值用颜色(色环或色点)标注在它的外表面上。色标电阻(色环电阻)器可分为三环、四环、五环三种标法。其含义

元器件国产化替代解决方案说课材料

元器件国产化替代解 决方案

元器件国产化替代解决方案 一、为什么要国产化替代 电子元器件是航空航天等高端装备的基本单元,所以,电子元器件的可靠性是保证航空航天装备可靠性的基础。目前国内还有很多航空航天装备采用的是进口电子元器件。这些进口的元器件的使用主要有一下问题存在。 1.研制生产没有保障 目前,电子元器件更新换代周期越来越短。以集成电路为例,按照摩尔定律,每18个月其尺寸缩小一半,而集成度提升一倍。由于元器件的升级换代速度越来越快,以及国外厂商合并重组等原因导致的元器件停产,就给很多已服役和仍在生产的航空航天等高端装备的维护和生产带来了很大的困难。 另外,以美国为首的西方国家形成联盟,长期对我国实行严格的出口限制政策。以美国为例,制定了严格的政策和相关措施限制高新技术及产品出口。美国商务部制定了商品管制清单(Commerce Control List,CCL),严禁将清单内的电子元器件出口到相关国家和地区。这种电子元器件的禁运政策也给我国高性能的航空航天装备的研制和生产造成了较大影响。 2.信息安全隐患 由于西方国家的技术先进性和国家间利益冲突,进口电子元器件可能会在设计、制造、封装、测试等环节被人为植入后门,如IP核可能被嵌入后门、掩膜制版及高端封装也可植入后门。这些后门可窃取我国装备的数据甚至摧毁设备,并可能进一步通过网络传播病毒和木马,严重影响我国的信息安全。比如,2008年,美国国家安全局的一台发电机控制系统受到攻击后造成物理损坏。2010年,德国发现首个专门针对工业控制系统芯片的破坏性病毒。可见,在国防和信息安全建设中如果不能实现电子元器件的自主可控,则会始终处于受制于人、被动挨打的局面。 3.装备质量风险 由于各种客观因素,航空航天装备使用了部分工业级元器件,这些工业级元器件大多通过代理商购买,无法获取相关的质量证明文件,个别已停产元器件甚至是翻新件。同时,部分大规模集成电路国内也无相应的测试手段。因此,部分进口电子元器件的性能参数、可靠性水平等往往只能随设备进行测试,无法预先开展检测和筛选工作,导致在设备使用过程中可能存在参数异常、早期失效等情况。进口电子元器件存在的质量风险已严重影响了航空航天装备的研制、生产、以及使用。 二、元器件国产化替代中的问题 由于航空航天装备使用进口电子元器件的保障困难,在安全隐患、质量风险等方面的诸多问题,因此,大力推进进口电子元器件的国产化替代,已经成为一项构筑国家信息安全、保卫国家独立外交能力的紧迫而艰巨的任务。虽

相关文档
最新文档