二元logistic逻辑回归分析2

二元logistic逻辑回归分析2
二元logistic逻辑回归分析2

logistic模型方法的运用分析

一.《基于logistic模型的失地农民土地征收意愿影响因素研究。》

1.构建模型:,文中因变量的量化取值,当农户愿意土地被征收时,取值1,当农户不愿意

土地被征收时,取值0。

2.变量描述及赋值:采用李克特5分量表法进行赋值,对与征地意愿有正向作用的因素从

非常同意到非常不同意分别赋值5、4、3、2、1,对负向作用的因素从非常同意到非常不同意分别赋值1、2、3、4、5;而家庭人口特征和区位特征则采取实际量化值。

3.结果分析:

3.1模型检验

模型系数检验:似然比卡方检验的观测值48.460,概率p值为0.000,小于0.05,说明模型整体显著。

-2对数似然值检验:-2倍的对数似然函数值为105.111,说明模型拟合度较理。

R Square检验:R方值越大模型越优。NagelkerkeR2值为0.384,说明模型拟合度较好。

Overall Percentage :观察Overall Percentage值,如果为92.4%,说明回归后模型总预测正确率为92.4%,与步骤0的90.8%比,提高1.6%,说明模型预测效果较理想。

变量的显著性检验:显著性水平的值代表变量对模型显著影响的大小。

是x1 -征地前对耕地的依赖度(p =0.034)、x2 -对征地前家庭居住条件的满意度( p =0.120)、x3 -征地补偿合理性( p =0.027)、x4 -征地对家庭经济的影响( p =0.005)、x5 -征地对就业的影响(p =0.045)。

二.黄河流域居民生态补偿意愿及支付水平分析——以山东省为例

1.构建模型以及变量赋值

以变量y 表示居民生态补偿意愿,将“不愿意”赋值为0,将“愿意”赋值为1。

变量赋值:以变量y1 表示居民生态补偿的支付水平,其取值为被调查者愿意支付的年度生态补偿数额所在区间对应的取值,从50~400 元共分7 档,档间距离为50 元(见表3)。

选择建立Logit 回归模型来分析它与影响因素间的关系。以愿意补偿的机率(i p )与不愿意补偿的机率比的对数为被解释变量z:

X1 为被调查者的受教育程度(取值为受教育年限),x2 为被调查者的年收入,x3 为被调查者的性别(取值见表4),x4 为被调查者的年龄。以被调查者的年度生态补偿支付数额1 y 作为被解释变量,以被调查者的受教育程度(1 x )、收入(2 x )、性别(3 x )、年龄(4 x )为解释变量,建立线性回归模型如下:

2.参数分析:

变量的显著性检验:Logit回归模型系数及检验结果,***、**、*分别表示通过1%、5%和10%水平的显著性检验。在模型(1)中,X1和X2分别通过1%和10%的检验,而X3和X4不通过10%的检验。因此被调查者的受教育程度对其生态补偿意愿的影响具有显著性,收入因素对生态补偿意愿的影响较为显著,年龄因素及性别因素对生态补偿意愿的影响不显著。

线性模型分析:在模型(2)中,根据其整体检验程度,线性拟合程度F 检验值达到20.45,为高度显著。从各变量的显著性程度来看,被调查者的受教育程度和收入水平均高度显著。同模型(1)一样,性别以及年龄对生态补偿支付水平影响不显著。

3.结果分析:

由模型1,推知变量对生态补偿意愿的影响程度。

1.在其他条件不变的前提下,居民受教育程度越高,其生态补偿意愿越强。

2.居民收入水平越高,其生态补偿意愿就越强烈。

3.在模型(1)中,性别3 x 变量的回归系数为负,这说明,女性生态补偿的意愿要大于男

性。

由模型2,推出变量变化而引起生态补偿支付水平的变化变化程度。

1.在目前的水平上,居民受教育年限每增加1 年,其生态补偿支付水平大约提高0.21 档,按照每档50 元的标准,大约增加10.5 元。

2.居民年收入水平每增加5000 元,其生态补偿支付水平大约增加0.35 档,相当于增加17.5 元。

参考文献:

[1]葛颜祥,梁丽娟,王蓓蓓,吴菲菲. 黄河流域居民生态补偿意愿及支付水平分析——以山东省为例[J]. 中国农村经济,2009,10:77-85.

[2]郭玲霞,高贵现,彭开丽. 基于Logistic模型的失地农民土地征收意愿影响因素研究[J]. 资源科学,2012,08:1484-1492.

Logistic回归分析简介

Logistic回归分析简介 Logistic回归:实际上属于判别分析,因拥有很差的判别效率而不常用。1.应用范围: ①适用于流行病学资料的危险因素分析 ②实验室中药物的剂量-反应关系 ③临床试验评价 ④疾病的预后因素分析 2.Logistic回归的分类: ①按因变量的资料类型分: 二分类 多分类 其中二分较为常用 ②按研究方法分: 条件Logistic回归 非条件Logistic回归 两者针对的资料类型不一样,后者针对成组研究,前者针对配对或配伍 研究。 3.Logistic回归的应用条件是: ①独立性。各观测对象间是相互独立的; ②LogitP与自变量是线性关系; ③样本量。经验值是病例对照各50例以上或为自变量的5-10倍(以10倍 为宜),不过随着统计技术和软件的发展,样本量较小或不能进行似然

估计的情况下可采用精确logistic回归分析,此时要求分析变量不能太多,且变量分类不能太多; ④当队列资料进行logistic回归分析时,观察时间应该相同,否则需考虑观 察时间的影响(建议用Poisson回归)。 4.拟和logistic回归方程的步骤: ①对每一个变量进行量化,并进行单因素分析; ②数据的离散化,对于连续性变量在分析过程中常常需要进行离散变成等 级资料。可采用的方法有依据经验进行离散,或是按照四分、五分位数 法来确定等级,也可采用聚类方法将计量资料聚为二类或多类,变为离 散变量。 ③对性质相近的一些自变量进行部分多因素分析,并探讨各自变量(等级 变量,数值变量)纳入模型时的适宜尺度,及对自变量进行必要的变量 变换; ④在单变量分析和相关自变量分析的基础上,对P≤α(常取0.2,0.15或 0.3)的变量,以及专业上认为重要的变量进行多因素的逐步筛选;模型 程序每拟合一个模型将给出多个指标值,供用户判断模型优劣和筛选变 量。可以采用双向筛选技术:a进入变量的筛选用score统计量或G统计 量或LRS(似然比统计量),用户确定P值临界值如:0.05、0.1或0.2,选 择统计量显著且最大的变量进入模型;b剔除变量的选择用Z统计量(Wald 统计量),用户确定其P值显著性水平,当变量不显者,从模型中予以剔 除。这样,选入和剔除反复循环,直至无变量选入,也无变量删除为止,选入或剔除的显著界值的确定要依具体的问题和变量的多寡而定,一般

SPSS—二元Logistic回归结果分析报告

SPSS—二元Logistic回归结果分析 2011-12-02 16:48 身心疲惫,睡意连连,头不断往下掉,拿出耳机,听下歌曲,缓解我这严重的睡意吧!今天来分析二元Logistic回归的结果 分析结果如下: 1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为 1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个

1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约) 2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为 -1.026,标准误差为:0.103 那么wald =( B/S.E)2=(-1.026/0.103)2 = 99.2248, 跟表中的“100.029几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小, B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为1, sig为0.000,非常显著

1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型 表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下: (公式中(Xi- Xˉ) 少了一个平方) 下面来举例说明这个计算过程:(“年龄”自变量的得分为例) 从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为 129,选定案例总和为489 那么: yˉ = 129/489 = 0.16 xˉ = 16951 / 489 = 34.2 所以:∑(Xi-xˉ)2 = 30074.9979

逻辑回归模型分析见解

1.逻辑回归模型 1.1逻辑回归模型 考虑具有p个独立变量的向量,设条件概率为根据观测量相对于某事件发生的概率。逻辑回归模型可表示为 (1.1) 上式右侧形式的函数称为称为逻辑函数。下图给出其函数图象形式。 其中。如果含有名义变量,则将其变为dummy变量。一个具有k个取值的名义变量,将变为k-1个dummy变量。这样,有 (1.2) 定义不发生事件的条件概率为 (1.3) 那么,事件发生与事件不发生的概率之比为 (1.4) 这个比值称为事件的发生比(the odds of experiencing an event),简称为odds。因为00。对odds取对数,即得到线性函数, (1.5) 1.2极大似然函数 假设有n个观测样本,观测值分别为设为给定条件下

得到的概率。在同样条件下得到的条件概率为。于是,得到一个观测值的概率为 (1.6) 因为各项观测独立,所以它们的联合分布可以表示为各边际分布的乘积。 (1.7) 上式称为n个观测的似然函数。我们的目标是能够求出使这一似然函数的值最大的参数估计。于是,最大似然估计的关键就是求出参数,使上式取得最大值。 对上述函数求对数 (1.8) 上式称为对数似然函数。为了估计能使取得最大的参数的值。 对此函数求导,得到p+1个似然方程。 (1.9) ,j=1,2,..,p. 上式称为似然方程。为了解上述非线性方程,应用牛顿-拉斐森(Newton-Raphson)方法进行迭代求解。 1.3牛顿-拉斐森迭代法 对求二阶偏导数,即Hessian矩阵为 (1.10) 如果写成矩阵形式,以H表示Hessian矩阵,X表示 (1.11) 令

logistic回归分析案例

1. 数据制备(栅格数据) (1) 宝塔区基底图层.tif (2) 居民点扩增.tif 、坡度.tif 、坡向.tif 等要素数据。 在 environment settings ------ p rocessing extent ------ snap raster (选中基底图层),保证栅格数据 像元无偏移,且行列的数量一致。 化:Raster to ASCII Inyul r aiLtvl- 匚” k 『号樹 ± 如葡让也\1非*订kilt :f 10. 2 'iiStati EeiT-SlaT 14t L J. KT 2.通过CLUE-S 莫型中的fileconvert 模块,获得logistic 回归分析的数据集。 (1) 将上一步骤中的因变量 y 和影响因素x 的.txt 文档后缀改为.asc 格式,并将文件 放在CLUE-S 模型所在的文件夹中。 (2) 打开FileCo nvert V2软件,按下图勾选,填写"file list "内容,点击start con version , 3 田F1 曰 It:. (3)栅格数据转为 ASCII 码,生成txt 文档。 匚onversion Tools Ejicel From GPS From KML From Raster 气 Raster to ASCII y Raster to Fist 声.Raster to Point

生成stat .txt文档。 祥Fi le 荃 flFfijie? I1id J?1Ji w ■■ 1 ? 9><4 P t414 Tl ?J19 12词 ■M*£LD|i4I# ■ Q电兀列心£i k1lf\ 15?1 *■4JE RI7 <1- I 4 話M3 IS r擠uSstalB-^aG 齬£ 淨珀bCMir 二i缶 pad... ■ 枝jfcsurrT^cM.a^t 炉 MBlOrtTIdH■: 护 xVcomr-.iic / rll asc 播Tann砂£]T (2)logistic回归分析 按图设置参数因变量、自变量;由于x3属于分类变量,点击分类按钮,按图设置参数。 >M!L4M|昨T祜lt?M? 曲唱-Hl'F1 wB-j' MtF M|T ffl¥ g: ZTStiRiiri SHilfi VTU '_'■ rt 舖C r TI薔色Z4d* ■i aa ■;? 1 iTdlfAflWVK4Wt4「利 E 呻■■} 1■ IdfcWM^U.一尉仇■臂H xlAftL lAMDf Jfit 1Q1?7r -iwns ■B-13磁MT 13 J 工 '-恫fl T l£j v-IIHH M4Q J0W PW回沐神to 型 rwa: wm 1 H teiiy- 卩厲 4a13 4 ■ira 401?wa 70i-221 ?d'131fefl 加ifUnm 片nu t013*Ozmwkt他 w p1W址?囲血|淞:幽 11013 1 Qm Sft?t 121JJ V s? 014*」; 11 H?iKa; H013 5 *旳 ti a IM■ KK MS V;941 ti Q144T f 7W filwvjcfic OH

完整版逻辑回归模型分析见解

1.逻辑回归模型 1.1 逻辑回归模型 考虑具有p个独立变量的向量■',设条件概率卩;上二?丨门二广为根据观测 量相对于某事件发生的概率。逻辑回归模型可表示为 :「( 1.1) 上式右侧形式的函数称为称为逻辑函数。下图给出其函数图象形式。 其中-" I' 1 c' ■-..【?。如果含有名义变量,则将其变为dummy 变量。一个具有k个取值的名义变量,将变为k-1个dummy 变量。这样,有 — I ( 1.2) 这个比值称为事件的发生比(the odds of experie ncing an event), 00 。对odds取对数,即得到线性函数, h ■ y —: j島一,厲-5 —+兀匸护9一 Q讣 1 p 上】(1.5) 假设有n个观测样本,观测值分别为设' 」I ■■-为给定条件下 (1.3) 简称为odds。因为定义不发生事件的条件概率为 那么,事件发生与事件不发生的概率之比为 1.2极大似然函数

得到I 的概率。在同样条件下得到-- 的条件概率为丨:一"。 得到一个观测值的概率为 因为各项观测独立,所以它们的联合分布可以表示为各边际分布的乘积。 (1.7) 上式称为n个观测的似然函数。我们的目标是能够求出使这一似然函数的值最大的参数估 譏备心)( 」' (1.10 是, ◎ )*(1 ¥严(1.6 ) i-l 计。于是,最大似然估计的关键就是求出参数:- ,使上式取得最大值。 对上述函数求对数 — (1.8) 上式称为对数似然函数。为了估计能使亠取得最大的参数的值。 对此函数求导,得到p+1个似然方程。 Ei 片 n:—E L尹—心肿一时 (1.9 ) ^叶切迄尸,j=1,2,..,p. 上式称为似然方程。为了解上述非线性方程,应用牛顿-拉斐森 进行迭代求解。 (Newto n-Raphs on) 方法1.3 牛顿-拉斐森迭代法 对-八?求二阶偏导数,即Hessian矩阵为 如果写成矩阵形式,以H表示Hessian矩阵,X表示 (1.11 )

Logistic回归分析报告结果解读分析

Logistic 回归分析报告结果解读分析 Logistic 回归常用于分析二分类因变量(如存活和死亡、患病和未患病等)与多个自变量的关系。比较常用的情形是分析危险因素与是否发生某疾病相关联。例如,若探讨胃癌的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群有不同的临床表现和生活方式等,因变量就为有或无胃癌,即“是” 或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、是否幽门螺杆菌感染等。自变量既可以是连续变量,也可以为分类变量。通过Logistic 回归分析,就可以大致了解胃癌的危险因素。 Logistic 回归与多元线性回归有很多相同之处,但最大的区别就在于他们的因变量不同。多元线性回归的因变量为连续变量;Logistic 回归的因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释。 1. Logistic 回归的用法 一般而言,Logistic 回归有两大用途,首先是寻找危险因素,如上文的例子,找出与胃癌相关的危险因素;其次是用于预测,我们可以根据建立的Logistic 回归模型,预测在不同的自变量情况下,发生某病或某种情况的概率(包括风险评分的建立)。 2. 用Logistic回归估计危险度 所谓相对危险度(risk ratio , RR)是用来描述某一因素不同状态发生疾病(或其它结局)危险程度的 比值。Logistic回归给出的OR(odds ratio)值与相对危险度类似,常用来表示相对于某一人群,另一人群发生终点事件的风险超出或减少的程度。如不同性别的

胃癌发生危险不同,通过Logistic回归可以求出危险度的具体数值,例如1.7,

图文举例详细讲解Logistic曲线的回归分析

Logistic曲线的回归分析 例某一品种玉米高度与时间(生长周期,每个生长周期为2-3天,与气温有关)的数据如 表1.所示。用转化为线性方程的方法估计其logistic曲线预测模型。设最大值k为300(cm)。 表1.玉米高度与时间(生长周期)的关系 时间(生长周期)高度/cm时间(生长周期)高度/cm时间(生长周期)高度/cm 10.671212.752297.4620.851316.5523112.7 31.281420.124135.141.751527.3525153.652.271632.5526160.362.751737.55271 67.173.691844.7528174.984.711953.3829177.996.362071.6130180.2 107.732183.8931180.8119.91 3.1基本绘图操作 在Excel中输入时间x与高度y的数据。 选择插入->图表 图87 点击图表,选择“标准类型”中的xy散点图,并点击子图表类型的第一个。

图88 点击下一步,得到如图89。 图89

点击下一步。 图90 分别点击标题、网格线、图例进行修改,然后点击下一步。 图91 点击完成。 图92 右击绘图区,修改绘图区格式,双击做表格,修改坐标轴刻度,最后的散点图。

图93 观察散点图,其呈S型曲线,符合logistic曲线。采用转化为线性方程的方法求解模型。 3.2Logistic曲线方程及线性化 Logistic曲线方程为: y 1 k at me(12) (1)将数据线性化及成图 转化为线性方程为: y'aat 01 (13 ) 其中,y'ln(k/y1),a 0lnm,a1a 具体操作为: 向excel表格中输入y’数据。

(整理)多项分类Logistic回归分析的功能与意义1.

多项分类Logistic回归分析的功能与意义 我们经常会遇到因变量有多个取值而且无大小顺序的情况,比如职业、婚姻情况等等,这时一般的线性回归分析无法准确地刻画变量之间的因果关系,需要用其它回归分析方法来进行拟合模型。SPSS的多项分类Logistic回归便是一种简便的处理该类因变量问题的分析方法。 例子:下表给出了对山东省某中学20名视力低下学生视力监测的结果数据。试用多项分类Logistic回归分析方法分析视力低下程度(由轻到重共3级)与年龄、性别(1代表男性,2代表女性)之间的关系。

“年龄”使之进入“协变量”列表框。

还是以教程“blankloan.sav"数据为例,研究银行客户贷款是否违约(拖欠)的问题,数据如下所示: 上面的数据是大约700个申请贷款的客户,我们需要进行随机抽样,来进行二元Logistic 回归分析,上图中的“0”表示没有拖欠贷款,“1”表示拖欠贷款,接下来,步骤如下: 1:设置随机抽样的随机种子,如下图所示:

选择“设置起点”选择“固定值”即可,本人感觉200万的容量已经足够了,就采用的默认值,点击确定,返回原界面、 2:进行“转换”—计算变量“生成一个变量(validate),进入如下界面: 在数字表达式中,输入公式:rv.bernoulli(0.7),这个表达式的意思为:返回概率为0.7的bernoulli分布随机值 如果在0.7的概率下能够成功,那么就为1,失败的话,就为"0" 为了保持数据分析的有效性,对于样本中“违约”变量取缺失值的部分,validate变量也取缺失值,所以,需要设置一个“选择条件” 点击“如果”按钮,进入如下界面:

二元logistic逻辑回归分析1

SPSS与社会统计学课程作业二 [1]陈昱,陈银蓉,马文博. 基于Logistic模型的水库移民安置区居民土地流转意愿分析——四川、湖南、湖北移民安置区的调查[J]. 资源科学,2011,06:1178-1185. 一、变量赋值 1.被解释变量用0表示不愿意流转,1表示愿意流转,有意愿上的状态表示效果。 2.性别分别用1和2表示男女,男女不存在有没有状态的表征,所以用1、2赋值非常合适;它的预计影响方向为负,是基于学者张林秀、刘承芳等认为:由于农村男性外出打工的几率高于女性,女性更愿意在家耕种土地,这就可能导致女性不愿意转出土地的基础上设定的。 3.教育程度越高赋值越高,且预测影响为正,这个也是在文章前面定量分析的时候引用学者李实的观点说明赋值的理由。 4.职业类型中,兼业化程度越高赋值越高,且为正向。从家庭收入对农业收入的依赖性原理角度来看这个不难理解。 5.其它变量的赋值依据实际情况初步判断也不能理解其赋值的缘由。然而对于“是否为村干部”这一变量来看,预测的趋向是:是村干部则不愿意流转,前面的分析并没有说明为什么会是这样。虽然这知识一种预判,但是若能够给出预判的一丁点理由就更好了。 二、系数解读

1.标准化系数中,x1,x3,x7,x9,x11,x12系数为付,意味着性别是男、与市中心距离 越近、家庭人口和劳动力人数越少、农业收入占比越少、认为土地经营权权属则土地流转的意愿越强; 2.其中X3(与市中心距离),x9(劳动力人数)影响系数绝对值较大,分别为0.815,0.322。 在显著性检验方面,x3、x9、x11分别通过了15%、1%、5%的显著性检验。也就是说,土地不愿意流转与劳动力人数多有显著相关性,与农业收入占比高有较显著的相关,与市中心距离近相关性不显著。 3.系数为正的变量中,影响系数均不高,但能通过显著性检验的有:x2、x5(15%);x10、 x13(5%);x4(1%)。说明文化程度高对愿意流转的影响是非常显著的,而且在系数为正的变量中,x4的系数为最大,说明x4与y(1)显著相关。 三、模型检验

如何用SPSS做logistic回归分析

如何用spss17.0进行二元和多元logistic回归分析 一、二元logistic回归分析 二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。 下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic回归分析。 (一)数据准备和SPSS选项设置 第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。 图1-1 第二步:打开“二值Logistic 回归分析”对话框: 沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic (Binary Logistic)”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。

如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。

在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Dependent)中,而将性别和年龄选入协变量(Covariates)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。采用第一种方法,即系统默认的强迫回归方法(进入“Enter”)。 接下来我们将对分类(Categorical),保存(Save),选项(Options)按照如图1-4、1-5、1-6中所示进行设置。在“分类”对话框中,因为性别为二分类变量,因此将其选入分类协变量中,参考类别为在分析中是以最小数值“0(第一个)”作为参考,还是将最大数值“1(最后一个)”作为参考,这里我们选择第一个“0”作为参考。在“存放”选项框中是指将不将数据输出到编辑显示区中。在“选项”对话框中要勾选如图几项,其中“exp(B)的CI(X)”一定要勾选,这个就是输出的OR和CI值,后面的95%为系统默认,不需要更改。

【原创】r语言收入逻辑回归分析报告附代码数据

逻辑回归对收入进行预测 1逻辑回归模型 回归是一种极易理解的模型,就相当于y=f(x),表明自变量x与因变量y的关系。最常见问题有如医生治病时的望、闻、问、切,之后判定病人是否生病或生了什么病,其中的望闻问切就是获取自变量x,即特征数据,判断是否生病就相当于获取因变量y,即预测分类。 最简单的回归是线性回归,在此借用Andrew NG的讲义,有如图1.a所示,X为数据点——肿瘤的大小,Y为观测值——是否是恶性肿瘤。通过构建线性回归模型,如h θ (x)所示,构建线性回归模型后,即可以根据肿瘤大小,预测是否为恶性肿瘤h θ(x)≥.05为恶性,h θ (x)<0.5为良性。 Zi=ln(Pi1?Pi)=β0+β1x1+..+βnxn Zi=ln(Pi1?Pi)=β0+β1x1+..+βnxn 2数据描述 该数据从美国人口普查数据库抽取而来,可以用来预测居民收入是否超过50K$/year。该数据集类变量为年收入是否超过50k$,属性变量包含年龄,工种,学历,职业,人种等重要信息,值得一提的是,14个属性变量中有7个类别型变量。 3问题描述 其实对于收入预测,主要是思考收入由哪些因素推动,再对每个因素做预测,最后得出收入预测。这其实不是一个财务问题,是一个业务问题。 对于某企业新用户,会利用大数据来分析该用户的信息来确定是否为付费用户,弄清楚用户属性,提高运营人员的办事效率。 流失预测。这方面会偏向于大额付费用户,提取额特征向量运用到应用场景的用户流失和预测里面去。 我们尝试并预测个人是否可以根据数据中可用的人口统计学变量使用逻辑回归预测收入是否超过$ 50K的资金。在这个过程中,我们将: 1.导入数据 2.检查类别偏差 3.创建训练和测试样本 4.建立logit模型并预测测试数据 5.模型诊断

逻辑回归统计量计算

逻辑回归模型 作者:zgw21cn来源:博客园发布时间:2008-08-29 17:21 阅读:8993 次原文链接[收藏] 1.逻辑回归模型 1.1逻辑回归模型 考虑具有p个独立变量的向量,设条件概率为根据观测量相对于某事件发生的概率。逻辑回归模型可表示为 (1.1) 上式右侧形式的函数称为逻辑函数。下图给出其函数图象形式。 其中。如果含有名义变量,则将其变为dummy变量。一个具有k个取值的名义变量,将变为k-1个dummy变量。这样,有 (1.2) 定义不发生事件的条件概率为 (1.3) 那么,事件发生与事件不发生的概率之比为 (1.4) 这个比值称为事件的发生比(the odds of experiencing an event),简称为odds。因为00。对odds取对数,即得到线性函数,

(1.5) 1.2极大似然函数 假设有n个观测样本,观测值分别为设为给定条件 下得到的概率。在同样条件下得到的条件概率为。于是,得到一个观测值的概率为 (1.6) 因为各项观测独立,所以它们的联合分布可以表示为各边际分布的乘积。 (1.7) 上式称为n个观测的似然函数。我们的目标是能够求出使这一似然函数的值最大的参数估 计。于是,最大似然估计的关键就是求出参数,使上式取得最大值。 对上述函数求对数 (1.8) 上式称为对数似然函数。为了估计能使取得最大的参数的值。 对此函数求导,得到p+1个似然方程。 (1.9) ,j=1,2,..,p. 上式称为似然方程。为了解上述非线性方程,应用牛顿-拉斐森(Newton-Raphson)方法进行迭代求解。 1.3牛顿-拉斐森迭代法 对求二阶偏导数,即Hessian矩阵为 (1.10) 如果写成矩阵形式,以H表示Hessian矩阵,X表示

图文举例详细讲解Logistic曲线的回归分析

Logistic 曲线的回归分析 例 某一品种玉米高度与时间(生长周期,每个生长周期为2-3天,与气温有关)的数据如表1.所示。用转化为线性方程的方法估计其logistic 曲线预测模型。设最大值k 为300(cm )。 表1. 玉米高度与时间(生长周期)的关系 时间(生长周期) 高度/cm 时间(生长周期) 高度 /cm 时间(生长周期) 高度/cm 1 2 3 4 5 6 7 8 9 10 11 0.67 0.85 1.28 1.75 2.27 2.75 3.69 4.71 6.36 7.73 9.91 12 13 14 15 16 17 18 19 20 21 12.75 16.55 20.1 27.35 32.55 37.55 44.75 53.38 71.61 83.89 22 23 24 25 26 27 28 29 30 31 97.46 112.7 135.1 153.6 160.3 167.1 174.9 177.9 180.2 180.8 3.1 基本绘图操作 在Excel 中输入时间x 与高度y 的数据。 选择插入->图表 图87 点击图表,选择“标准类型”中的xy 散点图,并点击子图表类型的第一个。

图88 点击下一步,得到如图89。 图89

点击下一步。 图90 分别点击标题、网格线、图例进行修改,然后点击下一步。 图91 点击完成。 图92 右击绘图区,修改绘图区格式,双击做表格,修改坐标轴刻度,最后的散点图。

图93 观察散点图,其呈S 型曲线,符合logistic 曲线。采用转化为线性方程的方法求解模型。 3.2 Logistic 曲线方程及线性化 Logistic 曲线方程为: 1at k y me -= + (12) (1) 将数据线性化及成图 转化为线性方程为: 01'y a a t =+ (13) 其中,'ln(/1)y k y =-,0ln a m =,1a a =- 具体操作为: 向excel 表格中输入y ’数据。

逻辑回归模型

?博客园首页 逻辑回归模型 作者:zgw21cn来源:博客园发布时间:2008-08-29 17:21 阅读:7161 次原文链接[收 藏] 1.逻辑回归模型 1.1逻辑回归模型 考虑具有p个独立变量的向量,设条件概率为根据观测量相对于某事件发生的概率。逻辑回归模型可表示为 (1.1) 上式右侧形式的函数称为称为逻辑函数。下图给出其函数图象形式。 其中。如果含有名义变量,则将其变为dummy变量。一个具有k个取值的名义变量,将变为k-1个dummy变量。这样,有 (1.2) 定义不发生事件的条件概率为 (1.3) 那么,事件发生与事件不发生的概率之比为 (1.4)

这个比值称为事件的发生比(the odds of experiencing an event),简称为odds。因为00。对odds取对数,即得到线性函数, (1.5) 1.2极大似然函数 假设有n个观测样本,观测值分别为设为给定条件下 得到的概率。在同样条件下得到的条件概率为。于是,得到一个观测值的概率为 (1.6) 因为各项观测独立,所以它们的联合分布可以表示为各边际分布的乘积。 (1.7) 上式称为n个观测的似然函数。我们的目标是能够求出使这一似然函数的值最大的参数估计。于是,最大似然估计的关键就是求出参数,使上式取得最大值。 对上述函数求对数 (1.8) 上式称为对数似然函数。为了估计能使取得最大的参数的值。 对此函数求导,得到p+1个似然方程。 (1.9) ,j=1,2,..,p. 上式称为似然方程。为了解上述非线性方程,应用牛顿-拉斐森(Newton-Raphson)方法进行迭代求解。 1.3牛顿-拉斐森迭代法 对求二阶偏导数,即Hessian矩阵为 (1.10)

Logistic回归分析报告结果解读分析

L o g i s t i c回归分析报告结果解读分析Logistic回归常用于分析二分类因变量(如存活和死亡、患病和未患病等)与多个自变量的关系。比较常用的情形是分析危险因素与是否发生某疾病相关联。例如,若探讨胃癌的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群有不同的临床表现和生活方式等,因变量就为有或无胃癌,即“是”或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、是否幽门螺杆菌感染等。自变量既可以是连续变量,也可以为分类变量。通过Logistic回归分析,就可以大致了解胃癌的危险因素。 Logistic回归与多元线性回归有很多相同之处,但最大的区别就在于他们的因变量不同。多元线性回归的因变量为连续变量;Logistic回归的因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释。 回归的用法 一般而言,Logistic回归有两大用途,首先是寻找危险因素,如上文的例子,找出与胃癌相关的危险因素;其次是用于预测,我们可以根据建立的Logistic回归模型,预测在不同的自变量情况下,发生某病或某种情况的概率(包括风险评分的建立)。 2.用Logistic回归估计危险度 所谓相对危险度(riskratio,RR)是用来描述某一因素不同状态发生疾病(或其它结局)危险程度的 比值。Logistic回归给出的OR(oddsratio)值与相对危险度类似,常用来表示相对于某一人群,另一人群发生终点事件的风险超出或减少的程度。如不同性别的胃癌发生危险不同,通过Logistic回归可以求出危险度的具体数值,例如,这样就表示,男性发生胃癌的风险是女性的倍。这里要注意估计的方向问题,以女性作为参照,男性患

二元logistic逻辑回归分析1

二元logistic逻辑回归分析1 SPSS与社会统计学课程作业二 [1]陈昱,陈银蓉,马文博. 基于Logistic模型的水库移民安置区居民土地流转意愿分析——四川、湖南、湖北移民安置区的调查[J]. 资源科学,2011,06:1178-1185. 一、变量赋值 1.被解释变量用0表示不愿意流转,1表示愿意流转,有意愿上的状态表示效果。 2.性别分别用1和2表示男女,男女不存在有没有状态的表征,所以用1、2赋值非常合适;它的预计影响方向为负,是基于学者张林秀、刘承芳等认为:由于农村男性外出打工的几率高于女性,女性更愿意在家耕种土地,这就可能导致女性不愿意转出土地的基础上设定的。 3.教育程度越高赋值越高,且预测影响为正,这个也是在文章前面定量分析的时候引用学者李实的观点说明赋值的理由。

4.职业类型中,兼业化程度越高赋值越高,且为正向。从家庭收入对农业收入的依赖性原理角度来看这个不难理解。 5.其它变量的赋值依据实际情况初步判断也不能理解其赋值的缘由。然而对于“是否为村干部”这一变量来看,预测的趋向是:是村干部则不愿意流转,前面的分析并没有说明为什么会是这样。虽然这知识一种预判,但是若能够给出预判的一丁点理由就更好了。二、系数解读 1. 标准化系数中,x1,x3,x7,x9,x11,x12系数为付,意味着性别是男、与市中心距离 越近、家庭人口和劳动力人数越少、农业收入占比越少、认为土地经营权权属则土地流 转的意愿越强; 2. 其中X3(与市中心距离),x9(劳动力人数)影响系数绝对值较大,分别为 0.815,0.322。 在显著性检验方面,x3、x9、x11分别通过了15%、1%、5%的显著性检验。也就是说, 土地不愿意流转与劳动力人数多有显著相关性,与农业收入占比高有较显著的相关,与 市中心距离近相关性不显著。

Logistic回归分析

Logistic 回归分析 Logistic 回归分析是与线性回归分析方法非常相似的一种多元统计方法。适用于因变量的取值仅有两个(即二分类变量,一般用1和0表示)的情况,如发病与未发病、阳性与阴性、死亡与生存、治愈与未治愈、暴露与未暴露等,对于这类数据如果采用线性回归方法则效果很不理想,此时用Logistic 回归分析则可以很好的解决问题。 一、Logistic 回归模型 设Y 是一个二分类变量,取值只可能为1和0,另外有影响Y 取值的n 个自变量12,,...,n X X X ,记12(1|,,...,)n P P Y X X X ==表示在n 个自变量的作用下Y 取值为1的概率,则Logistic 回归模型为: [] 011221 1exp (...)n n P X X X ββββ= +-++++ 它可以化成如下的线性形式: 01122ln ...1n n P X X X P ββββ??=++++ ?-?? 通常用最大似然估计法估计模型中的参数。 二、Logistic 回归模型的检验与变量筛选 根据R Square 的值评价模型的拟合效果。 变量筛选的原理与普通的回归分析方法是一样的,不再重复。 三、Logistic 回归的应用 (1)可以进行危险因素分析 计算结果各关于各变量系数的Wald 统计量和Sig 水平就直接反映了因素i X 对因变量Y 的危险性或重要性的大小。

(2)预测与判别 Logistic回归是一个概率模型,可以利用它预测某事件发生的概率。当然也可以进行判别分析,而且可以给出概率,并且对数据的要求不是很高。 四、SPSS操作方法 1.选择菜单 2.概率预测值和分类预测结果作为变量保存 其它使用默认选项即可。

SPSS学习笔记之——二项Logistic回归分析

SPSS学习笔记之——二项Logistic回归分析 一、概述 Logistic回归主要用于因变量为分类变量(如疾病的缓解、不缓解,评比中的好、中、差等)的回归分析,自变量可以为分类变量,也可以为连续变量。他可以从多个自变量中选出对因变量有影响的自变量,并可以给出预测公式用于预测。 因变量为二分类的称为二项logistic回归,因变量为多分类的称为多元logistic回归。 下面学习一下Odds、OR、RR的概念: 在病例对照研究中,可以画出下列的四格表: ------------------------------------------------------ 暴露因素病例对照 ----------------------------------------------------- 暴露 a b 非暴露 c d ----------------------------------------------- Odds:称为比值、比数,是指某事件发生的可能性(概率)与不发生的可能性(概率)之比。在病例对照研究中病例组的暴露比值为: odds1 = (a/(a+c))/(c(a+c)) = a/c, 对照组的暴露比值为: odds2 = (b/(b+d))/(d/(b+d)) = b/d OR:比值比,为:病例组的暴露比值(odds1)/对照组的暴露比值(odds2) = ad/bc 换一种角度,暴露组的疾病发生比值: odds1 = (a/(a+b))/(b(a+b)) = a/b 非暴露组的疾病发生比值: odds2 = (c/(c+d))/(d/(c+d)) = c/d OR = odds1/odds2 = ad/bc 与之前的结果一致。 OR的含义与相对危险度相同,指暴露组的疾病危险性为非暴露组的多少倍。OR>1说明疾病的危险度因暴露而增加,暴露与疾病之间为“正”关联;OR<1说明疾病的危险度因暴露而减少,暴露与疾病之间为“负”关联。还应计算OR的置信区间,若区间跨1,一般说明该因素无意义。 关联强度大致如下: ------------------------------------------------------ OR值联系强度 ------------------------------------------------------ 0.9-1.0 1.0-1.1 无 0.7-0.8 1.2-1.4 弱(前者为负关联,后者为正关联) 0.4-0.6 1.5-2.9 中等(同上) 0.1-0.3 3.0-9.0 强(同上) <0.1 10.0以上很强(同上) ------------------------------------------------------

二分类Logistic回归的详细SPSS操作

SPSS操作:二分类Logistic回归 作者:张耀文 1、问题与数据 某呼吸内科医生拟探讨吸烟与肺癌发生之间的关系,开展了一项成组设计的病例对照研究。选择该科室内肺癌患者为病例组,选择医院内其它科室的非肺癌患者为对照组。通过查阅病历、问卷调查的方式收集了病例组和对照组的以下信息:性别、年龄、BMI、COPD病史和是否吸烟。变量的赋值和部分原始数据见表1和表2。该医生应该如何分析? 表1. 肺癌危险因素分析研究的变量与赋值 表2. 部分原始数据 ID gender age BMI COPD smoke cancer 1 0 34 0 1 1 0 2 1 32 0 1 0 1 3 0 27 0 1 1 1 4 1 28 0 1 1 0 5 1 29 0 1 0 0 6 0 60 0 2 0 0 7 1 29 0 0 1 1 8 1 29 1 1 1 1 9 1 37 0 1 0 0 10 0 17 0 0 0 0 11 0 20 0 0 1 1 12 1 35 0 0 0 0 13 0 17 1 0 1 1

………………… 2、对数据结构的分析 该设计中,因变量为二分类,自变量(病例对照研究中称为暴露因素)有二分类变量(性别、BMI和是否吸烟)、连续变量(年龄)和有序多分类变量(COPD 病史)。要探讨二分类因变量与自变量之间的关系,应采用二分类Logistic回归模型进行分析。 在进行二分类Logistic回归(包括其它Logistic回归)分析前,如果样本不多而变量较多,建议先通过单变量分析(t检验、卡方检验等)考察所有自变量与因变量之间的关系,筛掉一些可能无意义的变量,再进行多因素分析,这样可以保证结果更加可靠。即使样本足够大,也不建议直接把所有的变量放入方程直接分析,一定要先弄清楚各个变量之间的相互关系,确定自变量进入方程的形式,这样才能有效的进行分析。 本例中单变量分析的结果见表3(常作为研究报告或论文中的表1)。 表3. 病例组和对照组暴露因素的单因素比较 病例组(n=85)对照组(n=259) χ2 /t统计量P 性别,男(%)56 (65.9) 126 (48.6) 7.629 <0.01 年龄(岁),x± s40.3 ±14.0 38.6 ±12.4 1.081 0.28 BMI,n (%) 正常48 (56.5) 137 (52.9) 0.329 0.57 超重或肥胖37 (43.5) 122 (47.1) COPD病史,n (%) 无21 (24.7) 114 (44.0) 14.123 <0.01 轻中度24 (28.2) 75 (29.0) 重度40 (47.1) 70 (27.0) 是否吸烟,n(%) 否18 (21.2) 106 (40.9) 10.829 <0.01 是67 (78.8) 153 (59.1) 单因素分析中,病例组和对照组之间的差异有统计学意义的自变量包括:性别、COPD病史和是否吸烟。 此时,应当考虑应该将哪些自变量纳入Logistic回归模型。一般情况下,建议纳入的变量有:1)单因素分析差异有统计学意义的变量(此时,最好将P值放宽一些,比如0.1或0.15等,避免漏掉一些重要因素);2)单因素分析时,

对线性回归逻辑回归各种回归的概念学习以及一些误差等具体含义

对线性回归、逻辑回归、各种回归的概念学习回归问题的条件/前提: 1)收集的数据 2)假设的模型,即一个函数,这个函数里含有未知的参数,通过学习,可以估计出参数。然后利用这个模型去预测/分类新的数据。 1. 线性回归 假设特征和结果都满足线性。即不大于一次方。这个是针对收集的数据而言。收集的数据中,每一个分量,就可以看做一个特征数据。每个特征至少对应一个未知的参数。这样就形成了一个线性模型函数,向量表示形式: 这个就是一个组合问题,已知一些数据,如何求里面的未知参数,给出一个最优解。一个线性矩阵方程,直接求解,很可能无法直接求解。有唯一解的数据集,微乎其微。 基本上都是解不存在的超定方程组。因此,需要退一步,将参数求解问题,转化为求最小误差问题,求出一个最接近的解,这就是一个松弛求解。 求一个最接近解,直观上,就能想到,误差最小的表达形式。仍然是一个含未知参数的线性模型,一堆观测数据,其模型与数据的误差最小的形式,模型与数据差的平方和最小: 这就是损失函数的来源。接下来,就是求解这个函数的方法,有最小二乘法,梯度下降法。 /%E7%BA%BF%E6%80%A7%E6%96%B9%E7%A8%8B%E7%BB%84 最小二乘法 是一个直接的数学求解公式,不过它要求X是列满秩的, 梯度下降法 分别有梯度下降法,批梯度下降法,增量梯度下降。本质上,都是偏导数,步长/最佳学习率,更新,收敛的问题。这个算法只是最优化原理中的一个普通的方法,可以结合最优化原理来学,就容易理解了。 2. 逻辑回归 逻辑回归与线性回归的联系、异同? 逻辑回归的模型是一个非线性模型,sigmoid函数,又称逻辑回归函数。但是它本质上又是一个线性回归模型,因为除去sigmoid映射函数关系,其他的步骤,算法都是线性回归的。可以说,逻辑回归,都是以线性回归为理论支持的。 只不过,线性模型,无法做到sigmoid的非线性形式,sigmoid可以轻松处理0/1分类问题。 另外它的推导含义:仍然与线性回归的最大似然估计推导相同,最大似然函数连续积(这里的分布,可以使伯努利分布,或泊松分布等其他分布形式),求导,得损失函数。

相关文档
最新文档