A Stability-Indicating Ultra-Performance Liquid Chromatographic Method for Estimation of Related

A Stability-Indicating Ultra-Performance Liquid Chromatographic Method for Estimation of Related
A Stability-Indicating Ultra-Performance Liquid Chromatographic Method for Estimation of Related

A Stability-Indicating Ultra-Performance Liquid Chromatographic Method for Estimation of Related Substances and Degradants in Paliperidone Active Pharmaceutical Ingredient and its Pharmaceutical Dosage Forms

K.Hima Bindu 1,2*,I.Ugandar Reddy 1,Y.Anjaneyulu 2and M.V.Suryanarayana 1

1

Dr.Reddy’s Laboratories Ltd.Active Pharmaceutical Ingredients,IPDO,Bachupally,Hyderabad-500072,A.P.,India,and 2Department of Chemistry,J.N.T.University,Kukatpally,Hyderabad-500072,A.P.,India

*Author to whom correspondence should be addressed.Email:himabk@https://www.360docs.net/doc/b23163114.html,,bindoo_2002@https://www.360docs.net/doc/b23163114.html, Received 8February 2011;revised 21April 2011

A simple,linear gradient,rapid,precise and stability-indicating analytical method was developed for the estimation of related substances and degradants of paliperidone API and tablets.The chromatographic separations were achieved using an Acquity ultra-performance liquid chromatograph (BEH 100mm,2.1mm,1.7m m C-18column)employing 0.01M potassium dihydrogen phosphate buffer (pH 2.0)as mobile phase A and acetonitrile–water (9:1)as mobile phase B.A linear gradient (mobile phase A,mobile phase

B in the ratio of 84:16)with a 0.45mL /min ?ow rate was chosen.All six impurities were eluted within ?ve minutes of run time.The column temperature was maintained at 258

C and a detector wave-length of 238nm was employed.Paliperidone was exposed to thermal,photolytic,hydrolytic and oxidative stress conditions.The stressed samples were analyzed by the proposed method.Considerable degradation of the analyte was observed when it was subjected to oxidative conditions and impurity F was found to be the major degradant.Peak homogeneity data of paliperidone obtained by photodiode array (PDA)detection demonstrated the speci?city of the method in the presence of degradants.The method was validated with respect to linearity,precision,accuracy,ruggedness,robustness,limit of detection and limit of quanti?cation.

Introduction

Paliperidone (9-hydroxy resperidone)is the major metabolite of risperidone (1,2).It is a prolonged release oral,atypical anti-psychotic licensed for the treatment of schizophrenia in adults (3).The recommended dose is 6mg once daily,administered in the morning,although doses range from 3to 12mg once daily.Although high-performance liquid chromatography (HPLC)is a well-established,reliable technique used to control the quality and consistency of active pharmaceutical ingredients (APIs)and dosage forms,it is often a slow technique because of the complexity of some of the samples,and it can still be improved.

Ultra-performance liquid chromatography (UPLC)is a new separation technique based upon the well-established princi-ples of liquid chromatography,which utilizes sub-2m m parti-cles for the stationary phase.These particles operate at elevated mobile phase linear velocities to affect a dramatic in-crease in resolution,sensitivity and speed of analysis.Because of its speed and sensitivity,this technique has gained

considerable attention in recent years for pharmaceutical and biomedical analysis (4).

The UPLC system will signi?cantly decrease the time and cost per sample in the analytical process while improving the quality of the results.By outperforming traditional or optimized HPLC,the system allows chromatographers to work at higher ef?ciencies with a much wider range of linear velocities,?ow rates and backpressures.

Liquid chromatographic methods using different detection techniques are described in the literature for the determin-ation of risperidone and 9-hydroxy risperidone (paliperidone)in human serum and human plasma (5,6,7,8,9).Additionally,liquid chromatography–tandem mass spectrometry (LC–MS-MS)and LC with electrochemical detection methods are available for the determination of risperidone and 9-hydroxy risperidone enantiomers in human blood plasma and urine (10,11).Few analytical methods using HPLC are described in patents for the estimation of impurities in paliperidone API (12,13,14).These methods require longer run times and do not represent all the impurities and degradants studied in this paper.To the best of our knowledge,no method available in the literature can separate Impurities,A,B,C,D,E and F using only a 5-minute run time.The method was validated as per ICH guidelines (15,16).

Impurities C [-(2-chloroethyl)-6,7,8,9-tetrahydro-9-hydroxy-2-methyl-4H-pyrido [1,2-a]pyrimidin-4-one]and D [6-?uoro-3-(piperidin-4-yl)benzo[d]isoxazole]are key raw materials for the synthesis of paliperidone.Impurity E [3-(2-(4-(6-?uorobenzo [d]isoxazol-3-yl)piperidin-1-yl)ethyl)-2-methyl-7,8-dihydro-4H-pyrido[1,2-a]pyrimidine-4,9(6H)-dione]is a process-related impurity.Impurities A [3-[2-[4-[(E)-(2,4-di?ourophenyl)(hydroxy-imino)methyl]piperidin-1-yl]ethyl]-2-methyl-6,7,8,9-tetrahydro-9-hydroxy-4H-pyrido[1,2-a]pyrimidin-4-one]and B [3-[2-[4-[(Z)-(2,4-di?ourophenyl)(hydroxy-imino)methyl]piperidin-1-yl]ethyl]-2-methyl-6,7,8,9-tetrahydro-9-hydroxy-4H-pyrido[1,2-a]pyrimidin-4-one]are considered for development,because the corresponding impurities are listed in PharmEuropa for risperidone.Impurity F [4-(6-?uorobenzo[d]isoxazol-3-yl)-1-(2-(9-hydroxy-2-methyl-4-oxo-6,7,8,9-tetra-hydro-4H-pyrido[1,2-a]pyrimidin-3-yl)ethyl)piperidine-1-oxide]is a degradation product.The chemical structures and names of paliperidone and Impurities A,B,C,D,E and F are depicted in Figure 1.Although Impurities A,B and F are considered for method development and selectivity purposes,these impurities are not detected in the samples of paliperidone.

#The Author [2012].Published by Oxford University Press.All rights reserved.For Permissions,please email:journals.permissions@https://www.360docs.net/doc/b23163114.html,

Journal of Chromatographic Science 2012;50:368–372doi:10.1093/chromsci /bms011

Article

Experimental

Chemicals

Active pharmaceutical ingredient standards and samples were supplied by Dr.Reddy’s Laboratories Limited,IPDO(Hyderabad, India).Invega,the extended release tablets of paliperidone, were purchased from Janssen Pharmaceuticals.The HPLC grade acetonitrile and analytical grade ortho-phosphoric acid were purchased from Merck(Darmstadt,Germany).Water was pre-pared by using a Millipore Milli-Q Plus water puri?cation system. Chromatographic conditions and equipment

LC was carried out on a Waters Aquity UPLC with a photo-diode array detector.The output signal was monitored and pro-cessed using Empower Software.The chromatographic column was an Acquity UPLC BEH C-18column(100mm,2.1mm,and 1.7m m particle size).The separation was achieved using a linear gradient method.Mobile phase A was0.01M Potassium dihydrogen phosphate buffer and mobile phase B contained a mixture of water and acetonitrile in the ratio of10:90(v/v).

The?ow rate of mobile phase was0.45mL/min.The UPLC linear gradient program was set as:time(min)/%solution B: 0.01/16,6/16.The column temperature was maintained at 258C and the detection was monitored at a wavelength of 238nm.The injection volume was5.0m L.The diluent was a so-lution of acetonitrile and methanol(1:1).

Preparation of solutions

Sample preparation

Ten milligrams of the test sample were placed in a10-mL volumetric?ask,dissolved and diluted to the mark with diluent. An adequate number of paliperidone tablets were chosen, the two upper layers were carefully removed,and the tablets were ground to a?ne powder using a mortar and pestle.The resulting powder was transferred into a suf?cient quantity of diluent needed to obtain a1.0mg/mL concentration of paliper-idone and sonicated for15–20minutes.The resulting solution was?ltered and the?ltrate was used for

analysis.

Figure1.Chemical structure and name:(A)paliperidone;(B)Impurity A;(C)Impurity B;(D)Impurity C;(E)Impurity D;(F)Impurity E;(G)Impurity F.

A Stability-Indicating Ultra-Performance Liquid Chromatographic Method369

Standard preparation

Ten milligrams of the paliperidone standard was transferred to a10-mL volumetric?ask,dissolved and diluted up to the mark with diluent.

Speci?city–Forced degradation studies

Forced degradation studies were performed on paliperidone to prove the stability-indicating property of the method.The stress conditions employed for the degradation study of pali-peridone included light exposure(carried out as per ICH Q1B),heat(708C),acid hydrolysis(1N HCl,kept at constant stirring under re?ux conditions at608C for24hours),base hy-drolysis(0.5N NaOH,kept at constant stirring under re?ux conditions at room temperature for3hours),water hydrolysis (kept at constant stirring under re?ux conditions at room tem-perature for24hours)and oxidation(3%H2O2,kept at con-stant stirring at room temperature for2hours).For heat and light studies,the monitoring period was10days.Peak purity of the principal peak in the chromatogram of the diluted stressed samples of paliperidone was assessed using a photo diode array detector.

Method Validation

Linearity of response

Linearity of the response for all impurities was carried out at concentration levels from limit of quanti?cation(LOQ)to 150%of the speci?cation limit(0.15%),each with respect to the concentration of paliperidone.

Precision

The repeatability of the related-substance method was checked by a six-fold analysis of1.0mg/mL paliperidone spiked with 0.15%of each of the six impurities.The relative standard devi-ation(RSD)(%)of the peak area was calculated for each impurity.

Inter-and intra-day variation and analyst variation were studied to determine the intermediate precision of the pro-posed method.Intra-day precision was determined by a six-fold analysis of1.0mg/mL paliperidone spiked with0.15%of each of the six impurities.Different analysts prepared different solu-tions on different days.The RSD(%)of peak area was calcu-lated for each impurity.

Accuracy

Standard addition and recovery experiments were conducted to determine the accuracy of the method for the quanti?cation of impurities in the paliperidone sample.The study was carried out in triplicate at0.075%,0.15%and0.1875%of the analyte concentration(1.0mg/mL).The percent recovery for Impurities A,B,C,D,E and F were calculated.

Limit of detection and limit of quanti?cation

The limit of detection(LOD)and LOQ for Impurities A,B,C, D,E and F were estimated at a signal-to-noise ratio of3:1and 10:1,respectively,by injecting a series of dilute solutions of known concentration.The LOQ values were con?rmed by per-forming precision and accuracy veri?cation.

Robustness

To determine the robustness of the method,experimental con-ditions were purposely altered and the resolution between the impurities was evaluated.The?ow rate of the mobile phase was0.45mL/min.To study the effect of?ow rate on the reso-lution parameter,it was changed by0.05units from0.40to 0.50mL/min.The effect of column temperature on resolution parameter was studied at208C and308C instead of258C.In all the previously varied conditions,the components of the mobile phase were held constant.

Results and Discussion

Method development and optimization

The primary criteria for the development of a successful UPLC method for the determination of related substances and degra-dants in paliperidone was that the method should be able to determine related substances and degradants within?ve minutes of runtime and should be accurate,reproducible, robust,indicative of stability,free of interference from degrad-ation products andimpurities and straightforward enough for routine use in a quality control laboratory.One of the patents for the synthesis of paliperidone states a reversed-phase HPLC method for the estimation of Impurities C and D.Impurities A, B,E and F were not considered for analysis.The total run time for this method was approximately60minutes and further ana-lysis using this methodology showed that Impurities E and F were co-eluting,which clearly indicates that the method is not indicative of stability,because Impurity F is the major degra-dant of oxidation.As a result,further trials were completed using UPLC by using an Acquity UPLC BEH C-18column (100mm,2.1mm,1.7m m.)and0.01M potassium dihydrogen phosphate buffer(pH2.0)as the buffer.The pH of the buffer was found to be critical,because a pH of more than2.0(pH.

2.2)led to the close elution of Impurities A,B,C and D.Initial efforts were made to reduce the tailing factor of paliperidone, which was more than2.0,by adding triethylamine and diethyla-mine to the buffer.However,this led to the co-elution of Impurities E and F.As a result,the addition of triethylamine or diethylamine was avoided.Optimum separation with minimum run time was obtained by employing a linear gradient of mobile phase A and mobile phase B in the ratio of84:16,where mobile phase A was0.01M potassium dihydrogen phosphate buffer(pH2.0)and mobile phase B was acetonitrile–water (9:1).The?ow rate was set at0.45mL/min.All impurities and paliperidone showed suf?cient response at238nm and the analytical column was maintained at258C during the analysis. System suitability parameters were evaluated for paliperidone and its six impurities.The tailing factor for all six impurities was found to be less than2.0.The resolution of paliperidone and the six potential impurities was greater than1.3for all pairs of compounds.The chromatogram representing paliperi-done spiked with Impurities A,B,C,D,E and F at0.15%is shown in Figure2.

370Bindu et al.

Speci?city–Forced degradation studies

Paliperidone was not degraded under heat,light or water hydroly-sis conditions.The sample was degraded under basic and oxida-tive conditions.The major degradation product that formed under oxidative conditions was Impurity F,whereas the major degrad-ation product formed during basic hydrolysis was Impurity E.

The peak purity test results derived from the PDA detector con?rmed that the paliperidone peak was pure and homoge-neous in all the analyzed stress samples.This indicates that the method is speci?c and stability-indicating.

Linearity of response

A linear calibration plot of the method was obtained over the tested calibration ranges,i.e.,LOQ to 200%for Impurities A,B,

C,D,E and F.Correlation coef?cient (r ),slope and y -intercept for the impurities are presented in Table I .The correlation co-ef?cient obtained was greater than 0.999,indicating a linear re-sponse of the impurities.

Precision

The %RSD of percent area of Impurities A,B,C,D,E and F was found to be less than 5%,con?rming the good precision of the method.The results are tabulated in Table I .

Accuracy

The percentage recovery of Impurities A,B,C,D,E and F ranged from 90to 103.The percentage recovery of the impur-ities is listed in Table I .All the impurities are within the accept-ance limit.

LOD and LOQ

The LOD of Impurities A,B,C,D,E and F were 0.00001,0.00003,0.00005,0.00003,0.00015and 0.00008mg /mL,re-spectively,with respect to paliperidone concentration,for a 5m L injection volume.

The LOQ of Impurities A,B,C,D,E and F were 0.00005,0.0001,0.0002,0.0001,0.0005and 0.0003mg /mL,respectively,with respect to paliperidone concentration,for a 5m L injection volume.

Robustness

In all of the deliberately varied chromatographic conditions (?ow rate and column temperature),all analytes were ad-equately resolved and elution orders remained unchanged.Resolution between Impurity E and Impurity F was greater than 1.1and resolution between all other components

was

Figure 2.Chromatogram representing paliperidone spiked with Impurities A,B,C,D,E and F.

Table I

Validation Data Parameter

Impurity-A Impurity-B Impurity-C Impurity-D Impurity-E Impurity-F Linearity r 0.99960.99970.999980.99950.99920.9992Slope 277.1139.1110.0186.2101.0149.7Y -Intercept

398.949.6168.6-125.6335.91131.5Accuracy (%Recovery)LOQ (n ?3)91.693.395.690.598.392.650%(n ?3)94.594.7100.789.9102.6102.1100%(n ?3)102.098.598.397.6101.599.9150%(n ?3)99.995.697.695.5100.093.8Precision (%RSD)LOQ (n ?6) 2.5 3.9 4.6 3.5 5.0 3.7100%(n ?6) 1.9 2.2 2.2 1.3 2.9 1.0150%(n ?6)

0.7

1.3

2.00.4 1.2 1.1Rugged ness:Different day and analyst (%RSD)100%(n ?6)

2.0 1.4

3.8 2.6 2.6 2.8Robustness (Resolution)Actual ?ow 0.45mL /min

4.57.1

5.2 1.5 5.8 1.3Different ?ow 0.40mL /min 4.37.0 5.6 1.5 5.7 1.2Different ?ow 0.50mL /min 4.3

6.7 4.9 1.6 5.7 1.1Column temperature 228C 4.3 6.8 5.8 1.5 5.8 1.1Column temperature 308C 3.9

6.4

4.8

1.6

5.7

1.3

Limit of Detection 0.00001mg/mL

0.00003mg/mL

0.00005mg/mL

0.00003mg/mL

0.00015mg/mL

0.00008mg/mL

Limit of Quanti?cation

0.00005mg/mL

0.0001mg/mL

0.0002mg/mL

0.0001mg/mL

0.0005mg/mL

0.0003mg/mL

A Stability-Indicating Ultra-Performance Liquid Chromatographic Method 371

greater than 1.5for all?ow rates(0.40,0.50mL/min)and column temperatures(208C,308C).The resolutions between the impurities under various conditions are listed in Table I. Conclusion

A simple,speci?c liquid chromatographic method using UPLC was developed for the quanti?cation of related substances and degradants of paliperidone API and its pharmaceutical forms. This method was validated and found to be speci?c,precise, accurate,linear and rugged for the detection and quanti?cation of related substances and degradants of paliperidone. Acknowledgment

The authors wish to thank the management of Dr.Reddy’s Laboratories Ltd.for supporting this work.Cooperation from colleagues of Research&Development and Analytical Research &Development of Dr.Reddy’s Laboratories Ltd.is appreciated. References

1.Zhu,H.-J.,Wang,J.-S.,Markowitz,J.S.,Donovan,J.L.,Gibson,B.B.,

DeVane,C.L.;Risperidone and paliperidone inhibit p-glycoprotein activity in vitro;Neuropsychopharmacology,(2007);32:757–764.

2.Fang,J.,Bourin,M.,Baker,G.B.;Metabolism of risperidone to9-

hydroxyrisperidone by human cytochromes P4502D6and3A4;

Naunyn-Schmiedeberg’s Archives of Pharmacology,(1999);359: 147–151.

3.Kane,J.,Canas, F.,Kramer,M.,Ford,L.,Gassman-Mayer, C.,

Lim,P.,et al.;Treatment of schizophrenia with paliperidone extended-release tablets:A6-week placebo-controlled trial;

Schizophrenia Research,(2007);90:147–161.

4.Swartz,M.E.;UPLC:An introduction and review;Journal of

Liquid Chromatography&Related Technologies,(2005);28: 1253–1263.

5.Kirschbaum,K.M.,Finger,S.,Vogel, F.,Burger,R.,Gerlach,M.,

Riederer,P.,et al.;LC with column-switching and spectrophoto-metric detection for determination of risperidone and

9-hydroxyrisperidone in human serum;Chromatographia,(2008);

67:321–324.

6.Nagasaki,T.,Ohkubo,T.,Sugawara,K.,Yasui,N.,Furukori,H.,

Kaneko,S.;Determination of risperidone and9-hydroxyrisperidone in human plasma by high-performance liquid chromatography: Application to therapeutic drug monitoring in Japanese patients with schizophrenia;Journal of Pharmaceutical and Biomedical Analysis,(1999);19:595–601.

7.Jones,T.,Van Breda,K.,Charles,B.,Dean,A.J.,McDermott,B.M.,Norris,

R.;Determination of risperidone and9-hydroxyrisperidone using HPLC,in plasma of children and adolescents with emotional and be-havioural disorders;Biomedical Chromatography,(2009);23: 929–934.

8.Schatz,D.S.,Saria,A.;Simultaneous determination of paroxetine,ris-

peridone and9-hydroxyrisperidone in human plasma by high-performance liquid chromatography with coulometric detection;

International Journal of Experimental and Clinical Pharmacology,(2000);60:51–56.

9.Lerena,A.L.,Berecz,R.,Dorado,P.,de la Garza,C.S.,Norberto,M.J.,

Ca ceres,M.,et al.;Determination of risperidone and9-hydroxyrisperidone in human plasma by liquid chromatography: Application to the evaluation of CYP2D6drug interactions;Journal of Chromatography B,(2003);783:213–219.

10.De Meulder,M.,Remmerie,B.M.M.,de Vries,R.,Sips,L.L.A.,Boom,

S.,Hooijschuur,E.W.J.,et al.;Validated LC–MS/MS methods for the determination of risperidone and the enantiomers of 9-hydroxyrisperidone in human plasma and urine;Journal of Chromatography B,(2008);870:8–16.

11.Locatelli,I.,Mrhara,A.,Grabnar,I.;Simultaneous determination of ris-

peridone and9-hydroxyrisperidone enantiomers in human blood plasma by liquid chromatography with electrochemical detection;

Journal of Pharmaceutical and Biomedical Analysis,(2009);50: 905–910.

12.Santiago,I.N.I.,Chasid,N.,Chen,K.,Porter-Kleks,O.;U.S.Patent

0281100A1,(2008).

13.Koilpillai,J.P.,Kulkarni,P.B.,Kelkar,L.M.,Kale,S.A.,Potdar,S.G.,

Krishna Baban,N.,et al.;WIPO130710A2,(2009).

14.Bartl,J.,Picha,F.;U.S.Patent0036470A1;(2009).

15.ICH Q1A(R2),Stability testing of new drug substances and

products;(2003).

16.ICH Q2(R1),Validation of analytical procedures:Text and

methodology;(2005).

372Bindu et al.

变电所母线桥的动稳定校验

变电所母线桥的动稳定校验 随着用电负荷的快速增长,许多变电所都对主变进行了增容,并对相关设备进行了调换和校验,但往往会忽视主变母线桥的动稳定校验,事实上此项工作非常重要。当主变增容后,由于阻抗发生了变化,短路电流将会增大许多,一旦发生短路,产生的电动力有可能会对母线桥产生破坏。特别是户内母线桥由于安装时受地理位置的限制,绝缘子间的跨距较长,受到破坏的可能性更大,所以应加强此项工作。 下面以我局35kV/10kv胡店变电所#2主变增容为例来谈谈如何进行主变母线桥的动稳定校验和校验中应注意的问题。 1短路电流计算 图1为胡店变电所的系统主接线图。(略) 已知#1主变容量为10000kVA,短路电压为7.42%,#2主变容量为12500kVA,短路电压为7.48%(增容前短路电压为7.73%)。 取系统基准容量为100MVA,则#1主变短路电压标么值 X1=7.42/100×100×1000/10000=0.742, #2主变短路电压标么值 X2=7.48/100×100×1000/12500=0.5984 胡店变电所最大运行方式系统到35kV母线上的电抗标么值为0.2778。 ∴#1主变与#2主变的并联电抗为: X12=X1×X2/(X1+X2)=0.33125; 最大运行方式下系统到10kV母线上的组合电抗为: X=0.2778+0.33125=0.60875

∴10kV母线上的三相短路电流为:Id=100000/0.60875*√3*10.5,冲击电流:I sh=2.55I =23032.875A。 d 2动稳定校验 (1)10kV母线桥的动稳定校验: 进行母线桥动稳定校验应注意以下两点: ①电动力的计算,经过对外边相所受的力,中间相所受的力以及三相和二相电动力进行比较,三相短路时中间相所受的力最大,所以计算时必须以此为依据。 ②母线及其支架都具有弹性和质量,组成一弹性系统,所以应计算应力系数,计及共振的影响。根据以上两点,校验过程如下: 已知母线桥为8×80mm2的铝排,相间中心线间距离为210mm,先计算应力系数: ∵频率系数N f=3.56,弹性模量E=7×10.7 Pa,单位长度铝排质量M=1.568kg/m,绝缘子间跨距2m,则一阶固有频率: f’=(N f/L2)*√(EI/M)=110Hz 查表可得动态应力系数β=1.3。 ∴单位长度铝排所受的电动力为: f ph=1.73×10-7I sh2/a×β=568.1N/m ∵三相铝排水平布置,∴截面系数W=bh2/6=85333mm3,根据铝排的最大应力可确定绝缘子间允许的最大跨距为: L MAX=√10*σal*W/ f ph=3.24m ∵胡店变主变母线桥绝缘子间最大跨距为2m,小于绝缘子间的最大允许跨距。

电力电子技术答案第五版(全)

电子电力课后习题答案 第一章电力电子器件 1.1 使晶闸管导通的条件是什么? 答:使晶闸管导通的条件是:晶闸管承受正相阳极电压,并在门极施加触发电流(脉冲)。 或者U AK >0且U GK >0 1.2 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。 1.3 图1-43中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为 I m ,试计算各波形的电流平均值I d1 、I d2 、I d3 与电流有效值I 1 、I 2 、I 3 。 解:a) I d1= Im 2717 .0 )1 2 2 ( 2 Im ) ( sin Im 2 1 4 ≈ + = ?π ω π π π t I 1= Im 4767 .0 2 1 4 3 2 Im ) ( ) sin (Im 2 1 4 2≈ + = ?π ? π π π wt d t b) I d2= Im 5434 .0 )1 2 2 ( 2 Im ) ( sin Im 1 4 = + = ?wt d t π π ? π I 2= Im 6741 .0 2 1 4 3 2 Im 2 ) ( ) sin (Im 1 4 2≈ + = ?π ? π π π wt d t c) I d3= ?= 2 Im 4 1 ) ( Im 2 1π ω π t d I 3= Im 2 1 ) ( Im 2 1 2 2= ?t dω π π 1.4.上题中如果不考虑安全裕量,问100A的晶阐管能送出的平均电流I d1、I d2 、I d3 各为多 少?这时,相应的电流最大值I m1、I m2 、I m3 各为多少? 解:额定电流I T(AV) =100A的晶闸管,允许的电流有效值I=157A,由上题计算结果知 a) I m1 35 . 329 4767 .0 ≈ ≈ I A, I d1 ≈0.2717I m1 ≈89.48A

电力电子技术期末考试试题及答案修订稿

电力电子技术期末考试 试题及答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

电力电子技术试题 第1章电力电子器件 1.电力电子器件一般工作在__开关__状态。 2.在通常情况下,电力电子器件功率损耗主要为__通态损耗__,而当器件开关频率较高时,功率损耗主要为__开关损耗__。 3.电力电子器件组成的系统,一般由__控制电路__、_驱动电路_、_主电路_三部分组成,由于电路中存在电压和电流的过冲,往往需添加_保护电路__。 4.按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为_单极型器件_、_双极型器件_、_复合型器件_三类。 5.电力二极管的工作特性可概括为_承受正向电压导通,承受反相电压截止_。 6.电力二极管的主要类型有_普通二极管_、_快恢复二极管_、_肖特基二极管_。 7.肖特基二极管的开关损耗_小于_快恢复二极管的开关损耗。 8.晶闸管的基本工作特性可概括为__正向电压门极有触发则导通、反向电压则截止__。 9.对同一晶闸管,维持电流IH与擎住电流IL在数值大小上有IL__大于__IH 。 10.晶闸管断态不重复电压UDSM与转折电压Ubo数值大小上应为,UDSM_大于__Ubo。 11.逆导晶闸管是将_二极管_与晶闸管_反并联_(如何连接)在同一管芯上的功率集成器件。 的__多元集成__结构是为了便于实现门极控制关断而设计的。 的漏极伏安特性中的三个区域与GTR共发射极接法时的输出特性中的三个区域有对应关系,其中前者的截止区对应后者的_截止区_、前者的饱和区对应后者的__放大区__、前者的非饱和区对应后者的_饱和区__。 14.电力MOSFET的通态电阻具有__正__温度系数。 的开启电压UGE(th)随温度升高而_略有下降__,开关速度__小于__电力MOSFET 。 16.按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为_电压驱动型_和_电流驱动型_两类。 的通态压降在1/2或1/3额定电流以下区段具有__负___温度系数,在1/2或1/3额定电流以上区段具有__正___温度系数。 18.在如下器件:电力二极管(Power Diode)、晶闸管(SCR)、门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应管(电力MOSFET)、绝缘栅双极型晶体管(IGBT)中,属于不可控器件的是_电力二极管__,属于半控型器件的是__晶闸管_,属于全控型器件的是_GTO 、GTR 、电力

母线电动力及动热稳定性计算

母线电动力及动热稳定性计算 1 目的和范围 本文档为电气产品的母线电动力、动稳定、热稳定计算指导文件,作为产品结构设计安全指导文件的方案设计阶段指导文件,用于母线电动力、动稳定性、热稳定性计算的选型指导。 2 参加文件 表1 3 术语和缩略语 表2 4 母线电动力、动稳定、热稳定计算 4.1 载流导体的电动力计算 4.1.1 同一平面内圆细导体上的电动力计算

? 当同一平面内导体1l 和2l 分别流过1I 和2I 电流时(见图1),导体1l 上的电动力计 算 h F K I I 4210 π μ= 式中 F ——导体1l 上的电动力(N ) 0μ——真空磁导率,m H 60104.0-?=πμ; 1I 、2I ——流过导体1l 和2l 的电流(A ); h K ——回路系数,见表1。 图1 圆细导体上的电动力 表1 回路系数h K 表 两导体相互位置及示意图 h K 平 行 21l l = ∞=1l 时,a l K h 2= ∞≠1l 时,?? ? ???-+=l a l a a l K h 2)(12 21l l ≠ 22 2) ()(1l a m l a l a K h ++-+= 22)()1(l a m +-- l a m =

? 当导体1l 和2l 分别流过1I 和2I 电流时,沿1l 导体任意单位长度上各点的电动力计 算 f 124K f I I d μ= π 式中 f ——1l 导体任意单位长度上的电动力(m N ); f K ——与同一平面内两导体的长度和相互位置有关的系数,见表2。 表2 f K 系数表

4.1.2 两平行矩形截面导体上的电动力计算 两矩形导体(母线)在b <<a ,且b >>h 的情况下,其单位长度上的电动力F 的 计算见表3。 当矩形导体的b 与a 和h 的尺寸相比不可忽略时,可按下式计算 712 210x L F I I K a -=? 式中 F -两导体相互作用的电动力,N ; L -母线支承点间的距离,m ; a -导体间距,m ; 1I 、2I -流过两个矩形母线的电流,A ; x K -导体截面形状系数; 表3 两矩形导体单位长度上的电动力 4.1.3 三相母线短路时的电动力计算

电力电子技术试题及答案(B)

电力电子技术答案 2-1与信息电子电路中的二极管相比,电力二极管具有怎样的结构特点才使得其具有耐受高压和大电流的能力? 答:1.电力二极管大都采用垂直导电结构,使得硅片中通过电流的有效面积增大,显著提高了二极管的通流能力。 2.电力二极管在P 区和N 区之间多了一层低掺杂N 区,也称漂移区。低掺杂N 区由于掺杂浓度低而接近于无掺杂的纯半导体材料即本征半导体,由于掺杂浓度低,低掺杂N 区就可以承受很高的电压而不被击穿。 2-2. 使晶闸管导通的条件是什么? 答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:uAK>0且uGK>0。 2-3. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。 要使晶闸管由导通变为关断, 可利用外加电压和外电路的作用使流过晶闸管的电流降 到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。 2-4图2-27中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为I m ,试计算各波形的电流平均值I d1、I d2、I d3与电流有效值I 、I 、I 。 πππ4 π4 π2 5π4a) b)c) 图1-43 图2-27 晶闸管导电波形 解:a) I d1= π21?π πωω4 )(sin t td I m =π2m I (122+)≈0.2717 I m I 1= ?π πωωπ 4 2 )()sin (21 t d t I m =2m I π 2143+≈0.4767 I m b) I d2 = π1?π πωω4)(sin t td I m =π m I ( 12 2 +)≈0.5434 I m I 2 = ? π π ωωπ 4 2) ()sin (1 t d t I m = 2 2m I π 21 43+ ≈0.6741I m c) I d3=π21?2 )(π ωt d I m =41 I m I 3 =? 2 2 ) (21π ωπt d I m = 2 1 I m 2-5上题中如果不考虑安全裕量,问100A 的晶阐管能送出的平均电流I d1、I d2、I d3各为多少?这时,相应的电流最大值I m1、I m2、 I m3各为多少? 解:额定电流I T(AV)=100A 的晶闸管,允许的电流有效值I=157A,由上题计算结果知 a) I m1≈4767.0I ≈329.35, I d1≈0.2717 I m1≈89.48 b) I m2≈ 6741 .0I ≈232.90, I d2≈0.5434 I m2≈126.56 c) I m3=2 I = 314, I d3= 4 1 I m3=78.5 2-6 GTO 和普通晶闸管同为PNPN 结构,为什么GTO 能够自关断,而普通晶闸管不能? 答:GTO 和普通晶阐管同为PNPN 结构,由P1N1P2和N1P2N2构成两个晶体管V1、V2,分别具有共基极电流增益 1α和2α, 由普通晶阐管的分析可得, 121=+αα是器件临界导通的条件。1 21>αα+两个等效晶体管过饱和而导通;

电力电子技术试卷3份答案

《电力电子技术》试卷1答案 一、填空(每空1分,36分) 1、请在正确的空格内标出下面元件的简称: 电力晶体管GTR;可关断晶闸管GTO;功率场效应晶体管MOSFET;绝缘栅双极型晶体管IGBT;IGBT是MOSFET和GTR的复合管。 2、晶闸管对触发脉冲的要求是要有足够的驱动功率、触发脉冲前沿要陡幅值要高和触发脉冲要与晶闸管阳极电压同步。 3、多个晶闸管相并联时必须考虑均流的问题,解决的方法是串专用均流电抗器。 4、在电流型逆变器中,输出电压波形为正弦波,输出电流波形为方波。 5、型号为KS100-8的元件表示双向晶闸管晶闸管、它的额定电压为800V伏、额定有效电流为100A。 6、180°导电型三相桥式逆变电路,晶闸管换相是在同一桥臂上的上、下二个元件之间进行;而120o导电型三相桥式逆变电路,晶闸管换相是在不同桥臂上的元件之间进行的。 7、当温度降低时,晶闸管的触发电流会增加、正反向漏电流会下降;当温度升高时,晶闸管的触发电流会下降、正反向漏电流会增加。 8、在有环流逆变系统中,环流指的是只流经逆变电源、逆变桥而不流经负载的电流。环流可在电路中加电抗器来限制。为了减小环流一般采控用控制角α大于β的工作方式。 9、常用的过电流保护措施有快速熔断器、串进线电抗器、接入直流快速开关、控制快速移相使输出电压下降。(写出四种即可) 10、双向晶闸管的触发方式有Ⅰ+、Ⅰ-、Ⅲ+、Ⅲ-四种。 二、判断题,(每题1分,10分)(对√、错×) 1、在半控桥整流带大电感负载不加续流二极管电路中,电路出故障时会出现失 控现象。(√) 2、在用两组反并联晶闸管的可逆系统,使直流电动机实现四象限运行时,其中 一组逆变器工作在整流状态,那么另一组就工作在逆变状态。(×) 3、晶闸管串联使用时,必须注意均流问题。(×) 4、逆变角太大会造成逆变失败。(×) 5、并联谐振逆变器必须是略呈电容性电路。(√) 6、给晶闸管加上正向阳极电压它就会导通。(×) 7、有源逆变指的是把直流电能转变成交流电能送给负载。(×) 8、在单相全控桥整流电路中,晶闸管的额定电压应取U2。(×) 9、在三相半波可控整流电路中,电路输出电压波形的脉动频率为300Hz。(×) 10、变频调速实际上是改变电动机内旋转磁场的速度达到改变输出转速的目的。 (√) 三、选择题(每题3分,15分)

高压电缆热稳定校验计算书

筠连县分水岭煤业有限责任公司 井 下 高 压 电 缆 热 稳 定 性 校 验 计 算 书 巡司二煤矿 编制:机电科 筠连县分水岭煤业有限责任公司

井下高压电缆热稳定校验计算书 一、概述: 根据《煤矿安全规程》第453条及456条之规定,对我矿入井高压电缆进行热稳定校验。 二、确定供电方式 我矿高压供电采用分列运行供电方式,地面变电所、井下变电所均采用单母线分段分列供电方式运行,各种主要负荷分接于不同母线段。 三、井下高压电缆明细: 矿上有两趟主进线,引至巡司变电站不同母线段,一趟931线,另一趟925线。井下中央变电所由地面配电房10KV输入。 入井一回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 入井二回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 四、校验计算 1、井下入井回路高压电缆热稳定性校验 已知条件:该条高压电缆型号为,MYJV22-8.7/10KV 3*50mm2 ,800m,电缆长度为800m=0.8km。 (1)计算电网阻抗 查附表一,短路电流的周期分量稳定性为 电抗:X=0.072*0.8=0.0576Ω; 电阻:R=0.407*0.8=0.3256 Ω; (2)三相短路电流的计算

A Z I 5.174693305 .0310000 3v 3=?== ∞ (3)电缆热稳定校验 由于断路器的燃弧时间及固有动作时间之和约为t=0.05S; 查附表二得热稳定计算系数取K=142; 故电缆最小热值稳定截面为 23mm 51.2705.0142/5.17469t )/(min ===∞)(K I S Smin<50mm 2 故选用 MYJV 22 -8.7/10KV 3*50 电缆热稳定校验合格,符合要求。 附表一:三相电缆在工作温度时的阻抗值(Ω/Km ) 电缆截面S (mm 2 ) 4 6 10 16 2 5 35 50 70 95 120 150 185 240 交联聚乙烯 R 4.988 3.325 2.035 1.272 0.814 0.581 0.407 0.291 0.214 0.169 0.136 0.11 0.085 X 0.093 0.093 0.087 0.082 0.075 0.072 0.072 0.069 0.069 0.069 0.07 0.07 0.07 附表二 不同绝缘导体的热稳定计算系数 绝缘材料 芯线起始温度(° C ) 芯线最高允许温度(°C ) 系数K 聚氯乙烯 70 160 115(114) 普通橡胶 75 200 131 乙丙橡胶 90 250 143(142) 油浸纸绝缘 80 160 107 交联聚乙烯 90 250 142

电力电子技术课后题答案

0-1.什么是电力电子技术? 电力电子技术是应用于电力技术领域中的电子技术;它是以利用大功率电子器件对能量进行变换和控制为主要内容的技术。国际电气和电子工程师协会(IEEE)的电力电子学会对电力电子技术的定义为:“有效地使用电力半导体器件、应用电路和设计理论以及分析开发工具,实现对电能的高效能变换和控制的一门技术,它包括电压、电流、频率和波形等方面的变换。” 0-2.电力电子技术的基础与核心分别是什么? 电力电子器件是基础。电能变换技术是核心. 0-3.请列举电力电子技术的 3 个主要应用领域。 电源装置;电源电网净化设备;电机调速系统;电能传输和电力控制;清洁能源开发和新蓄能系统;照明及其它。 0-4.电能变换电路有哪几种形式?其常用基本控制方式有哪三种类型? AD-DC整流电;DC-AC逆变电路;AC-AC交流变换电路;DC-DC直流变换电路。 常用基本控制方式主要有三类:相控方式、频控方式、斩控方式。 0-5.从发展过程看,电力电子器件可分为哪几个阶段? 简述各阶段的主要标志。可分为:集成电晶闸管及其应用;自关断器件及其应用;功率集成电路和智能功率器件及其应用三个发展阶段。集成电晶闸管及其应用:大功率整流器。自关断器件及其应用:各类节能的全控型器件问世。功率集成电路和智能功率器件及其应用:功率集成电路(PIC),智能功率模块(IPM)器件发展。 0-6.传统电力电子技术与现代电力电子技术各自特征是什么? 传统电力电子技术的特征:电力电子器件以半控型晶闸管为主,变流电路一般 为相控型,控制技术多采用模拟控制方式。 现代电力电子技术特征:电力电子器件以全控型器件为主,变流电路采用脉宽 调制型,控制技术采用PWM数字控制技术。 0-7.电力电子技术的发展方向是什么? 新器件:器件性能优化,新型半导体材料。高频化与高效率。集成化与模块化。数字化。绿色化。 1-1.按可控性分类,电力电子器件分哪几类? 按可控性分类,电力电子器件分为不可控器件、半控器件和全控器件。 1-2.电力二极管有哪些类型?各类型电力二极管的反向恢复时间大约为多少? 电力二极管类型以及反向恢复时间如下: 1)普通二极管,反向恢复时间在5us以上。 2)快恢复二极管,反向恢复时间在5us以下。快恢复极管从性能上可分为快速恢复和超快速恢复二极管。前者反向恢复时间为数百纳秒或更长,后者在100ns 以下,甚至达到20~30ns,多用于高频整流和逆变电路中。 3)肖特基二极管,反向恢复时间为10~40ns。 1-3.在哪些情况下,晶闸管可以从断态转变为通态? 维持晶闸管导通的条件是什么? 1、正向的阳极电压; 2、正向的门极电流。两者缺一不可。阳极电流大于维持电流。

热稳定性校验(主焦

井下高压开关、供电电缆动热稳定性校验 一、-350中央变电所开关断路器开断能力及电缆热稳定性校验 1 23 G 35kV 2 Uz%=7.5△P N.T =12kW △P N.T =3.11kW S N.T =8MVA 6kV S1点三相短路电流计算: 35kV 变压器阻抗: 2 22.1. u %7.5 6.30.37()1001008z N T N T U Z S ?===Ω? 35kV 变压器电阻:2 22.1.22. 6.30.0120.007()8 N T N T N T U R P S =?=?=Ω 35kV 变压器电抗:10.37()X = ==Ω 电缆电抗:02(x )0.415000.08780 0.66()1000 1000i L X ??+?== =Ω∑ 电缆电阻:02(x )0.11815000.118780 0.27()1000 1000 i L R ??+?== =Ω∑ 总阻抗: 21.370.66) 1.06( Z ==Ω S1点三相短路电流:(3)1 3.43()d I KA === S2点三相短路电流计算: S2点所用电缆为MY-3×70+1×25,长400米,变压器容量为500KV A ,查表的:(2)2d I =2.5KA

S2点三相短路电流:32 d d =2.88I I KA = 1、架空线路、入井电缆的热稳定性校验。已知供电负荷为3128.02KV A ,电压为6KV ,需用系数0.62,功率因数cos 0.78φ=,架空线路长度1.5km ,电缆长度780m (1)按经济电流密度选择电缆,计算容量为 3128.020.62 2486.37cos 0.78 kp S KVA φ?= ==。 电缆的长时工作电流Ig 为239.25 Ig === A 按长时允许电流校验电缆截面查煤矿供电表5-15得MYJV42-3×185-6/6截面长时允许电流为479A/6kV 、大于239.25A 符合要求。 (2)按电压损失校验,配电线路允许电压损失5%得 60000.1300Uy V ?=?=,线路的实际电压损失 109.1L U COS DS φφ?====,U ?小于300V 电压损失满足要求 (3)热稳定性条件校验,短路电流的周期分量稳定性为 电缆最小允许热稳定截面积: 3 2min d =S I mm 其中:i t ----断路器分断时间,一般取0.25s ; C----电缆热稳定系数,一般取100,环境温度35℃,电缆温升不超过120℃时,铜芯电缆聚乙烯电缆熔化温度为130℃,电

电力电子技术 复习题答案

第二章: 1.晶闸管的动态参数有断态电压临界上升率du/dt和通态电流临界上升率等,若 du/dt过大,就会使晶闸管出现_ 误导通_,若di/dt过大,会导致晶闸管_损坏__。 2.目前常用的具有自关断能力的电力电子元件有电力晶体管、可关断晶闸管、 功率场效应晶体管、绝缘栅双极型晶体管几种。简述晶闸管的正向伏安特性 答: 晶闸管的伏安特性 正向特性当IG=0时,如果在器件两端施加正向电压,则晶闸管处于正向阻断状态,只有很小的正向漏电流流过。 如果正向电压超过临界极限即正向转折电压Ubo,则漏电流急剧增大,器件开通。 随着门极电流幅值的增大,正向转折电压降低,晶闸管本身的压降很小,在1V左右。 如果门极电流为零,并且阳极电流降至接近于零的某一数值IH以下,则晶闸管又回到正向阻断状态,IH称为维持电流。 3.使晶闸管导通的条件是什么 答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:uAK>0且uGK>0。 4.在如下器件:电力二极管(Power Diode)、晶闸管(SCR)、门极可关断晶闸管 (GTO)、电力晶体管(GTR)、电力场效应管(电力MOSFET)、绝缘栅双极型晶体管(IGBT)中,属于半控型器件的是 SCR 。 5.晶闸管的擎住电流I L 答:晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流。 6.晶闸管通态平均电流I T(AV) 答:晶闸管在环境温度为40C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。标称其额定电流的参数。 7.晶闸管的控制角α(移相角) 答:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。

上海理工大学高等传热学试题及答案

1.试求出圆柱坐标系的尺度系数,并由此导出圆柱坐标系中的导热微分方程。 2 .一无限大平板,初始温度为T 0;τ>0时,在x = 0表面处绝热;在x = L 表面以对流方式向温度为t f 的流体换热。试用分离变量法求出τ>0时平板的温度分布(常物性)。(需求出特征函数、超越方程的具体形式,范数(模)可用积分形式表示)。(15分) , 3.简述近似解析解——积分法中热层厚度δ的概念。 答:近似解析解:既有分析解的特征:得到的结果具有解析函数形式,又有近似解的特征:结果只能近似满足导热解问题。在有限的时间内,边界温度 的变化对于区域温度场的影响只是在某一有限的范围内,把这个有限的范围定义为热层厚度δ。 4.与单相固体导热相比,相变导热有什么特点 答:相变导热包含了相变和导热两种物理过程。相变导热的特点是 1.固、液两相之间存在着 移动的交界面。 2.两相交界面有潜热的释放(或吸收) | 对流部分(所需量和符号自己设定) 1 推导极坐标系下二维稳态导热微分方程。 2 已知绕流平板流动附面层微分方程为 y u y u V x u u 22??=??+??ν 取相似变量为: x u y νη∞ = x u f νψ∞= 写出问题的数学模型并求问题的相似解。 3 已知绕流平板流动换热的附面层能量积分方程为: ?=∞?? =-δ00)(y y t a dy t t u dx d 当Pr<<1时,写出问题的数学模型并求问题的近似积分解及平均Nu (取三次多项式)。 4 ] O x

5写出常热流圆管内热充分发展流动和换热问题的数学模型并求出速度和温度分布及Nu x.辐射 1.请推导出具有n个表面的净热流法壁面间辐射换热求解公式,并简要说明应用任一种数值方法的求解过程。 2.试推导介质辐射传递方程的微分形式和积分形式,要求表述出各个步骤和结果中各个相关量的含义。 3.根据光谱辐射强度表示下面各量:1)光谱定向辐射力;2)定向辐射力;3)光谱辐射力;4)辐射力;5)辐射热流量。要求写清各量的符号、单位。 4.说明下列术语(可用数学表达式)(每题4分) a)光学厚度 b)漫有色表面 c)? d)兰贝特余弦定律 e)光谱散射相函数 f)定向“灰”入射辐射

电力电子技术试题及答案(1)

《电力电子技术》试卷 一.填空(共15分,1分/空) 1.电力电子技术通常可分为()技术和()技术两个分支。 2.按驱动电路信号的性质可以将电力电子器件分为()型器件和()型器件两类,晶闸管属于其中的()型器件。 3.晶闸管单相桥式全控整流电路带反电动势负载E时(变压器二次侧电压有效值为U ,忽略主电路 2 各部分的电感),与电阻负载时相比,晶闸管提前了电角度δ停止导电,δ称为()角,数量关系为δ=()。 4.三相桥式全控整流电路的触发方式有()触发和()触发两种,常用的是()触发。 5.三相半波可控整流电路按联接方式可分为()组和()组两种。 6.在特定场合下,同一套整流电路即可工作在()状态,又可工作在()状态,故简称变流电路。 7.控制角α与逆变角β之间的关系为()。 二.单选(共10分,2分/题) 1.采用()是电力电子装置中最有效、应用最广的一种过电流保护措施。 A.直流断路器 B. 快速熔断器 C.过电流继电器 2.晶闸管属于()。 A.不可控器件 B. 全控器件 C.半控器件 3.单相全控桥式整流电路,带阻感负载(L足够大)时的移相范围是()。 A.180O B.90O C.120O 4.对三相全控桥中共阴极组的三个晶闸管来说,正常工作时触发脉冲相位应依次差()度。 A.60 B. 180 C. 120 5.把交流电变成直流电的是()。 A. 逆变电路 B.整流电路 C.斩波电路 三.多选(共10分,2分/题) 1.电力电子器件一般具有的特征有。 A.所能处理电功率的大小是其最重要的参数 B.一般工作在开关状态 C.一般需要信息电子电路来控制 D.不仅讲究散热设计,工作时一般还需接散热器 2.下列电路中,不存在变压器直流磁化问题的有。 A.单相全控桥整流电路 B.单相全波可控整流电路 C.三相全控桥整流电路 D.三相半波可控整流电路 3.使晶闸管关断的方法有。 A.给门极施加反压 B.去掉阳极的正向电压 C.增大回路阻抗 D.给阳极施加反压 4.逆变失败的原因有。 A.触发电路不可靠 B.晶闸管发生故障 C.交流电源发生故障 D.换相裕量角不足 5.变压器漏抗对整流电路的影响有。 A.输出电压平均值降低 B.整流电路的工作状态增多 C.晶闸管的di/dt减小 D.换相时晶闸管电压出现缺口 四.判断(共5分,1分/题) 1.三相全控桥式整流电路带电阻负载时的移相范围是150O。() 2.晶闸管是一种四层三端器件。()

高压电缆热稳定校验计算书

*作品编号:DG13485201600078972981* 创作者:玫霸* 筠连县分水岭煤业有限责任公司 井 下 高 压 电 缆 热 稳 定 性 校 验 计 算 书 巡司二煤矿

编制:机电科 筠连县分水岭煤业有限责任公司 井下高压电缆热稳定校验计算书 一、概述: 根据《煤矿安全规程》第453条及456条之规定,对我矿入井高压电缆进行热稳定校验。 二、确定供电方式 我矿高压供电采用分列运行供电方式,地面变电所、井下变电所均采用单母线分段分列供电方式运行,各种主要负荷分接于不同母线段。 三、井下高压电缆明细: 矿上有两趟主进线,引至巡司变电站不同母线段,一趟931线,另一趟925线。井下中央变电所由地面配电房10KV输入。 入井一回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 入井二回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 四、校验计算 1、井下入井回路高压电缆热稳定性校验 已知条件:该条高压电缆型号为,MYJV22-8.7/10KV 3*50mm2 ,800m,电缆长度为800m=0.8km。 (1)计算电网阻抗 查附表一,短路电流的周期分量稳定性为

电抗:X=0.072*0.8=0.0576Ω; 电阻:R=0.407*0.8=0.3256 Ω; (2)三相短路电流的计算 (3)电缆热稳定校验 由于断路器的燃弧时间及固有动作时间之和约为t=0.05S; 查附表二得热稳定计算系数取K=142; 故电缆最小热值稳定截面为 Smin<50mm2故选用 MYJV22 -8.7/10KV 3*50 电缆热稳定校验合格,符合要求。 附表一:三相电缆在工作温度时的阻抗值(Ω/Km)

王兆安版电力电子技术试卷及答案

20××-20××学年第一学期期末考试 《电力电子技术》试卷(A) (时间90分钟 满分100分) (适用于 ××学院 ××级 ××专业学生) 一、 填空题(30分,每空1分)。 1.如下器件:电力二极管(Power Diode )、晶闸管(SCR )、门极可关断晶闸管(GTO )、电力晶体管(GTR )、电力场效应管(电力MOSFET )、绝缘栅双极型晶体管(IGBT )中,属于不可控器件的是________,属于半控型器件的是________,属于全控型器件的是________;属于单极型电力电子器件的有________,属于双极型器件的有________,属于复合型电力电子器件得有 ________;在可控的器件中,容量最大的是________,工作频率最高的是________,属于电压驱动的是________,属于电流驱动的是________。(只写简称) 2.单相桥式全控整流电路中,带纯电阻负载时,α角移相范围为 _,单个晶闸管所承受的最大正向电压和反向电压分别为 和 ;带阻感负载时,α角移相范围为 ,单个晶闸管所承受的最大正向电压和反向电压分别为 和 。 3.直流斩波电路中最基本的两种电路是 和 。 4.升降压斩波电路呈现升压状态时,占空比取值范围是__ _。 5.与CuK 斩波电路电压的输入输出关系相同的有 、 和 。 6.当采用6脉波三相桥式电路且电网频率为50Hz 时,单相交交变频电路的输出上限频率约为 。 7.三相交交变频电路主要有两种接线方式,即 _和 。 8.矩阵式变频电路是近年来出现的一种新颖的变频电路。它采用的开关器件是 ;控制方式是 。 9.逆变器按直流侧提供的电源的性质来分,可分为 型逆变器和 型逆变器。 10.把电网频率的交流电直接变换成可调频率的交流电的变流电路称为 。 二、简答题(18分,每题6分)。 1.逆变电路多重化的目的是什么?如何实现?串联多重和并联多重逆变电路各应用于什么场合? 2.交流调压电路和交流调功电路有什么异同? 3.功率因数校正电路的作用是什么?有哪些校正方法?其基本原理是什么? 三、计算题(40分,1题20分,2题10分,3题10分)。 1.一单相交流调压器,电源为工频220V ,阻感串联作为负载,其中R=0.5Ω,L=2mH 。 试求:①开通角α的变化范围;②负载电流的最大有效值;③最大输出功率及此时电源侧的功率因数;④当2πα=时,晶闸管电流有效值,晶闸管导通角和电源侧功率因数。 2..三相桥式电压型逆变电路,工作在180°导电方式,U d =200V 。试求输出相电压的基波幅值U UN1m 和有效值U UN1、输出线电压的基波幅值U UV1m 和有效值U UV1、输出线电压中7次谐波的有效值U UV7。 3 .如图所示降压斩波电路E=100V ,L 值极大,R=0.5Ω,E m =10V ,采用脉宽调制控制方式,T=20μs ,当t on =5μs 时,计算输出电压平均值U o ,输出电流平均值

电力电子技术试卷及答案-第一章

电力电子技术试题(第一章) 一、填空题 1、普通晶闸管内部有PN结,,外部有三个电极,分别是极极和极。 1、三个、阳极A、阴极K、门极G。 2、晶闸管在其阳极与阴极之间加上电压的同时,门极上加上电压,晶闸管就导通。 2、正向、触发。 3、、晶闸管的工作状态有正向状态,正向状态和反向状态。 3、阻断、导通、阻断。 4、某半导体器件的型号为KP50—7的,其中KP表示该器件的名称为,50表示,7表示。 4、普通晶闸管、额定电流50A、额定电压700V。 5、只有当阳极电流小于电流时,晶闸管才会由导通转为截止。 5、维持电流。 6、当增大晶闸管可控整流的控制角α,负载上得到的直流电压平均值会。 6、减小。 7、按负载的性质不同,晶闸管可控整流电路的负载分为性负载,性负载和负载三大类。 7、电阻、电感、反电动势。 8、当晶闸管可控整流的负载为大电感负载时,负载两端的直流电压平均值会,解决的办法就是在负载的两端接一个。 8、减小、并接、续流二极管。 9、工作于反电动势负载的晶闸管在每一个周期中的导通角、电流波形不连续、呈状、电流的平均值。要求管子的额定电流值要些。 9、小、脉冲、小、大。 10、单结晶体管的内部一共有个PN结,外部一共有3个电极,它们分别是极、极和极。 10、一个、发射极E、第一基极B1、第二基极B2。 11、当单结晶体管的发射极电压高于电压时就导通;低于电 压时就截止。 11、峰点、谷点。 12、触发电路送出的触发脉冲信号必须与晶闸管阳极电压,保证在管子阳极电压每个正半周内以相同的被触发,才能得到稳定的直流电压。 12、同步、时刻。 13、晶体管触发电路的同步电压一般有同步电压和电压。 13、正弦波、锯齿波。 14、正弦波触发电路的同步移相一般都是采用与一个或几个的叠加,利用改变的大小,来实现移相控制。 14、正弦波同步电压、控制电压、控制电压。 15、在晶闸管两端并联的RC回路是用来防止损坏晶闸管的。 15、关断过电压。 16、为了防止雷电对晶闸管的损坏,可在整流变压器的一次线圈两端并接一个或。 16、硒堆、压敏电阻。 16、用来保护晶闸管过电流的熔断器叫。 16、快速熔断器。 二、判断题对的用√表示、错的用×表示(每小题1分、共10分) 1、普通晶闸管内部有两个PN结。(×) 2、普通晶闸管外部有三个电极,分别是基极、发射极和集电极。(×) 3、型号为KP50—7的半导体器件,是一个额定电流为50A的普通晶闸管。() 4、只要让加在晶闸管两端的电压减小为零,晶闸管就会关断。(×) 5、只要给门极加上触发电压,晶闸管就导通。(×) 6、晶闸管加上阳极电压后,不给门极加触发电压,晶闸管也会导通。(√) 7、加在晶闸管门极上的触发电压,最高不得超过100V。(×) 8、单向半控桥可控整流电路中,两只晶闸管采用的是“共阳”接法。(×) 9、晶闸管采用“共阴”接法或“共阳”接法都一样。(×) 10、增大晶闸管整流装置的控制角α,输出直流电压的平均值会增大。(×) 11、在触发电路中采用脉冲变压器可保障人员和设备的安全。(√) 12、为防止“关断过电压”损坏晶闸管,可在管子两端并接压敏电阻。(×) 13、雷击过电压可以用RC吸收回路来抑制。(×) 14、硒堆发生过电压击穿后就不能再使用了。(×) 15、晶闸管串联使用须采取“均压措施”。(√)

电力电子技术期末考试试题及答案

电力电子技术试题 第1章 电力电子器件 1.电力电子器件一般工作在__开关__状态。 2.在通常情况下,电力电子器件功率损耗主要为__通态损耗__,而当器件开关频率较高时,功率损耗主要为__开关损耗__。 3.电力电子器件组成的系统,一般由__控制电路__、_驱动电路_、 _主电路_三部分组成,由于电路中存在电压和电流的过冲,往往需添加_保护电路__。 4.按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为_单极型器件_ 、 _双极型器件_ 、_复合型器件_三类。 5.电力二极管的工作特性可概括为_承受正向电压导通,承受反相电压截止_。 6.电力二极管的主要类型有_普通二极管_、_快恢复二极管_、 _肖特基二极管_。 7.肖特基二极管的开关损耗_小于_快恢复二极管的开关损耗。 8.晶闸管的基本工作特性可概括为 __正向电压门极有触发则导通、反向电压则截止__ 。 9.对同一晶闸管,维持电流IH 与擎住电流I L 在数值大小上有I L __大于__IH 。 10.晶闸管断态不重复电压UDSM 与转折电压Ubo 数值大小上应为,UDSM _大于__Ubo 。 11.逆导晶闸管是将_二极管_与晶闸管_反并联_(如何连接)在同一管芯上的功率集成器件。 12.GTO 的__多元集成__结构是为了便于实现门极控制关断而设计的。 13.MOSFET 的漏极伏安特性中的三个区域与GTR 共发射极接法时的输出特性中的三个区域有对应关系,其中前者的截止区对应后者的_截止区_、前者的饱和区对应后者的__放大区__、前者的非饱和区对应后者的_饱和区__。 14.电力MOSFET 的通态电阻具有__正__温度系数。 15.IGBT 的开启电压UGE (th )随温度升高而_略有下降__,开关速度__小于__电力MOSFET 。 16.按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为_电压驱动型_和_电流驱动型_两类。 17.IGBT 的通态压降在1/2或1/3额定电流以下区段具有__负___温度系数, 在1/2或1/3额定电流以上区段具有__正___温度系数。 18.在如下器件:电力二极管(Power Diode )、晶闸管(SCR )、门极可关断晶闸管(GTO )、电力晶体管(GTR )、电力场效应管(电力MOSFET )、绝缘栅双极型晶体管(IGBT )中,属于不可控器件的是_电力二极管__,属于半控型器件的是__晶闸管_,属于全控型器件的是_ GTO 、GTR 、电力MOSFET 、IGBT _;属于单极型电力电子器件的有_电力MOSFET _,属于双极型器件的有_电力二极管、晶闸管、GTO 、GTR _,属于复合型电力电子器件得有 __ IGBT _;在可控的器件中,容量最大的是_晶闸管_,工作频率最高的是_电力MOSFET ,属于电压驱动的是电力MOSFET 、IGBT _,属于电流驱动的是_晶闸管、GTO 、GTR _。 第2章 整流电路 1.电阻负载的特点是_电压和电流成正比且波形相同_,在单相半波可控整流电阻性负载电路中,晶闸管控制角α的最大移相范围是_0-180O _。 2.阻感负载的特点是_流过电感的电流不能突变,在单相半波可控整流带阻感负载并联续流二极管的电路中,晶闸管控制角α的最大移相范围是__0-180O _ , 2__,续流二极管承受的最大反向电压为2_(设U 2为相电压有效值)。 3.单相桥式全控整流电路中,带纯电阻负载时,α角移相范围为__0-180O _,单个晶闸管所承受的最大正向电压和反向电压分别为22 和2;带 阻感负载时,α角移相范围为_0-90O _,单个晶闸管所承受的最大正向电压和反向电压分别为2_和2_;带反电动势负载时,欲使电阻上的电流不出 现断续现象,可在主电路中直流输出侧串联一个_平波电抗器_。 4.单相全控桥反电动势负载电路中,当控制角α大于不导电角δ时,晶闸管的导通角θ =_π-α-δ_; 当控制角α小于不导电角 δ 时,晶闸管的导通角 θ =_π-2δ_。 5.电阻性负载三相半波可控整流电路中,晶闸管所承受的最大正向电压UFm 2_,晶闸管控制角α的最大移相范围是_0-150o _,使负载电流连续的条 件为__o 30≤α__(U2为相电压有效值)。 6.三相半波可控整流电路中的三个晶闸管的触发脉冲相位按相序依次互差_120o _,当它带阻感负载时,α的移相范围为__0-90o _。 7.三相桥式全控整流电路带电阻负载工作中,共阴极组中处于通态的晶闸管对应的是_最高__的相电压,而共阳极组中处于导通的晶闸管对应的是_最低_的相电压;这种电路 α 角的移相范围是_0-120o _,u d 波形连续的条件是_o 60≤α_。 8.对于三相半波可控整流电路,换相重迭角的影响,将使用输出电压平均值__下降_。 9.电容滤波单相不可控整流带电阻负载电路中,空载时,输出电压为2_,随负载加重Ud 逐渐趋近于_0.9 U 2_,通常设计时,应取RC ≥_1.5-2.5_T ,此 时输出电压为Ud ≈__1.2_U 2(U 2为相电压有效值,T 为交流电源的周期)。 10.电容滤波三相不可控整流带电阻负载电路中,电流 id 断续和连续的临界条件是_=RC ω。 11.实际工作中,整流电路输出的电压是周期性的非正弦函数,当 α 从0°~90°变化时,整流输出的电压ud 的谐波幅值随 α 的增大而 _增大_,当 α 从90°~180°变化时,整流输出的电压 ud 的谐波幅值随 α 的增大而_减小_。

相关文档
最新文档