分型面和成型零部件设计.

分型面和成型零部件设计.
分型面和成型零部件设计.

支架零件图设计

1.设计的目的 设计是培养机械工程类专业学生应职应岗能力的重要实践性教学环节,它要求学生能全面综合地运用所学的理论和实践知识,进行零件机械加工工艺规程和工艺装备的设计。其基本目的是: (1)培养工程意识。 (2)训练基本技能。 (3)培养质量意识。 (4)培养规范意识。 2设计的基本任务与要求 2、1、设计任务 (1)设计一个中等复杂的零件的加工工艺规程; (2)设计一个专用夹具; (3)编写设计说明书。 2、2、设计基本要求 (1)内容完整,步骤齐全。 (2)设计内容与说明书的数据和结论应一致,内容表达清楚,图纸准确规范,简图应简洁明了,正确易懂。 (3)正确处理继承与创新的关系。 (4)正确使用标准和规范。 (5)尽量采用先进设计手段。 3设计说明书的编写 说明书要求系统性好、条理清楚、语言简练、文字通顺、字迹工整、图例清晰、图文并茂,充分表达自己的见解,力求避免抄书。

第一章工艺设计与工装设计 1.基本任务: (1)绘制零件工件图一张; (2)绘制毛坯—零件合图一张; (3)编制机械加工工艺规程卡片一套; (4)编写设计说明书一份; (5)收集和研究原始资料,为夹具结构设计做好技术准备。 (6)初步拟定夹具结构方案,绘制夹具结构草图,进行必要的理论计算和分析。选择最佳的夹具结构方案,确定夹具精度和夹具总图尺寸、公差配合与技术要求。 (7)绘制夹具总图和主要非标准件零件图,编写设计说明书。 (8)编制夹具特殊使用维护、操作、制造方面的说明或技术要求。 2.设计要求: (1)应保证零件的加工质量,达到设计图纸的技术要求; (2)在保证加工质量的前提下,尽可能提高生产效率; (3)要尽量减轻工人劳动强度,必须考虑生产安全、工业卫生等措施; (4)在立足本企业的生产条件基础上,尽可能采用国内外新技术、新工艺、新装备; (5)工艺规程应正确、完整、简洁、清晰; (6)工艺规程应满足规范化、标准化要求; (7)夹具设计保证工件的加工精度; (8)提高生产效率; (9)工艺性好; (10)使用性好; (11)经济性好。 3.方法和步骤: 3.1生产纲领的计算与生产类型的确定 生产类型生产纲领(件/年) 大批生产小型零件(4KG)2800

成型零件设计

成型零件的设计 成型零件的结构设计主要是指构成模具型腔的零件,通常有凹模、型芯、各种成形杆和成形环。 模具的成型零件主要是凹模型腔和底板厚度的计算,塑料模具型腔在成型过程中受到熔体的高压作用,应具有足够的强度和刚度,如果型腔侧壁和底板厚度过小,可能因强度不够而产生塑性变形甚至破坏;也可能因刚度不足而产生挠曲变形,导致溢料飞边,降低塑件尺寸精度并影响顺利脱模。因此,应通过强度和刚度计算来确定型腔壁厚,尤其对于重要的精度要求高的或大型模具的型腔,更不能单纯凭经验来确定型腔壁厚和底板厚度。 注射模具的成型零件是指构成模具型腔的零件,通常包括了凹模、型芯、成型杆等。凹模用以形成制品的外表面,型芯用以形成制品的内表面,成型杆用以形成制品的局部细节。成形零件作为高压容器,其内部尺寸、强度、刚度,材料和热处理以及加工工艺性,是影响模具质量和寿命的重要因素。 设计时应首先根据塑料的性能、制件的使用要求确定型腔的总体结构、进浇点、分型面、排气部位、脱模方式等,然后根据制件尺寸,计算成型零件的工作尺寸,从机加工工艺角度决定型腔各零件的结构和其他细节尺寸,以及机加工工艺要求等。此外由于塑件融体有很高的压力,因此还应该对关键成型零件进行强度和刚度的校核。 在工作状态中,成型零件承受高温高压塑件熔体的冲击和摩擦。在冷却固化中形成了塑件的形体、尺寸和表面。在开模和脱模时需要克服于塑件的粘着力。在上万次、甚至上几十万次的注射周期,成型零件的形状和尺寸精度、表面质量及其稳定性,决定了塑件制品的相对质量。成型零件在充模保压阶段承受很高的型腔压力,作为高压容器,它的强度和刚度必须在容许范围内。成型零件的结构,材料和热处理的选择及加工工艺性,是影响模具工作寿命的主要因素。 一、成型零件的选材 对于模具钢的选用,必需要符合以下几点要求: 1、机械加工性能良好。要选用易于切削,且在加工以后能得到高精度零件的钢种。 2、抛光性能优良。注射模成型零件工作表面,多需要抛光达到镜面,Ra≤0.05μm。要求钢材硬度在HRC35~40为宜。过硬表面会使抛光困难。钢材的显微组织应均匀致密,极少杂质,无疵斑和针点。 3、耐磨性和抗疲劳性能好。注射模型腔不仅受高压塑料熔体冲刷,而且还受冷热温度交变应力作用。一般的高碳合金钢可经热处理获得高硬度,但韧性差易形成表面裂纹,不以采用。所选钢种应使注塑模能减少抛光修模次数,能长期保持型腔的尺寸精度,达到所计划批量生产的使用寿命期限。 4、具有耐腐蚀性。对有些塑料品种,如聚氯乙稀和阻燃性的塑料,必须考虑选用有耐腐蚀性能的钢种。

成型零部件结构设计

成型零部件结构设计 成型零部件的结构设计包括凹模结构设计、凸模结构设计以及螺纹型芯和螺纹型环的结构设计等。 1 .凹模结构设计 凹模用于成型塑件的外表面,又称为阴模、型腔。按其结构的不同可分为整体式、整体嵌人式、局部镶嵌式、大面积镶嵌式和因壁镶嵌式五种。总体来说,整体式强度、刚度好,但不适用于复杂的型腔。镶嵌式采用组合的模具结构,使复杂的型腔加工相对容易,可避免采用同一材料,可利用拼接间隙排气,但易在塑件表面留下镶嵌块的拼接痕迹。 对凹模的各种结构类型分别介绍如下。 ( 1 )整体式。由整块金属材料直接加工而成,如图4 一55 所示,用于形状简单的中小模具。特点是强度高、刚性好。 ( 2 )整体嵌人式。将整体式凹模作为一种凹模块直接嵌人到固定板中,或嵌人模框中,模框再嵌人到固定板中。适用于塑件尺寸不大的多腔模。特点是加工方便,易损件便于更换,凹模可用冷挤压或其他方法单独加工,型腔形状与尺寸一致性好。图4 一56 ( a ) 所示为凹模从凹模固定板下部嵌人,用支承板、螺钉将其固定;图4 一56 ( b )所示为凹模从凹模固定板上部嵌人。

( 3 )局部镶嵌式。当凹模局部形状复杂,或某一部分容易损坏需要经常更换,常采用局部镶嵌式结构。如图4 一57 所示,其中,图4 一57 ( a )所示为嵌入圆销成型塑件表面直纹;图4 一57 ( b )所示为镶件成型塑件的沟槽;图4 一57 (。)所示为镶件构成塑件圆环形筋槽;图4 一57 ( d )所示为镶件成型塑件底部复杂的构形。 ( 4 )大面积镶嵌式。对于底部或侧壁形状复杂的凹模,为了便于加工,保证精度,将凹模做成通孔式的,再镶上底,或将凹模壁做成镶嵌块。适用于深腔或底部、侧壁难于加工的组合型模具型腔,但各个结合面的研磨、抛光增加了工时.图4 一58 ( a )所示为侧壁和底部大面积镶拼的凹模结构;图4 一58 ( b )所示为底部大面积镶嵌的结构,采用圆柱面配合。

零件结构设计的基本要求和内容

零件结构设计的基本要 求和内容 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

零件结构设计的基本要求摘要:本文介绍零件结构设计的基本要求,限于篇幅,主要介绍零件设计的功能使用要求和为了实现这些要求而采取的一些措施。 关键词:零件结构设计要求措施 正文: 一、功能使用要求 设计机械或零件必须首先满足其功能和使用要求。机械的功能要求,如运动范围和形式要求、速度大小和载荷传递都是由具体的零件来实现的。除传动要求外,机械零件还需要有承载、固定、链接等功能;零件结构设计应满足强度、刚度、精度、耐磨性及防腐等使用要求。 1、提高强度和刚度的结构设计 为了使机械零件能正常工作,在设计的整个过程中都要保证零件的强度和刚度能满足要求。对于重要的零件要进行强度和刚度计算。静强度的计算指危险截面拉压、剪切、弯曲和扭剪应力的计算;静刚度的计算指相对载荷或应力下的变形计算。两者均与零件的材料、受力和结构尺寸密切相关。 通过合理选择机械的总体方案使零件的受力合理,特别是通过正确的结构设计使它所受的应力和产生的变形较小可以提高零件的强度和刚度,满足其工作能力的要求。合理的计算有助于选择最佳方案,但同时也要考虑零件在加工、装拆过程中保证足够的强度和刚度要求。

(1)通过结构设计提高静强度和刚度的措施 1)改变受力 a)改变受力情况,降低零件的最大应力 b)载荷分担将一个零件所受的载荷分给几个零件承受,以减少每个零件的受力。 c)载荷均布:通过改变零件的形状,改善零件的受力;采用挠性均载元件;提高加工精度。 d)其他的载荷抵消或转化措施,采取措施使外载荷全部或部分地相互抵消,有化外力为内力、用拉伸代替弯曲等。 2)改变截面 a)采用合理的断面形状,在零件材料和受力一定的条件下,只能通过结构设计,如增大截面积,增大抗弯、抗扭截面系数来提高其强度。 b)用肋或隔板,采用加强肋或隔板科提高零件、特别是机架零件的刚度 3)利用附加结构措施改变材料内应力状态,通过加强附加结构措施使受力零件产生弹性强化或塑性强化来提高强度。塑性强化又称过载强化,采用塑性强化的结构都是受不均匀应力的零件。其塑性变形产生在零件受最大应力的区域内,并与工作应力方向相反,因而具有降低最大应力、使应力分布均匀化的效果。 (2)提高疲劳强度的结构设计

Proe中的分型面设计方法

在注塑模中,分型面的设计直接影响着塑件质量、模具结构和操作的难易程度,是注塑模设计成败的关键因素之一[1]。随着CAD/CAM技术在模具制造业的广泛应用,模具设计也由传统的二维设计转变为三维设计。在众多的CAD/CAM软件中,Pro/E采用单一数据库和参数化设计的方法集产品设计、模具设计和数控加工于一体,强大的功能使其成为行业的佼佼者。在Pro/E模具设计中,利用已有的产品模型,通过建立模具装配模型、设置收缩率、零件厚度和脱模斜度检查、分型面设计、模具体积块分割、模具零件抽取等过程,可以快速完成模具成型零件设计,最后通过专家模架系统(EMX)完成整套模具的设计。在整个过程中,分型面的设计最为复杂和耗时,是利用Pro/E进行模具设计的关键[2]。 分型面设计的一般原则 在注塑模具中,打开模具取出塑料制品的界面称为分型面,它是动、定模在合模状态下的接触面或瓣合式模具的瓣合面。分型面形状和位置的选择不仅直接关系着模具结构的复杂程度和制造难度,而且直接影响着塑件的质量和生产效率,是模具设计的重要环节。在确定分型面时应遵循以下原则: (1)应使模具结构尽量简单。如避免或减少侧向分型,采用异型分型面减少动、定模的修配以降低加工难度等. (2)有利于塑件的顺利脱模。如开模后尽量使塑件留在动模边以利用注塑机上的顶出机构,避免侧向长距离抽芯以减小模具尺寸等. (3)保证塑件的尺寸精度。如尽量把有尺寸精度要求的部分设在同一模块上以减小制造和装配误差等. (4)不影响塑件的外观质量。在分型面处不可避免地出现飞边,因此应避免在外观光滑面上设计分型面. (5)保证型腔的顺利排气。如分型面尽可能与最后充填满的型腔表壁重合,以利于型腔排气。 在Pro/E模具设计中,分型面是将工件或模具零件分割成模具体积块的分割面,具有更广泛的意义。它不仅仅局限于对动、定模或侧抽芯滑块的分割,对于模板中的组合件、镶块同样可以采用分型面进行分割。为保证分型面设计成功和所设计的分型面能对工件进行分割,在设计分型面时必须满足以下两个基本条件[2]: (1)分型面必须与欲分割的工件或模具零件完全相交以期形成分割。 (2)分型面不能自身相交,否则分型面将无法生成。 2 Pro/E分型面设计方法 Pro/E中有两类曲面可以用于工件的分割:一是使用Parting Surf专用模块生成的分型面特征;二是在参考模型或零件模型上使用Feature中的Surface生成的曲面特征。由于前者得到的是一个模具组件级的曲面特征,易于操作和管理而最为常用。本文所涉及到的设计方

2型腔布局与分型面设计

型腔布局与分型面设计 引入新课: 分型面位置选择的总体原则,是能保证塑件的质量、便于塑件脱模及简化模具的结构,分型面受到塑件在模具中的成型位置、浇注系统设计、塑件的结构工艺性及精度、嵌件位置形状以及推出方法、模具的制造、排气、操作工艺等多种因素的影响 型腔布局与分型面设计 (1)、型腔数目的确定 型腔数目的确定,应根据塑件的几何形状及尺寸、质量、批量大小、交货长短、注射能力、模具成本等要求来综合考虑。 根据注射机的额定锁模力F 的要求来确定型腔数目n ,即 n 1 2pA pA F -≤ 式中 F ——注射机额定锁模力(N ) P ——型腔内塑料熔体的平均压力(MPa ) A 1、A 2——分别为浇注系统和单个塑件在模具分型面上的投影面积(mm 2) 大多数小型件常用多型腔注射模,面高精度塑件的型腔数原则上不超过4个,生产中如果交货允许,我们根据上述公式估算,采用一模二腔。 (2)、型腔的布局 考虑到模具成型零件和抽芯结构以及出模方式的设计,模具的型腔排列方式如下图所示:

图(1) (3)、分型面的设计 分型面位置选择的总体原则,是能保证塑件的质量、便于塑件脱模及简化模具的结构,分型面受到塑件在模具中的成型位置、浇注系统设计、塑件的结构工艺性及精度、嵌件位置形状以及推出方法、模具的制造、排气、操作工艺等多种因素的影响,因此在选择分型面时应综合分析比较具体可以从以下方面进行选择。 a)分型面应选在塑件外形最大轮廓处。 b)便于塑件顺利脱模,尽量使塑件开模时留在动模一边。 c)保证塑件的精度要求。 d)满足塑件的外观质量要求。 e)便于模具加工制造。 f)对成型面积的影响。 g)对排气效果的影响。 h)对侧向抽芯的影响。

第五章 压铸模的基本结构及分型面设计

第五章压铸模的基本结构及分型面设计 压铸模是保证压铸件质量的重要的工艺装备,它直接影响着压铸件的形状、尺寸、精度、表面质量等。压铸生产过程能否顺利进行,压铸件质量有无保证,在很大程度上取决于压铸模的结构合理性和技术先进性。在压铸模设计过程中,必须全面分析压铸件结构,了解压铸机及压铸工艺,掌握在不同压铸条件下的金属液充填特性和流动行为,并考虑到经济效益等因素,才能设计出切合实际并满足生产要求的压铸模。 第一节压铸模的基本结构 压铸模由定模和动模两大部分组成。定模固定在压铸机的定模安装板上,浇注系统与压室相通。动模固定在压铸机的动模安装板上,随动模安装板移动而与定模合模、开模。合模时,动模与定模闭合形成型腔,金属液通过浇注系统在高压作用下高速充填型腔;开模时,动模与定模分开,推出机构将压铸件从型腔中推出。压铸模的基本结构如图5-1所示:

图5-1压铸模的基本结构1-动模座板2-垫块3-支承板4-动模套板5-限位块6-螺杆7-弹簧8-滑块9-斜销10-楔紧块11-定模套板12-定模座板13-定模镶块14-活动型芯15-型芯16-内浇口17-横浇道18-直浇道19-浇口套20-导套21-导流块22-动模镶块23-导柱24-推板导柱25-推板导套26-推杆27-复位杆28-限位钉29-推板30-推杆固定板 一、成型零件决定压铸件几何形状和尺寸精度的零件。形成压铸件外表面的称为型腔;形成压铸件内表面的称为型芯。如图中的定模镶块13、动模镶块 22、型芯15、活动型芯14。

二、浇注系统连接压室与模具型腔,引导金属液进入型腔的通道。由直浇道、横浇道、内浇口组成。如图中浇口套19、导流块21组成直浇道,横浇道、内浇口开设在动、定模镶块上。 三、溢流、排气系统排除压室、浇道和型腔中的气体,储存前流冷金属液和涂料残渣的处所,包括溢流槽和排气槽,一般开设在成型零件上。 四、模架将压铸模各部分按一定规律和位置加以组合和固定,组成完整的压铸模具,并使压铸模能够安装到压铸机上进行工作的构架。通常可分为三个部分: (一)支承与固定零件包括各类套板、座板、支承板、垫块等起装配、定位、安装作用的零件,如图中的动模座板1、垫块2、支承板3、动模套板4、定模套板11、定模座板12。 (二)导向零件确保动、定模在安装和合模时精确定位,防止动、定模错位的零件。如图中的导柱23、导套20。 (三)推出机构压铸件成形后,动、定模分开,将压铸件从压铸模中脱出的机构。如图中的推杆26、复位杆27、推板29、推杆固定板30、推板导柱24、推板导套25等。 五、抽芯机构抽动与开合模方向运动不一致的活动型芯的机构,合模时完成插芯动作,在压铸件推出前完成抽芯动作。如图中的限位块5、螺杆6、弹簧7、滑块8、斜销9、楔紧块10、活动型芯14等。 六、加热与冷却系统为了平衡模具温度,使模具在合适的温度下工作,压铸模上常设有加热与冷却系统。 除上述部分之外,压铸模内还有其他如紧固用的螺栓及定位用的销钉等。 第二节分型面设计 压铸模的动模与定模的结合表面称为分型面。分型面设计是压铸模设计中的一项重要内容。分型面与压铸件的形状和尺寸,压铸件在压铸模中的位置和方向密切相关。分型面的确定对压铸模结构和压铸件质量将产生很大的影响。 一、分型面的类型 按照分型面的形状,分型面一般可分为平直分型面、倾斜分型面、阶梯分型

分型面设计

型腔分型面的设计 1 塑件在型腔中方位的选择 塑件在型腔中的方位选择是否合理,将直接影响模具总体结构的复杂程度。一般应尽量避免与开合模方向垂直或倾斜的侧向分型和抽芯,使模具结构尽可能简单。为此,在选择塑件在型腔中的方位时,要尽量避免与开合模方向垂直或倾斜的方向有侧孔侧凹。在确定塑件在型腔中的方位时,还需要考虑对塑件精度和质量的影响、浇口的设置、生产批量、成型设备、所需的机械化自动化程度等。如较长的管状塑件,将其轴线方向设置在开合模方向,则可能使模厚太大而无法在注射机上安装或注射机的开模行程不够而无法取出塑件。此时,可将塑件的轴线方向设置在和开合模方向垂直的方向,采用液压或手动侧向抽芯机构。 2 分型面形状的选择 分型面的形状一般有以下几种:a 和开合模方向垂直的平面,b 阶梯形弯折面,c 斜面,d 曲面.后三种分型面虽然加工较前一种困难,但型腔加工或脱模较为容易。此外,还有用和开 合模方向平行的平面作分型面(侧向分型面)的。分型面形状的选择主要应根据塑件的结构形状特点而定,力求使模具结构简单,加工制造方便、成型操作容易。 3 分型面位置的选择 在选择分型面位置时,应注意以下几点。 (1)塑件在型腔中的方位确定后,分型面必须设在塑件断面轮廓最大的地方,才能保证塑件顺利地从模腔中脱出。 (2)不要设在塑件要求光亮平滑的表面或带圆弧的转角处,以免溢料飞边、拼合痕迹影响塑件外观。 (3)开模时,尽量使塑件留在动模边。一般在动模边设脱模机构较为方便。如薄壁或大孔塑件,在模腔中冷却收缩包紧型芯,应将型芯设在动模边。多孔塑件或型芯形状复杂、斜度小时,塑件对型芯包紧力大,同样应将型芯设在动模边。厚壁小孔塑件,对型芯包紧力较小,如果将型芯和凹模分别设在动定模两边,往往不能准确判断塑件的留模方向,此时,可将型芯和凹模设在动模边,或采取其它一些强制留模措施。当塑件带有光孔的金属嵌件时,则不会对型芯产生包紧力,而对凹模的粘附力较大,此时应将凹模设在动模边。(4)保证塑件的精度要求。同轴度要求较高的部分,应尽可能设在同一侧。如由于塑件结构形状的限制,同轴度要求较高的部分不可能设在同一侧时,则应设法提高动定模之间的定位精度。此外,还需注意分型面上产生的飞边对塑件尺寸精度的影响。 (5)长型芯作主型芯,短型芯作侧型芯。当采用机动式侧向抽芯机构时,在一定的开模行程和模具厚度范围,不易得到大的抽拔距,长型芯不宜设在侧向。采用液压和手动侧向抽芯机构除外。 (6)投影面积大的作主分型面,小的作侧分型面。侧向分型面一般都*模具本身结构锁紧,产生的锁紧力相对较小,而主分型面由注射机锁模力锁紧,锁紧力较大。故应将塑件投影面积大的方向设在开合模方向。 (7)采用机动式侧向分型面抽芯机构时,应尽量采用动模边侧向分型抽芯。采用动模边侧向分型抽芯,可使模具结构简单,可得到较大的抽拔距。在选择分型面位置时,应优先考虑将塑件的侧孔侧凹设在动模一边。 (8)尽量使分型面位于料流末端,以利排气。利用分型面上的间隙或在分型面上开设排气槽排气,结构较为简单,为此,应尽量使料流末端处于分型面上。当然料流末端的位置完全取决于浇口的位置。 此外,分型面的位置选择应使模具加工尽可能方便,保证成型零件的强度,避免成型零

分型面设计

分型面的选择 在模具中,能够取出产品或流道凝料的可分离的接触面,都叫分型面。 一、分型面应选择在塑件的最大截面处(图二),否则给脱模和加工带来困难(图一). 此点可说是选择的首要原则. 图一( 无法脱模 ) 图二(順利脫模) 1、尽可能地将塑件留在公模侧,因在公模侧设置脱模机构简便易行. 2、保证产品的外观质量和精度。 3、分型面应该有利于塑件脱模。 4、分型面的选择和设计应该有利于加工 制造。 <1>主分型面为平面的情况,分型面设计时 要考虑方便于磨床加工。 <2>主分型面为复杂曲面,分型面设计时要 考虑方便于NC 加工,避免EDM 加工。 二、分型面在不同情况下的设计要求: <2.1>主要分型面为平面的情况: 主要分型面与开模方向垂直时,分型面可直接拉伸而成。(见图一) * 对于这种分型面用自动分模时常会在一些转角位有一些微小的起伏(高度方向几个丝的变化),对制作Fit 模有一定的影响,应注意用平面替换,以利于磨床磨出。 三、主要分型面为斜面的情况: 图一

主要分型面与开模方向不垂直时,分型面沿斜面延伸一段后在分型面两端做平位,以利于加工定位及Fit模。(见图二) 延伸段长度:大模L=20~30mm,小模L=10mm即可。 * 斜面比较陡时可在模仁四个角位做原身管位定位(也可考虑用圆型分型面管位块) ,合模时起定位和防滑作用。 四、主要分型面为单曲面的情况: 应顺着曲面方向延伸一段后在分型面两端做平位,以利于加工定位及Fit模。(见图三) 延伸段长度:大模L=20~30mm,小模L=10mm即可。 * 曲面比较陡时可在模肉四个角位做原身管位定位,合模时起定位和防滑作用。 五、主要分型面为复合曲面的情况: 分型面设计要以相对简单光顺为处理原则,复杂曲面的分型面设计时要方便于NC加工,尽可能避免EDM加工。 图二 图三

分型面的设计原则

1. 符合塑件脱模:为使塑件能从模具内取出,分型面的位置应设在塑件断面最大尺寸的部位。 2. 分型面的数目和形状:通常只采用一个与开模运动方向相垂直的分型面。确定分形面应以模具制造及脱模方便为原则。 3. 型腔的选择:尽量防止形成侧孔和侧凹,以避免采用较复杂的模具结构。 4. 确保表面质量:分型面尽量不要选择塑件光滑的外表面,避免影响塑件的外观质量;将塑件要求同轴度的部分放在分型面的同一侧。以确保塑件的同轴度;要考虑减小造成塑件大、小端的尺寸差异要求等。 5. 有利于塑件脱模:由于模具的脱模机构通常设置在动模一侧,故尽可能使开模后塑件留在动模一侧。 6. 考虑侧向轴拔距。一般机械式分型抽芯机构的侧向轴拔距都较小,因此选择分型面的时应将抽芯或分型距离长的方向置于动、定模的开合模方向上,即将短轴拔距作为侧向分型或抽芯。并注意将侧抽芯放在动模边,避免定模抽芯。 7. 锁紧模具的要求:侧向合模锁紧力较小,故对于投影面积较大的大型塑件,应将投影面积大的方向放在动、定模的合模方向上,而将投影面积小较小的方向作为侧向分型面。 8. 有利于排气。当分型面作为主要排气渠道时,应将分型面设计在塑料的流动末端,以利于排气。 9. 模具零件易于加工。 具体类型的选择: 薄壁壳体塑件成型收缩紧紧包住型芯,故将型芯设在动模边,凹模设在定模边,开模后塑件留于动模,以利脱模。 垫圈类塑件,壁较厚而内孔较小,塑件成形收缩对型芯包紧力较小,若型腔设于定模,很可能塑件粘在定模上,模具势必考虑采用动、定模双脱模,因此采用型腔设在动模内,可采用推管或推杆脱模。 塑件外形较简单,但内部有较多的孔时,塑件成形收缩后必留于型芯上。型腔设在定模内,动模也采用推件板就可以完成脱模,且模具结构简单。 塑件的孔对称,故型芯也对称设置,如果要迫使塑件留在动模内,可将型腔和大部分型芯设在动模内,采用推管脱模。 塑件的孔对称,故型芯也对称设置,如果要迫使塑件留在动模内,可将型腔和大部分型芯设在动模内,采用推管脱模。 塑件内部设有嵌件,外缘滚花时,型腔设在定模内不合理,因为嵌件并不收缩。采取型腔设在动模内,推管脱模。 塑件有嵌件,当彩侧浇口进料时,往往造成嵌件端部进料冲动,使端头溢料,故应采用顶端进料,并希望型腔设在动模内,使塑件留在动模。 塑件的同轴度要求高,应将型腔全部设计在分型面的一边,以确保塑件同轴度。 当塑件有侧抽芯时,应尽可能将侧抽芯部件放在动模内,避免定模抽芯。 当塑件有多组抽芯时,应尽量避免长端侧向抽芯。 要求壁厚均匀的薄壁塑件,不能采用一个平面作分型面,采用锥形阶梯分型面才能保证塑件壁厚均匀。 分型面不能选择在塑件光滑的外表面,以避免损伤表面质量。 分型面不能通过塑件上精度要求较高的配合面或螺纹面,否则影响塑件尺寸精度。 投影面积大的方向作动、定模的分型面,投影面积小的方向作侧向分型,以利模具锁紧。一般分型面应尽可能设在塑件熔体流动方向末端,以利排气。 一般分型面应尽可能设在塑料熔体流动方向的末端,以利排气。

ProE中的分型面设计方法

Pro/E中的分型面设计方法 在注塑模中,分型面的设计直接影响着塑件质量、模具结构和操作的难易程度,是注塑模设计成败的关键因素之一[1]。随着CAD/CAM技术在模具制造业的广泛应用,模具设计也由传统的二维设计转变为三维设计。在众多的CAD/CAM软件中,Pro/E采用单一数据库和参数化设计的方法集产品设计、模具设计和数控加工于一体,强大的功能使其成为行业的佼佼者。在Pro/E模具设计中,利用已有的产品模型,通过建立模具装配模型、设置收缩率、零件厚度和脱模斜度检查、分型面设计、模具体积块分割、模具零件抽取等过程,可以快速完成模具成型零件设计,最后通过专家模架系统(EMX)完成整套模具的设计。在整个过程中,分型面的设计最为复杂和耗时,是利用Pro/E进行模具设计的关键[2]。 分型面设计的一般原则 在注塑模具中,打开模具取出塑料制品的界面称为分型面,它是动、定模在合模状态下的接触面或瓣合式模具的瓣合面。分型面形状和位置的选择不仅直接关系着模具结构的复杂程度和制造难度,而且直接影响着塑件的质量和生产效率,是模具设计的重要环节。在确定分型面时应遵循以下原则: (1)应使模具结构尽量简单。如避免或减少侧向分型,采用异型分型面减少动、定模的修配以降低加工难度等. (2)有利于塑件的顺利脱模。如开模后尽量使塑件留在动模边以利用注塑机上的顶出机构,避免侧向长距离抽芯以减小模具尺寸等. (3)保证塑件的尺寸精度。如尽量把有尺寸精度要求的部分设在同一模块上以减小制造和装配误差等. (4)不影响塑件的外观质量。在分型面处不可避免地出现飞边,因此应避免在外观光滑面上设计分型面. (5)保证型腔的顺利排气。如分型面尽可能与最后充填满的型腔表壁重合,以利于型腔排气。在Pro/E模具设计中,分型面是将工件或模具零件分割成模具体积块的分割面,具有更广泛的意义。它不仅仅局限于对动、定模或侧抽芯滑块的分割,对于模板中的组合件、镶块同样可以采用分型面进行分割。为保证分型面设计成功和所设计的分型面能对工件进行分割,在设计分型面时必须满足以下两个基本条件[2]: (1)分型面必须与欲分割的工件或模具零件完全相交以期形成分割。 (2)分型面不能自身相交,否则分型面将无法生成。 2Pro/E分型面设计方法 Pro/E中有两类曲面可以用于工件的分割:一是使用Parting Surf专用模块生成的分型面特征;二是在参考模型或零件模型上使用Feature中的Surface生成的曲面特征。由于前者得到的是一

相关文档
最新文档