三相绕线型异步电动机转子串电阻启动的设计

三相绕线型异步电动机转子串电阻启动的设计
三相绕线型异步电动机转子串电阻启动的设计

引言

三相异步电动机是目前应用最为广泛的电动机。要想讨论电力拖动中经常遇到的绕线型异步电动机转子电路串联电阻启动问题,首先我们要先了解三相异步电动机,这是讨论问题的基础。

异步电动机是交流电动机的一种。由于异步电动机在性能上有缺陷,所以异步电动机主要作电动机使用。

异步电动机按供电电源相数的不同,有三相、两相和单相之分。三相异步电动机结构简单、价格便宜、运行可靠、维护方便,是当前工业农业生产中应用最普通的电动机;单相异步电动机容量较小,性能较差,在实验室和家用电器中应用较多;两相异步电动机通常用作控制电机。

三相异步电动机分为三相笼型异步电动机和三相绕线型异步电动机。我的设计为三相绕线型异步电动机转子电路串电阻启动。

1 三相异步电机的工作原理和结构组成

1.1 工作原理

三相对称绕组,接通三相对称电源,流过三相对称电流,产生旋转磁场(电生磁),切割转子导体,感应电势和电流(磁变生电),载流导体在磁场中受到电磁力的作用,形成电磁转矩(电磁生力),使转子朝着旋转磁场旋转的方向旋转。

1.2 结构组成

三相异步电动机主要由定子、转子、气隙三部分组成。

1.2.1 定子

三相异步电动机的定子由定子铁心、定子绕组和机座三部分组成。

1)定子铁心定子铁心是异步电动机主磁通磁路的一部分。为了使异步电动机能产生较大的电磁转矩,希望有一个较强的旋转磁场,同时由于旋转磁场对定子铁心以同步转速旋转,定子铁心中的磁通的大小与方向都是变化的,必须设法减少由旋转磁场在定子铁心中所引起的涡流损耗和磁滞损耗,因此,定子铁心由导磁性能较好的0.5mm厚且冲有一定槽形的硅钢片叠压而成。对于容量较大(10kW以上)的电动机,在硅钢片两面涂以绝缘漆,作为片间绝缘之用。定子铁心上的槽形通常有三种半闭口槽,半开口槽及开口槽。从提高电动机的效率和功率因数来看,半闭口槽最好。

2)定子绕组定子绕组是异步电机定子部分的电路,它也是由许多线圈按一定规律联接面成。能分散嵌入半闭口槽的线圈由高强度漆包圆铜线或圆铝线绕成,放入半开口槽的成型线圈用高强度漆包扁沿线或扁铜线,或用玻璃丝包扁铜线绕成。开口槽也放入成型线圈,其绝缘通常采用云母带,线圈放入槽内必须与槽壁之间隔有“槽绝缘”,以免电机在运行时绕组对铁心出现击穿或短路故障。一般根据定子绕组在槽内布置的情况,有单层绕组及双层绕组两种基本型型。容量较大的异步电动机都采用双层绕组。双层绕组在每槽内的导线分上下两层放置,上下层线圈边之间需要用层间绝缘隔开。小容量异步电动机常采用单层绕组。槽内定子绕组的导线用槽楔紧固。槽楔常用的材料是竹、胶布板或环氧玻璃布板等非磁性材料。

3)机座机座的作用主要是固定和支撑定子铁心。中小型异步电动机一般都采用铸铁机坐,并根据不同的冷却方式而采用不同的机座型式。例如小型封闭式电动机、电机中损耗变成的热量全都要通过机座散出。为了加强散热能力,在机座的外表面有很多均匀分布的散热筋,以增大散热面积。对于大中型异步电动机,一般采用钢板焊接的机座。

1.2.2 转子

异步电机的转子由转子铁心、转子绕组和转轴组成。

1)转子铁心转子铁心也是电动机主磁通磁路的一部分,一般也由0.5毫米厚冲槽的硅钢片叠成,铁心固定在转轴或转子支架上。整个转子铁心的外表面成圆柱形。

2)转子绕组转子绕组分为笼型和绕线型两种结构,在以下文章中将分别说明这两种绕组结形式特点。

图1-1 绕线型异步电动机的结构图

1.2.3 气隙

异步电动机定、转子之间的气隙是很小的,中小型电机—般为0.2~2mm。气隙的大小与异步电动机的性能关系极大。气隙愈大,磁阻也愈大。磁阻大时,产生同样大小的旋转磁场就需要较大的励磁电流。励磁电流是无功电流(与变压器中的情况一样),该电流增大会使电机的功率因数变坏。然而,磁阻大可以减少气隙磁场中的谐波含量,从而可减少附加损耗,且改善起动性能。气隙过小,会使装配困难和运转不安全。如何决定气隙大小,应权衡利弊,全面考虑。一般异步电动机的气隙以较小为宜。

异步电动机主要分为笼型(又称为鼠笼型)和绕线型。虽然我们主要介绍绕线型异步电动机转子串电阻启动,但我们还是先了解一下鼠笼型电机启动的优点和局限,以方便和绕线形电动机进行性能比较。

2 笼型和绕线型异步电机的性能比较

2.1 笼型异步电动机的结构优点和启动性能局限

我们知道,笼型异步电动机结构简单紧凑,在电机行业属于“吃电大户”,推广最为普及,需求量也占绝对份额。但与绕线型异步电动机相比,启动性能有其自身的局限性:笼型异步电动机的启动电流一般达到额定电流的5-7倍,而启动转矩只有额定转矩的0.4—1.6倍(小电机能达到2.2倍)。这种情况在电网条件和工艺条件允许的情况下,能够直接启动。这里的电网条件一般指电机启动时电网保证电机机端压降不大于10%;工艺条件是指电机的启动转矩满足机组系统惯量和负载的加速特性要求。但过大的启动电流、过小的启动转矩和过长的启动时间给电动机和电网将造成极大的潜在危害。

定转子绕组的发热量随其流过的电流大小成平方倍关系变化。按照上述的启动电流倍数,电机启动时的单位时间发热量是正常运行时的25—49倍,产生的电磁力也将大幅度增加。过快的加热速度、过高的温度、过大的温度梯度和电磁力产生了极大的破坏力,缩短了定转子绕组的使用寿命。

特别是对一些大惯量负载,如大惯量风机、磨机,利用集肤效应降低启动电流产提高启动转矩的电机,也易出现频繁多次启动后转子断条现象。

2.2 绕线型异步电动机的结构特点

绕线型绕组是一个对称三相绕组,这个对称三相绕组接成星形,并接到转轴上三个集电环,再通过电刷使转子绕组与外电路接通。这种转子的特点是,通过集电环和电刷可在转子回路中接入附加电阻或其它控制装置,以便改善电动机的起动性能或调速特性。为了减小电刷的磨损与摩擦损耗,中等容量以上的异步电动机还装有一种提刷短路装置。这种装置当电动机起动以后而又不需要调节速度时,移动其手柄,可使电刷提起,与集电环脱离接触,同时使三只集电环彼此短接起来。

3 绕线型异步电动机转子串电阻启动

3.1 转子串电阻启动的原理

绕线型异步电动机转子串三相对称电阻启动时,一般采用分级切除启动电阻的方法。这是因为随着转子转速的增高,转子电流、电机转矩将逐渐降低。为了充分利用电动机的启动转矩,应当随着转速的增高,逐渐减少转子回路电阻,使电动机维持较高的启动电流和转矩。由式(1)可以看出,若使转子回路电阻2R 与转差率s 成正比例减少,则电动机在加速过程中可以获得恒定的启动电流和启动转矩。

2

223R sE I N (1) 3.2 启动电阻的使用原则

目前国内广泛使用的启动电阻是金属电阻,它是由一箱电阻片构成的。电阻值的改变是靠开关电器将金属电阻一段段的短接来实现的,所以电阻值的变化不连续,有级。每短接一段,启动电流和启动转矩便突变一次。启动电阻分级数越少,则在启动过程中没次短接电阻所引起的启动电流冲击幅度就大,轴上转矩的突变也大。从启动电流对供电电网的冲击和机械的受力考虑,启动电阻的分级数目不能太少,一般为5—8级。对容量较大的电动机,启动电阻分级要多些。

对于功率较小的电动机可采用一般三相变阻器或油浸启动变阻器,对于功率较大的电动机则采用小电阻。

3.3 启动过程

3.3.1 小容量电机的启动

容量较小的三相绕线型异步电动机可采用转子串联启动变阻器的方法启动。启动变阻器通过手柄接成星形。启动前先把启动变阻器调到最大值,在合上电源开关,电动机开始启动。随着转速的升高,逐渐减小启动变阻器的电阻,知道全部切除,使转子绕组短接。

3.3.2 大容量电机的启动

容量较大的绕线型异步电动机一般采用分级启动的方法以保证启动过程中都有较大转矩和较小的启动电流。

图3-1 绕线型异步电机转子串电阻的启动特性

启动电阻的计算步骤如下:

1)根据生产机械的启动要求和电动机容量确定启动电阻的级数m ,其中预备级数为i ,

加速级数为n 。

2)根据加速度要求,初步确定加速转矩的上限a T 。Z 在没有加速度限制的情况下,可

考虑充分利用电动机的启动转矩,选a T =(0.8—0.9)max T 。

3)根据a T 确定第一加速级的额定转差率1N s 。

在第一加速级上,em T =a T ,s=1s ,1s =1,则:

max 11

211a m m T T s s =+ , 2max 11210m m a

T s s T -+= 解上式得:

max 1[1m a T s T =

设max a a T T μ=,则:

11

(1)m a s μ=

第一加速级的额定转差率1N s 与起临界转差率1m s 间的关系为:

11(m N s s λ=+

或写成:

1N s =

4)

利用式q =

n,各级启动电阻的公比为q ,R 和r 为各级电阻)求出公比

q,q =

5)求第一加速级电阻 121

N S N R R = 6)利用式

12142234232324122NSN R R R qr R qR q r R qR q r R qR q r ??=??=????==????==????==??

?

432112342::::::::1R R R R r q q q q =

7)利用式

45422222343422232223232224331212222(1)(1)(1)(1)R R r qr r q r R R R q r qr q q r R R R q r q r q q r R R R q r q r q q r =-=-=-????=-=-=-????=-=-=-????=-=-=-??

? 3212233445::::::1R R R R q q q =

8)求平均启动转矩。

在加速过程中,启动转矩始终在a T 和b T 之间变动,其平均启动转矩可用算术平均值表示,即:2

a b av T T T +=

或用几何平均值表示:av T =

当a T 被选定后,b T 便是一个确定的值,即为:

max

1

212

2b m m T T s s s s =+

在第一加速级上,1

2s q s =,1s =1,所以21

s q =。将2s 代入上式得:

121max 11221()1

1

b

m b m m m T qs qs T qs qs μ===++

4 具体设计

用一部三相绕线型异步电动机拖动某生产机械运行。已知该电动机的P N =40KW,n=1435r/min, M T α =2.6,U 2n =290V ,I 2N =86A 。起动时的负载转矩T L =200N ?M,采用转子电路串电阻起动。起动级数m=3。求各级应串联的起动电阻。

1)选择起动转矩T 1

T N =60P N /2πn N =(60×40×103

)/(2×3.14×1435) N ?M =266.32 N ?M

T M = M T N T α =2.6×266.32 N ?M

T 1=(0.8~0.9)T M =(0.8~0.9) ×692.43 N ?M

=(553.94~623.19) N ?M

取T 1=600 N ?M

2)求出起切转矩比β

S N =(n 0-n n )/n 0=(1500-1435)/1500=0.0433

β=2.2580

0433.032.26631=?=m N N

T s T

3) 求出切换转矩T 2

T 2=T 1/β=580/2.2 =263.64 N ?M

由于T 2>1.1T L ,所以所选m 和β合适。

4)求出转子每相绕组电阻

R 2=S N ·U 2N /(3I 2N )=(0.0433×290)/(1.73×86) Ω=0.0844Ω

5)求出各级总电阻

R 21=βR 2=2.2×0.084Ω=0.186Ω

R 22=βR 21=2.2×0.186Ω=0.408Ω

R 23=βR 23=2.2×0.408Ω=0.899Ω

6)求出各级起动电阻

R st1=R21-R2=(0.186-0.0844)Ω=0.102Ω R st2=R22-R21=(0.408-0.186)Ω=0.222Ω R st3=R23-R22=(0.899-0.408)Ω=0.491Ω

5 结论

对于绕线型异步电机来说,如果仅仅是为了限制起动电流、增大起动转矩,则一般采用转子回路串频敏变阻器起动方式。但此起动方式在频繁起动下,易发生温升,且结构复杂,不常用。

由此可知上述几种起动方式的共同特点是控制电路简单,起动转矩基本固定不可调,起动中都存在二次冲击电流,对负载机械有冲击转矩,且受电网电压波动的影响,一旦出现电网电压下降,会造成电机堵转,起动困难,且上述几种起动方法,在停机时都是瞬间停机,遇到负载较重时会造成剧烈的机械冲击。当三相交流电流通入三相定子绕组后,在定子腔内便产生一个旋转磁场。转动前静止不动的转子导体在旋转磁场作用下,相当于转子导体相对地切割磁场的磁力线,从而在转子导体中产生了感应电流(电磁感应原理)。这些带感应电流的罢了子导体在产场中便会发生运动(电流的效应——电磁力)。由于转子内导体总是对称布置的,因而导体上产生的电磁力正好方向相反,从而形成电磁转矩,使转子转动起来。由于转子导体中的电流是定子旋转磁场感应产生的,因此也称感应电动机。又由于转子的转速始终低于定子旋转磁场的转速,所以又称为异步电动机。

绕线型异步电动机可以通过集电环和电刷可在转子回路中接入附加电阻或其它控制装置,以便改善电动机的起动性能或调速特性。

参考文献

[1] 唐介. 电机与拖动[M].第二版.北京:高等教育出版社,2007.

[2] 邓星钟.机电传动控制[M].武汉:华中科技大学出版社,2001.

[3] 魏炳贵.电力拖动基础[M].北京:机械工业出版社,2000.

[4] 彭鸿才. 电机原理及拖动[M]. 北京:机械工业出版社,1996.

[5] 王毓东.电机学[M].杭州:浙江大学出版社,1990.

[6] 赵昌颖,宋世光.电力拖动基础[M].哈尔滨:哈尔滨工业大学出版社,1999.

绕线式电动机转子回路串电阻起动控制电路

绕线式电动机转子回路串电 阻起动控制电路 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

【实训项目名称】 绕线式电动机转子回路串电阻启动控制电路的安装、调试及故障排查 【课时安排】 2课时 【实训目标】 1.正确理解三相绕线转子异步电动机转子回路串电阻启动的工作原理。 2.能正确识读三相绕线转子异步电动机转子回路串电阻启动控制电路的原理图和布置图。 3.会按照工艺要求正确安装三相绕线转子异步电动机转子回路串电阻启动控制电路。 4..能用万用表对控制电路进行通电前的检查。 5.能熟练使用电钳工工具及低压测量仪表。 6.培养安全第一、科学严谨、团结合作、成本意识、节能环保意识。 【实训条件准备】 1.常用电工工具:包括试电笔、克丝钳、剥线钳、改锥、尖嘴钳、斜口钳等。 2.万用表 3.绝缘导线:主电路采用平方,控制电路采用BV1平方。 4.绕线式异步电动机 5.交流接触器、时间继电器、按钮、熔断器、热继电器等电器元件 【实训过程】 一、实训电路 1. 绕线式电动机转子回路串电阻启动控制电路原理图如图5所示

图5 绕线式电动机转子回路串电阻启动控制电路 2.小组讨论双速电动机控制线路工作原理。 起动控制: 停止控制: 3.备齐所需电气元器件及工具并检测元器件 配齐所用电气元件,并进行质量检验。元器件应完好,各项技术指标符合规定要求,否则予以更换。 二、计划与实施 1.绘制电器元器件布置图并安装电器元器件

2.绘制接线图 3.安装、接线 (1)小组成员讨论线路连接的思路与方法,并作介绍。 (2)小组合作根据电路图完成接线。 4.检测线路 (1)检查所接电路,按照电路图从头到尾按顺序检查 (2)用万用表初步测试电路有无短路情况。确保电路未通电的情况下把万用表打到欧姆档,用万用表检查电路,并填写在下表。

绕线型三相异步电机转子电路串电阻启动

引言 三相异步电动机是目前应用最为广泛的电动机。要想讨论电力拖动中经常遇到的绕线型异步电动机转子串电阻启动问题,首先我们要先了解三相异步电动机,这是讨论问题的基础。 异步电动机是交流电动机的一种。由于异步电动机在性能上有缺陷,所以异步电动机主要作电动机使用。 异步电动机按供电电源相数的不同,有三相、两相和单相之分。三相异步电动机结构简单、价格便宜、运行可靠、维护方便,是当前工业农业生产中应用最普通的电动机;单相异步电动机容量较小,性能较差,在实验室和家用电器中应用较多;两相异步电动机通常用作控制电机。 一、异步电动机的原理 三相对称绕组,接通三相对称电源,流过三相对称电流,产生旋转磁场(电生磁),切割转子导体,感应电势和电流(磁变生电),载流导体在磁场中受到电磁力的作用,形成电磁转矩(电磁生力),使转子朝着旋转磁场旋转的方向旋转。 二、异步电动机的结构组成 (一)定子 异步电动机的定子由定子铁心、定子绕组和机座三部分组成。 1.定子铁心定子铁心是异步电动机主磁通磁路的一部分。为了使异步电动机能产生较大的电磁转矩,希望有一个较强的旋转磁场,同时由于旋转磁场对定子铁心以同步转速旋转,定子铁心中的磁通的大小与方向都是变化的,必须设法减少由旋转磁场在定子铁心中所引起的涡流损耗和磁滞损耗,因此,定子铁心由导磁性能较好的0.5mm厚且冲有一定槽形的硅钢片叠压而成。对于容量较大(10kW以上)的电动机,在硅钢片两面涂以绝缘漆,作为片间绝缘之用。定子铁心上的槽形通常有三种半闭口槽,半开口槽及开口槽。从提高电动机的效率和功率因数来看,半闭口槽最好。 2,定子绕组定子绕组是异步电机定子部分的电路,它也是由许多线圈按一定规律联接面成。能分散嵌入半闭口槽的线圈由高强度漆包圆铜线或圆铝线绕成,放入半开口槽的成型线圈用高强度漆包扁沿线或扁铜线,或用玻璃丝包扁铜线绕成。开口槽也放入成型

绕线式电动机转子串电阻调速方法

绕线式电动机转子串电阻 调速方法 LELE was finally revised on the morning of December 16, 2020

绕线式电动机转子串电阻调速方法 绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。串入的电阻越大,电动机的转速越低。此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。属有级调速,机械特性较软。 1、串电阻启动增加,降低,起动达速后切除启动电阻(就是转子回路)全速运行。 2、串电阻启动(电阻最大值起动),根据需要调整电阻的阻值,可以改变电机的运行速度,达到调速的目的(是有范围的调速)。 绕线式电机的启动电流是可调的,通过调整转子串联的电阻大小,可以调节绕线式电机的启动电流! 原理:对于绕线式异步电动机,当电网电压及频率不变时,在转子回路中串入电阻后,可以改善电动机的起动转矩,在绕线电机转子中串接启动电阻,减小启动电流,电阻一般接为星形接法,根据公式: I0=U0/R0 当转子串接电阻时R0↑,在U0不变的情况下,I0↓,此分析忽略电机感抗的损耗。 启动前将电阻全部接入转子回路,随着启动过程的结束,启动电阻被逐级短接,KM1,KM2,KM3逐级吸合,保证始终有较大的起动转矩,短接方式可以遵循时间和电流调节原则,KA1,KA2,KA3中间继电器可以根据实际工作情况而 定。 RN=E N÷I N÷√3 R N:电机转子额定电阻 E N:电机转子额定电压 I N:电机转子额定电流 例:240KW-6极电机,定子电流436A,定子电压380V。转子电流376A,转子电压407V RN=(E N÷IN)÷√3=(407÷376)÷√3=()÷√3=Ω △RY1= RN =× =Ω △RY2= =×=Ω △R1= =× =Ω △R2= RN =× =Ω

水电阻阻值的计算方法

水电阻阻值的计算方法. 水电阻的调试方法 1、起动电阻的确定: 串入电机转子回路的每相电阻值R,应按下式确定0

R=2U/√3Ik*I/I 2e012e1e注:U转子开路电压2e I转子额定电流2e I定子额定电流1e I定子运行电流1K常数(1.1至1.3之间) 简化公式: RO=0.7*U2e/I2e 2、液体的配制 将动极板移到起始位置,(转动皮带轮移动极板)、,加入清水至A 水箱规定水位的四分之三处; B、将电解粉与清水按3%的配比注入三个水箱,然后移动动极板数

次,使溶液浓度均匀后将动极板复位; C、测量任两极之间的电阻值R,若R在R范围内,配制即完成,0若R偏大,则适当增加电解粉。使液体浓度增加,若R偏小则加入适量清水。 3、液阻的测量 将液阻的动极板移到起始位置后,在任何两极间通入10A左右、50Hz 的电流I,测量两极的电压降U,按欧姆定律原则计算出来就行。 ] 原创[高压电动机液体电阻起动器调试. 液体电阻起动器调试 (一) 、准备工作 1、检查液体起动柜内配线,液体起动器与一次柜、DCS系统的联锁

控制线,确保无误。 2、转子线先不与液体电阻起动器连接,等测完电阻再连接。 3、确认端子间或各暴露的带电部位没有短路或对地短路情,确认端子连接、螺钉等均紧固无松动。 4、 PLC程序检查,调出PLC内部程序,检查程序是否合理,是否满足控制逻辑,如存在问题,就地修改。 (二)、液体起动器动作试验:

1、用手动盘车方法使动极板处于上、下限位的中间,检查控制电源三相电正常后,将“试验”钮子开关左旋于运行位置,合上柜内空气开关,此时若极板上行则为正常; 2、用手动作上限位行程开关应停止运行,若极板下行则相序错误。此时关掉电源交换两相电源线即可; 3、然后合上电源将“试验”钮子开关右旋于“试验”位置,极板向下运行直到下限位置停止,且短接接触器吸合。 (三)、液体电阻配制: 配制方案:根据电机转子回路内电阻配液; 1、配液用水:一般选用经过净置后去掉沉淀物的生活用水即可。 2、电阻溶剂即电阻粉,由生产厂商提供。 的确定:RO液体起动电阻、3. RO=0.577*U2e/I2e·KF·kt/kM 式中:U2e:电机转子回路的开路电压(V) I2e:电机转子回路的额定电流(A)

绕线式电动机转子回路串电阻起动控制电路

绕线式电动机转子回路串电阻启动控制电路的安装、调试及故障排查 【课时安排】 2课时 【实训目标】 1.正确理解三相绕线转子异步电动机转子回路串电阻启动的工作原理。 2.能正确识读三相绕线转子异步电动机转子回路串电阻启动控制电路的原理图和布置图。 3.会按照工艺要求正确安装三相绕线转子异步电动机转子回路串电阻启动控制电路。 4..能用万用表对控制电路进行通电前的检查。 5.能熟练使用电钳工工具及低压测量仪表。 6.培养安全第一、科学严谨、团结合作、成本意识、节能环保意识。 【实训条件准备】 1.常用电工工具:包括试电笔、克丝钳、剥线钳、改锥、尖嘴钳、斜口钳等。 2.万用表 3.绝缘导线:主电路采用平方,控制电路采用BV1平方。 4.绕线式异步电动机 5.交流接触器、时间继电器、按钮、熔断器、热继电器等电器元件 【实训过程】 一、实训电路 1. 绕线式电动机转子回路串电阻启动控制电路原理图如图5所示 图5 绕线式电动机转子回路串电阻启动控制电路 2.小组讨论双速电动机控制线路工作原理。 起动控制:

停止控制: 3.备齐所需电气元器件及工具并检测元器件 配齐所用电气元件,并进行质量检验。元器件应完好,各项技术指标符合规定要求,否则予以更换。 二、计划与实施 1.绘制电器元器件布置图并安装电器元器件 2.绘制接线图 3.安装、接线 (1)小组成员讨论线路连接的思路与方法,并作介绍。 (2)小组合作根据电路图完成接线。 4.检测线路 (1)检查所接电路,按照电路图从头到尾按顺序检查

(2)用万用表初步测试电路有无短路情况。确保电路未通电的情况下把万用表打到欧姆档,用万用表检查电路,并填写在下表。 5.通电运行 (1)整理试验台多余的导线和工具,避免对电路造成影响 (2)为保证人身安全,在通电试车时,一人操作一人监护,认真执行、安全操作规程的有关规定,经老师检查并现场监护。 在教师检查无误后,经教师允许后才可以通电运行。 (1)通电顺序:先合上实验台总电源开关。 按下按钮SB1,观察并记录电动机工作状态,接触器KM状态,时间继电器KT1 状态。 (2)第一延时时间到,观察并记录M工作状态,接触器KM1状态,时间继电器KT2状态。 (3)第二延时时间到,观察并记录M工作状态,接触器KM2状态,时间继电器KT3状态。 (4)第三延时时间到,观察并记录M工作状态,接触器KM3状态。 (5)按下停止按钮SB2,观察并记录M工作状态,接触器KM1状态,接触器KM2状态,接触器KM3状态,时间继电器KT1状态,时间继电器KT2状态,时间继电器KT3状态。 6.故障排查 利用维修电工技能鉴定装置上进行绕线式异步电动机转子回路串电阻起动控制线路的排故练习。记录故障现象、判断记录故障部位、可能的故障原因并说明排故方法。 绕线式异步电动机转子回路串电阻起动控制电路排故记录 7.整理现场 三、评价反馈 双速电动机控制线路安装、调试项目评价表

转子电阻计算

转子电阻的计算步骤如下: (一)计算公式q(用转差率几何平均法) 1.计算S 0 同步提升速度 s m i D n v t t /925.320 602 14.375060=???== π 转差率 618.0925 .35 .1925.3S 00=-=-= t t v v v 2.计算转差率S pz 加速平均力矩 M 1p =×=???+=" +'=5 .80202140191406372)(111)(j p i R F F M η2377N · m 电动机最大额定力矩 3790735 280 95509550===e e e n P M N · m 电动机最大力矩 M e =e M λ=2.1×3790=7960N · m 电动机额定转差率 t e t e n n n S -= =750735 750-=0.02 最大力矩的转差率 0789.0)11.21.2(02.0)1(22 =-+ ?=-+=λλe z m S S 转差率 013.01)23777960(237779600789.012211=??????--=???? ??????-???? ??-=y m y m pz pz M M M M S S 3.计算公比 q=(N+0.5) 811.1013 .0618 .0) 5.06(0==+pz S S 4.检验上下切换力矩M 1、M 2 允许最大上下切换力矩 M 1max =0.9M m =0.9×7960=7164N · m 上切换力矩

m N 1647m 52N 63618.01811 .10789.0811.10789.0618.07960 21S 2M M 6 60 0m 1<=?+??= += S q S q S N mz N mz 加速段静阻力 Nm ma F F F j 204006.014.333562 40191 4063721111=?-+=-''+'= ∑ 加速段静阻力矩 Nm i R F M j j j 120085 .0201 2040011=??= = η 允许最小下切换力矩 Nm M M j 132012001.11.11min 2=?== 下切换力矩 m N 3201m N 1922618.01811 .10789.0811.10789.0618.07960 21S 2M M 1 6160 !10m 2>=?+??= += ++++S q S q S N mz N mz 通过的检验知,公比=q 1.811合适 (二)各级电阻阻值计算 1.转子绕组每相电阻 Ω=???== 024.0357 3492 02.05.135.122e e e z I u S R 2.第一预备级电阻 Ω=?== 978.302 .03.0024 .03.01e z y S R R 3.第二预备级电阻计算 电动机额定力矩 F n =N v P m j n 60637925 .385 .028*********=??= η

绕线式异步电动机转子串电阻

信息与电气工程学院 课程设计说明书(2010 /2011 学年第二学期) 课程名称:可编程序控制器课程设计 题目:绕线式异步电动机转子串电阻 起动制动控制系统设计 专业班级: 学生姓名: 学号: 指导教师: 设计周数:2周 设计成绩:

2011年7月8日 目录 1、课程设计目的 (3) 2、课程设计正文 (3) 2.1原始数据及主要任务 (3) 2.2技术要求 (3) 2.3程序流程图 (4) 2.4电路原理图 (5) 2.5绕线式异步电动机控制编程元件表以及梯形图 (5) 3、课程设计总结 (9) 4、课程设计心得体会 (9) 5、参考文献 (10)

1、课程设计目的 1.1了解绕线式异步电机转子串电阻启动的控制方法和控制要求。 1.2掌握可编程控制器程序的应用系统的调试、监控、运行方法。 1.4进一步熟悉常用设备、元器件的类型和特征,并掌握合理运用原则和使用方法。培养 严肃认真的工作作风和严谨的科学态度。 1.5熟悉上下位机的连接方法。 1.6综合运用所学的理论知识独立完成一个课题,培养学生独立分析和解决实际问题的能 力,学会撰写课程设计总结报告。 2、课程设计正文: 2.1原始数据及主要任务: 1.了解电机控制的步骤和要求。 2.绘制电机控制系统的电路原理图,编写I/O地址分配表。 3.编制PLC程序,并利用实验室设备进行调试,要求能在现有设备上演示控制过程。4.编写课程设计说明书。说明书要阐明各路输入输出信号名称、作用、信号处理电路或驱动电路设计,写明设计过程中的分析、计算、比较和选择,画出程序流程图,并附上源程序。 2.2技术要求: 1.按下正向启动按钮,电机在转子串入所有5段电阻情况下正相序接通主电源开始启动。 同时给制动闸松闸通电 2.分别按照5、4、3、2、1秒的时间间隔切除第1~5段电阻。 3.按下停车按钮,电机转子串入所有电阻,断开主电源。 4.经过消弧时间1秒钟后,接通定子回路的直流电源,开始动力制动。 5.动力制动2秒钟后,切除第一段电阻。 6.再过2秒钟,切断动力制动电源,同时切断制动电闸电源。 7.按下反向启动按钮以及停止按钮后,控制过程与上述1~6步类似。 8.正反向运转的切换必须经过停车按钮及停车过程。

关于美恒公司THYROMAT定子调压调速装置电机转子电阻计算的探讨

关于THYROMAT定子调压调速装置电机转子电阻计算的探讨 作者姓名:王成杰 作者单位:大连美恒电气有限公司 摘要:电机的调压调速控制,尤其在冶金行业中,已得到广泛应用。由于调压调速原理决定电机转子必须串入转子电阻器,所以在实际设计中,计算电机转子电阻值、选择电阻器是必须的。笔者针对美恒公司THYROMAT调压调速装置的特点,实现电机转子电阻值的计算与电阻器的选取。 关键词:定子调压转子电阻电阻器计算THYROMAT 引言: 美恒公司的THYROMAT定子调压调速装置在冶金行业的起重机上得到广泛应用,在实际应用中常常需要计算电机的转子电阻值。本文旨在探讨如何计算电机转子电阻值及选取相应电阻器。 一. THYROMAT调压调速系统电机转子回路 图1,转子回路图 注:KM41,KM42动作信号由THYROMAT装置输出。

二. 理想模型的建立 建立一个理想模型。近似把电机曲线稳定区域看成直线,以下讨论都建立在这个理想模型上。 电机100%额定电压输入,负载为额定负载。满足THYROMAT 装置起动曲线③50%速度能够达到,当速度达到50%、75%时能够顺利切电阻KM41、KM42,起动力矩满足2倍额定转矩。画出对应曲线如图2中①②③④所示。 起升机构电机工作状态描述如下: 上升状态: 在Q 点起动,起动力矩Tq ,工作曲线为③,此时已切除4R (KM40)。当 THYROMAT 接收到1,2,3档上升指令时,通过调节电压,曲线在③⑧之间变化,由于电压为100%,故能够满足50%以下速度调速范围。当接收到4档上升指令时,THYROMAT 输出全电压先运行于a 点,此时速度50%,需切3R (KM41),电机运行曲线变为曲线②,切换到b 点,运行到c 点时速度达到75%,需切2R (KM42),电机运行曲线变为曲线①,切换到d 点,稳定运行于e 点。由图三角形相似可得出N T Tq 2=,其中,N T 为额定负载力矩,Tq 为起动力矩。 图2,电机正向曲线图

转子串电阻调速

绕线转子异步电动机转子串电阻电感起动与调速方 法的研讨 绕城转子异步电动机能够通过转子串电阻进行起动与调速,但电阻上能耗大;如果转子串频敏变阻器,虽能减少损耗,但只能起动而不能调速。本文提出一种转子串电阻、电感的方法,既能用于起动与调速,又能较大程度地节能。IJ作原理如图1,在绕线电机转于绕组每相串入相同的电阻与电感。首先我们考虑只串电感L的情况,电机运行时的临界转差率式中r;——定子绕组的电阻X;——定于绕组的电抗r二。——转子绕组电阻的折算值X二——转子回路电抗的折算值teZ。H。0+XL其中X二。——转子绕组电抗的折算值X、——转子串电感L的电抗折算值由于r;<<x。,x;Wx。,略去r;、x;,则即Sm与人成反比,与固有特性相比,临界转差率的值减少。电机运行时的最大转矩为同理略去r;、x;,则式中m;——电机定子相数V;——电机定子相电压。。——电机同步角速度由式(2)可知,凡人与Xb也成反比,与固有特性相比,最大转矩减少。由以上分析可知,转子串电感时的机械特性如图2中的曲线1(曲线0为电机的固有特性)。在此基础上转子绕组再串入电阻Rnl 与Rn。,由式(l)、式(2)可知:临界转差率随转子回路电阻的增加而增大,而最大转短不变,其机械(本文共计3页)......[继续阅读本文] 转子上串联电阻可以降低启动电流增大启动转矩,同样也可以用于调速,但转子回路串联电阻调速的方式不理想,在电机轻载和空载的时候几乎起不到调速的作用,串联电抗器也可以减小起动电流,但是起动转矩也会减小很多,所以不采用串联电抗器来启动。 不是说三项绕线转子异步电动机转子回路串入电阻,可以增大起动转矩,串入电阻值越大,起动转矩越大?要合适 是应该三相都串的,以保持三相平衡。所串电阻增大,转速变低。因为电阻增大,相当于电机端电压降低,电机机械特性变软,转差率增大。负载恒定的时候,电机的电流会增大的。

绕线转子电阻计算

绕线转子电阻计算 绕线式三相异步电动机转子计算起动电阻是比较复杂的,一般分为3段电阻均匀切出时的计算方法: 1.计算转子额定电阻:R=U/(1.73×I)(U=转子电压,I=转子电流) 2.计算转子一相的内电阻:r=S×R式中:S=转差率,S=(n1- n)/n1(n1=同步转速,n=电机额定转速 3.电机额定力矩计算:M额=(975×P额)/n(M额=电机额定力矩,P 额=电机额定功率) 4.电机最大起动力矩与额定力矩之比:M=M最大/M额(M最大=最大起动力矩,M最大≤2M额 5.计算最大起动力矩与切换力矩之比:λ=根号3次方的(1/S×M)(λ=最大起动力矩与切换力矩之比) 6.3级(段)电阻计算:A>r1=r(λ-1)B>r2=r1×λC>r3=r2×λ切除电阻时,r1最后切出。 例题:22KW绕线式三相异步电动机,转速723转/分,转子电压197V,转子电流70.5A,现要求该电机起动时最大转矩为额定转矩的两倍,计算起动电阻有关数据。 1.计算转子额定电阻:R=U/(1.73×I)=197/(1.73×70.5)= 1.63(Ω) 2.转子每相内阻:S=(n1-n)/n1=(750-723)/750=0.036r=S×R =0.036×1.63=0.059(Ω) 3.额定转矩:M额=(975×P额)/n=(975×22)/723=29.6(Kg.M) 4.确定最大起动转矩:取:M最大=2M额M=M最大/M额=2 5.力矩比:λ=根号3次方的(1/S×M)=根号3次方的(1/0.036×

2)=根号3次方的(13.9)=2.4 6.3级电阻计算:A>r1=r(λ-1)=0.059(2.4-1)=0.083(Ω) B>r2=r1×λ=0.083×2.4=0.2(Ω) C>r3=r2×λ=0.2×2.4=0.48(Ω) 1》例题:22KW绕线式三相异步电动机,转速723转/分,转子电压197V,转子电流70.5A,现要求该电机起动时最大转矩为额定转矩的两倍,计算起动电阻有关数据。1》计算转子额定电阻:R =U/(1.73×I)=197/(1.73×70.5)=1.63(Ω) 2》转子每相内阻:S=(n1-n)/n1=(750-723)/750=0.036r=S ×R=0.036×1.63=0.059(Ω) 3》额定转矩:M额=(975×P额)/n=(975×22)/723=29.6(Kg.M) 4》确定最大起动转矩:取:M最大=2M额M=M最大/M额=2 5》力矩比:λ=根号3次方的(1/S×M)=根号3次方的(1/0.036×2)=根号3次方的(13.9)=2.4 6》3级电阻计算:A>r1=r(λ-1)=0.059(2.4-1)= 0.083(Ω)B>r2=r1×λ=0.083×2.4=0.2(Ω)搜索C>r3=r2×λ =0.2×2.4=0.48(Ω) 如有侵权请联系告知删除,感谢你们的配合!

绕线式异步电动机转子串电阻的调速控制

一课题背景 2 1启动前的准备 (2) 2启动控制 (2) 3制动控制 (3) 4调速控制过程 (3) 二任务要求 (3) 三设计思路 (4) 1主电路 (4) 2.PLC接线图 (5) 3. I/O分配 (5) 4.程序梯形图 (6) 5.程序调试 (7) 6.调试完成 (8) 总结 (8)

一课题背景 绕线式异步电动机转子串电阻的调速控制线路,对调速无特殊要求的生产机械,可以采用绕线式异步电动机拖动,绕线式转子异步电动机转子串电阻调速控制电路,按照时间原则启动、能耗制动的控制线路如图所示: 工作原理分析如下 1启动前的准备

先讲主令控制器SA的手柄置到“0”位,再合上电源开关QS1,QS2,则有:(1)零位继电器KV线圈通电并自锁。 (2)KT1,KT2线圈得电,其延时闭合的动断触点瞬时打开,确保KM1,KM2线圈断电。 2启动控制 将SA的手柄推向3位,SA的触点SA1,SA2,SA3,均接通,KM线圈通电。则有: (1)KM的主触点闭合,电动机接入交流电源,电动机在转子串两段电阻的情况下启动。同时,KT线圈得电,KT延时断开的动合触点闭合。 (2)KM的动断触点打开,KT1线圈断点开始延时,当延时结束时,KT1动断触点闭合,KM1线圈通电,KM1的动合触点闭合切除一段电阻R1,同时KM1的动断触点断开,KT2线圈断电开始延时,当延时结束时,KT2的动断触点闭合,KM2线圈通电切除电阻R2,启动结束。 3制动控制 进行制动时,将主令控制器SA的手柄扳回“0”位,KM,KM1,KM2线圈均断电,电动机切除交流电源。同时,KT1,KT2线圈得电。则有: (1)KM的动断触点闭合,KM3线圈通电,电动机接入直流电源进行能耗制动;同时,KM2线圈通电,电动机在转子短接全部电阻的情况下进行能耗制动。(2)KM的动合辅助触点断开,KT线圈断电开始延时,当延时结束时,KT延时断开的动合触点断开,KM2,KM3线圈均断电,制动结束。 4调速控制过程 当需要电动机在低速下运行时,可将主令控制器SA手柄推向“1”位或“2”位,则电动机的转子在串入一段电阻或不串入电阻的情况下以较高速度运转 二任务要求 绕线式转子异步电动机转子串电阻调速控制电路的PLC程序设计。具体的接触器-继电器控制系统详见《工厂电气控制设备》P91页电路。试将其进行PLC改造。要求列出输入输出分配表,画出PLC硬件接线图,列出PLC程序清单及注释。

绕线式电动机转子回路串电阻起动控制电路

【实训项目名称】 绕线式电动机转子回路串电阻启动控制电路的安装、调试及故障排查 【课时安排】 2课时 【实训目标】 1.正确理解三相绕线转子异步电动机转子回路串电阻启动的工作原理。 2.能正确识读三相绕线转子异步电动机转子回路串电阻启动控制电路的原理图和布置图。 3.会按照工艺要求正确安装三相绕线转子异步电动机转子回路串电阻启动控制电路。 4..能用万用表对控制电路进行通电前的检查。 5.能熟练使用电钳工工具及低压测量仪表。 6.培养安全第一、科学严谨、团结合作、成本意识、节能环保意识。 【实训条件准备】 1.常用电工工具:包括试电笔、克丝钳、剥线钳、改锥、尖嘴钳、斜口钳等。 2.万用表 3.绝缘导线:主电路采用BV1.5平方,控制电路采用BV1平方。 4.绕线式异步电动机 5.交流接触器、时间继电器、按钮、熔断器、热继电器等电器元件 【实训过程】 一、实训电路 1.绕线式电动机转子回路串电阻启动控制电路原理图如图5所示 图5 绕线式电动机转子回路串电阻启动控制电路 2.小组讨论双速电动机控制线路工作原理。 起动控制:

停止控制: 3.备齐所需电气元器件及工具并检测元器件 配齐所用电气元件,并进行质量检验。元器件应完好,各项技术指标符合规定要求,否则予以更换。 二、计划与实施 1.绘制电器元器件布置图并安装电器元器件 2.绘制接线图 3.安装、接线 (1)小组成员讨论线路连接的思路与方法,并作介绍。 (2)小组合作根据电路图完成接线。 4.检测线路

(1)检查所接电路,按照电路图从头到尾按顺序检查 (2)用万用表初步测试电路有无短路情况。确保电路未通电的情况下把万用表打到欧姆档,用万用表检查电路,并填写在下表。 5.通电运行 (1)整理试验台多余的导线和工具,避免对电路造成影响 (2)为保证人身安全,在通电试车时,一人操作一人监护,认真执行、安全操作规程的有关规定,经老师检查并现场监护。 在教师检查无误后,经教师允许后才可以通电运行。 (1)通电顺序:先合上实验台总电源开关。 按下按钮SB1,观察并记录电动机工作状态,接触器KM状态,时间继电器KT1 状态。 (2)第一延时时间到,观察并记录M工作状态,接触器KM1状态,时间继电器KT2状态。 (3)第二延时时间到,观察并记录M工作状态,接触器KM2状态,时间继电器KT3状态。 (4)第三延时时间到,观察并记录M工作状态,接触器KM3状态。 (5)按下停止按钮SB2,观察并记录M工作状态,接触器KM1状态,接触器KM2状态,接触器KM3状态,时间继电器KT1状态,时间继电器KT2状态,时间继电器KT3状态。 6.故障排查 利用维修电工技能鉴定装置上进行绕线式异步电动机转子回路串电阻起动控制线路的排故练习。记录故障现象、判断记录故障部位、可能的故障原因并说明排故方法。 绕线式异步电动机转子回路串电阻起动控制电路排故记录 7.整理现场 三、评价反馈

绕线式电机启动电阻计算

绕线式异步电动机串级电阻方式起动电阻的计算 关键词 绕线式异步电动机 串级式 电阻的计算 绕线式电动机串级电阻方式的机械特性已在《绕线式异步电动机串级电阻机械特性分析》一文中作了分析。本文拟对该方式下起动电阻的计算作一探讨。 一、基本公式及其变换 绕线式电动机串级电阻方式下,由于转子回路漏抗的原因,在三相全波整流波形上产生很大的缺口,即重叠角。习惯上我们按重叠角大小分成两个工作区间,即:重叠角?≤60γ区间称为第一工作区,和重叠角?=60γ保持不变,而出现一个导通延时角1α的第二工作区。 1、第一工作区基本公式及其变换 在第一工作区的机械特性 s s x R R E f p M D D D e 2 22 22 2033?? ? ??+???? ???=πππ-----------------------------------------------⑴ 其最大力矩产生时的最大转差率 22 13D D m x R s ? = π------------------------------------------------------------------------------------⑵ 其最大力矩 2 2 201223D e m x E f p M ? ?=ππ-----------------------------------------------------------------------⑶ 其中 e E 2——绕线式异步电动机转子开路线电压 γ——重叠角 2D x ——电机折算到转子侧总电抗 2' 12x x x D += S ——转差率 d I ——直流电流 p ——绕线电动机的极对数

电流原则控制绕线式异步电动机转子串电阻起动控制线路

电流原则控制绕线式异步电动机转子串电阻起动控制线路 三相绕线式异步电动机的转子中有三相绕组,可以通过滑环串接外接电阻或频敏变阻器,实现降压起动。 按照起动过程中转子串接装置的不同,分为串电阻起动和串频敏变阻器起动两种起动方式。 串电阻起动中包括基于电流原则的起动和基于时间原则的起动控制线路,图3.14所示电路是基于电流原则的起动控制线路。在电动机的转子绕组中串接KI1、KI2、KI3这三个具欠电流继电器的线圈,它们具有相同的吸合电流和不同的释放电流。在起动瞬间,转子转速为零,转子电流最大,三个电流继电器同时吸合,随着转子转速的逐渐提高,转子电流逐渐减小,KI1、KI2、KI3依次释放,其常闭触点依次复位,使相应的接触器线圈依次通电,通过它们的主触点的闭合,去完成逐段切除起动电阻的工作。 三相异步电动机正反转电气控制线路

在图3.5中,(a)图为主电路,通过当接触器KM1三对主触点把三相电源和电动机的定子绕组按顺相序L1、L2、L3连接,,而KM2的三对主触点把三相电源和电动机的定子绕组按反相序L3、L2、L1连接, 使电动机可以实现正反两个方向上的运行。 而图3.5(b)中,按下正转起动按钮SB2,接触器KM1线圈通电且自锁,主触点闭合使电动机正转,按下停止按钮SB1,接触器KM1线圈断电,主触点断开,电动机断电停转。再按下反转起动按钮SB3,接触器KM2线圈通电且自锁,主触点闭合使电动机反转。但是在(b)图中,若按下正转起动按钮SB2再按下反转起动按钮SB3,或者同时按下SB2和SB3,接触器KM1和KM2线圈都能通电,两个接触器的主触点都会闭合,造成主电路中两相电源短路,因此,对正反转控制线路最基本的要求是:必须保证两个接触器不能同时工作,以防止电源短路,即进行互锁,使同一时间里只允许两个接触器中一个接触器工作。所以在图3.5(c)中,接触器KM1 、KM2线圈的支路中分别串接了对方的一个常闭辅助触点。工作时,按下正转起动按钮SB2,接触器KM1线圈通电,电动机正转,此时串接在KM2线圈支路中的KM1常闭触点断开,切断了反转接触器KM2线圈的通路,此时按下反转起动按钮SB3将无效。除非按下停止按钮 SB1,接触器KM1线圈断电,KM1常闭触点 复位闭合,再按下反转起动按钮SB3实现电动机的反转,同时,串接在KM1线圈支路中的KM2常闭触 点断开,封锁了接触器KM1使它无法通电。 这样的控制线路可以保证接触器KM1 、KM2不会同时通电,这种作用称为互锁,这两个接触器的常闭触点称为互锁触点,这种通过接触器常闭触点实现互锁的控制方式称为接触器互锁,又称为电气互锁。 时间原则控制绕线式异步电动机转子串电阻起动控制线路 图3.15所示电路是基于时间原则的起动控制线路。KT1、KT2、KT3为通电延时时间继电器,其延时时间与起动过程所需时间相对应。R1、R2、R3为转子外接电阻,起动后随着起动时间的增加,转子回路三段起动电阻的短接是靠三个时间继电器KT1、KT2、KT3与三个接触

绕线异步电动机串电阻启动

1.电动机 1.1旋转磁场 定子三相对称绕组中通以频率为f 1 的三相对称电流便会产生旋转磁场。旋转磁场的转速由下式确定 n 0= p f 1 60 式中,P为电机的极对数。n 又称为同步转速旋转磁场的转向由三相电 流通入三相绕组的相序决定。改变电流相序,旋转磁场的转向随之改变。 1.2异步电动机结构 Y形的电阻,或直接通过短路端环短三相异步电动机主要由静止的和转动的两部分构成,其静止部分称为定子。定子是用硅钢片叠成的圆筒形铁心,其内圆周有槽用来安放三相对称绕组:三相对称绕组每相在空间互差120°,可联接成Y形或Δ形。三相异步电动机转动的部分称为转子,是用硅钢片叠成的圆柱形铁心,与定子铁心共同形成磁路。转子外圆周有槽用以安放转子绕组。转子绕组有鼠笼式和线绕式两种。鼠笼式:将铜条扦入槽内,两端用铜环短接,或直接用熔铝浇铸成短路绕组。线绕式:安放三相对称绕组,其一端接在一起形成Y形,另一端引出连接三个已被接成路。 1.3异步电动机工作原理 转子绕组切割旋转磁场产生感应电势,并在短路的转子绕组中形成转子电流,转子电流与旋转磁场相互作用产生电磁力,形成转动力矩,使转子随旋转磁场以转速n转动并带动机械负载。转子和旋转磁场之间转速差的存在是异步电动机转动的必要条件,转速差以转差率s衡量

S= 0-n n n ×100% 1.4定子 定子铁芯:导磁和嵌放定子三相绕组:0.5mm 硅钢片冲制涂漆叠压而成;内圆均匀开槽;槽形有半闭口;半开口和开口槽三种:适用于不同的电机 定子绕组:电路;绝缘导线绕制线圈;由若干线圈按一定规律连接成三相对称绕组交流电机的定子绕组称为电枢绕组 机座:支撑和固定作用;铸铁或钢板焊接 1.5转子 转子铁芯:导磁和嵌放转子绕组;0.5mm 硅钢片;外圆开槽 转子绕组:分为笼型和绕线型两种 笼型绕组:电路;铸铝或铜条优缺点 绕线型绕组:对称三相绕组:星接;集电环优缺点 气隙:气隙大小的影响:中小型电机的气隙为0.2mm ~2mm 2.电动机的起动指标 起动是指电动机从静止状态开始转动起来,直至最后达到稳定运行。对于任何一台电动机,在起动时,都有下列两个基本的要求。 2.1起动转矩要足够大 堵转状态时电动机刚接通电源,转子尚未转动时的工作状态,工作点在特性曲线上的S 点。这时的转差s=1,转速n=0,对应的电磁转矩T st 称为起动转矩。 堵转状态说明了电动机的直接起动能力。因为只有在T st >T L <一般要求T st >(1.1~1.2)T L ,电动机才能起动起来。T st 大,电动机才能重载起动;T st

如何计算发电机转子温度

摘自本人撰写的《余热(中册)》 二六二、如何计算发电机转子的温度? 1.计算发电机转子温度的已知条件 ① R 1——在温度t 1时转子绕组的电阻值,根据制造厂提供的数据,温度在75℃时转子绕组的电阻值为0.3795(Ω); ② t 1——对应于所测转子绕组电阻R 1时的温度值,即75℃; ③ R 2——在发电机运行中通过计算而得知的绕组电阻值 R 2=L L I U ; 式中 U L ——发电机的励磁电压(V ) I L ——发电机的励磁电流(A ) ④ t F ——发电机转子允许的最高运行温度,1#发电机允许的最高运行温度t F =130℃; ⑤ K —— 计算常数 K ==+3795 .075235817; ⑥ △U ——电刷与滑环间的压降,经现场测量正、负极的△U =1.8V ,合计为3.6V 2.计算发电机运行时转子温度t 2的公式 t 2=K -?-L L I U U 235 3.举例 7月21日16时在现场测得励磁电压为85.3V 、励磁电流为208A ,计算出转子当时的运行温度是多少? 解: t 2=K -?-L L I U U 235=817--208 6.33.85235=86℃ 计算结果表明:此时发电机转子的温度为86℃,该温度低于发电机转子允许的最高运行温度130℃。 4.说明 ①励磁电流可从安装在发电机小间励磁柜上面的励磁电流表读取,也可从安装在控制屏6KP 上面的励磁电流表读取,或者使用高内阻的毫伏表测量分流器端电压后,进行换算获得: 励磁电流 I L =U ×75 500(A ) 式中 U ——高内阻毫伏表所测分流器的端电压(mV ) ②由于△U 不是一个固定不变的数值,所以每次计算转子温度前,应该现场测量电刷与滑环间的压降。该压降△U 等于励磁电压正、负极两端电刷与滑环间的压降之和。

三相绕线式转子异步电动机转子串电阻启动

哈尔滨理工大学荣成学院《可编程序控制器课程设计》 ---用PLC控制的三相绕线式转子异步 电动机转子串电阻启动 专业: 班级: 姓名: 学号: 日期:

一、实验目的 1.掌握可编程控制器程序的应用系统的调试、监控、运行方法。 2.进一步熟悉常用设备、元器件的类型和特征,并掌握合理运用原则和使用方法。培养严肃认真的工作作风和严谨的科学态度。 3.借助课程设计中的对三相绕线式转子异步电动机转子串电阻启动PLC设计,提高和掌握可编程序控制器的各种实际应用的能力。 4.综合运用所学的理论知识独立完成一个课题,培养学生独立分析和解决实际问题的能力,学会撰写课程设计总结报告。 二、实验内容及要求 1.实验任务: 根据电气实验原理图将其进行PLC改造。在启动前,启动电阻全部接入电路中,在启动过程中,启动电阻被逐级地短接切除,正常运行时所有外接启动电阻全部切除。具体操作要求:按下启动按钮主电路的主触点闭合,自锁,延时5S,R1电阻切除,延时3S后R2电阻切除,再延时3S后所有电阻均切除,启动完成。按下停止按钮,电动机停,实验原理图见图1。 2.电气实验原理图

3.绕线式的作用以及优缺点 三相异步电动机转子回路串接电阻,一方面可以减小起动电流,另一方面可以增加最初起动转矩,当串入某一合适电阻时,还能使电动机以它的最大转矩T 起动。当然,所串联的电阻超过一定数值后,最初起动转矩反而会减小。由于绕线异步电动机的转子串联合适的电阻,不但可以减少起动电流,而且可以增大起动转矩,因而,要求起动的转矩大或起动频繁的生产机械常用绕线型异步电动机。转子回路串三相对称可变电阻起动,这种方法既可限制起动电流,又可增大起动转矩,串接电阻值取得适当,还可使起动转矩接近最大转矩起动,适当增大串接电阻的功率,使起动电阻兼作调速电阻,一物两用,适用于要求起动转矩大,并有调速要求的负载。缺点:多级调速控制电路较复杂,电阻耗能大。 三、硬件系统的设计 1.资源配置 2.外部接线图

PLC课程设计-三相异步电动机转子串电阻启动

目录 摘要 (1) 关键词 (1) 1 关于PLC (2) 1.1概述 (2) 1.2 PLC的系统组成 (2) 2 S7-200简介 (3) 2.1 概述 (3) 2.2 组成 (3) 3 三相异步电动机的工作原理和结构组成 (3) 3.1 工作原理 (3) 3.2 结构组成 (4) 3.2.1 定子 (4) 3.2.2 转子 (4) 3.2.3 气隙 (4) 3.3 异步电动机的结构特点 (5) 3.4 转子串电阻启动的原理 (5) 3.5 启动电阻的使用原则 (5) 4 课程设计的目的 (5) 5 主接线图 (6) 5.1三相异步电动机转子串电阻启动主接线图 (6) 5.2绕线式的作用以及优缺点 (6) 6 硬件系统的设置 (6) 6.1 资源配置 (6) 6.2 PLC接线图 (7) 7 主程序设置 (7) 7.1 主程序梯形图 (7) 7.2 工作过程分析 (9) 8模拟软件上仿真动作与实验面板上调试演示结果 (10) 9课程设计总结 (11) 参考文献 (12)

三相异步电动机转子串电阻启动 三相异步电动机转子串电阻启动 指导教师 摘要:PLC在三相异步电机控制中的应用,与传统的继电器控制相比,具有控制速度快、可靠性高、灵活性强、功能完善等优点。长期以来,PLC始终处于工业自动化控制领域的主战场,为各种各样的自动化控制设备提供了非常可靠的控制应用。它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业企业对自动化的需要。本文设计了三相异步电动机的PLC控制电路,该电路主要以性能稳定、简单实用为目的。 关键词:PLC;编程语言;三相异步电机;继电器 Three-phase Asynchronous Motor Rotor String Resistance Start Student majoring in Automation Liu Tong Tutor Zhou Jing Lei Abstract:PLC in three-phase asynchronous motor control application, compared with the traditional relay control, has control of speed, high reliability and flexibility, the perfect function etc. Long-term since, PLC is always in the industrial automation control field, igge for various automatic control equipment provides a very reliable control applications. It can provide security for automation control application reliable and comparatively perfect solutions, suitable for the current industrial enterprise of automation needs. This paper introduces the design of three-phase asynchronous motor, the PLC control circuit, this circuit mainly stable performance, simple and practical for the purpose. Key words: PLC;programming languages,;three-phase asynchronous motor,;relays

相关文档
最新文档