竞赛中代数式求值的九种常用方法_李芳菲

竞赛中代数式求值的九种常用方法_李芳菲
竞赛中代数式求值的九种常用方法_李芳菲

初中版

2013年8月

在近几年全国各地初中数学竞赛中经常出现代数式的求值问题,这类问题涉及的知识面广,技巧性强,方法灵活多样,倍受命题者的青睐.解决这类问题的关键是理清已知条件与所求代数式之间的关系,然后选择适当的方法求解.笔者结合近几年各类竞赛试题,归纳总结出解决这类问题的几种常用方法,供读者参考.

一、直接代入法

直接代入法就是将已知字母的值直接代入所求值的代数式中,通过化简求得代数式值的方法.

例1(2012年全国初中数学竞赛)如果a=-2+2%

姨,

那么1+

12+

1

3+a

的值为().

A .-2%

姨B .2%

姨C .2D .22%

姨解析:1+

12+13+a

=1+

12+

11+2

%

姨=1+

12+2%

姨-1

=1+

12%

姨+1

=1+2%

姨-1=2%姨.故选B .

例2(2013年全国初中数学竞赛)设a=33

姨,b 是a 2

的小数部分,则(b+2)3

的值为________.

解析:由于1

姨-2,因此(b+

2)3=(93

姨)3

=9.

点评:直接代入法是代数式求值中常用的方法之一,若已知代数式中所含字母的值,且直接代入后易求值时,可考虑利用直接代入法求解.

二、参数法

例3(2007年全国初中数学联赛)已知x ,y ,z 满足

2

x

=

3y -z =5z+x

,则5x -y

y+2z 的值为(

).

A .1

B .

1

3

C .-

13

D .

12

解析:设

2x =3y -z =5z+x =1k

(k ≠0),则x=2k ,z=3k ,y=6k .所以

5x -y y+2z =10k -6k 6k+6k =4k 12k =1

3

.故选B .点评:参数法是解决这类问题的有效方法之一,利用这种方法求代数式值的关键是根据已知设出合理的参数.本题还可将x 看作常数,然后用含有x 的代数式表示y 、

z ,直接代入所求值的代数式中化简求值即可,但这种方法运算量比较大,没有参数法简便快捷.

三、整体代换法

若已知代数式中所含字母的值,但直接代入后不易

求值时,可考虑利用整体代换法求解.

例4(“《数学周报》杯”2011年全国初中数学竞赛)

设a=7%

姨-1,则3a 3+12a 2-6a -12=(

).

A .24

B .25

C .47%

姨+10

D .47%

姨+12

解析:由a=7%

姨-1,得(a+1)2

=7,故a 2+2a=6.

所以3a 3+12a 2-6a -12=3a (a 2+2a )+6a 2-6a -12=6a 2+12a -12=6×6-12=24.故选A .

例5(2008年全国初中数学联赛)设a=5%

姨-1

2,则

a 5+a 4-2a 3-a 2-a+2

a 3-a

=________.

解析:由a=5%

姨-1

2

知,2a+1=5%姨,两边同时平方,

得4a 2+4a=4,即a 2+a=1.所以原式=a 3(a 2+a )-2a 3-a 2-a+2

a (a+1)(a -1)

=

-a 3-a 2-a+2(a 2

+a )(a -1)=-a (a 2+a )-a+2a -1=-2(a -1)

a -1

=-2.点评:整体代换法是解决这类问题最有效的方法,利用整体代换法求代数式值的关键是对已知条件和所求值

竞赛中代数式求值的九种常用方法

筅江苏省扬州市江都区实验初级中学

李芳菲

解法探究

71

初中版

2013年8月

的代数式进行适当的变形,然后整体代入求值即可.四、利用非负数的性质

例6(“《数学周报》杯”2009年全国初中数学竞赛)

已知非零实数a 、b 满足2a -4+b+2+(a -3)b 2%

姨+4=2a ,则a+b 等于(

).A .-1B .0

C .1

D .2

解析:由二次根式中被开方数的非负性可知,(a -3)b 2

0,即a ≥3.

所以2a -4=2a -4,于是原式变为b+2+(a -3)b 2%

姨=0,则有b+2=0,(a -3)b 2=0,解得b=-2,a=3.所以a+b=1.故选C .

点评:利用非负数的性质解题是初中数学竞赛中的常用方法之一,在初中阶段常见的非负数有a 、a 2n 、

a %

姨.如果几个非负数的和为0,则每一个非负数均为0,这一性质在解决这类问题中具有重要作用.

五、利用一元二次方程根与系数的关系

若一元二次方程ax 2+bx+c=0的两实数根为x 1、x 2,则x 1+x 2=-

b

a ,x 1·x 2=c a

.这就是一元二次方程根与系数的关系,利用这一关系可解决竞赛中一类代数式求值问题.

例7(2012年全国初中数学联赛四川(初三组)初赛)

设a 2+1=3a ,b 2+1=3b ,且a ≠b ,则代数式

1a 2+1

b 2

的值为().

A .5

B .7

C .9

D .11

解析:由已知a 2+1=3a ,b 2+1=3b ,且a ≠b ,则a 、b 可以看

作一元二次方程x 2-3x+1=0的两个实数根.由一元二次方程根与系数的关系,知a+b=3,ab=1.

1a 2+1b 2=a 2+b 2(ab )2=(a+b )2

-2ab (ab )2=32-2×112

=7.故选B .例8(“《数学周报》杯”2008年全国初中数学竞赛)已

知实数x ,y 满足

4x 4-2x 2=3,y 4+y 2

=3,则4x 4

+y 4的值为().

A .7

B .1+13%

2C .7+13%

2

D .5

解析:由题意知,-

2x

2,y 2

是关于t 的一元二次方程t 2+t -3=0的两个实数根,于是由一元二次方程的根与系数的

关系得-2x 2+y 2=-1,-2x 2·y 2=-3.所以4x

4+y 4=-2x 2+y 姨姨22+

4y 2x 2=(-1)2

+4×32

=7.故选A .点评:利用一元二次方程根与系数的关系解决这类问题的关键是根据已知条件找出合理的一元二次方程,然后利用一元二次方程根与系数的关系列出相关字母之间的关系,再整体代入所求值的代数式中化简求值即可.若直接根据已知条件求出相关字母的值直接代入所求值的代数式中,运算量会非常大,而且容易出错.

六、利用方程组

例9(“《数学周报》杯”2010年全国初中数学竞赛)

若x 2+xy -2y=1,y 2+xy -2x=1,则x+y 的值为______.

解法1:联立方程组

x 2+xy -2y=1,①y 2+xy -2x=1.

由①+②可得,x 2+2xy+y 2-2(x+y )=2,

即(x+y )2

-2(x+y )-2=0.

令x+y=t ,则t 2-2t -2=0,解得t 1=1+3%姨,t 2=1-3%

姨.故x+y=1+3%

姨或1-3%

姨.解法2:联立方程组

x 2+xy -2y=1,①y 2+xy -2x=1.

由①-②可得,x 2-y 2+2(x -y )=0,即(x -y )(x+y+2)=0.所以x -y=0或x+y+2=0.

当x -y=0,即x=y 时,代入①式得2x 2-2x -1=0,解得x 1=1+3%

姨2,x 2=1-3

%

姨2

.从而可得,y 1=1+3%

姨2,y 2=1-3%

姨2.

故x+y=1+3%

姨或1-3%姨.

当x+y+2=0时,x+y=-2.由①知x (x+y )-2y=1,从而-2x -2y=1,即-2(x+y )=1,将x+y=-2代入得,-2×(-2)=1,这是不可能的,故x+y+2≠0.

综上所述,x+y=1+3%

姨或1-3%

姨.

七、利用折项相消法

例10(“《数学周报》杯”2007年全国初中数学竞赛)

已知对于任意正整数n ,都有a 1+a 2+…+a n =n 3,则1

a 2-1

+1a 3-1+…+1a 100-1

=________.解析:当n ≥2时,有a 1+a 2+…+a n-1+a n =n 3,a 1+a 2+…+a n-1=

(n-1)3

,两式相减,得a n =3n 2-3n+1,所以

1a n -1=1

3n (n-1)

=1

3

1n-1-1n

姨姨,n=2,3,4,…解法探究

72

初中版

2013年8月

表明学生对本节课知识掌握到位并能拓展应用本节课所学知识,若正确解答样题(1)至(5),表明学生基础掌握较好,但深入拓展学习力尚有待提高,若只能解答其中的2-3个样题,

表明学生基础不实,在知识的掌握上尚有许多问题存在,仍有待进一步理解学习本课新知识.

三、课堂教学目标设计与达标的再认识

教学目标是教学过程的起点,也是教学活动的结果.既如此,进入数学课堂前,让我们共同思考下面几个问题,这有助于我们进一步理解数学,理解教材,理解学生,提升质量.

①这堂课要教什么数学?(教师主体思考,即教学目标的设计,包括显性目标和隐性目标,基于对教学内容、学生认知状况的分析)

②学生要学哪些数学?(以学生为主体,教学目标下学生学习目标的确定)

③这些数学应该怎样去教?(教学方式、方法、手段的选择)

④如何通过教师的精心设计使学生易学、乐学并学好?(教学过程和目标检测的设计,为目标的达成服务)

⑤学生在学这些数学时会有什么困难?对此教师该

怎么办?(教学问题诊断分析,学生认知状况分析,教学反馈与调整)

⑥学生学完这些数学能够做什么?(教学功能与教育服务)

在二轮课程改革理念的指引下,我们努力尝试这些问题的圆满解决与深入思考,对数学课堂教学目标进行深度解剖,潜心研读,相信我们必将迎来“轻负高效”的初中数学课堂教学的春天!

参考文献:

1.章建跃.数学教学目标再思考[J ].中国数学教育(初中版),2012(7-8).

2.中华人民共和国教育部制定.义务教育数学课程标准(2011年版)[M ].北京:北京师范大学出版社,2012.

3.章建跃.中学数学课改的十个论题[J ].中学数学教学参考(上旬),2010(3,4,5).

4.许芬英.初中数学课堂教学行为的改进与思考[J ].中学数学教学参考(中旬),2010(1-2).

5.中国名师大讲坛初中数学名师经典课堂教学观摩研讨活动会务资料,浙江大学继续教育学院,2011,10.

6.郦兴江,阮新荣.分式(第一课时)课堂教学实录与评析[J ].中国数学教育,2007(1-2).WG

所以1a 2-1+1a 3-1+…+1a 100-1=

13

1-12

00

+13

·12-1300+…+13199-110000=13

1-110000=33100.八、利用整体设元法

例11(2008年天津市初中数学竞赛)若

1

m

-m =1,则

1

m +m 的值等于().

A .5%

2

B .-5%

2C .-5

%

姨D .5

%

姨解析:易知m>0,1m

-m =

1m -m=1,1m +m =1m

+m .设1

m +m=t ,则由1

m -m=1,1

m

+m=t 姨

姨姨姨姨姨姨姨姨姨姨姨姨

,得(t+1)(t -1)=4,解得t=±5%

姨.又因为m>0,所以t=

1

m

+m>0,所以t=5%姨.故选D .九、利用主元法

例12(“《数学周报》杯”2010年全国初中数学竞赛)

a b =20,b c =10,则a+b b+c 的值为().A .11

21

B .2111

C .

11021

D .21011

解析:以c 为主元,则b=10c ,a=20b=200c.

所以

a+b b+c

=200c+10c 10c+c =210c 11c =210

11.故选D .点评:当已知条件和所求值的代数式中字母较多时,可选定其中一个字母为主元,然后用这一主元的代数式表示其他字母,最后代入所求值的代数式中化简约分,即可求得代数式的值.FH

(上接第63页)解法探究

73

“代数式求值的常用方法”专题辅导

代数式求值的常用方法 代数式求值问题是历年中考试题中一种极为常见的题型,它除了按常规代入求值外,还要根据其形式多样,思路多变的特点,灵活运用恰当的方法和技巧.本文结合2006年各地市的中考试题,介绍几种常用的求值方法,以供参考. 一、化简代入法 化简代入法是指把字母的取值表达式或所求的代数式进行化简,然后再代入求值. 例1先化简,再求值: () 11b a b b a a b ++ ++,其中a =,b =. 解:由a = ,b =得,1a b ab +==. ∴原式()()22()()()()ab a a b b a b a b ab a b ab a b ab a b ab a b ab +++=++===++++. 二、整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法. 通过整体代入,实现降次、归零、约分,快速求得其值. 例2已知114a b -=,则2227a ab b a b ab ---+的值等于( ). A .6 B .-6 C .215 D .2 7 - 解:由114a b -=得, 4b a ab -=,即4a b ab -=-. ∴ ()()2242662272787a b ab a ab b ab ab ab a b ab a b ab ab ab ab -------= ===-+-+-+-.故选A. 例3若 1233215,7x y z x y z ++=++=,则111 x y z ++= . 解:把 1235x y z ++=与3217x y z ++=两式相加得,444 12x y z ++=, 即111412x y z ??++= ??? ,化简得,111 3x y z ++=.故填3. 三、赋值求值法 赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的

代数式的化简求值问题(含答案)

第二讲:代数式的化简求值问题 一、知识链接 1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。 2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。 注:一般来说,代数式的值随着字母的取值的变化而变化 3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。 二、典型例题 例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关, 求()[] m m m m +---45222的值. 分析:多项式的值与x 无关,即含x 的项系数均为零 因为() ()83825378522222++-=+--++-y x m x y x x x mx 所以 m =4 将m =4代人,()[] 44161644452222-=-+-=-+-=+---m m m m m m 利用“整体思想”求代数式的值 例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。 分析: 因为8635=-++cx bx ax 当x =-2时,8622235=----c b a 得到8622235-=+++c b a , 所以146822235-=--=++c b a 当x =2时,635-++cx bx ax =206)14(62223 5-=--=-++c b a 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值. 分析:观察两个代数式的系数

初中奥数恒等变形知识点及习题2019

初中奥数恒等变形知识点及习题2019 恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等. 表示两个代数式恒等的等式叫做恒等式. 如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式. 将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换). 以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变. 如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法. 1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的. 如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个. 反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项). 2.通过一系列的恒等变形,证明两个多项式是恒等的. 如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r 例:求b、c的值,使下面的恒等成立. x2+3x+2=(x-1)2+b(x-1)+c ① 解一:∵①是恒等式,对x的任意数值,等式都成立

设x=1,代入①,得 12+3×1+2=(1-1)2+b(1-1)+c c=6 再设x=2,代入①,因为已得c=6,故有22+3×2+2=(2-1)2+b(2-1)+6 b=5 ∴x2+3x+2=(x-1)2+5(x-1)+6 解二:将右边展开 x2+3x+2=(x-1)2+b(x-1)+c =x2-2x+1+bx-b+c =x2+(b-2)x+(1-b+c) 比较两边同次项的系数,得出

代数式的化简求值

代数式的化简求值 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

代数式的化简求值问题 一、知识链接 1.“代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整 式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。 2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。 注:一般来说,代数式的值随着字母的取值的变化而变化 3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方 程、函数等知识打下基础。 二、典型例题 例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关, 求()[] m m m m +---45222的值. 分析:多项式的值与x 无关,即含x 的项系数均为零 变式练习:已知3=+y x ,2=xy ,求22y x +的值. 利用“整体思想”求代数式的值 例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。 变式练习:1.已知当2018=x 时,代数式524=++c bx ax ,当2018-=x 时,代数式__________24=++c bx ax 2.已知5=x 时,代数式52-+bx ax 的值是10,求5-=x 时,代数式52++bx ax 的值是多少

2008 2007 12007 2007 20072222323=+=++=+++=++a a a a a a a 2008200712007 200722007 2)1(2007 22007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值. 分析:观察两个代数式的系数 变式练习:1.已知87322=++y x ,则___________9642=++y x 代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。 例4.已知012=-+a a ,求2007223++a a 的值. 分析:解法一(整体代人):由012=-+a a 得023=-+a a a 所以: 解法二(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。 由012=-+a a ,得a a -=12, 所以: 解法三(降次、消元):12=+a a (消元、、减项) 变式练习:已知012=--x x ,求代数式201823+++-x x x 的值是多少 例5.若52z y x ==,且28-=+-z y x ,求z y x 1373-+的值是多少 变式练习:若5 43z y x ==,且10254=+-z y x ,求z y x +-52的值。 例6.三个数a 、b 、c 的积为负数,和为正数,且bc bc ac ac ab ab c c b b a a x +++++=, 则123+++cx bx ax 的值是_______。 变式练习:如果非零有理数c b a ,,满足0=++c b a ,那么 abc abc c c b b a a +++的值可能为哪些 家庭作业

代数式恒等变形及答案

代数式恒等变形 A 卷 1、若3265122-+ -+=+--x b x a M x x x ,a 、b 是常数,则( ) A 、M 是一个二次多项式 B 、M 是一个一次多项式 C 、6=++b a M D 、10=-+M b a 答案:C 解答:由已知等式得:()()6522656512222+---+++-+=+--x x b M x b a M Mx x x x ∴()()b M x b a M Mx x 226522--+++-+= ∴?? ???-=--=++-=1 236051b a M b a M M ,解得:??? ??=-==831 b a M 提示:利用待定系数法解决问题。 2、(2002年重庆市初中竞赛题)若012192=+- x x ,则=+441 x x ( ) A 、411 B 、16121 C 、1689 D 、4 27 答案:C 解答:∵0≠x ∴2191= + x x ,411 122=+x x ∴16892112 2244 =-??? ? ?+=+x x x x 提示:本题的关键是利用2112 22 -??? ? ?+=+x x x x 进行化简。 3、(2001年全国初中数学竞赛)若143=-x x ,则552128234+--+x x x x 的值是( ) A 、2 B 、4 C 、6 D 、8 答案:D 解答:∵143=-x x ∴()()8523252434255212833234=+-+=+--+-=+--+x x x x x x x x x x x x 提示:本题利用添项与拆项进行分解整体代入,本题也可以利用已知逐步降次解决问题。

代数式求值方法

点击代数式求值方法 运用已知条件,求代数式的值是数学学习的重要内容之 一。它除了按常规代入求值法,还要根据题目的特点,灵活运用恰当的方法和技巧,才能达到预期的目的。下面举数例介绍常用的几种方法和技巧。 一、常值代换求值法 常值代换法是指将待求的代数式中的常数用已知条件中的代数式来代换,然后通过计算或化简,求得代数式的值。 例1 已知ab=1,求221111b a +++的值 [解] 把ab=1代入,得 2 21111b a +++ =22b ab ab a ab ab +++ = b a a b a b +++ =1 [评注] 将待求的代数式中的常数1,用a ·b 代入是解决该问题的技巧。而运用分式的基本性质及运用法则,对代入后所得的代数式进行化简是解决该问题的保证。 二、运用“非负数的性质”求值法 该法是指运用“若几个非负数的和为零,则每一个非负数应为零”来确定代数式中的字母的值,从而达到求代数式的值

的一种方法。 例 2 若实数a 、b 满足a 2b 2+a 2+b 2-4ab+1=0,求 b a a b +之值。 [解] ∵a 2b 2+a 2+b 2-4ab+1 =(a 2b 2-2ab+1)(a 2-2ab+b 2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0 ∴???==-. 1,0ab b a 解得???==;1,1b a ? ??-=-=.1,1b a 当a=1,b=1时,b a a b +=1+1=2 当a=-1,b=-1时, b a a b +=1+1=2 [评注] 根据已知条件提供的有价信息,对其进行恰当的分组分解,达到变形为几个非负数的和为零,这一新的“式结构”是解决本题的有效策略,解决本题要注意分类讨论的方法的运用。 三、整体代入求值法 整体代入法是将已条件不作任何变换变形,把它作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法。 例3 若x 2+x+1=0,试求x 4+2003x 2+2002x+2004的值。

代数式求值的常用方法1

代数式求值的常用方法 代数式求值问题是历年中考试题中一种极为常见的题型,它除了按常规代入求值外,还要根据其形式多样,思路多变的特点,灵活运用恰当的方法和技巧.本文结合2006年各地市的中考试题,介绍几种常用的求值方法,以供参考. 一、化简代入法 化简代入法是指把字母的取值表达式或所求的代数式进行化简,然后再代入求值. 例1先化简,再求值: () 11b a b b a a b ++ ++,其中512a +=,51 2b -=. 解:由512a += ,51 2 b -=得,5,1a b ab +==. ∴原式()()22()()5()()ab a a b b a b a b ab a b ab a b ab a b ab a b ab +++=++===++++. 二、整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法. 通过整体代入,实现降次、归零、约分,快速求得其值. 例2已知 114a b -=,则2227a ab b a b ab ---+的值等于( ). A .6 B .-6 C .215 D .2 7 - 解:由114a b -=得, 4b a ab -=,即4a b ab -=-. ∴()()2242662272787a b ab a ab b ab ab ab a b ab a b ab ab ab ab -------====-+-+-+-.故选A. 例3若 1233215,7x y z x y z ++=++=,则111 x y z ++= . 解:把 1235x y z ++=与3217x y z ++=两式相加得,444 12x y z ++=, 即111412x y z ??++= ??? ,化简得,111 3x y z ++=.故填3. 三、赋值求值法 赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的值的一种方法.这是一种开放型题目,答案不唯一,在赋值时,要注意取值范围. 例4先化简2332 11 x x x +---,然后选择一个你最喜欢的x 的值,代入求值. 解:原式()()()312321 111111 x x x x x x x += -=-= +-----.

初中数学重点梳理:代数式求值方法

代数式求值方法 知识定位 学习了整式后,经常会遇到一些代数式的求值问题。代数式涉及的求值类型、方法和技巧是比较多的,比如:特殊值、换元、配方等。事实上,这些方法并不是绝对孤立不变的,有时需要多种方法一起使用才能灵活解决问题,解题时,要仔细观测,深入分析,以便选择合理的解题方法,做到简洁、快速解题。 知识梳理 知识梳理:代数式求值常用方法 1、利用非负数的性质 若已知条件是几个非负数的和的形式,则可利用“若几个非负数的和为零,则每个非负数都应为零”来确定字母的值,再代入求值。目前,经常出现的非负数有,,等。 2、化简代入法 化简代入法是指先把所求的代数式进行化简,然后再代入求值,这是代数式求值中最常见、最基本的方法。 3、整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到待求的代数式中去求值的一种方法。通过整体代入,实现降次、归零、约分的目的,以便快速求得其值。 4、特殊值法 有些试题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,把一般形式变为特殊形式进行判断,这时常常会使题目变得十分简单。 5、倒数法 倒数法是指将已知条件或待求的代数式作倒数变形,从而求出代数式的值的一种方法。 6、参数法 若已知条件以比值的形式出现,则可利用比例的性质设比值为一个参数,或利用一个字母来表示另一个字母。 7、配方法

若已知条件含有完全平方式,则可通过配方,把条件转化成几个平方和的形式,再利用非负数的性质来确定字母的值,从而求得结果。 8、平方法 在直接求值比较困难时,有时也可先求出其平方值,再求平方值的平方根(即以退为进的策略),但要注意最后结果的符号。 例题精讲 【试题来源】 【题目】已知25x=2000,80y=2000,则?? ? ? ? ? + y x 1 1 =___________ 【答案】1 【解析】 【知识点】代数式求值方法 【适用场合】当堂练习题 【难度系数】2 【试题来源】 【题目】已知10m=20,10n= 1 5 ,求2 93 m n ÷的值. 【答案】81 【解析】 【知识点】代数式求值方法

代数式的恒等变形

代数式的恒等变形 一、常值代换求值法——“1”的妙用 例1 、 已知ab=1,求2 211 11b a +++的值 [解] 把ab=1代入,得 22 11 11b a +++ =22 b ab ab a ab ab +++ =b a a b a b ++ + =1 例2 、已知xyzt=1,求下面代数式的值: 分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变. 解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同. 同理 练习:1 111,1=++++++++=c ca c b b c b a ab a abc 证明:若 二、配方法 例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b a a b + 之值。 [解] ∵a2b2+a2+b2-4ab+1 =(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0 ∴?? ?==-.1,0ab b a 解得?? ?==;1,1b a ?? ?-=-=.1,1b a 当a=1,b=1时,b a a b + =1+1=2 当a=-1,b=-1时, b a a b +=1+1=2 例1 设a 、b 、 c 、 d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数 的平方和,其形式是______. 解mn=(a2+b2)(c2+d2) =a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2

初一:代数式的求值专题

——代数式的求值 类型一、利用分类讨论方法 【例1】 已知x =7,y =12,求代数式x +y 的值. 变式练习: 1、已知|x-1|=2,|y|=3,且x 与y 互为相反数,求y xy x 43 12--的值 2、|x|=4,|y|=6,求代数式|x+y|的值 3、已知1,1==y x ,求代数式2 22y xy x +-的值;

类型二、利用数形结合的思想方法 【例】有理数a ,b ,c 在数轴上的位置如图所示:试试代数式 │a +b │-│b -1│-│a -c │-│1-c │的值. 变式练习: 1、有理数a , b , c 在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b| 2、已知a ,b ,c 在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a| b a c 1 C B 0 A

题型三、利用非负数的性质 【例1】已知(a -3)2+│-b +5│+│c -2│=0.计算2a +b +c 的值. 【例2】 若实数a 、b 满足a 2b 2+a 2+b 2-4ab+1=0,求 b a a b 之值。 变式练习: 1、已知:│3x-5│+│2y+8│=0求x+y 2、若205×│2x-7│与30×│2y-8│互为相反数,求xy+x 题型四、利用新定义 【例1】 用“★”定义新运算:对于任意实数a ,b ,都有a ★b =b 2+1.例如,7★4=42+1=17,那么5★3=___;当m 为实数时,m ★(m ★2)=___.

变式练习: 1、定义新运算为a △b =(a +1)÷b ,求的值。6△(3△4) 2、假定m ◇n 表示m 的3倍减去n 的2倍,即 m ◇n=3m-2n 。 (2)已知x ◇(4◇1)=7,求x 的值。 3、规定1,1-=**-=*a b b a b a b a ,则)68()86(****的值为 ; 题型五、巧用变形降次 【例】已知x 2-x -1=0,试求代数式-x 3+2x +2008的值.

整式恒等变形

第8讲整式恒等变形 模块一恒等变形→降幂迭代与换元 基础夯实 题型一降幂迭代法与大除法 【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________. 【练1】(1990年第一届希望杯初二第一试) 已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.

题型二 整体代入消元法 【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值. 【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值. 题型三 换元法 强化挑战 【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2. 【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求()()() ()()()222111111yz zx xy x y z ++++++的值. 模块二 恒等变形→因式分解与不定方程 题型一 因式分解 基础夯实 【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________. (2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________. 【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x 2012=__________. (2)已知15x 2-47xy +28y 2=0,求x y 的值. 强化挑战 【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c . 【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .

初中数学代数式化简求值题归类及解法

初中数学代数式化简求值题归类及解法 代数式化简求值是初中数学教学的一个重点和难点内容。学生在解题时如果找不准解决问题的切入点、方法选取不当,往往事倍功半。 一. 已知条件不化简,所给代数式化简 1.先化简,再求值: ()a a a a a a a a -+--++÷-+2214442 22 ,其中a 满足:a a 2 210+-=。(1) 2.已知x y =+ =-2222,,求( )y xy y x xy x xy x y x y x y ++-÷+?-+的值。(2-) 二.已知条件化简,所给代数式不化简 3.已知a b c 、、为实数,且 ab a b +=13,bc b c ac a c +=+=1415,,试求代数式 abc ab bc ac ++的值。(1 6 ) 三.已知条件和所给代数式都要化简 4.若x x +=13,则x x x 242 1++的值是( )。(1 8 ) 5.已知a b +<0,且满足a ab b a b 2 2 22++--=,求a b ab 33 13+-的值。(1-) 第十三讲 有条件的分式的化简与求值 能够作出数学发现的人,是具有感受数学中的秩序、和谐、整齐和神秘之美的能力的人. ————————彭加勒 【例题求解】 例1 若 a d d c c b b a ===,则 d c b a d c b a +-+-+-的值是_________________. 例2 如果03 1 2111,0=+++++=++c b a c b a ,那么222)3()2()1(+++++c b a 的值为 ( ). A .36 B .16 C .14 D .3 例3 已知16,2,12 2 2 =++=++=z y x z y x xyz , 求代数式++++x yz z xy 21 21y zx 21+的值. 例4 已知 1325))()(())()((=+++---a c c b b a a c c b b a ,求a c c c b b b a a +++++的值.

代数式求值的十种常用方法

代数式求值的十种常用方法 一、利用非负数的性质 若已知条件是几个非负数的和的形式,则可利用“若几个非负数的和为零,则每个非负数都应为零”来确定字母的值,再代入求值。目前,经常出现的非负数有,,等。 例1、若和互为相反数,则 =_______。 解:由题意知,,则且,解得 ,。因为,所以,故填37。 二、化简代入法 化简代入法是指先把所求的代数式进行化简,然后再代入求值,这是代数式求值中最常见、最基本的方法。 例2、先化简,再求值:,其中 ,。 解:原式。 当,时, 原式。 三、整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到待求的代数式中去求值的一种方法。

通过整体代入,实现降次、归零、约分的目的,以便快速求得其值。 例3、已知,则=_______。 解:由,即。 所以原式 。 故填1。 四、赋值求值法 赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的值的一种方法。这是一种开放型题目,答案不唯一,在赋值时,要注意取值范围。 例4、请将式子化简后,再从0,1,2三个数中选择一个你喜欢且使原式有意义的x的值代入求值。 解:原式 。 依题意,只要就行,当时,原式或当时,原式。 五、倒数法 倒数法是指将已知条件或待求的代数式作倒数变形,从而求出代数式的值的一种方法。 例5、若的值为,则的值为

A. 1 B. –1 C. D. 解:由,取倒数得, ,即。 所以 , 则可得,故选A。 六、参数法 若已知条件以比值的形式出现,则可利用比例的性质设比值为一个参数,或利用一个字母来表示另一个字母。 例6、如果,则的值是 A. B. 1 C. D. 解:由得,。 所以原式 。

代数式的化简求值问题(含标准答案)

代数式的化简求值问题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

第二讲:代数式的化简求值问题 一、知识链接 1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。 2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。 注:一般来说,代数式的值随着字母的取值的变化而变化 3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。 二、典型例题 例1.若多项式( ) x y x x x mx 5378522 2 2+--++-的值与x 无关, 求()[] m m m m +---4522 2 的值. 分析:多项式的值与x 无关,即含x 的项系数均为零 因为() ()83825378522 2 2 2 ++-=+--++-y x m x y x x x mx 所以 m =4 将m =4代人,()[] 441616444522 2 2 -=-+-=-+-=+---m m m m m m 利用“整体思想”求代数式的值 例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。 分析: 因为863 5=-++cx bx ax 当x =-2时,8622235=----c b a 得到862223 5-=+++c b a , 所以14682223 5-=--=++c b a 当x =2时,63 5-++cx bx ax =206)14(62223 5-=--=-++c b a

分式的恒等变形(一)

分式的恒等变形(一) (1)已知2202010a a -+=,则代数式2220202403911a a a -+++的值是__________。 【答案】由已知可得12020a a + =,原式()212202012120202019a a a a =-+++=-++= (2)已知2410a a ++=,则代数式42321912192a a a a a ++++的值是__________。 【答案】由已知可得14a a +=-,22114a a +=,原式22119333211219a a a a + +===++ (3)已知4x y +=-,12xy =-,则1111 y x x y +++++的值是__________。 【答案】由已知可得2240x y +=,原式()()()()()()22 11402423411412115y x x y ++++?-+===-++-+-+ (4)已知4ab x a b = +,则2222x a x b x a x b +++--的值是__________。 【答案】由已知可得()4ab a b x =+, 原式()()()()()()()()() 222222222228222224x a x b x b x a x a b x x ab x a x b x a b x ab x a b x +-++--+-====---++-+ (5)已知612ab a b bc b c ?=??-??=?-?,则ac a c -的值是_________。 【答案】取倒数后两式相加得 14a c ac -=,所以4ac a c =- (6)解方程: ()()()()()111333669218 x x x x x x x ++=++++++ 【答案】裂项相消,111339218x x x ??-= ?++??,解得2x =

代数式求值(讲义)

代数式求值(讲义) ? 课前预习 1. 若a =1,则a +1=_____;若a 2=1,则a 2-3=_____; 若a +b =3,则2(a +b )=_____. 2. 对于代数式ax +4,当x =1时,ax +4=_______; 当x =2时,ax +4=_______; 当x =3时,ax +4=_______. 若代数式ax +4的值不受x 取什么值的影响,即与x 无关,只需a _______,理由是__________________. ? 知识点睛 1. 整体思想:从问题的整体性质出发,发现问题的整体结构特征,通过对问题 整体结构的分析和改造,对问题进行整体处理的解题思想叫做整体思想.整体代入是整体思想的一个重要应用. 2. 整体代入的思考方向 ①求值困难,考虑_____________; ②化简________________,对比确定________; ③_____________,化简. ? 精讲精练 1. 若a 2+2a =1,则代数式2(a 2+2a )3-5(a 2+2a )-7的值是_______. 2. 若代数式2a 2+3b 的值是6,则代数式4a 2+6b +8的值是_____. 3. 已知3440x x -+=,求代数式336102 x x -++的值. 4. 当1x =时,代数式31px qx ++的值是2 016;则当1x =-时,代数式31 px qx ++的值是________. 5. 当7x =时,代数式35ax bx +-的值是7;则当7x =-时,代数式35ax bx +-的 值是_______. 6. 当2x =时,代数式31ax bx -+的值是-17;则当1x =-时,代数式 31235ax bx --的值是_______.

代数式的化简求值

代数式的化简求值问题 一、知识链接 1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。 2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。 注:一般来说,代数式的值随着字母的取值的变化而变化 3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。 二、典型例题 例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关, 求()[] m m m m +---45222的值. 分析:多项式的值与x 无关,即含x 的项系数均为零 变式练习:已知3=+y x ,2=xy ,求22y x +的值. 利用“整体思想”求代数式的值 例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式6 35-++cx bx ax 的值。

2008 20071200720072007 2222323=+=++=+++=++a a a a a a a 变式练习:1.已知当2018=x 时,代数式524=++c bx ax ,当2018-=x 时,代数式 __________ 24=++c bx ax 2.已知5=x 时,代数式52-+bx ax 的值是10,求5-=x 时,代数式52++bx ax 的值是多少? 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值. 分析:观察两个代数式的系数 变式练习:1.已知87322=++y x ,则___________9642 =++y x 代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。 例4. 已知012=-+a a ,求2007223++a a 的值. 分析:解法一(整体代人):由012=-+a a 得 023=-+a a a 所以: 解法二(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。

200道代数式的恒等变形练习题

代数式的恒等变形 1.已知x 2+y 2+z 2-2x+4y-6z+14=O ,则(x-y-z)2009= 2.设x ,y 满足(x-1)3+2004y=1002,(y-1)3+2004x=3006,则x+y= . 3.分解因式:1)()(22++-+b a b a ab = 6.已知m 、n 为整数,且满足2m 2 + n 2 +3m + n - 1 = 0. 则m + n= 9.在△ABC 中,BC=a ,AC=b ,AB=c ,且满足a 4+b 4+21 c 4=a 2c 2+b 2c 2.则△ABC 的形状是 . 10.若ax+by=7,ax 2+by 2=49,ax 3+by 3=133,ax 4+by 4=406,则()()17 199562x y xy a b ++-+= . 11.已知非零实数a 、b 、c 满足a 2+b 2+c 2=1,111111 ()()()3+++++=-a b c b c a c a b , 则a+b+c= . 12.若x ,y 是实数,且m=x 2-4xy+6y 2-4x-4y ,则m 的最小值为 .

13.已知17b a -=,2124a a +=,则b a a - 14.已知a ,b ,c 都是整数,且24a b -=, 210ab c +-=,求a b c ++= 15.实数x 、y 、z 满足:2+=y x ,012222=++z xy ,求x y z ++= 16. a 、b 、c 为三角形的三条边长,满足 ac 2+b 2c-b 3 =abc .若三角形的一个内角为100°,则三角形的另两个角之差的正弦等于 17.若a 、b 、C 为实数,222,1,3a b c a b c a b c >>++=++=,则b c +的取值范围是 18.已知xyz=1,x+y+z=2,x 2+y 2+z 2=16.则111222xy z yz x zx y ++=+++ 19.已知x 、y 为正整数,且满足2x 2+3y 2=4x 2y 2+1.则x 2+y 2= 20.已知y x z z y x x z y y x z z y x x z y -+-+=-+-+=++-+=p .则p 3+p 2+p= . 21.若正数m ,n 满足 43,+=m n = . 22.已知a+b=8,ab=c 2 +16,则a+2b+3c= . 23.已知x 、y 满足22524x y x y ++=+,则代数式xy x y +的值为 . 24.若2x y -=,224x y +=,则20042004x y +的值是 。

初一上册数学代数式求值试题.docx

初一上册数学代数式求值试题 一、选择题 ( 共 12 小题 ) 1.已知 m=1,n=0,则代数式 m+n的值为 () A. ﹣1 B.1 C. ﹣2 D.2 【考点】代数式求值 . 【分析】把 m、n 的值代入代数式进行计算即可得解. 【解答】解:当m=1,n=0 时, m+n=1+0=1. 故选 B. 【点评】本题考查了代数式求值,把 m、n 的值代入即可,比较简单 . 2. 已知 x2﹣2x﹣8=0,则 3x2﹣6x﹣18 的值为 () A.54 B.6 C. ﹣10 D.﹣18 【考点】代数式求值 . 【专题】计算题 . 【分析】所求式子前两项提取 3 变形后,将已知等式变形后代入计算即可求出值 . 【解答】解:∵ x2﹣ 2x﹣8=0,即 x2﹣2x=8, ∴3x2﹣ 6x﹣18=3(x2 ﹣2x) ﹣18=24﹣18=6. 故选 B. 【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型 . 3. 已知 a2+2a=1,则代数式 2a2+4a﹣1 的值为 ()

A.0B.1C. ﹣1D.﹣2 【考点】代数式求值 . 【专题】计算题 . 【分析】原式前两项提取变形后,将已知等式代入计算即可求出值. 【解答】解:∵ a2+2a=1, ∴原式 =2(a2+2a) ﹣1=2﹣1=1, 故选 B 【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键 . 4.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是() A.4 ,2,1 B.2,1,4 C.1,4,2 D.2,4,1 【考点】代数式求值 . 【专题】压轴题 ; 图表型 . 【分析】把各项中的数字代入程序中计算得到结果,即可做出判断. 【解答】解: A、把 x=4 代入得: =2, 把x=2 代入得: =1, 本选项不合题意 ; B、把 x=2 代入得: =1, 把x=1 代入得: 3+1=4, 把x=4 代入得: =2,

代数式求值的几种方法

代数式求值的几种方法-CAL-FENGHAI.-(YICAI)-Company One1

2 代数式求值的几种方法 代数式的求值问题,是初中代数基础知识与基本技能的重要内容。求代数式的值应对所给定的代数式加以具体情况具体分析,针对题设条件与所求代数式的本质特点及内在联系,灵活选用适当方法与技巧,方能使求解过程简捷、科学、合理。 一、公式法 例1 :已知a + b = 1 ,a 2 + b 2 = 2 求a 6 +b 6 的值 分析:本题若根据已知条件先求出a 、b 的值,然后代入所求式中计算,虽不失为一种思考途径,但求出的a 、b 的值均为复杂的无理数,而所求代数式中的a 、b 又均为高次幂,从而使运算非常复杂。若借助乘法公式先将所求代数式化为“a + b ”与“ab ”的结构形式,则问题的解答将简便得多。 解:由a + b = 1,有(a + b )2 =1 ,即1222=++b ab a 又a 2 + b 2 =2 ,∴a b = -2 1 ()()()()( )[]()()871 12141222121232322222223 443442266=???? ??--????????? ???-???? ??+?=+--++-+=--++=+∴b a ab b a b a b ab a b a b a b a b a b a b a

3 另外考虑a 7 + b 7 的值的求法 二、参数法 例2:若542c b a == ,求c b a c b a +--+2的值 分析:本题题设给出a 、b 、c 的三个连比式,若引入一个参数,则所求代数式的分子、分母均由三元转化为一元,从而通过化简而求解。 解:设k c b a === 5 42 ,由题意k ≠0,则a = 2k ,b = 4k ,c =5k 所以c b a c b a +--+2 = 133542544==+--+k k k k k k k k 三、倒数法 例3:已知 71 2=+-x x x ,求 1242++x x x 的值 分析:由已知式与所求式之间的结构及各自分子、分母的幂次数特点出发,本题使用“倒数法”较为简便。 解:由已知取倒数,则7112=+-x x x ,即7 81=+x x 再由未知式取倒数: 4915178111112 222224=-?? ? ??=-??? ??+=++=++x x x x x x x 所以1242++x x x = 1549 四、消元法

代数式的恒等变换

代数式的恒等变换方法与技巧 例:设p x =有实根的充要条件,并求出所有实根。 由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。这样可避免增根和遣根的出现。 解: 原方程等价于222(0,0 x p x x x ?-=-??-≥≥?? 2 22222(4)4448(2)441330440,0p x x p p x x x x p x ?-=??=+--?????≤≤?≤????≥??+-≤≥??? 222(4)8(2)44,043p x p p x x ?-=??-??-?≤≤≥?? 由上式知,原方程有实根,当且仅当p 满足条件 24(4)44048(2)33 p p p p --≤≤?≤≤- 这说明原方程有实根的充要条件是403p ≤≤ 。 这时,原方程有惟一实根x =。 一、分类变换 当式的变换受到字母变值的限制时,可对字母的取值进行分类,然后对每一类进行变换,以达到求解的目的。分类变换方法适用于式的化简与方程(组)的化简、求解。 例1:当x 取什么样的实数值时,下列等式成立: (a =; (b 1=; (c 2=。 解: (0)m m =≥ 记方程左边为f(x), 则()f x =

1 |1|1|1 1 2 x x ≥ == ≤≤ 由此可知, 当m=时,原方程的解集为 1 [,1] 2 ; 当m∈时,解集为?; 当) m∈+∞ m =,解得2 1 (2) 4 x m =+。 即当) m∈+∞时,原方程的解集为2 1 {(2)} 4 m+。 例2:在复数范围内解方程组222 555 3, 3, 3. x y z x y z x y z ++= ? ? ++= ? ?++= ? 解:考虑数列* , n n n n a x y z n =++∈N。不难证明此数列满足递推式321 ()() n n n n a x y z a xy yz zx a xyza +++ =++-+++,其中 125 3,3 a a a ===。 利用基本恒等式,得2 12 1 ()3 2 xy yz zx a a ++=-=, 3123 11 [()] 33 xyz a a a xy yz zx a =--++=, ∴{} n a的递推式化为* 3213 1 33, 3 n n n n a a a a a n +++ =-+?∈N 由此得 432313543323 11 3349,331027 33 a a a a a a a a a a a a =-+?=---+?=- 由 5 3 a=,得 3 10273 a-=,∴ 3 3 a=。∴ 3 1 1 3 xyz a ==。 综上所述知,原方程组等价于 3, 3, 1. x y z xy yz zx xyz ++= ? ? ++= ? ?= ? 由韦达定理知,x,y,z是关于t的三次方程33 3310 t t t -+-=的三根, 此三次方程即3 123 (1)0,1 t t t t -=∴===, 这说明原方程组在复数范围内的解集为{(1,1,1)}。 注:此题还可以利用三次单位根 1 2 ω=-+的性质来解。 二、利用对称性 对称式一定是轮换式,但轮换式不一定是对称式。例如,x2y+y2z+z2x是轮换 式,但不是对称式。由轮换的特点,在解题中,为方便起见,可指定变元中x 1最大(或最小)。

相关文档
最新文档