方块电阻计算公式

方块电阻计算公式
方块电阻计算公式

四探针方阻测试

方块电阻是表征薄膜导电性能的物理量,通常采用四探针探测仪来测定,该方法原理简单,数据处理方便,测量时是非破坏性的,因此被广泛使用。

图2.3 是电流平行经过ITO 膜层的情形,其中:d 为膜厚,I 为电流,L1 为在电流方向的膜层长度,L2 为在垂直于电流方上的膜层长度。

图2.3 方块电阻示意图

Fig. 2.3 Diagram of block resistance

当电流流过如图所示的方形导电膜层时,该层的电阻为

(2. 9)

式中,ρ为导电膜的电阻率,对于给定的膜层,ρ和d 可以看成是定值。L1=L2时,即为正方形的膜层,其电阻值均为定值ρ/d。这就是方块电阻的定义,即

(2. 10)

式中,R□的单位为:欧姆/□(Ω/□) ;ρ的单位为欧姆(Ω);d 的单位为米(m)。

由此可以看出方块电阻的特点:对于给定膜层,其阻值不随所采用正方形的大小变化,仅与薄膜材料的厚度有关。

四探针测试法如图2.4 所示,在半径无穷大的均匀试样上有四根等间距为S 的探针排列成一直线。由恒流源向外面两根探针1、4 通入小电流I,测量中间两根探针2、3 间的电位差U,则由U、I、S 的值求得样品的电阻率ρ。

图2.4 四探针测试法示意图

Fig. 2.4 Schematic diagram of four-probe method

当电流I 由探针1 流入样品时,若将探针与接触出看成点电源,则等势面是以点电源为中心的一系列半球面,在距离探针r 处的电流密度为:

(2. 11)

由微分欧姆定律J=E /ρ可得出距探针r 处的电场强度为

(2. 12)

由于E=-dU/dr,而且,r→∞时,U→0。则在距离探针r 处的电位U 为:

(2. 13)

同理当电流由探针4 流出样品时,在r 处的电位为:

(2. 14)

用直线四探针法测量电阻率时,电流I 从探针1 流入,探针4 流出,根据电位叠加原理,探针2,3 处的电位可分别写成:

(2. 15)

因此探针2,3 之间的电位差:

(2. 16)

即:

(2. 17)

是直线四探法测量电阻率的基本公式,它要求试样为无穷大,且半导体各边界与探针的距离大于探针的间距。实际上当试样的厚度及任意探针与试样最近边界的距离至少大于四倍探针间距时即可认为己满足上述要求,此条件不满足时就需进行边界条件的修正,此时电阻率的计算公式为:

(2. 18)

B 为修正因子。它表示为:

(2. 19)

式中:,d 为样品厚度。

当样品厚度d<<S/2时,,于是得出薄片电阻率公式

(2. 20)

在样品无限薄的情况下,可视为二维平面,由上式可得出方块电阴的计算公式:

(2. 21)

常用导体材料电阻率计算公式

常用导体材料电阻率计 算公式 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

【电学部分】 1电流强度:I=Q电量/t 2电阻:R=ρL/S 3欧姆定律:I=U/R 4焦耳定律: ⑴Q=I2Rt普适公式) ⑵Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5串联电路: ⑴I=I1=I2 ⑵U=U1+U2 ⑶R=R1+R2 ⑷U1/U2=R1/R2 (分压公式) ⑸P1/P2=R1/R2 6并联电路: ⑴I=I1+I2

⑵U=U1=U2 ⑶1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] ⑷I1/I2=R2/R1(分流公式) ⑸P1/P2=R2/R1 7定值电阻: ⑴I1/I2=U1/U2 ⑵P1/P2=I12/I22 ⑶P1/P2=U12/U22 8电功: ⑴W=UIt=Pt=UQ (普适公式) ⑵W=I^2Rt=U^2t/R (纯电阻公式) 9电功率: ⑴P=W/t=UI (普适公式) ⑵P=I2^R=U^2/R (纯电阻公式) 电流密度的问题:一般说铜线的电流密度取6A/mm2,铝的取 4A,考虑到大电流的趋肤效应,越大的电流取的越小一些,100A

以上一般只能取到左右,另外还要考虑输电线路的线损,越长取的也要越小一些。 计算所有关于电流,电压,电阻,功率的计算公式 1、串联电路电流和电压有以下几个规律:(如:R1,R2串联) ①电流:I=I1=I2(串联电路中各处的电流相等) ②电压:U=U1+U2(总电压等于各处电压之和) ③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR 2、并联电路电流和电压有以下几个规律:(如:R1,R2并联) ①电流:I=I1+I2(干路电流等于各支路电流之和) ②电压:U=U1=U2(干路电压等于各支路电压) ③电阻:(总电阻的倒数等于各并联电阻的倒数和)或。 如果n个阻值相同的电阻并联,则有R总= R 注意:并联电路的总电阻比任何一个支路电阻都小。 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。

NTC热敏电阻[概念_计算方法_应用场合]

NTC负温度系数热敏电阻[概念,计算方法,应用场合] NTC负温度系数热敏电阻 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数 -2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量 功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数(e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。

电流、功率、电压、电阻计算公式.

= 1.732 X U X I X COSφ 功率 P =1.732X380X I X0.85 电流 I = P / (1.732 X 380 X 0.85 功率分有功和无功,有功P=U*I*(cos a;无功Q=U*I*(sin a;注:a是功率因数。 三相电动机的功率电阻的电流如何计算。电压已知为380V。求高人指点!2012-4-20 09:43 提问者:mfkwfntxgt|浏览次数:364次 我来帮他解答 2012-4-20 10:23 满意回答 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安)

1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ(星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路 P(电功率)U(电压)I(电流)W(电功)R(电阻)T (时间) 电流处处相等 I1=I2=I 总电压等于各用电器两端电压之和 U=U1+U2 总电阻等于各电阻之和 R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和 W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和 P=P1+P2 ⑵并联电路 总电流等于各处电流之和 I=I1+I2 各处电压相等 U1=U1=U 总电阻等于各电阻之积除以各电阻之和 R=R1R2÷(R1+R2)

实验-测定金属的电阻率(精)

测定金属的电阻率 一、实验目的:学会用伏安法测量电阻的阻值,测定金属的电阻率。 二、实验原理:用刻度尺测一段金属导线的长度L ,用螺旋测微器测导线的直径d ,用伏安法测导线的电阻R ,根据电阻定律,金属的电阻率ρ=RS/L=πd 2R/4L 三、实验器材:①金属丝②千分尺③安培表④伏特表⑤(3伏)电源⑥(20Ω)滑动变阻器⑦电键一个⑧导线几根 【点拨】被测金属丝要选用电阻率大的材料,如铁铬铝合金、镍铬合金等或300瓦电炉丝经细心理直后代用,直径0.4毫米左右,电阻5~10欧之间为宜,在此前提下,电源选3伏直流电源,安培表选0 0.6安量程,伏特表选0 3伏档,滑动变阻器选0 20欧。 四、实验步骤 (1)用螺旋测微器三次测量导线不同位置的直径取平均值D 求出其横截面积S=πD 2/4. (2)将金属丝两端固定在接线柱上悬空挂直,用毫米刻度米尺测量接入电路的金属丝长度L ,测三次,求出平均值L 。 (3)根据所选测量仪器和选择电路的原则画好电路图1,然后依电路图按顺序给实物连线并将滑动变阻器的阻值调到最大。 点拨:为避免接线交叉和正负极性接错,接线顺序应遵循:电源正极→电键(断开状态)→滑动变阻器→用电器→安培表正极→安培表负极→电源负极,最后将伏特表并接在待测电路的两端,即先接干路,后接支路。 (4)检查线路无误后闭合电键,调节滑动变阻器读出几组I 、U 值,分别计算电阻R 再求平均值,设计表格把多次测量的D 、L 、U 、I 记下来。 【点拨】测量时通过金属丝的电流应控制在1.00A 以下,本实验由于安培表量程0~0.60A ,每次通电时间应尽量短(以能读取电表数据为准),读数完毕立即断开电键S ,防止温度升高使金属丝长度和电阻率发生明显变化。 计算时,务必算出每次的电阻值再求平均值,不能先分别求电压U 和电流I 的平均值,再由欧姆定律得平均值,否则会带来较大计算误差。 五、实验记录 图1

电力系统基本公式

1、已知电缆电阻率,长度,横截面积,可求出电缆电阻 电缆电阻计算:根据电阻公式:R=ρ×l/s.其中ρ为电阻率,l为长度,s为横截面积.由此便可求铜导线得电阻.注意,电阻与温度也有关系,不过这里我们一般都认为是常温.故暂不考虑温度影响. 铜的电阻率ρ=0.01851Ω.mm2/m,这个是常数. 物体电阻公式:R=ρL/S 式中: R为物体的电阻(欧姆); ρ为物质的电阻率,单位为欧姆米(Ω. mm2/m)。 L为长度,单位为米(m) S为截面积,单位为平方米(mm2) 这样距离是L(米)的单条线缆的电阻为 R(导线)=ρ*L /S 2、已知电缆电阻,供电电压,可求出电缆额定电流 电流计算公式I=U/R(I表示电流、U代表电压、R代表电阻) 已知导线电阻,供电电压,求导线额定电流--I(导线)=U(12V)/R(导线) 3、已知设备工作电流,电缆额定电流,可求出线路总电流 集中供电各设备为并联关系,并联电路总电流等于各支路电流之和 线路总电流I(总)=I(设备1)+I(设备N)+I(导线) 4、已知线路总电流,电缆电阻,可求出电缆压降 电压计算公式 U=IR 电线上的电压降等于电线中的电流与电线电阻的乘积 U(导线)=I(总)*R(导线) 5、推导电缆压降计算总公式 推导 U(导线)=I(总)*R(导线)=【I(设备1)+I(设备N)+I(导线)】*【ρ*L/S】 =【I(设备1)+I(设备N)+U(12V)/R(导线)】*【ρ*L/S】 ={I(设备1)+I(设备N)+U(12V)/【ρ*L/S】}*【ρ*L/S】 最后结论 U(导线)={I(设备1)+I(设备N)+U(12V)/【ρ*L/S】}*【ρ*L/S】 考虑供电构成回路,使用的是相同的线缆。对于两条电缆来说在线路中的电压损耗是 U(导线)=I(总)*R(导线),再乘以2就是实际压降。 声明:此计算仅限于直流供电,另外这只是一个工程计算,有一定误差。在计算的过程中要注意单位(量纲)问题。问清电缆厂家的产品准确的ρ值。

热敏电阻

热敏电阻根据温度系数分为两类:正温度系数热敏电阻和负温度系数热敏电阻。由于特性上的区别,应用场合互不相同。 正温度系数热敏电阻简称PTC(是Positive Temperature Coefficient 的缩写),超过一定的温度(居里温度---居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。)时,它的电阻值随着温度的升高呈阶跃性的增高。其原理是在陶瓷材料中引入微量稀土元素,如La、Nb...等,可使其电阻率下降到10Ω.cm以下,成为良好的半导体陶瓷材料。这种材料具有很大的正电阻温度系数,在居里温度以上几十度的温度范围内,其电阻率可增大 4~10个数量级,即产生所谓PTC效应。 目前大量被使用的PTC热敏电阻种类:恒温加热用PTC热敏电阻;低电压加热用PTC热敏电阻;空气加热用热敏电阻;过电流保护用PTC热敏电阻;过热保护用PTC热敏电阻;温度传感用PTC热敏电阻;延时启动用PTC 热敏电阻。 负温度系数热敏电阻简称NTC(是Negative Temperature Coefficient 的缩写),泛指负温度系数很大的半导体材料或元器件。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 PTC、NTC两种热敏电阻都可以用作温度传感,在目前的实际应用中,多采用NTC热敏电阻作为温度测量、控制的温度传感器。 NTC负温度系数热敏电阻专业术语 零功率电阻值R T(Ω) R T指在规定温度T时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。

线圈电阻计算方法

计算电阻公式为:R 其中,为铜的电阻率,值为:17.24 * mm ( 0.01724 导线的横截面积。 1.导线长度的求法:方法有两种。第一种,估算: D2分别为内外径,K为不足一圈的长度 D1D2 2 D1=4.8mm , D2=24.4mm , K=0。 算得L=1467mm , E=45.8,贝U L 应该大于1421.1mm,而小于1512.8mm 第二种,精确计算: pl 设螺线的方程为r ——* ,式中,d代表相邻螺线间的距离,在本文中,指代间距( 2 和一半线宽(b, 8mil)之和(4mil+4mil=8mil=0.203mm ) L d 1 -.12 ln( 1 2)N K 则4 D N D M N M d d 式中,D N是外径,D M是开始时的内径。d也可表示为( [D N-D M) /2n 带入算得:L 0.122 -.12 ln( 2 250 1叽0 , L=1466.6mm 有结果看出,两者相差不大。对计算阻抗影响不大。 * m), L为导线长度,S为 *nD D2 式中n为圈数,D1、 其中,误差有:|E 由我们的线圈n=32 ,

2.计算铜线截面积 在PCB 工艺中,铜线为长方体,其厚度由敷铜时的参数决定,一般是1oz (盎司)敷铜,此时铜线厚度为35微米,相应的,若在制板时采用2oz 或者更厚的敷铜,则厚度倍增。 计算时假设是1oz敷铜,设计时导线宽度为8mil ( 0.2032mm)所以横截面积为 2 S=0.2032*0.035=0.00711 2mm 由此算得:R=17.24*1466.6/0.007112= ,大概3.55 欧姆 那么两个线圈串联电阻约为2*3.55=7.1 欧姆

NTC热敏电阻原理及应用

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有 接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、 温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的 检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的 应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度 25 ℃时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。

电流 电阻 电压 计算公式

电流电阻电压计算公式 1、串联电路电流和电压有以下几个规律:(如:R1,R2串联) ①电流:I=I1=I2(串联电路中各处的电流相等) ②电压:U=U1+U2(总电压等于各处电压之和) ③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR 2、并联电路电流和电压有以下几个规律:(如:R1,R2并联) ①电流:I=I1+I2(干路电流等于各支路电流之和) ②电压:U=U1=U2(干路电压等于各支路电压) ③电阻:(总电阻的倒数等于各并联电阻的倒数和)或。 如果n个阻值相同的电阻并联,则有R总= R 注意:并联电路的总电阻比任何一个支路电阻都小。 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。 5、利用W=UIt计算电功时注意:①式中的W、U、I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。 6、计算电功还可用以下公式:W=I2Rt ;W=Pt;W=UQ(Q是电量); 【电学部分】 1电流强度:I=Q电量/t 2电阻:R=ρL/S 3欧姆定律:I=U/R 4焦耳定律: ⑴Q=I2Rt普适公式) ⑵Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5串联电路: ⑴I=I1=I2 ⑵U=U1+U2 ⑶R=R1+R2 ⑷U1/U2=R1/R2 (分压公式) ⑸P1/P2=R1/R2 6并联电路: ⑴I=I1+I2 ⑵U=U1=U2 ⑶1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] ⑷I1/I2=R2/R1(分流公式) ⑸P1/P2=R2/R1 7定值电阻: ⑴I1/I2=U1/U2 ⑵P1/P2=I12/I22 ⑶P1/P2=U12/U22

电阻率

电阻率 电阻率是用来表示各种物质电阻特性的物理量。某种物质所制成的原件(常温下20°C)的电阻与横截面积的乘积与长度的比值叫做这种物质的电阻率。电阻率与导体的长度、横截面积等因素无关,是导体材料本身的电学性质,由导体的材料决定,且与温度有关。 电阻率在国际单位制中的单位是Ω·m,读作欧姆米,简称欧米。常用单位为“欧姆·平方毫米”。 定义 在温度一定的情况下,有公式R=ρl/s其中的ρ就是电阻率,l为材料的长度,S 为面积。可以看出,材料的电阻大小与材料的长度成正比,而与其截面积成反比。 电阻率(resistivity)是用来表示各种物质电阻特性的物理量。 在温度一定的情况下,有公式 其中的ρ就是电阻率,L为材料的长度,S为面积。可以看出,材料的电阻大小与材料的长度成正比,即在材料和横截面积不变时,长度越长,材料电阻越大:而与材料横截面积成反比,即在材料和长度不变时,横截面积越大,电阻越小。 由上式可知电阻率的定义为: 推导公式: 单位 国际单位制中,电阻率的单位是欧姆·米(Ω·m或ohmm),常用单位是欧姆·毫米和欧姆·米。 计算公式

电阻率的计算公式为: ρ为电阻率——常用单位Ω·m S为横截面积——常用单位㎡ R为电阻值——常用单位Ω L为导线的长度——常用单位m 电阻率的另一计算公式为: ρ为电阻率——常用单位Ω·mm2/m E为电场强度——常用单位N/C J为电流密度——常用单位A/㎡ (E,J 可以为矢量) 影响电阻率的外界因素 电阻率不仅与材料种类有关,而且还与温度、压力和磁场等外界因素有关。金属材料在温度不高时,ρ与温度t(℃)的关系是ρt=ρ0(1+at),式中ρ1与ρ0分别是t℃和0℃时的电阻率;α是电阻率的温度系数,与材料有关。锰铜的α约为1×10-1/℃(其数值极小),用其制成的电阻器的电阻值在常温范围下随温度变化极小,适合于作标准电阻。已知材料的ρ值随温度而变化的规律后,可制成电阻式温度计来测量温度。半导体材料的α一般是负值且有较大的量值。制成的电阻式温度计具有较高的灵敏度。有些金属(如Nb和Pb)或它们的化合物,当温度降到几K或十几K(绝对温度)时,ρ突然减少到接近零,出现超导现象,超导材料有广泛的应用前景。利用材料的ρ随磁场或所受应力而改变的性质,可制成磁敏电阻或电阻应变片,分别被用来测量磁场或物体所受到的机械应力,在工程上获得广泛应用。

常用导体电阻偏心度计算方法

各规格导体外径及线材偏心度计算 偏心度=最小厚度/平均厚度*100% 芯线平均厚度=(芯线外径-导体绞合外径)/2 绞合外径见上表。 外被平均厚度=(外被外径-屏蔽外径)/2 USB2.0编织线材屏蔽外径=芯线平均外径*2.3+0.1+4*编织丝单根外径 USB2.0缠绕线材屏蔽外径=芯线平均外径*23+0.1+2*缠绕丝单根外径 USB2.0铝箔线材屏蔽外径=芯线平均外径*2.3+0.1 导体规格 (AWG) 单支导体20℃ MAX. 绞合导体20℃ MAX. 我司常用导体 Ω/Kft Ω/Km Ω/Kft Ω/Km 规格 Ω/Kft Ω/Km 绞合外径 32 171.78 563.49 171.70 580.85 7/0.08 156.1 512.1 0.244mm 30 110.09 361.13 114.40 376.96 7/0.10 99.88 327.7 0.305mm 28 69.32 227.39 72.00 237.25 7/0.127 61.94 203.2 0.388mm 19/0.075 65.43 214.6 0.378mm 26 43.53 142.79 45.20 148.94 7/0.16 39.03 128 0.489mm 17/0.10 41.15 135 0.476mm 19/0.10 36.79 120.7 0.503mm 19/0.105 33.37 109.5 0.528mm 30/0.08 36.64 120 0.506mm 30/0.075 41.48 136 0.474mm 24 27.25 89.39 28.30 93.25 7/0.20 24.99 81.99 0.611mm 30/0.10 23.32 76.5 0.632mm 34/0.10 20.56 67.45 0.673mm 41/0.08 26.68 87.47 0.591mm 22 16.50 54.30 16.70 55.00 7/0.254 15.48 50.8 0.776mm 21 13.00 42.70 13.30 43.60 7/0.27 13.7 44.97 0.825mm 20 10.30 33.90 10.50 34.60 7/0.31 10.4 34.12 0.947mm 19 8.21 26.90 8.37 27.50 18 6.52 21.40 6.64 21.80 17 5.15 16.90 5.27 17.20 16 4.10 13.50 4.18 13.70

导体电阻计算

导体电阻计算 在长度为L,横截面为S的导体AB两端加电压U,经过时间t,从导体一端(设为A端)流出的(电荷)自由电子的电荷量为q;则:电流I=q/t,R=U/I。如果t保持不变,q越大则电阻越小。1、1 温度的影响从A端流出的自由电子是在电场力作用下做定向运动,并且运动的速率很小(约10-5m/s);同时自由电子还要做杂乱无章(运动方向不确定)的热运动,其速率较大(常温下约105m/s),并且随着温度的升高热运动速率增大。由于自由电子热运动方向不确定,形成对定向运动的阻碍,并且这种阻碍作用随着温度变大而变大(热运动速率增大)。这样从A端流出的自由电子的总电荷量随温度升高而减少,即电阻变大。1、2 导体长度的影响如果在温度不变时,将AB的长度增加,自由电子定向运动通过导体的时间增加,自由电子的热运动对定向运动的影响也随之增加。从A端流出的自由电子总电荷量q 随着导体长度增加而减少,即R变大。1、3 导体横截面的影响如果在温度不变的条件下,将AB的横截面加倍时,从A端流出的自由电子数目是原来的两倍,所以当导体的横截面增加时,其电阻变小。1、4 材料的影响导体AB选择不同的材料时,其内部单位体积内自由电子数目越多,则从A端在相同时间内流出的自由电子数目也越多,其电阻也就越小。2、电阻率2、1 电阻率的定义电阻率(resistivity)是用来表示各种物质电阻特性的物理量。某种材

料制成的长1m、横截面积是1m2的在常温下(25℃时)导线的电阻,叫做这种材料的电阻率。2、2 电阻率的单位国际单位制中,电阻率的单位是欧姆米(Ωm或ohmm),常用单位是欧姆毫米和欧姆米。2、3 电阻率的计算公式电阻率的计算公式为:ρ=RS/L 式中:ρ为电阻率常用单位ΩmS为横截面积常用单位m2R为电阻值常用单位ΩL为导线的长度常用单位m3、导体电阻的计算(以铜为例)根据上面公式,则电阻计算公式为:R=ρL/S。以铜为例。铜电阻率(20℃时)为0、0185Ωmm2/m,也就是截面积为1平方毫米、长度为1米的铜导线电阻是0、0185Ω。不同温度下的电阻率会有些差别,电阻率温度系数是0、00393/℃。电阻率温度系数公式为:ρ=ρ0(1+a*t)式中:ρ在t℃时的电阻率Ρ0在0℃时的电阻率 t温度,单位为℃查表可得不同温度下铜的电阻率:0℃ 0、0165Ωmm2/m10℃ 0、0172Ωmm2/m20℃ 0、 0178Ωmm2/m(这个有点趋近真实值,但是还是有一点点偏大)30℃ 0、0185Ωmm2/m35℃ 0、0188Ωmm2/m40℃ 0、 0192Ωmm2/m50℃ 0、0200Ωmm2/m60℃ 0、0206Ωmm2/m70℃ 0、0212Ωmm2/m75℃ 0、0216Ωmm2/m80℃ 0、0219Ωmm2/m90℃ 0、0226Ωmm2/m100℃ 0、0233Ωmm2/m按照电阻率与电阻之间计算关系有:0度时:R(0)= ρL/S=0、0165*250/6=0、6875Ω30度时:R(30)= ρL/S=0、0185*250/6=0、7708Ω4、常用金属导体的电阻率几种金属导体在20℃时的电阻率(Ωm):(1)银1、6510-8(2)铜1、7510-8(3)铝2、8310-8(4)钨5、4810-8(5)铁

负温度系数R25=3.4513k B值4200热敏电阻RT公式计算表

深圳市富温传感技术有限公司 人性科技感知温度 TEMPERATURE VS RESISTANCE TABLE Resistance 3.4513k Ohms at 114deg. C Resistance Tolerance + / - 1.5% B Value 4200K at 25/50 deg. C B Value Tolerance + / - 1 % Temp. (deg. C) Rmax (k Ohms) Rnor (k Ohms) Rmin (k Ohms) -20 1139.4650 1060.1345 986.1052 -19 1071.2083 997.2393 928.1697 -18 1007.4491 938.4533 873.9857 -17 947.8674 883.4849 823.2905 -16 892.1640 832.0642 775.8380 -15 840.0659 783.9421 731.4037 -14 791.3177 738.8882 689.7772 -13 745.6863 696.6897 650.7659 -12 702.9547 657.1495 614.1911 -11 662.9216 620.0852 579.8860 -10 625.4028 585.3280 547.6982 -9 590.2252 552.7214 517.4842 -8 557.2304 522.1205 489.1126 -7 526.2707 493.3907 462.4607 -6 497.2096 466.4075 437.4150 -5 469.9200 441.0550 413.8696 -4 444.2845 417.2257 391.7267 -3 420.1935 394.8199 370.8949 -2 397.5460 373.7448 351.2897 -1 376.2471 353.9141 332.8317 0 356.2099 335.2477 315.4483 1 337.3523 317.6710 299.0705 2 319.5989 301.1145 283.6353 3 302.8792 285.5136 269.0831 4 287.1273 270.8080 255.3588 5 272.2822 256.941 6 242.4108 6 258.2868 243.8621 230.1913 7 245.0881 231.5207 218.6553

线圈电阻计算方法

计算电阻公式为: S L R *ρ= 其中,ρ为铜的电阻率,值为:mm *24.17Ωμ(m *01724.0Ωμ),L 为导线长度,S 为导线的横截面积。 1. 导线长度的求法:方法有两种。 第一种,估算: K D D n L ++≈2*21π 式中 n 为圈数,D 1、D 2分别为内外径,K 为不足一圈的长度 其中,误差有:2 21D D E +≤π 由我们的线圈n=32,D 1=4.8mm ,D 2=24.4mm ,K=0。 算得L=1467mm ,E=45.8,则L 应该大于1421.1mm ,而小于1512.8mm 第二种,精确计算: 设螺线的方程为θπ *2d r =,式中,d 代表相邻螺线间的距离,在本文中,指代间距(d )和一半线宽(b ,8mil )之和(4mil+4mil=8mil=0.203mm ) 则[] d D d D K In d L M M N N N M π?π?θθθθπ??==+++++=,)1(1422 式中,D N 是外径,D M 是开始时的内径。d 也可表示为(D N -D M )/2n 带入算得:[]0)1(1122.0250 4922+++++=θθθθIn L ,

L=1466.6mm 有结果看出,两者相差不大。对计算阻抗影响不大。 2.计算铜线截面积 在PCB工艺中,铜线为长方体,其厚度由敷铜时的参数决定,一般是1oz(盎司)敷铜,此时铜线厚度为35微米,相应的,若在制板时采用2oz或者更厚的敷铜,则厚度倍增。计算时假设是1oz敷铜,设计时导线宽度为8mil(0.2032mm)所以横截面积为 S=0.2032*0.035=0.007112mm2 μ,大概3.55欧姆 由此算得:R=17.24*1466.6/0.007112=Ω 那么两个线圈串联电阻约为2*3.55=7.1欧姆

常用导体材料电阻率计算公式

常用导体材料电阻率计算 公式 Prepared on 24 November 2020

【电学部分】 1电流强度:I=Q电量/t 2电阻:R=ρL/S 3欧姆定律:I=U/R 4焦耳定律: ⑴Q=I2Rt普适公式) ⑵Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5串联电路: ⑴I=I1=I2 ⑵U=U1+U2 ⑶R=R1+R2 ⑷U1/U2=R1/R2 (分压公式) ⑸P1/P2=R1/R2 6并联电路: ⑴I=I1+I2

⑵U=U1=U2 ⑶1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] ⑷I1/I2=R2/R1(分流公式) ⑸P1/P2=R2/R1 7定值电阻: ⑴I1/I2=U1/U2 ⑵P1/P2=I12/I22 ⑶P1/P2=U12/U22 8电功: ⑴W=UIt=Pt=UQ (普适公式) ⑵W=I^2Rt=U^2t/R (纯电阻公式) 9电功率: ⑴P=W/t=UI (普适公式) ⑵P=I2^R=U^2/R (纯电阻公式) 电流密度的问题:一般说铜线的电流密度取6A/mm2,铝的取 4A,考虑到大电流的趋肤效应,越大的电流取的越小一些,100A

以上一般只能取到左右,另外还要考虑输电线路的线损,越长取的也要越小一些。 计算所有关于电流,电压,电阻,功率的计算公式 1、串联电路电流和电压有以下几个规律:(如:R1,R2串联) ①电流:I=I1=I2(串联电路中各处的电流相等) ②电压:U=U1+U2(总电压等于各处电压之和) ③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR 2、并联电路电流和电压有以下几个规律:(如:R1,R2并联) ①电流:I=I1+I2(干路电流等于各支路电流之和) ②电压:U=U1=U2(干路电压等于各支路电压) ③电阻:(总电阻的倒数等于各并联电阻的倒数和)或。 如果n个阻值相同的电阻并联,则有R总= R 注意:并联电路的总电阻比任何一个支路电阻都小。 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。

电缆直流电阻计算

电缆直流电阻与长度的关系 您好!电线、电缆每1千米的直流电阻计算公式:每1千米的直流电阻=电阻系数×1000÷截面积(平方毫米)·欧/1000米电阻系数:其中当温度T=20℃时,铜的电阻系数为0.0175欧·平方毫米/米铝的电阻系数为0.0283欧·平方毫米/米其中当温度T=75℃时,铜的电阻系数为0.0217欧·平方毫米/米铝的电阻系数为0.0346欧·平方毫米/米注意不论是单根或是多根都是以总截面积为计。例如以1.5平方毫米铜芯线(环境温度为20℃)计算: 0.0175×1000÷1.5≈11.667(欧/1000米) 绝缘铜电线最大直流电阻计算方法 20度时铜导体直流电阻=17.241/实际截面积单位:欧/km t度时铜导体直流电阻=(17.241/实际截面积)*(1+0.00393*(t-20))* 1.012*1.007 若为铝芯,17.241换为28.264,0.00393换为0.004 03 求出的是单位长度电阻,有多长再乘即可注:20度时最大电阻可查GB3956-1997,有国标就尊重国标 直流电动机: 4.0.2 测量励磁绕组和电枢的绝缘电阻值,不应低于 0.5MΩ。 4.0.7 测量励磁回路连同所有连接设备的绝缘电阻值不应低于0.5MΩ。交流电动机: 1 额定电压为 1000V 以下,常温下绝缘电阻值不应低于 0.5MΩ;额定电压为 1000V及以上,折算至运行温度时的绝缘电阻值,定子绕组不应低于1MΩ/KV,转子

绕组不应低于0.5MΩ/KV。此外还应考虑温度对绝缘电阻值的影响。 直流电阻和20℃电阻率的单位及计算公式 1)定义或解释电阻率是用来表示各种物质电阻特性的物理量。某种材料制成的长1米、横截面积是1平方毫米的导线的电阻,叫做这种材料的电阻率。 (2)单位国际单位制中,电阻率的单位是欧姆·米,常用单位是欧姆·平方毫米/米。 (3)说明①电阻率ρ不仅和导体的材料有关,还和导体的温度有关。在温度变化不大的范围内,:几乎所有金属的电阻率随温度作线性变化,即ρ=ρo(1+at)。式中t是摄氏温度,ρo是O℃时的电阻率,a是电阻率温度系数。②由于电阻率随温度改变而改变,所以对于某些电器的电阻,必须说明它们所处的物理状态。如一个220 V 1OO W电灯灯丝的电阻,通电时是484欧姆,未通电时只有40欧姆左右。③电阻率和电阻是两个不同的概念。电阻率是反映物质对电流阻碍作用的属性,电阻是反映物体对电流阻碍作用的属性。下表是几种金属导体在20℃时的电阻率. 材料电阻率(Ω m) (1)银 1.6 × 10-8 (5)铂 1.0 × 10-7 (9)康铜 5.0 ×10-7 (2)铜 1.7 × 10-8 (6) 铁 1.0 × 10-7 (10)镍铬合金 1.0 × 10-6 (3)铝 2.9 × 10-8 (7)汞 9.6 × 10-7 (11)铁铬铝合金1.4 × 10-6 (4)钨 5.3 × 10-8 (8)锰铜 4.4 × 10-7 (12) 铝镍铁合金1.6 × 10-6 (13)石墨(8~13)×10-6 可以看出金属的电阻率较小,合金的电阻率较大,非金属和一些金属氧化物更大,而绝缘 体的电阻率极大.锗,硅,硒,氧化铜,硼等的电阻率比绝缘体小而比

线材导体电阻的计算

线材导体电阻的计算: R=ρ*L/S 电阻率的计算公式 电阻率的计算公式为:ρ=R*S/L 式中: ρ为电阻率——常用单位Ω·m S为横截面积——常用单位m2 R为电阻值——常用单位Ω L为导线的长度——常用单位m 查表可得不同温度下铜的电阻率: 0℃0.0165Ω·mm2/m 10℃0.0172Ω·mm2/m 20℃0.0178Ω·mm2/m(这个有点趋近真实值,但是还是有一点点偏大)30℃0.0185Ω·mm2/m 35℃0.0188Ω·mm2/m 40℃0.0192Ω·mm2/m 50℃0.0200Ω·mm2/m 60℃0.0206Ω·mm2/m 70℃0.0212Ω·mm2/m 75℃0.0216Ω·mm2/m 80℃0.0219Ω·mm2/m 90℃0.0226Ω·mm2/m 100℃0.0233Ω·mm2/m 按照电阻率与电阻之间计算关系有: 0度时:R(0)= ρL/S=0.0165*250/6=0.6875Ω 30度时:R(30)= ρL/S=0.0185*250/6=0.7708Ω 常用金属导体的电阻率 几种金属导体在20℃时的电阻率(Ω·m): (1)银1.65 ×10-8 (2)铜1.75 ×10-8 (3)铝2.83 ×10-8 (4)钨5.48 ×10-8 资料20140108 Company Confidential v1.0 3 / 3 (5)铁9.78 ×10-8 (6)铂2.22 ×10-7 (7)锰铜4.4 ×10-7 (8)汞9.6 ×10-7

(9)康铜5.0 ×10-7 (10)镍铬合金1.0 ×10-6 (11)铁铬铝合金1.4 ×10-6 (12)铝镍铁合金1.6 ×10-6 (13)石墨(8~13)×10-6

电路电阻计算公式

电路电阻计算公式 The Standardization Office was revised on the afternoon of December 13, 2020

矩公式为T=9550x功率P/转速n,要是多级传动的话每级的扭矩要乘以减速比,速度越低扭矩越大 功率的计算公式: p=w/t p=UI P=I^2 *R P=Fv P=U^2 /R 功的计算公式: W=Fs W=UIt W=I^2 *Rt W=U^2 *t /R 1,两相家用电器功率的计算方法是: P=电流*电压*功率因素 如 5A电流*220V交流电压*功率因素=990W 1度电=1000W 2,对称三相交流家用电器功率的计算方法是: 有功功率(W)P=跟号3*电流*交流电压*功率因素(COS) 无功功率(VAR)Q=跟号3*电流*交流电压*功率因素(SIN) 视在功率(VA)S=跟号3*电流*交流电压 P表示功率,单位是“瓦特”,简称“瓦”,符号是“w”.W表示功,单位是“焦耳”,简称“焦”,符号是“J”.t表示时间,单位是“秒”,符号是“s”.因为W=F(f 力)*s(s 距离)(功的定义式),所以求功率的公式也可推导出P=F·V(F为力,V为速度). 功率越大转速越高,汽车的最高速度也越高,常用最大功率来描述汽车的动力性能.最大功率一般用马力 (PS)或千瓦(kw)来表示,1马力等于千瓦. 1w=1J/s

P=W/t=FV=FL/t 1、串联电路电流和电压有以下几个规律:(如:R1,R2串联) ①电流:I=I1=I2(串联电路中各处的电流相等) ②电压:U=U1+U2(总电压等于各处电压之和) ③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR 2、并联电路电流和电压有以下几个规律:(如:R1,R2并联) ①电流:I=I1+I2(干路电流等于各支路电流之和) ②电压:U=U1=U2(干路电压等于各支路电压) ③电阻:(总电阻的倒数等于各并联电阻的倒数和)或 . 如果n个阻值相同的电阻并联,则有R总= R 注意:并联电路的总电阻比任何一个支路电阻都小. 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒). 5、利用W=UIt计算电功时注意:①式中的W、U、I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量. 6、计算电功还可用以下公式:W=I2Rt ;W=Pt;W=UQ(Q是电量); 【电学部分】 1电流强度:I=Q电量/t 2电阻:R=ρL/S 3欧姆定律:I=U/R 4焦耳定律: ⑴Q=I2Rt普适公式) ⑵Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式)

并串联电阻计算公式

串联是连接电路元件的基本方式之一。将电路元件(如电阻、电容、电感,用电器等)逐个顺次首尾相连接。将各用电器串联起来组成的电路叫串联电路。串联电路中通过各用电器的电流都相等。 并联是元件之间的一种连接方式,其特点是将2个同类或不同类的元件、器件等首首相接,同时尾尾亦相连的一种连接方式。通常是用来指电路中电子元件的连接方式,即并联电路。 所有并联元件的端电压是同一个电压 串联电路的特点 欧姆定律:I=U/R 变形求电压:U=IR 变形求电阻:R=U/I 电压的关系:U=U1+U2 电流的关系:I=I1=I2 电阻的关系:R=R1+R2 并联电路的特点 电压的关系:U=U1=U2 电流的关系:I=I1+I2 电阻的关系:1/R=1/R1+1/R2 电功的计算:W=UIt

电功率的定义式:P=W/t 常用公式:P=UI 焦耳定律:Q放=I2Rt 对于纯电阻电路而言:Q放=I2Rt =U2t/R=UIt=Pt=UQ=W 照明电路的总功率的计算:P=P1+P1+…… 串、并联电路中的等效电阻 学习目标要求: 1.知道串、并联电路中电流、电压特点。 2.理解串、并联电路的等效电阻。 3.会计算简单串、并联电路中的电流、电压和电阻。 4.理解欧姆定律在串、并联电路中的应用。 5.会运用串、并联电路知识分析解决简单的串、并联电路问题。 中考常考内容: 1.串、并联电路的特点。 2.串联电路的分压作用,并联电路的分流作用。 3.串、并联电路的计算。 知识要点: 1.串联电路的特点

(1)串联电路电流的特点:由于在串联电路中,电流只有 一条路径,因此,各处的电流均相等,即;因此,在对串联电路的分析和计算中,抓住通过各段导体的电流相等这个条件,在不同导体间架起一座桥梁,是解题的一条捷径。 (2)由于各处的电流都相等,根据公式,可以得到 ,在串联电路中,电阻大的导体,它两端的电压也大,电压的分配与导体的电阻成正比,因此,导体串联具有分压作用。串联电路的总电压等于各串联导体两端电压之和,即 。 (3)导体串联,相当于增加了导体的长度,因此,串联导体的总电阻大于任何一个串联导体的电阻,总电阻等于各串联导 体电阻之和,即。如果用个阻值均为的 导体串联,则总电阻。 2.并联电路的特点 (1)并联电路电压的特点:由于在并联电路中,各支路两端分别相接且又分别接入电路中相同的两点之间,所以各支路两 端的电压都相等,即。因此,在电路的分析和计算中,抓住各并联导体两端的电压相同这个条件,在不同导体间架起一座桥梁,是解题的一条捷径。 (2)由于各支路两端的电压都相等,根据公式,可得

相关文档
最新文档