实验5 多路复用式串口操作

实验5   多路复用式串口操作
实验5   多路复用式串口操作

实验5 多路复用式串口操作

学生姓名:李亚军学号:6100412196

专业班级:卓越计科121班

1.实验内容

通过编写多路复用式串口读写,进一步理解多路复用函数的用法,同时更加熟练掌握Linux 设备文件的读写方法。

2.实验内容

本实验主要实现两台机器(宿主机和目标机)之间的串口通信,每台机器都可以发送和接收数据。除了串口设备名称不同(宿主机上使用串口1:/dev/ttyS1,而在目标机上使用串口2:/dev/ttyS2),两台机器上的程序基本相同。

3.实验步骤

(1)流程图两台机器上的程序使用同样的流程图。

(2)编写代码(参见附件)

(3)分别编译宿主机和目标机的串口程序。

(4)连接属主PC的串口1和目标机器串口2。

(5)分别在两台机器上运行串口程序。

4.对实验结果截图,撰写实验总结,完成实验报告

实验总结:

这次实验在配置好串口之后,发现运行程序的时候总是permission denied,自己没有仔细考虑过报错的意思,使得做了许多无用功,后来才想到可能是权限不够,用root进去以后就一切OK了。

5.补充实验:用poll()函数实现具有以上功能的代码

只需要修改com_host和com_target

com_host.c

#include

#include

#include

#include

#include

#include

#include

#include

#include "uart_api.h"

int main(void)

{

struct pollfd fds[SEL_FILE_NUM];

char buff[BUFFER_SIZE];

int i, real_read;

int recv_fd;

/*首先按一定的权限打开两个源文件*/

fds[0].fd = 0; /* 标准输入*/

if ((recv_fd = open(RECV_FILE_NAME, O_CREAT|O_WRONLY, 0644)) < 0)

{

perror("open");

return 1;

}

fds[0].fd = STDIN_FILENO; /* 标准输入*/

if((fds[1].fd = open_port(HOST_COM_PORT)) < 0) /* 打开串口*/

{

perror("open_port");

return 1;

}

if(set_com_config(fds[1].fd, 115200, 8, 'N', 1) < 0) /* 配置串口*/

{

perror("set_com_config");

return 1;

}

/*取出两个文件描述符中的较大者*/

for (i = 0; i < SEL_FILE_NUM; i++)

{

fds[i].events = POLLIN;

}

/*循环测试该文件描述符是否准备就绪,并调用select 函数对相关文件描述符做对应操作*/

printf("Input some words(enter 'quit' to exit):\n");

while(fds[0].events || fds[1].events )

{

if (poll(fds, SEL_FILE_NUM, 0) < 0)

{

printf("Poll error\n");

return 1;

}

for (i = 0; i< SEL_FILE_NUM; i++)

{

if (fds[i].revents)

{

memset(buff, 0,BUFFER_SIZE);

real_read = read(fds[i].fd, buff,BUFFER_SIZE);

if (real_read < 0)

{

if (errno != EAGAIN)

{

return 1;

}

}

else if (!real_read)

{

close(fds[i].fd);

fds[i].events = 0;

}

else

{

buff[real_read] = '\0';

if (i == 0)

{

write(fds[1].fd, buff, strlen(buff));

printf("Input some words(enter 'quit' to exit):\n");

}

else if (i == 1)

{

write(recv_fd, buff, real_read);

printf("%s\n",buff);

}

if (strncmp(buff, "quit", 4) == 0)

{

return 1;

}

} /* end of if real_read*/

} /* end of if revents */

} /* end of for */

} /*end of while */

exit(0);

}

com_target.c

#include

#include

#include

#include

#include

#include

#include

#include

#include "uart_api.h"

int main(void)

{

struct pollfd fds[SEL_FILE_NUM];

char buff[BUFFER_SIZE];

int i, real_read;

int recv_fd;

/*首先按一定的权限打开两个源文件*/

fds[0].fd = 0; /* 标准输入*/

if ((recv_fd = open(RECV_FILE_NAME, O_CREAT|O_WRONLY, 0644)) < 0) {

perror("open");

return 1;

}

fds[0].fd = STDIN_FILENO; /* 标准输入*/

if((fds[1].fd = open_port(TARGET_COM_PORT)) < 0) /* 打开串口*/

{

perror("open_port");

return 1;

}

if(set_com_config(fds[1].fd, 115200, 8, 'N', 1) < 0) /* 配置串口*/

{

perror("set_com_config");

return 1;

}

/*取出两个文件描述符中的较大者*/

for (i = 0; i < SEL_FILE_NUM; i++)

{

fds[i].events = POLLIN;

}

/*循环测试该文件描述符是否准备就绪,并调用select 函数对相关文件描述符做对应操作*/

printf("Input some words(enter 'quit' to exit):\n");

while(fds[0].events || fds[1].events )

{

if (poll(fds, SEL_FILE_NUM, 0) < 0)

{

printf("Poll error\n");

return 1;

}

for (i = 0; i< SEL_FILE_NUM; i++)

{

if (fds[i].revents)

{

memset(buff, 0,BUFFER_SIZE);

real_read = read(fds[i].fd, buff,BUFFER_SIZE);

if (real_read < 0)

{

if (errno != EAGAIN)

{

return 1;

}

}

else if (!real_read)

{

close(fds[i].fd);

fds[i].events = 0;

}

else

{

buff[real_read] = '\0';

if (i == 0)

{

write(fds[1].fd, buff, strlen(buff));

printf("Input some words(enter 'quit' to exit):\n");

}

else if (i == 1)

{

write(recv_fd, buff, real_read);

printf("%s\n",buff);

}

if (strncmp(buff, "quit", 4) == 0)

{

return 1;

}

} /* end of if real_read*/

} /* end of if revents */ } /* end of for */

} /*end of while */

exit(0);

}

运行截图:

MATLAB基本操作实验报告

南昌航空大学 数学与信息科学学院 实验报告 课程名称:数学实验 实验名称: MATLAB基本操作 实验类型:验证性■综合性□ 设计性□ 实验室名称:数学实验室 班级学号: 10 学生姓名:钟 X 任课教师(教师签名): 成绩: 实验日期: 2011-10- 10

一、实验目的 1、熟悉MATLAB基本命令与操作 2、熟悉MATLAB作图的基本原理与步骤 3、学会用matlab软件做图 二、实验用仪器设备、器材或软件环境 计算机MATLAB软件 三、实验原理、方案设计、程序框图、预编程序等 问题1:在区间【0,2π】画sinx 实验程序: >> x=linspace(0,2*pi,30); >> y=sin(x); >> plot(x,y) 问题2:在【0,2π】用红线画sinx,用绿圈画cosx,实验程序:

>> x=linspace(0,2*pi,30); >> y=sin(x); >> z=cos(x); >> plot(x,y,'r',x,z,'co') >> 问题3:在【0,π】上画y=sinx的图形。 实验程序: >> ezplot('sin(x)',[0,pi]) >> 问题4:在【0,π】上画x=cos3t,y=sin3t星形图形。

实验程序: >> ezplot('cos(t).^3','sin(t).^3',[0,pi]) >> 问题5:[-2,0.5],[0,2]上画隐函数 实验程序: >> ezplot('exp(x)+sin(x*y)',[-2,0.5,0,2]) >> 问题6:在[-2,2]范围内绘制tanh的图形。实验程序: >> fplot('tanh',[-2,2])

《操作系统原理》信管专业实验指导书资料

《操作系统原理》实验指导书 班级:_______________ 学号:_______________ 姓名:_______________ 山东建筑大学管理工程学院 信息管理与信息系统教研室

目录 引言 (1) 实验题目一 (2) 实验题目二 (4) 实验题目三 (6) 实验题目四 (8) 实验题目五 (10) 实验题目六 (12)

引言 操作系统是信息管理与信息系统专业一门重要的专业理论课程,了解和掌握操作系统的基本概念、功能和实现原理,对认识整个计算机系统的工作原理十分重要。 操作系统实验是操作系统课程的一个重要组成部分,通过试验环节的锻炼使同学们不仅能够对以前的所学过的基础知识加以巩固,同时能够通过上机实验,对操作系统的抽象理论知识加以理解,最终达到融会贯通的目的,因此,实验环节是同学们理解、掌握操作系统基本理论的一个重要环节。 本实验指导书,根据教材中的重点内容设定了相应的实验题目,由于实验课程的学时有限,我们规定了必做题目和选做题目,其中必做题目必须在规定的上机学时中完成,必须有相应的预习报告和实验报告。选做题目是针对有能力或感兴趣的同学利用课余时间或上机学时的剩余时间完成。

实验题目一:模拟进程创建、终止、阻塞、唤醒原语 一、题目类型:必做题目。 二、实验目的:通过设计并调试创建、终止、阻塞、唤醒原语功能,有助于对操作系统中进 程控制功能的理解,掌握操作系统模块的设计方法和工作原理。 三、实验环境: 1、硬件:PC 机及其兼容机。 2、软件:Windows OS ,Turbo C 或C++、VC++、https://www.360docs.net/doc/b75578220.html, 、Java 等。 四、实验内容: 1、设计创建、终止、阻塞、唤醒原语功能函数。 2、设计主函数,采用菜单结构(参见后面给出的流程图)。 3、设计“显示队列”函数,目的能将就绪、阻塞队列中的进程信息显示在屏幕上,以供 随时查看各队列中进程的变化情况。 五、实验要求: 1、进程PCB 中应包含以下内容: 2、系统总体结构: 其中: 进程名用P1,P2标识。 优先级及运行时间:为实验题目二做准备。 状态为:就绪、运行、阻塞,三种基本状态。 指针:指向下一个PCB 。

图的遍历操作实验报告

. .. . .. .. 实验三、图的遍历操作 一、目的 掌握有向图和无向图的概念;掌握邻接矩阵和邻接链表建立图的存储结构;掌握DFS及BFS对图的遍历操作;了解图结构在人工智能、工程等领域的广泛应用。 二、要求 采用邻接矩阵和邻接链表作为图的存储结构,完成有向图和无向图的DFS 和BFS操作。 三、DFS和BFS 的基本思想 深度优先搜索法DFS的基本思想:从图G中某个顶点Vo出发,首先访问Vo,然后选择一个与Vo相邻且没被访问过的顶点Vi访问,再从Vi出发选择一个与Vi相邻且没被访问过的顶点Vj访问,……依次继续。如果当前被访问过的顶点的所有邻接顶点都已被访问,则回退到已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点W,从W出发按同样方法向前遍历。直到图中所有的顶点都被访问。 广度优先算法BFS的基本思想:从图G中某个顶点Vo出发,首先访问Vo,然后访问与Vo相邻的所有未被访问过的顶点V1,V2,……,Vt;再依次访问与V1,V2,……,Vt相邻的起且未被访问过的的所有顶点。如此继续,直到访问完图中的所有顶点。 四、示例程序 1.邻接矩阵作为存储结构的程序示例

#include"stdio.h" #include"stdlib.h" #define MaxVertexNum 100 //定义最大顶点数 typedef struct{ char vexs[MaxVertexNum]; //顶点表 int edges[MaxVertexNum][MaxVertexNum]; //邻接矩阵,可看作边表int n,e; //图中的顶点数n和边数e }MGraph; //用邻接矩阵表示的图的类型 //=========建立邻接矩阵======= void CreatMGraph(MGraph *G) { int i,j,k; char a; printf("Input VertexNum(n) and EdgesNum(e): "); scanf("%d,%d",&G->n,&G->e); //输入顶点数和边数 scanf("%c",&a); printf("Input Vertex string:"); for(i=0;in;i++) { scanf("%c",&a); G->vexs[i]=a; //读入顶点信息,建立顶点表 }

操作系统原理-进程调度实验报告

一、实验目的 通过对进程调度算法的设计,深入理解进程调度的原理。 进程是程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的一个独立单位。 进程调度分配处理机,是控制协调进程对CPU的竞争,即按一定的调度算法从就绪队列中选中一个进程,把CPU的使用权交给被选中的进程。 进程通过定义一个进程控制块的数据结构(PCB)来表示;每个进程需要赋予进程ID、进程到达时间、进程需要运行的总时间的属性;在RR中,以1为时间片单位;运行时,输入若干个进程序列,按照时间片输出其执行序列。 二、实验环境 VC++6.0 三、实验内容 实现短进程优先调度算法(SPF)和时间片轮转调度算法(RR) [提示]: (1) 先来先服务(FCFS)调度算法 原理:每次调度是从就绪队列中,选择一个最先进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。 将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理,是一种最普遍和最简单的方法。它优先考虑在系统中等待时间最长的作业,而不管要求运行时间的长短。 按照就绪进程进入就绪队列的先后次序进行调度,简单易实现,利于长进程,CPU繁忙型作业,不利于短进程,排队时间相对过长。 (2) 时间片轮转调度算法RR

原理:时间片轮转法主要用于进程调度。采用此算法的系统,其程序就绪队列往往按进程到达的时间来排序。进程调度按一定时间片(q)轮番运行各个进程. 进程按到达时间在就绪队列中排队,调度程序每次把CPU分配给就绪队列首进程使用一个时间片,运行完一个时间片释放CPU,排到就绪队列末尾参加下一轮调度,CPU分配给就绪队列的首进程。 固定时间片轮转法: 1 所有就绪进程按 FCFS 规则排队。 2 处理机总是分配给就绪队列的队首进程。 3 如果运行的进程用完时间片,则系统就把该进程送回就绪队列的队尾,重新排队。 4 因等待某事件而阻塞的进程送到阻塞队列。 5 系统把被唤醒的进程送到就绪队列的队尾。 可变时间片轮转法: 1 进程状态的转换方法同固定时间片轮转法。 2 响应时间固定,时间片的长短依据进程数量的多少由T = N × ( q + t )给出的关系调整。 3 根据进程优先级的高低进一步调整时间片,优先级越高的进程,分配的时间片越长。 多就绪队列轮转法: (3) 算法类型 (4)模拟程序可由两部分组成,先来先服务(FCFS)调度算法,时间片轮转。流程图如下:

操作系统原理实验四

实验4 进程控制 1、实验目的 (1)通过对WindowsXP进行编程,来熟悉和了解系统。 (2)通过分析程序,来了解进程的创建、终止。 2、实验工具 (1)一台WindowsXP操作系统的计算机。 (2)计算机装有Microsoft Visual Studio C++6.0专业版或企业版。 3、预备知识 (3)·CreateProcess()调用:创建一个进程。 (4)·ExitProcess()调用:终止一个进程。 4、实验编程 (1)编程一利用CreateProcess()函数创建一个子进程并且装入画图程序(mspaint.exe)。阅读该程序,完成实验任务。源程序如下: # include < stdio.h > # include < windows.h > int main(VOID) ﹛STARTUPINFO si; PROCESS INFORMA TION pi; ZeroMemory(&si,sizeof(si)); Si.cb=sizeof(si); ZeroMemory(&pi,sizeof(pi)); if(!CreateProcess(NULL, “c: \ WINDOWS\system32\ mspaint.exe”, NULL, NULL, FALSE, 0, NULL, NULL, &si,&pi)) ﹛fprintf(stderr,”Creat Process Failed”); return—1; ﹜ WaitForSingleObject(pi.hProcess,INFINITE); Printf(“child Complete”); CloseHandle(pi.hProcess); CloseHandle(pi hThread); ﹜

实验报告1windows的基本操作范例

实验名称:Windows的基本操作 一、实验目的 1.掌握桌面主题的设置。 2.掌握快捷方式的创建。 3.掌握开始菜单的组织。 4.掌握多任务间的数据传递——剪贴板的使用。 5.掌握文件夹和文件的创建、属性查看和设置。 6.掌握文件夹和文件的复制、移动和删除与恢复。 7.熟悉文件和文件夹的搜索。 8.熟悉文件和文件夹的压缩存储和解压缩。 二、实验环境 1.中文Windows 7操作系统。 三、实验内容及步骤 通过上机完成实验4、实验5所有内容后完成该实验报告 1.按“实验4--范例内容(1)”的要求设置桌面,将修改后的界面复制过来。 注:没有桌面背景图“Autumn”的,可选择其它背景图。 步骤:在桌面空白区域右击,选择菜单中的“个性化”,在弹出的窗口中点击“桌面背景”,在背景栏内选中“某一张图片”,单击“确定”。 修改后的界面如下图所示: 2.将画图程序添加到“开始”菜单的“固定项目列表”上。 步骤:右击“开始/所有程序/附件”菜单中的画图程序项,在弹出的快捷菜单中选“附到「开始」菜单”命令。 3.在D盘上建立以“自己的学号+姓名”为名的文件夹(如01108101刘琳)和其子文件 夹sub1,然后:

步骤:选定D:\为当前文件夹,选择“文件/新建/文件夹”命令,并将名字改为“学号+姓名”;选定“ D:\学号+姓名”为当前文件夹,选择“文件/新建/文件夹”命令,并将名字改为“sub1” ①在C:\WINDOWS中任选2个TXT文本文件,将它们复制到“学号+姓名”文件夹中;步骤:选定“C:\WINDOWS”为当前文件夹,随机选取2个文件, CTRL+C复制,返回“D:\学号+姓名”的文件夹,CTRL+V粘贴 ②将“学号+姓名”文件夹中的一个文件移到其子文件夹sub1中; 步骤:选定“ D:\学号+姓名”为当前文件夹,选中其中任意一个文件将其拖拽文件到subl ③在sub1文件夹中建立名为“”的空文本文档; 步骤:选定“ D:\学号+姓名\ sub1”为当前文件夹,在空白处单击右键,选择“新建\文本文档”,把名字改为test,回车完成。 ④删除文件夹sub1,然后再将其恢复。 步骤:选定“ D:\学号+姓名”为当前文件夹,右键单击“sub1”文件夹,选择“删除”,然后打开回收站,右键单击“sub1”文件夹,在弹出的快捷菜单中选择“还原”。 4.搜索C:\WINDOWS\system文件夹及其子文件夹下所有文件名第一个字母为s、文件长 度小于10KB且扩展名为exe的文件,并将它们复制到sub1文件夹中。 步骤:选定“ C:\WINDOWS\system”为当前文件夹,单击“搜索”按钮,在左侧窗格选择“所有文件和文件夹”,在“全部或部分文件名”中输入“s*.exe”,在“大小”中,选择“0~10KB”。 5.用不同的方法,在桌面上创建名为“计算器”、“画图”和“剪贴板”的三个快捷方式, 它们应用程序分别为:、和。并将三个快捷方式复制到sub1文件夹中。 步骤:①在"开始"菜单的"所有程序"子菜单中找到"计算器",单击右键,在弹出的快捷菜单中选择“发送到\桌面快捷方式”。 ②在"开始"菜单的"所有程序"子菜单中找到"画图",将其拖至桌面空白处。 ③在桌面上单击右键,在弹出的快捷菜单中选择“新建\快捷方式”,在“创建快捷方式”

操作系统原理实验-系统内存使用统计5

上海电力学院 计算机操作系统原理 实验报告 题目:动态链接库的建立与调用 院系:计算机科学与技术学院 专业年级:信息安全2010级 学生姓名:李鑫学号:20103277 同组姓名:无 2012年11 月28 日上海电力学院

实验报告 课程名称计算机操作系统原理实验项目线程的同步 姓名李鑫学号20103277 班级2010251班专业信息安全 同组人姓名无指导教师姓名徐曼实验日期2012/11/28 实验目的和要求: (l)了解Windows内存管理机制,理解页式存储管理技术。 (2)熟悉Windows内存管理基本数据结构。 (3)掌握Windows内存管理基本API的使用。 实验原理与内容 使用Windows系统提供的函数和数据结构显示系统存储空间的使用情况,当内存和虚拟存储空间变化时,观察系统显示变化情况。 实验平台与要求 能正确使用系统函数GlobalMemoryStatus()和数据结构MEMORYSTATUS了解系统内存和虚拟空间使用情况,会使用VirtualAlloc()函数和VirtualFree()函数分配和释放虚拟存储空间。 操作系统:Windows 2000或Windows XP 实验平台:Visual Studio C++ 6.0 实验步骤与记录 1、启动安装好的Visual C++ 6.0。 2、选择File->New,新建Win32 Console Application程序, 由于内存分配、释放及系统存储 空间使用情况均是Microsoft Windows操作系统的系统调用,因此选择An application that support MFC。单击确定按钮,完成本次创建。 3、创建一个支持MFC的工程,单击完成。

操作系统原理实验指导

操作系统实验指导 操作系统是计算机的最重要的系统软件,它在计算机中具有核心地位,其作用是对计算机系统资源进行统一的调度和管理,提供各种强有力的系统服务,为用户创造灵活而又方便的使用环境。一个精心设计的操作系统能极大地扩充计算机系统的功能,充分地发挥系统中各种资源的使用效率,提高系统工作的可靠性。 操作系统原理是计算机科学与技术专业的一门主要专业课程,它涉及计算机系统中各种软、硬资源管理的实现原理与方法,内容非常丰富,综合性非常强,并且还具有很强的实践性。只有把理论与实践紧密地结合起来,才能取得较好地学习效果。 培养计算机专业学生的系统程序设计能力,也是本课程的重要环节。系统程序要求结构清晰、合理、可读性好,有准确而简明的注释。通过实验可以培养学生正规系统程序设计能力。 本实验包括下列六个方面: 实验一几种操作系统的界面 实验二进程调度 实验三存储器管理 实验四存储器管理 实验五磁盘驱动调度 实验六文件管理系统 上述每个实验约需要10个学时。可根据实际情况选用。最好学生自己独立完成,如有困难,可参考一些示例,弄清每个实验的思想和实现方法,上机调试通过,不能完全照搬示例。 实验一几种操作系统的界面 1、目的与要求 目的:通过本实验,学生应熟悉1~2种操作系统的界面。在熟练使用的基础上,能了解各种命令和调用在系统中的大致工作过程,也就是通过操作系统的外部特性,逐步深入到操作系统的内在实质内容中去。 要求:能熟练地在1~2种操作系统环境下工作。学会使用各种命令,熟悉系统提供的各种功能。主动而有效地使用计算机。 熟悉系统实用程序的调用方法和各种系统调用模块的功能和用法。 2、示例 用1~2种操作系统提供的各种手段,建立、修改、编辑、编译和运行程序,最后撤消一个简单程序。要尽可能多地使用系统提供的各种命令和功能。 操作系统可为如下两种序列: (1)Windows 98或Windows 2000或Windows XP。 (2)Linux或Unix。 下面简要介绍一下Unix操作系统。 Unix是一个分时操作系统,面向用户的界面shell是一种命令程序设计语言,这种语言向用户提供了从低到高,从简单到复杂的三个层次的使用方式。它们是简单命令、组合命令和shell过程。 简单命令:Unix命令一律使用小写字母。 例如:ls -l 显示文件目录(长格式) rm 删除一个文件 cat 合并和传送文件、 cp 复制文件 mv 文件改名 cc 编译C语言源程序 组合命令:shell简单命令可以用管道算符|组合构成功能更强的命令。

数据结构实验图的基本操作

浙江大学城市学院实验报告 课程名称数据结构 实验项目名称实验十三/十四图的基本操作 学生姓名专业班级学号 实验成绩指导老师(签名)日期2014/06/09 一.实验目的和要求 1、掌握图的主要存储结构。 2、学会对几种常见的图的存储结构进行基本操作。 二.实验内容 1、图的邻接矩阵定义及实现: 建立头文件test13_AdjM.h,在该文件中定义图的邻接矩阵存储结构,并编写图的初始化、建立图、输出图、输出图的每个顶点的度等基本操作实现函数。同时建立一个验证操作实现的主函数文件test13.cpp(以下图为例),编译并调试程序,直到正确运行。 2、图的邻接表的定义及实现: 建立头文件test13_AdjL.h,在该文件中定义图的邻接表存储结构,并编写图的初始化、建立图、输出图、输出图的每个顶点的度等基本操作实现函数。同时在主函数文件test13.cpp中调用这些函数进行验证(以下图为例)。

3、填写实验报告,实验报告文件取名为report13.doc。 4、上传实验报告文件report13.doc到BB。 注: 下载p256_GraphMatrix.cpp(邻接矩阵)和 p258_GraphAdjoin.cpp(邻接表)源程序,读懂程序完成空缺部分代码。 三. 函数的功能说明及算法思路 (包括每个函数的功能说明,及一些重要函数的算法实现思路) 四. 实验结果与分析 (包括运行结果截图、结果分析等)

五.心得体会

程序比较难写,但是可以通过之前的一些程序来找到一些规律 (记录实验感受、上机过程中遇到的困难及解决办法、遗留的问题、意见和建议等。) 【附录----源程序】 256: //p-255 图的存储结构以数组邻接矩阵表示, 构造图的算法。 #include #include #include #include typedef char VertexType; //顶点的名称为字符 const int MaxVertexNum=10; //图的最大顶点数 const int MaxEdgeNum=100; //边数的最大值 typedef int WeightType; //权值的类型 const WeightType MaxValue=32767; //权值的无穷大表示 typedef VertexType Vexlist[MaxVertexNum]; //顶点信息,定点名称 typedef WeightType AdjMatrix[MaxVertexNum][MaxVertexNum]; //邻接矩阵typedef enum{DG,DN,AG,AN} GraphKind; //有向图,有向网,无向图,无向网typedef struct{ Vexlist vexs; // 顶点数据元素 AdjMatrix arcs; // 二维数组作邻接矩阵 int vexnum, arcnum; // 图的当前顶点数和弧数 GraphKind kind; // 图的种类标志 } MGraph; void CreateGraph(MGraph &G, GraphKind kd)// 采用数组邻接矩阵表示法,构造图G {//构造有向网G int i,j,k,q; char v, w; G.kind=kd; //图的种类 printf("输入要构造的图的顶点数和弧数:\n"); scanf("%d,%d",&G.vexnum,&G.arcnum); getchar();//过滤回车 printf("依次输入图的顶点名称ABCD...等等:\n"); for (i=0; i

实验指导(2015完全版)

操作系统上机实验指导书 (第一版) 闫大顺李晟编著 吴家培主审 计算机科学与工程学院 2014.8

操作系统实验指导 本课程是为《计算机操作系统》课所开的实验。计算机操作系统课程是一门实践性很强的技术课程,本课程实验的目的在于培养学生的实践能力,促进理论与实践的结合。要求学生通过上机编程,熟悉对操作系统原理,并熟练使用程序接口,并了解如何模拟操作系统原理的实现,从而加深对操作系统原理的领会,加深对操作系统实现方法的理解,与此同时使学生在程序设计方面也能够得到很大程度的提高。 实验的目的是使学生理论联系实际,提高学生系统理解与开发能力。这里所列的实验分为必做和选做。具体实验题的选择,不仅要考虑课程内容,而且要考虑学生目前的编程能力,要由浅入深。教师可通过运行示例或动画,帮助学生理解实验要求。学生应选择自己熟悉的语言与开发环境去完成实验。根据以往的教学经验,Delphi、C++ Builder,JBuilder由于提供了许多可重用的构件,易于学习、使用,VC++学习、使用困难较多。实验要求尽量在windows操作系统下,也可以在Linux下完成,由于多数没有专门学习Linux,在其平台下做试验比较困难。实验的硬件要求是能够支持VC++、Delphi、C++ Builder,JBuilder的微机即可。每个学生都独立在一台计算机上完成自己的实验内容,杜绝学生的抄袭。 实验报告的要求 1. 每位同学准备实验报告本,上机前作好充分的准备工作,预习本次实验的内容,事先熟悉与实验有关的软硬件环境。 2. 实验时遵守实验室的规章制度,爱护实验设备,对于实验设备出现的问题,要及时向指导老师汇报。 3. 提交实验文件格式:[班级][学号]_[实验题号].[扩展名] 例:计051班学号为03的学生第四个实验的文件名为:j05103_4.c 4. 最终的实验报告按照实验名称、实验目的、实验内容,实验过程(程序设计、实现与调试)、实验总结五部分书写,按时上交。实验总结是对于实验过程中出现的问题或疑惑的分析与思考。认真按照要求填写到实验报告纸上。

数字图像处理实验报告

目录 实验一:数字图像的基本处理操作 (4) :实验目的 (4) :实验任务和要求 (4) :实验步骤和结果 (5) :结果分析 (8) 实验二:图像的灰度变换和直方图变换 (9) :实验目的 (9) :实验任务和要求 (9) :实验步骤和结果 (9) :结果分析 (13) 实验三:图像的平滑处理 (14) :实验目的 (14) :实验任务和要求 (14) :实验步骤和结果 (14) :结果分析 (18) 实验四:图像的锐化处理 (19) :实验目的 (19) :实验任务和要求 (19) :实验步骤和结果 (19) :结果分析 (21)

实验一:数字图像的基本处理操作 :实验目的 1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用; 2、实现图像的读取、显示、代数运算和简单变换。 3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。:实验任务和要求 1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分 成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。 2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分 别显示,注上文字标题。 3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换, 显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。 4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里 叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的 对应关系。 :实验步骤和结果 1.对实验任务1的实现代码如下: a=imread('d:\'); i=rgb2gray(a); I=im2bw(a,; subplot(1,3,1);imshow(a);title('原图像'); subplot(1,3,2);imshow(i);title('灰度图像'); subplot(1,3,3);imshow(I);title('二值图像'); subplot(1,3,1);imshow(a);title('原图像'); 结果如图所示:

操作系统原理实验五

实验五线程的同步 1、实验目的 (1)进一步掌握Windows系统环境下线程的创建与撤销。 (2)熟悉Windows系统提供的线程同步API。 (3)使用Windows系统提供的线程同步API解决实际问题。 2、实验准备知识:相关API函数介绍 ①等待对象 等待对象(wait functions)函数包括等待一个对象(WaitForSingleObject ())和等待多个对象(WaitForMultipleObject())两个API函数。 1)等待一个对象 WaitForSingleObject()用于等待一个对象。它等待的对象可以为以下对象 之一。 ·Change ontification:变化通知。 ·Console input: 控制台输入。 ·Event:事件。 ·Job:作业。 ·Mutex:互斥信号量。 ·Process:进程。 ·Semaphore:计数信号量。 ·Thread:线程。 ·Waitable timer:定时器。 原型: DWORD WaitForSingleObject( HANDLE hHandle, // 对象句柄 DWORD dwMilliseconds // 等待时间 ); 参数说明: (1)hHandle:等待对象的对象句柄。该对象句柄必须为SYNCHRONIZE访问。 (2)dwMilliseconds:等待时间,单位为ms。若该值为0,函数在测试对象的状态后立即返回,若为INFINITE,函数一直等待下去,直到接收到 一个信号将其唤醒,如表2-1所示。 返回值: 如果成功返回,其返回值说明是何种事件导致函数返回。

Static HANDLE hHandlel = NULL; DWORD dRes; dRes = WaitForSingleObject(hHandlel,10); //等待对象的句柄为hHandlel,等待时间为10ms 2)等待对个对象 WaitForMultiple()bject()在指定时间内等待多个对象,它等待的对象与 WaitForSingleObject()相同。 原型: DWORD WaitForMultipleObjects( DWORD nCount, //句柄数组中的句柄数 CONST HANDLE * lpHandles, //指向对象句柄数组的指针 BOOL fWaitAll, //等待类型 DWORD dwMilliseconds //等待时间 ); 参数说明: (1)nCount:由指针 * lpHandles指定的句柄数组中的句柄数,最大数是MAXIMUM WAIT OBJECTS。 (2)* lpHandles:指向对象句柄数组的指针。 (3)fWaitAll:等待类型。若为TRUE,当由lpHandles数组指定的所有对象被唤醒时函数返回;若为FALSE,当由lpHandles数组指定的某一个 对象被唤醒时函数返回,且由返回值说明是由于哪个对象引起的函数 返回。 (4)dwMilliseconds:等待时间,单位为ms。若该值为0,函数测试对象的状态后立即返回;若为INFINITE,函数一直等待下去,直到接收到 一个信号将其唤醒。 返回值:、 如果成功返回,其返回值说明是何种事件导致函数返回。 各参数的描述如表2-2所示。

数字图像处理实验报告

目录 实验一:数字图像的基本处理操作....................................................................... 错误!未定义书签。:实验目的 .............................................................................................................. 错误!未定义书签。:实验任务和要求..................................................................................................... 错误!未定义书签。:实验步骤和结果..................................................................................................... 错误!未定义书签。:结果分析................................................................................................................. 错误!未定义书签。实验二:图像的灰度变换和直方图变换............................................................... 错误!未定义书签。:实验目的 .............................................................................................................. 错误!未定义书签。:实验任务和要求..................................................................................................... 错误!未定义书签。:实验步骤和结果..................................................................................................... 错误!未定义书签。:结果分析................................................................................................................. 错误!未定义书签。实验三:图像的平滑处理....................................................................................... 错误!未定义书签。:实验目的 .............................................................................................................. 错误!未定义书签。:实验任务和要求..................................................................................................... 错误!未定义书签。:实验步骤和结果..................................................................................................... 错误!未定义书签。:结果分析................................................................................................................. 错误!未定义书签。实验四:图像的锐化处理......................................................................................... 错误!未定义书签。:实验目的 .............................................................................................................. 错误!未定义书签。:实验任务和要求..................................................................................................... 错误!未定义书签。:实验步骤和结果..................................................................................................... 错误!未定义书签。:结果分析................................................................................................................. 错误!未定义书签。

操作系统原理实验报告(终版)

操作系统原理实验报告(终版)

————————————————————————————————作者:————————————————————————————————日期:

[键入文字] XX学校 实验报告 课程名称: 学院: 专业班: 姓名: 学号: 指导教师: 2011 年3 月

目录 实验1 进程管理 (3) 一、实验目的 (3) 二、实验内容 (3) 三、实验要求 (3) 四、程序说明和程序流程图 (4) 五、程序代码 (5) 六、程序运行结果及分析 (7) 七.指导教师评议 (8) 实验2 进程通信 (9) 一、实验目的 (9) 二、实验内容 (9) 三、实验要求 (9) 四、程序说明和程序流程图 (9) 五、程序代码 (11) 七.指导教师评议 (14) 实验3 存储管理 (15) 一、实验目的 (15) 二、实验内容 (15) 三、实验要求 (15) 四、程序说明和程序流程图 (16) 六、程序运行结果及分析 (23)

七.指导教师评议 (23) 实验4 文件系统 (24) 一、实验目的 (24) 二、实验内容 (24) 三、实验要求 (24) 四、程序说明和程序流程图 (24) 五、程序代码 (26) 六、程序运行结果及分析 (26) 七.指导教师评议 (27)

实验1 进程管理 一、实验目的 1. 弄清进程和程序的区别,加深对进程概念的理解。 2. 了解并发进程的执行过程,进一步认识并发执行的实质。 3. 掌握解决进程互斥使用资源的方法。 二、实验内容 1. 管道通信 使用系统调用pipe( )建立一个管道,然后使用系统调用fork( )创建2个子进程p1和p2。这2个子进程分别向管道中写入字符串:“Child process p1 is sending message!”和“Child process p2 is sending message!”,而父进程则从管道中读出来自两个子进程的信息,并显示在屏幕上。 2. 软中断通信 使用系统调用fork( )创建2个子进程p1和p2,在父进程中使用系统调用signal( )捕捉来自键盘上的软中断信号SIGINT(即按Ctrl-C),当捕捉到软中断信号SIGINT后,父进程使用系统调用kill( )分别向2个子进程发出软中断信号SIGUSR1和SIGUSR2,子进程捕捉到信号后分别输出信息“Child process p1 is killed by parent!”和“Child process p2 is killed by parent!”后终止。而父进程等待2个子进程终止后,输出信息“Parent process is killed!”后终止。 三、实验要求 1. 根据实验内容编写C程序。 2. 上机调试程序。 3. 记录并分析程序运行结果。

操作系统原理实验十一

实验十一银行家算法模拟实现 1实验类型 设计型(4学时)。 2实验目的 1)理解死锁避免相关内容; 2)掌握银行家算法主要流程; 3)掌握安全性检查流程。 3实验描述 本实验主要对操作系统中的死锁预防部分的理论进行实验。要求实验者设计一个程序,该程序可对每一次资源申请采用银行家算法进行分配。 4实验内容 1)设计多个资源(≥3); 2)设计多个进程(≥3); 3)设计银行家算法相关的数据结构; 4)动态进行资源申请、分配、安全性检测并给出分配结果。 5实验要求 1)编写程序完成实验内容; 2)画出安全性检测函数流程图; 3)小组派1人上台用PPT演讲实现过程; 4)撰写实验报告。

6测试要求 1)进行Request请求,输入参数为进程号、资源号和资源数; 2)进行3次以上的Request请求; 3)至少进行1次资源数目少于可用资源数,但不安全的请求。 7相关知识 7.1银行家算法的数据结构 1)可利用资源向量Available。其中每个元素代表每类资源的数目。 2)最大需求矩阵Max。其中每个元素代表每个进程对于每类资源的最大需求量。 Max[i,j]=K表示i进程对于j类资源的最大需求量为K。 3)分配矩阵Allocation。其中每个元素代表每个进程已得到的每类资源的数目。 4)需求矩阵Need。其中每个元素代表每个进程还需要的每类资源的数目。 7.2银行家算法 Request i [j]=K表示进程Pi需要K个j类资源。 1)如果Request i [j]≤Need[i , j],便转向步骤2,否则认为出错。 2)如果Request i [j]≤Available[j],便转向步骤3,否则表示无足够资源,Pi需等待; 3)系统尝试分配资源给Pi; 4)系统进行安全性检查,检查此次资源分配后,系统是否安全。如果安全,则正式分配资源,否则撤销此次分配。 7.3安全性算法 1)设置两个向量:工作向量Work和Finish。算法开始时Work=Available;Finish 表示系统是否有足够的资源分配给进程,使之运行完成,开始时,令 Finish[i]=False;如果有足够的资源分配给进程,则令Finish[i]=True。 2)从进程集合中找到一个能满足下列条件的进程:Finish[i]=False;Need[i,j] ≤Work[j],若找到,执行步骤3),否则,执行步骤4); 3)Pi获得所需资源后,可顺利执行指导完成,并释放它占有的资源。并执行:Work[j]=Work[j]+Allocation[i , j]; Finish[i] = True; 到第2)步。

操作系统原理课程设计

操作系统原理课程设计 ——银行家算法模拟 指导老师:周敏唐洪英杨宏雨 杨承玉傅由甲黄贤英 院系:计算机学院计算机科学与技术班级:0237-6 学号:2002370609 姓名:刘洪彬 同组者:杨志 时间:2005/1/10---2005/1/14

银行家算法模拟 一、设计目的 本课程设计是学生学习完《计算机操作系统》课程后,进行的一次全面的综合训练,通过课程设计,让学生更好地掌握操作系统的原理及实现方法,加深对操作系统基础理论和重要算法的理解,加强学生的动手能力。 二、设计要求 银行家算法是避免死锁的一种重要方法,本实验要求用高级语言编写和调试一个简单的银行家算法程序。加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 从课程设计的目的出发,通过设计工作的各个环节,达到以下教学要求:两人一组,每组从所给题目中任选一个(如自拟题目,需经教师同意),每个学生必须独立完成课程设计,不能相互抄袭,同组者文档不能相同; 设计完成后,将所完成的工作交由老师检查; 要求写出一份详细的设计报告。 三、设计内容 编制银行家算法通用程序,并检测所给状态的系统安全性。 1)银行家算法中的数据结构 假设有n个进程m类资源,则有如下数据结构: 可利用资源向量Available。这是一个含有m个元素的数组,其中的每一个元素代表一类可利用的资源数目,其初始值是系统中所配置的该类全部可用资源的数目,其数值随该类资源的分配和回收而动态地改变。Available[j]=K,则表示系统中现有Rj 类资源K个。 最大需求矩阵Max。这是一个n*m的矩阵,它定义了系统中n个进程中的每一个进程对m类资源的最大需求。如果Max[i,j]=K,则表示进程i需要Rj类资源的最大数目为K。 分配矩阵Allocation。这也是一个n*m的矩阵,它定义了系统中每一类资源当前已分配给没一进程的资源数。如果Allocation[i,j]=K,则表示进程i 当前已分得Rj类资源的数目为K。 需求矩阵Need。这也是一个n*m的矩阵,用以表示每一个进程尚需的各类资源数。如果Need[i,j]=K,则表示进程i还需要Rj类资源K个,方能完成其任务。

相关文档
最新文档