Tetraalkylphosphonium-based ionic liquids

Tetraalkylphosphonium-based ionic liquids
Tetraalkylphosphonium-based ionic liquids

Tetraalkylphosphonium-based ionic liquids

Rico E.Del Sesto a ,Cynthia Corley a ,Al Robertson b ,John S.Wilkes

a,*

a

Department of Chemistry,US Air Force Academy,2355Fairchild Dr.,Suite 2N225,Colorado,USAF Academy 80840-6230,USA

b

Cytec Canada Inc.,9061Garner Road,Niagara Falls,Ont.,Canada L2E6T4

Received 29June 2004;accepted 20September 2004

Available online 28October 2004

Abstract

Ionic liquids are salts that are liquid at or near room temperature.Their wide liquid range,good thermal stability,and very low vapor pressure make them attractive for numerous applications.The general approach to creating ionic liquids is to employ a large,unreactive,low symmetry cation with and an anion that largely controls the physical and chemical properties.The most common cations used in ionic liquids are N -alkylpyridinium and N ,N 0-dialkylimidazolium.Another very e?ective cation for the creation of ionic liquids is tetraalkylphosphonium,[PR 1R 2R 3R 4]+.The alkyl groups,R n ,generally are large and not all the same.The halide salts of several phosphonium cations are available as starting materials for metathesis reactions used to prepare ionic liquids.The large phosphonium cations can combine with relatively large anions to make viscous but free ?owing liquids with formula mass greater than 1000g mol à1.Some other more massive salts are waxes and glasses.The synthesis and the physical,chemical,and opti-cal properties of phosphonium-ionic liquids having anions with a wide range of masses were measured and are reported here.ó2004Elsevier B.V.All rights reserved.

Keywords:Ionic liquids;Molten salt;Physical properties;Phosphonium salts;Viscosity;Room temperature ionic liquids

1.Introduction

The diverse nature of room temperature ionic liquids (RTILs)continues to expand signi?cantly as more re-sources are dedicated to understanding these materials as solvents,electrolytes,thermal ?uids,and much more [1–3].RTILs have numerous advantages over molecular organic materials,particularly in their stability due to their negligible vapor pressure.Other advantages in-clude easy functionalization,large liquid ranges,high e?ective concentrations as compared to solutions,and the ability to ?ow –an interesting and attractive quality from a materials perspective.

The structural tunability of both the cations and ani-ons suggest great ?exibility in the potential applications of ionic liquids.Our interests in optical and magnetic

materials have led us to RTILs with large phosphonium cations,[PR 1R 2R 3R 4]+.The anions in the phosphonium salts contain structural features which have been pre-dicted to display signi?cant third order nonlinear optical properties,particularly nonlinear indices or refraction (often designated as n 2)and nonlinear absorptions (a 2),–such as multiphoton absorption –both of which are intensity dependent functions,and therefore useful for optical limiting applications.These include conju-gated thiolate and dithioacetate compounds [4],Fig.1,such as methylxanthate (xan),diethyldithiocarbamate (dtc),nitrodithioacetate –also known as the K-salt,and dithiomaleonitrile (dtmn).Other conjugated anions of interest for their physical properties are bistrifylamide (NTf 2),nona?uorobutylsulfonate (C 4F 9SO 3),tricya-nomethanide (C(CN)3),and dicyanamide (N(CN)2).Some further potentially magnetically and/or optically interesting anions are those such as thiocyanate,cya-nide,or dicyanamide complexes of Ni(II),Co(II),and Fe(II),bis-dicarbollylcobalt(III)(CoCB)–which is

0022-328X/$-see front matter ó2004Elsevier B.V.All rights reserved.doi:10.1016/j.jorganchem.2004.09.060

*

Corresponding author.Tel.:+17193336005;fax:+17193332947.

E-mail address:john.wilkes@https://www.360docs.net/doc/b57213565.html, (J.S.

Wilkes).Journal of Organometallic Chemistry 690(2005)2536–2542

https://www.360docs.net/doc/b57213565.html,/locate/jorganchem

interesting due to its r-aromaticity,as well as copper phthalocyaninetetrasulfonate(CuPc)and thiazolium yellow G(ThY),both of which are common dyes.

The tetraalkylphosphonium salts,[PR1R2R3R4]+, were chosen for a number of features which di?erentiate them from other common RTIL cations.The numerous possible permutations that can be synthesized using var-ious alkyl and aryl side chains increases the?ne tunabil-ity of the resulting properties,Table1,such as their melting/glass transitions or viscosities.The phosphoni-ums lack the weakly acidic ring protons of the more common imidazolium cations–a limitation when strongly basic anions are used,such as the thiolates mentioned above.Also,the quaternary phosphonium salts have been reported to be more stable to increased temperatures for longer periods of time than nitrogen-based cations[5].With materials aspects in mind,they are additionally attractive because the steric bulk of the large side chains around the phosphonium cation interferes with electrostatic interactions between the ani-ons and the cation–which is generally localized on the phosphorus–allowing for greater impact of the proper-ties of the anion itself,as compared to salts with more strongly interacting smaller cations.Naturally,there are disadvantages as well,such as very high viscosities, poorly understood solubility properties,etc.–all of which may potentially be optimized through functional-ization of the cations alkyl/aryl components.

Although the quaternary phosphonium ILs have not received the attention and extensive resources that the more common imidazolium and other nitrogen-contain-ing ILs do,they have been used extensively in several areas of chemistry for many years,particularly catalysis and phase transfer reactions and extractions[6].Addi-tionally,they have been applied to materials as well, such as liquid crystals[7].

Table1

Physical properties of[PR1R2R3R4][X]salts

R1=R2=R3R4XàSolid/liquid a Trade name b Ethyl Ethyl Br Solid(T mp>300°C)CYPHOS422

n-Butyl n-Butyl Cl Solid(T mp=87°C)CYPHOS IL164 n-Butyl n-Tetradecyl Cl Solid(T mp=56°C)CYPHOS IL167 n-Pentyl n-Tetradecyl Cl Liquid CYPHOS IL127 n-Hexyl n-Tetradecyl Cl Liquid(T g=à56°C)CYPHOS IL101 n-Hexyl n-Tetradecyl Br Liquid CYPHOS IL102 n-Octyl n-Tetradecyl Cl Liquid CYPHOS IL128 Isobutyl n-Octyl I Liquid CYPHOS IL205

a State at room temperature.

b Cyte

c specialty chemicals.

R.E.Del Sesto et al./Journal of Organometallic Chemistry690(2005)2536–25422537

A number of these quaternary phosphonium salts with desired anions were synthesized,with nearly all being liquid at and well below room temperature,and stable up to400°C in some cases.Their chemical and physical properties were measured,and while the anions do dictate the major physical properties such as optical and magnetic features,there appears to be slight corre-lations between the cation size/structure with their vis-cosity and glass transition temperatures.

2.Results and discussion

2.1.Synthesis of RTILs

The sources of the anionic components of the RTILs were alkali metal salts,and those which are not commer-cially available could generally be made by known syn-theses.The salts of dtmn and the K-salt,could be made via simple nucleophilic additions to CS2,as seen in Scheme1.The metal complexes are also easily produced from metal chloride salts reacted with an excess of the salts of the desired ligands.These syntheses are generally higher yield reactions and use fairly inexpensive starting materials–desirable qualities should a large scale-up process be considered.

Simple metathesis reactions of these alkali metal salts of the desired anions with the appropriate phospho-nium halide,[PR1R2R3R4]X,in an organic solvent or organic/aqueous system,results in the alkali halide pre-cipitating out or extracted into the aqueous layer,and the[PR1R2R3R4]x[anion]xàleft in the organic layer,as with the[PR1R2R3R4]2[dtmn]salt shown in Scheme2. Washing the organic layer several times with water gen-erally removes the alkali halide and excess starting materials.In most cases,the[PR1R2R3R4]X was dis-solved in chloroform,and added to an aqueous solution of the anion salt.In cases where the anion salt was not water-soluble,e.g.,the Na2(dtmn),the metathesis reac-tion was carried out in pure EtOH,the resulting solid byproducts(NaCl)?ltered,the solvent evaporated, and then the product redissolved in chloroform for washing and purifying.Any remaining solvent and traces of water could be removed by heating the sample in vacuo to90–120°C.All of the anions discussed here were incorporated into salts with the trihexyltetradecyl-phosphonium cation,[PC6C6C6C14]+.The dtmn and NTf2anions were also made as salts with [PC4C4C4C14]+,[PC4C4C4C4]+,[PC8C8C8C8]+,and [PPh4]+cations.

The amount of residual alkali metal and chloride in the resulting liquids was determined through ICP–OES measurements.As most of the[PR1R2R3R4]RTILs are not water-soluble,they were dissolved in minimal amount of chloroform and extracted with20ml of 20%nitric acid to try to dissolve as much of the RTIL components in the aqueous layer as possible,and in doing so should extract any alkali or chloride salts pre-sent in the RTIL.In all cases,less than100ppm of either impurity was found.The minute chloride impu-rities are also con?rmed through chloride elemental analyses on a few selected ILs,which included both the purely organic ILs and those with inorganic com-plexes.In all samples,the chloride levels were below the detection limits of the instrument–less than 0.2%by mass,which even for the lowest molecular weight IL calculates to be less than5mol%(5mol Cl per100mol IL).This indicates that the samples are pure,and are not solutions or binary salts of the two starting materials.

Water content of the RTILs was determined using Karl–Fischer titrations.Not all of the salts could be tested,however,due to low solubilities in the methanol solvent used in the titrations.Most of the thiol-contain-ing ILs were tested before and after drying,including the xan,dtc,dtmn,and K-salt salts.Before drying,these RTILs had water content ranging from0.75to1.5water molecules per formula unit–fairly high presumably due to strong[R–Sà]–[H–OH]interactions.After drying at 90°C under vacuum for several hours,these dropped to less than0.05waters per formula unit(less than 0.1%by mass).

2538R.E.Del Sesto et al./Journal of Organometallic Chemistry690(2005)2536–2542

2.2.Thermal properties

All of the materials presented exhibit glass transitions occurring well below room temperature as seen in DSC measurements,Table2,with the exception of the ThY salt,which is a glass a room temperature with its transi-tion at+65°C.Some do show signi?cant transition enthalpies as seen in a true freezing/melting point,e.g. the[PC6C6C6C14][xan],but most only show changes in their enthalpy at their transitions,Fig.2.Correlations of the T g?s amongst the[PC6C6C6C14]salts with varying anions is di?cult to establish due to the charges of the anions,and thus di?erent number of cations necessary for charge balance.Other factors that most likely con-tribute to the T g?s and physical properties are morphol-ogy(planar versus nonplanar)and electrostatic distributions of the anions,which also contribute to packing e?ciency of the salts.

In a series of common anions with the di?erent phos-phonium cations,a slight trend can be observed in the T g versus size of the cation,Table3.This trend is more easily seen in the[PR1R2R3R4]2[dtmn]salts,where cation size is[PC6C6C6C14]=[PC8C8C8C8]>[PC4C4-C4C14]>[PC4C4C4C4].This trend is not necessarily lin-ear,again due to the morphology of the cation,as well as the symmetry and packing e?ciency.The cation [PC4C4C4C4]approaches the limit for creating RTILs due to its much smaller size and higher symmetry than the other cations.Introducing larger cations,such as the[PC8C8C8C8],and less symmetry,such as [PC4C4C4C14],results in RTILs with much lower T g?s.

As salts,they have no readily apparent vapor pres-sure,thus their upper temperature limit is typically determined by their thermal decomposition tempera-tures,which generally occurs well below boiling.The carbamate and xanthate materials,[PC6C6C6C14][dtc] and[PC6C6C6C14][xan],tend to decompose at lower temperatures–around250°C–whereas most others are stable up to400–450°C based on TGA experiments, Table2(decomposition in these cases are the onset tem-

Table2

Physical properties of[PC6C6C6C14]x[anion]xàRTILs

[Anion]FW(g molà1)T g(°C)T dec a(°C)Density b(g cmà3)Viscosity b(g,cP)k max c(nm) [dtc]à631à772550.9421470305 [xan]à590à70d2900.9201480345

[K-salt]2à1101à793500.960560396 [dtmn]2à1106à713600.9424780394

[Co(dtmn)2]2à1198à65370e e460

[Ni(dtmn)2]2à1198à703800.9946480475 [NTf2]à782à76400 1.080450NA

[C4F9SO3]à763à68390 1.079805NA

[C(CN)3]à585à654150.901320NA

[N(CN)2]à549à673950.904490NA

[Co(N(CN)2)4]2à1289à703750.907310618

[Co(NCS)4]2à1257à724050.9632436626

[Co(NCSe)4]2à1447à70f 1.02660628

[Ni(NCS)6]2à2228à603800.902760346

[Fe(CN)6]4à2144à70f0.9425790355/410 [CoCB]à806à71420 1.003702450 [CuPc(SO3)4]4à2816à45400e e598/698 [ThY]2à1615+65395e e405

a T

dec is decomposition onset temperature.

b Density and viscosity reported for room temperature(20°C).

c UV/Vis from neat samples with pathlength$10l m.

d T

mp ,not T g.

e Viscosity too large to measure at RT.

f Not measured due to

toxicity.Fig.2.DSC for:(a)[PC6C6C6C14][xan],and(b)[PC6C6C6C14][CoCB] RTILs.

R.E.Del Sesto et al./Journal of Organometallic Chemistry690(2005)2536–25422539

peratures,which is the intersection of the baseline below their decomposition temperature with the tangent to the mass loss versus temperature plots in the TGA experiment).

Thermal stability for some of the RTILs was deter-mined through isothermal TGA experiments.An exam-ple of the thiolates is the[PC6C6C6C14][xan]salt,which shows moderate stability below200°C,but decomposes fairly rapidly at higher temperatures,Fig.3(a).The [PC6C6C6C14][CoCB]on the other hand,is fairly stable up to375°C,showing only0.1%/min mass loss,Fig. 3(b).This sample rapidly decomposes and outgases around400°C.The lack of stability of the thiolate based salts seems to be due to decomposition of the anion, most likely though facile loss of CS2.The salts with more robust anions tend to decompose at much higher temperatures,at which it appears the cation stability be-comes an issue near400°C.

2.3.Physical properties

The density of all of the materials show linear behav-ior over changing temperature as expected,Fig.4.All of the RTILs,with the exception of[PC6C6C6C14]2[Co-(NCSe)4],[PC6C6C6C14][C4F9SO3],and the NTf2salts, show densities below1.0,Table2,presumably due to a signi?cant contribution from large alkyl chains on the cation.

All RTILs presented show very high viscosities at room temperature,ranging from310cP for [PC6C6C6C14]2[Co(N(CN)2)4]to>7000cP[PC4C4C4 C14]2[dtmn],Tables2and3.The CuPc,ThY,and some dtmn salts could not be measured due to their extremely viscous and waxy/glassy state at room temperature and up to near90°C–the temperature limit for the viscom-eter.As with the glass transitions,varying cation size with common anions also correlates with the viscosity of the RTILs.This e?ect is shown for the dtmn and NTf2salts in Table3.Arrhenius plots of the viscosities versus temperature of the RTILs show some deviation from two-parameter exponential behavior,Fig.5. Therefore the viscosities were modeled with the Vogel–Tammann–Fulcher(VTF)formula,Eq.(1)

ln g?ln At

B

TàT g

;e1T

where A is the frequency factor,B is the activation en-ergy,and T g is the thermodynamic glass transition tem-perature.The three-parameter?ts to this model are in Table4[8].

No trend is seen with viscosity or T g with varying the anions with common cations,as expected due to various

Table3

Physical properties of[PR1R2R3R4][NTf2]and[PR1R2R3R4]2[dtmn]

RTILs

Cation T g(°C)Density a(g cmà3)Viscosity a(g,cP)

NTf2[PC6C6C6C14]à76 1.080450

[PC8C8C8C8]à60 1.071418

[PC4C4C4C14]à60 1.112464

[PC4C4C4C4]+65b b

[PPh4]+160b b

dtmn[PC6C6C6C14]à710.9424780

[PC8C8C8C8]à690.9465590

[PC4C4C4C14]à460.9507480

[PC4C4C4C4]à35b16,150c

[PPh4]+154b b

a Density and viscosity reported for room temperature(20°C).

b Not measured.

c Measure

d at30°C.

2540R.E.Del Sesto et al./Journal of Organometallic Chemistry690(2005)2536–2542

other in?uences involved.However,the anions do dic-tate other properties of the salts,particularly the color. While some are colorless,such as the NTf2and C4F9SO3,the conjugated thiolates are deep orange or red in color,Table2.The colors of the metal complexes are determined by the spectrochemical series,which is a result of the metals and ligands used.It is therefore pos-sible to develop these RTILs to absorb in any region of the UV,Visible and NIR region based on the anions utilized.

The magnetic properties of several of the Co(II)con-taining ILs were measured with an Evans balance.All of the Co(II)salts were paramagnetic,with room tempera-ture(293K)magnetic moments ranging from3.3.to3.7 l B–typical of high-spin(S=3/2)Co(II)ions.Prelimi-nary nonlinear optical measurements were done using a Z-scan setup to determine nonlinear index of refrac-tion,n2,and nonlinear absorptivity,a2,with a laser wavelength of910nm.Most of the samples did show nonlinear behavior,with the largest nonlinear refraction seen in the[PC6C6C6C14]2[dtmn]salt,n2=à6.1·10à14 m2Wà1.This value is slightly less than values observed for common NLO polymers and semiconductors ($10à12m2Wà1)[9],but greater than previously re-ported metal cluster compounds[10]and molecular or-ganic compounds(<10à16m2Wà1)[11].The dtmn salt is approximately20,000times greater than the typical carbon disul?de standard(CS2),which has an n2$3·10à18m2Wà1.These results are only prelimi-nary,as there appears to be a thermal contribution to the nonlinear behavior at the910nm wavelength.Non-linear absorptions were also observed with several of the samples,but again linear absorptions–and therefore thermal e?ects–appear to contribute to the behavior.

3.Conclusion

A number of phosphonium based RTILs have been synthesized,with optical and magnetic applications of these materials being the focus.The larger anions uti-lized along with their greater charges allow for develop-ment of massive ionic liquids which can exceed2000 g molà1formula weight.Most of the materials are liquid well below room temperature and stable up to400°C, and those which are glass at RT are still potentially interesting due to their glassy state.In fact,the phospho-nium cation[PC6C6C6C14]+actually results in an RTIL in conjunction with every anion attempted,with the exception of the ThY salt.Although viscosities are rather high compared to the more common RTILs,they still have?ow,and the viscosities can be tuned through modi?cation of the cation size and symmetry.Other properties such as their color(absorption)can be ad-justed through the use of the various conjugated organic anions as well as the inorganic metal–ligand complex anions.Additionally,preliminary experiments do show nonlinear refractive indices in most of the samples, and nonlinear absorption processes in several samples, suggesting these new ILs as potential novel optical materials.

4.Experimental

4.1.General techniques and reagents

The alkali metal salts Na(dtc)(Fluka),Li(NTf2)(Ald-rich),K(C4F9SO3)(Aldrich),Na[N(CN)2](Fluka), K[C(CN)3](Strem),K4[Fe(CN)6](Strem),Na4(CuPc) (Aldrich),and Na2(ThY)(ACROS)are all commer-cially available,and were used as received.The

Table4

VTF parameters for viscosities of[PC6C6C6C14]x[anion]xàRTILs

using Eq.(1)

[Anion]A B(K)T g(K)R2

[dtc]à0.02711531.1149.00.99992

[xan]à0.02271646.9143.60.99931

[K-salt]2à0.04771294.8154.50.99988

[dtmn]2à0.02101815.8140.80.99985

[Co(dtmn)2]2àa

[Ni(dtmn)2]2àa

[NTf2]à0.04271327.1144.90.99981

[C4F9SO3]àa

[C(CN)3]à0.07411108.0161.50.99985

[N(CN)2]à0.04231374.4145.80.99992

[Co(N(CN)2)4]2à0.07341132.7158.50.99992

[Co(NCS)4]2à0.01561983.8127.30.99994

[Co(NCSe)4]2à0.06271311.3152.30.99995

[Ni(NCS)6]2à0.03471467.5145.80.99993

[Fe(CN)6]4à0.00242704.4110.90.99932

[CoCB]à0.03081600.6155.80.99961

[CuPc(SO3)4]4àb

[ThY]2àb

a Could not?t data with VTF or other models.

b Wax/solid–did not obtain viscosity data.

R.E.Del Sesto et al./Journal of Organometallic Chemistry690(2005)2536–25422541

[PC6C6C6C14]Cl,[PC4C4C4C14]Cl,[PC4C4C4C4]Cl,and [PC8C8C8C8]Br salts were prepared by Cytec Specialty Chemicals,and dried under vacuum at90°C before being used.

For those that were not available,the K-salt[12], Na(xan)[13],Na2(dtmn)and Na2[M(dtmn)2][14]were synthesized by known methods.The Cs(CoCB)salt was provided by Los Alamos National Laboratory.

The metal complexes K2[Co(NCS/Se)4],K4[Ni-(NCS)6],and Na2[Co(N(CN)2)4]were made by simple substitution by reacting the MCl2salt with excess so-dium or potassium salts of the desired ligands in water. The aqueous solutions were used without isolation of the salt.

Viscosities of the samples were measured on a Cam-bridge Applied Systems ViscoLab4000Viscometer and measured over the range of20–90°C.The densities were determined by a Mettler–Toledo DE40Density Meter at20,45,60and80°C.Absorptions were meas-ured on an HP8452A diode array spectrophotometer, using neat samples in a0.01mm(10l m)etched quartz cuvette.Thermal characterization was carried out using a TA Instruments Q100DSC and SDT2960SDT-TGA. Alakli metal and halide impurities were determined using a Varian VistaPro ICP–OES with CCD detector. Water content of the RTILs was measured with a Mettler Toledo DL38Karl–Fischer titrator.

4.2.Metathesis reactions to synthesize RTILs

To make the[PR1R2R3R4]phosphonium RTILs from the above alkali metal salts(all except the dtc, dtmn,[C4F9SO3],and CoCB RTILs),metathesis reac-tions were carried out in which the[PR1R2R3R4]Cl(ex-cept in the case of the[PC8C8C8C8],which is only available as the Br salt)was dissolved in excess CHCl3 and added to an aqueous solution of the above salts. The solution was rapidly stirred for24h,and the organ-ic layer containing the RTIL product was separated and washed several times with water.The solvent was re-moved under vacuum,and the resulting RTIL dried at 90–120°C,typically for12h.

The dtc and dtmn RTILs were synthesized by mixing the[PR1R2R3R4]Cl and respective alkali metal salt in ethanol.The NaCl precipitate was?ltered,the ethanol evaporated,and the resulting crude RTIL puri?ed by redissolving in CHCl3and washing with water as above. The[C4F9SO3]and CoCB RTILs were made in a similar fashion except CHCl3and THF were the reaction sol-vents,respectively.Acknowledgments

This work was performed while R.E.D.S.held a National Research Council Associateship Award at USAFA.This research was funded by the Air Force Of-?ce of Scienti?c Research and the Air Force Research Laboratory.The authors thank Rebecca Chamberlin at LANL for the Cs[CoCB]salt.

References

[1]P.Wasserscheid,T.Welton(Eds.),Ionic Liquids in Synthesis,

Wiley–VCH,2003.

[2]J.S.Wilkes,J.Mol.Catal.A.214(2004)11.

[3]M.E.Van Valkenburg,R.L.Vaughn,M.Williams,J.S.Wilkes,in:

H.C.Delong,R.W.Bradshaw,M.Matsunaga,G.R.Sta?ord,

P.C.Trulove(Eds.),Molten Salts XIII,Proc.Electrochem.Soc., PV2002–19(2002)112–123.

[4](a)R.E.Del Sesto,D.S.Dudis,F.Ghebremichael,N.E.Heimer,

T.K.C.Low,J.S.Wilkes,A.T.Yeates,Proc.SPIE5212(2003) 292;

(b)A.T.Yeates,D.S.Dudis,J.S.Wilkes,Proc.SPIE4106(2000)

334.

[5]M.O.Wol?,K.M.Alexander,G.Belder,Chim.Oggi(2000)9.

[6](a)N.Karodia,S.Guise, C.Newlands,J.Andersen,Chem.

Commun.(1998)2341;

(b)D.E.Kaufmann,M.Nouroozian,H.Henze,Chem.Syn.Lett.

(1996)1091;

(c)J.McNulty,A.Capretta,J.Wilson,J.Dyck,G.Adjabeng,A.

Robertson,https://www.360docs.net/doc/b57213565.html,mun.(2002)1986.

[7](a)H.Chen, D.C.Kwait,S.Go¨nen, B.T.Weslowski, D.J.

Abdallah,R.G.Weiss,Chem.Mater.14(2002)4063;

(b)D.J.Abdallah,A.Robertson,H.Hsiu-Fu,R.G.Weiss,J.

Am.Chem.Soc.122(2000)3053.

[8]Viscosities were?t with SigmaPlot8.0Regression Wizard.

[9]U.Gubler,C.Bosshard,Adv.Polym.Sci.158(2002)123.

[10](a)H.Hou,X.Meng,Y.Song,Y.Fan,Y.Zhu,H.Lu,C.Du,

W.Shao,Inorg.Chem.41(2002)4068;

(b)H.Hou,H.G.Ang,S.G.Ang,Y.Fan,M.K.M.Low,W.Ji,

Y.W.Lee,Phys Chem.Chem Phys.1(1999)3145.

[11](a)e.g.C.Zhan,W.Xu,D.Zhang,D.Li,Z.Lu,Y.Nie,D.Zhu,

J.Mater.Chem.12(2002)2945;

(b)E.M.Garc?′a-Frutos,S.M.O?Flaherty,E.M.Maya,G.de la

Torre,W.Blau,P.Va′zquez,T.Torres,J.Mater.Chem.13(2003) 749;

(c)Z.Dai,X.Yue,B.Peng,Q.Yang,X.Liu,P.Ye,Chem.Phys.

Lett.317(2000)9;

(d)H.I.Elim,W.Ji,G.C.Meng,J.Ouyang,S.H.Goh,Chem.

Phys.Lett.366(2002)224.

[12](a)K.A.Jensen,O.Buchardt,C.Lohse,Acta Chem.Scand.21

(1967)2797;

(b)E.Freund,Ber.B52(1919)542.

[13]The salt Na(xan)was carried out in a procedure similar to that of

the K-salt,in which NaOH and CS2were added in a1:1ratio to a methanol solvent.

[14]A.Davison,R.H.Holm,Inorg.Synth.10(1967)8.

2542R.E.Del Sesto et al./Journal of Organometallic Chemistry690(2005)2536–2542

政府机关公文格式要求及排版(最新)

。 公文格式排版 一、设置页面(“页面布局”—“页面设置”) (一)“页边距” 1.页边距:上3厘米、下2.5厘米、左2.6厘米、右2.5厘米。 2.纸张方向:纵向。 (二)“纸张” 纸张大小:A4。 确保“每面排22行,每行排28个字,并撑满版心”。 二、设置标题 (一)“字体” 1.主标题:先设置字体为华文小标宋简体(或华文中宋、宋体),再设置字体为Times New Roman;字形,加粗;字号,二号。 2.副标题:字体,与主标题一致;字形,不加粗;字号,三号。 (二)“段落” 1.对齐方式:居中。 2.左侧右侧缩进均为0字符。 3.特殊格式:无。 4.段前段后间距均为0行。 5.行距:固定值,28磅。 (三)内容要求 1.标题可分一行或多行居中排布,回行时应排列对称、长短适宜、间距恰当;多行标题排列时应当采用梯形或菱形布局,不应采用上下长短一样的长方形或上下长中间短的沙漏形。 2.正式公文标题应要素完整,一般格式为“发文机关+关于××(事由)的+文种”。 3.标题回行时应词意完整,不能将词组拆开;发文机关名称应在第一行居中排布;最后一行不能将“的”与文种单独排列成行。 4.标题中除法规、规章名称可加书名号外,一般不用标点符号。 (四)标题与正文间隔 空一行,字号为五号,行距为最小值12磅。 三、设置正文 (一)“字体” 1.一级标题:字体,黑体;字形,不加粗;字号,三号。 2.二级标题:字体,楷体_GB2312(或楷体);字形,不加粗;字号,

三号。 3.三级标题、四级标题和五级标题:字体,仿宋_GB2312(或仿宋);字形,加粗;字号,三号。 4.其余正文(包括附件、落款、附注):字体,仿宋_GB2312(或仿宋);字形,不加粗;字号,三号。 5.正文各级各类字体设定完后,应再次选定全文,设置字体为Times New Roman。 (二)“段落” 1.对齐方式:两端对齐。 2.左侧右侧缩进均为0字符。 3.特殊格式:首行缩进,2字符。 4.段前段后间距均为0行。 5.行距:固定值,30磅。 (三)内容要求 1.主送机关(俗称“抬头”)居正文第一行单独成行,顶格不缩进。 2.一级标题、二级标题、三级标题、四级标题、五级标题依次采用“一、”、“(一)”、“1.”、“(1)”、“①”排序标注。 3.公文中引用文件时,应按规范将文件名称和发文字号写全,一般格式为“《关于××××的××》(××××〔××××〕××号)”,特别注意发文字号中必须使用六角括号“〔××××〕”。 4.附件在正文末下空1行,靠左缩进2字符排布;标准格式为“附件:1.××××”;附件名称不用书名号,结尾不加标点符号;单个附件不标注序号;多个附件用阿拉伯数字“1.”标注序号,并按顺序回行排列;回行时,序号与序号对齐,名称内容与内容对齐。 5.发文机关署名(俗称“落款”)在正文末(或附件末)下空1-3行(不盖章时空1行,盖章时空3行),靠右空2字符排布。 6.成文日期(俗称“落款日期”)在发文机关署名下一行靠右排布,以发文机关署名为准居中;标准格式为“××××年××月××日”,用阿拉伯数字将年、月、日标全,不编虚位。 7.用印时,公章应端正盖住发文机关署名,印章上部约三分之二压在空白处,印章上沿距正文最后一行文字空1行,印章下沿骑“年”盖“月”。 8.附注(上行文、平行文中用于标注联系人、联系电话)在成文日期下一行靠左缩进2字符排布;标准格式为“(联系人:×××;联系电话:××××)”。 9.正文中所有标点符号应在中文输入法模式下输入。数字、英文中使

微信小程序使用font-awesome图标

第九程序微信小程序使用font-awesome图标 下载font-awesome字体包 打开Transfonter网站,上传字体fontawesome-webfont.ttf(理论其它文件格式也可以转换,并未尝试),选择base64编码,convert后下载 下载得到的包中有style文件,打开后获得以下代码,并对照font-awesome.css 中的内容,加入到微信小程序的app.wxss文件中 @font-face { font-family: 'fa'; src: url(data:font/truetype;charset=utf-8;base64,AAEAAAANAIAAAwBQRkZU TXLOMIUAAlXMAAAAHEdERUYAJwKrAAJVrAAAAB5PUy8yiDJ6IwAAAVg AAABgY21hcJ0vdNQAAAw4AAADAmdhc3D//wADAAJVpAAAAAhnbHl mHejPwQAAGdQAAh3kaGVhZAbB4eAAAADcAAAANmhoZWEO+QqbA AAB......long long) format('truetype'); font-weight: normal; font-style: normal; } .fa { font-family: "fa" !important; font-size: 16px; -webkit-font-smoothing: antialiased; -webkit-text-stroke-width: 0.2px;

} /* makes the font 33% larger relative to the icon container */ .fa-lg { font-size: 1.33333333em; line-height: 0.75em; vertical-align: -15%; } .fa-2x { font-size: 2em; } //long long long........... 然后在小程序中使用class="fa fa-user"即可,如

seo工具大全(绝对干货)

脑图工具 ?MindManager ?在线脑图百度脑图 ?在线脑图 MindPin ?freemind 流程工具 ?visio ?在线流程 ProcessOn ?OmniGraffle ?亿图 edraw 数据统计 ?百度统计 ?友盟 ?CNZZ ?腾讯罗盘 趋势指数 ?百度指数 ?https://https://www.360docs.net/doc/b57213565.html,/ ?友盟指数 ?好搜指数 数据中心 ?互联网数据 ?数据大盘 ?电商数据 ?百度风云榜 ?流量研究院 ?百度指数 ?易观数据 ?优酷指数 ?数据挖掘 ?微数据 ?淘宝指数 ?数据魔方 产品文档

?原型里写产品文档 ?原型里写prd原件下载 ?word版prd文档 ?word版prd原件下载 原型工具 ?Axure ?Sketch ?在线原型墨刀 ?原型设计摩客 mockplus 团队协作 ?Redmine ?在线协作 worktile ?在线协作 teambition ?在线协作 Tower 创意设计网站 ?Reeoo ?UI中国 ?黄蜂网 ?爱果果 ?dribbble ?花瓣网 ?站酷 ?UI设计网 图标 ?Easyicon ?阿里巴巴矢量图标库 ?Findicons ?ionicons 字体 ?站长字体 ?字体宝库 ?A5字体 ?求字体在线查询字体 工具汇总

?网站流量查询 ?应用分析 APP Annie ?APP测试 ?云志日志数据分析 推送服务 ?个推 ?极光推送 ?百度推送 ?云巴推送 即时通讯 ?融云 ?环信 ?容联云 ?阿里悟空 其他 ?兑吧 app积分商城服务 ?七牛图片存储 ?阿里云 ?Ping++ 支付聚合 好了,整个活动的产品跟设计包括相应的测试都完成了,你终于要开始推广了。你发现,参与活动的人数太少了,得弄点流量,通知一些用户来参加。 首先是自媒体比较火,于是,你顺手收集了所有的自媒体媒体 各大媒体平台 ?微信公众平台:https://https://www.360docs.net/doc/b57213565.html, ?头条号 ?网易媒体号开放平台:https://www.360docs.net/doc/b57213565.html,/wemedia/login.html ?UC订阅号平台 ?百度发布平台 ?企鹅媒体平台:https://www.360docs.net/doc/b57213565.html,/userAuth/index ?搜狐公众平台 图文排版编辑器 ?新榜编辑器 ?i排版 ?秀米_图文排版 ?91微信编辑器

党政机关公文格式2012版(含式样)

党政机关公文格式 GB/T 9704—2012 目次 前言 1 范围 2 规范性引用文件 3 术语和定义 4 公文用纸主要技术指标 5 公文用纸幅面尺寸及版面要求 5.1 幅面尺寸 5.2 版面 5.2.1 页边与版心尺寸 5.2.2 字体和字号 5.2.3 行数和字数 5.2.4 文字的颜色 6 印制装订要求 6.1 制版要求 6.2 印刷要求 6.3 装订要求 7 公文格式各要素编排规则 7.1 公文格式各要素的划分 7.2 版头 7.2.1 份号 7.2.2 密级和保密期限 7.2.3 紧急程度 7.2.4 发文机关标志 7.2.5 发文字号

7.2.6 签发人 7.2.7 版头中的分隔线 7.3 主体 7.3.1 标题 7.3.2 主送机关 7.3.3 正文 7.3.4 附件说明 7.3.5 发文机关署名、成文日期和印章 7.3.5.1 加盖印章的公文 7.3.5.2 不加盖印章的公文 7.3.5.3 加盖签发人签名章的公文 7.3.5.4 成文日期中的数字 GB/T 9704—2012 7.3.5.5 特殊情况说明 7.3.6 附注 7.3.7 附件 7.4 版记 7.4.1 版记中的分隔线 7.4.2 抄送机关 7.4.3 印发机关和印发日期 7.5 页码 8 公文中的横排表格 9 公文中计量单位、标点符号和数字的用法 10 公文的特定格式 10.1 信函格式 10.2 命令(令)格式 10.3 纪要格式 11 式样

GB/T 9704—2012 前言 本标准按照GB/T 1. 1—2009给出的规则起草。 本标准根据中共中央办公厅、国务院办公厅印发的《党政机关公文处理工作条例》的有关规定对GB/T 9704—1999《国家行政机关公文格式》进行修订。本标准相对GB/T 9704—1999主要作如下修订: a)标准名称改为《党政机关公文格式》,标准英文名称也作相应修改; b)适用范围扩展到各级党政机关制发的公文; c)对标准结构进行适当调整; d)对公文装订要求进行适当调整; e)增加发文机关署名和页码两个公文格式要素,删除主题词格式要素,并对公文格式各要素的编排进行较大调整; f)进一步细化特定格式公文的编排要求; g)新增联合行文公文首页版式、信函格式首页、命令(令)格式首页版式等式样。 本标准中公文用语与《党政机关公文处理工作条例》中的用语一致。 本标准为第二次修订。 本标准由中共中央办公厅和国务院办公厅提出。 本标准由中国标准化研究院归口。 本标准起草单位:中国标准化研究院、中共中央办公厅秘书局、国务院办公厅秘书局、中国标准出版社。 本标准主要起草人:房庆、杨雯、郭道锋、孙维、马慧、张书杰、徐成华、范一乔、李玲。 本标准代替了GB/T 9704—1999。 GB/T 9704—1999的历次版本发布情况为: ——GB/T 9704—1988。

LOGO 的设计基本原则

标志设计(logo设计)的识别性 标志设计(logo设计)的领导性 标志设计(logo设计)的同一性 标志设计(logo设计)的造型性 标志设计(logo设计)的延展性 标志设计(logo设计)的系统性 标志设计(logo设计)的时代性 标志设计(logo设计)艺术与商业性 标志(logo)变体设计 标准字体的定义和意义 书法标准字体设计 装饰字体设计 英文标准字体设计 一.企业标志设计(logo设计)的特点 企业标志和其它标志符号一样,有其共性的一面,而作为企业识别系统的基本视觉元素又有其自身的特点,主要有以下几个方面: ㈠标志设计(logo设计)的识别性 识别性是企业标志(logo设计)的基本功能。借助独具个性的标志,来区别本企业及其产品的识别力,是现代企业市场竞争的“利器”。因此通过整体规划和设计的视觉符号,必须具有独特的个性和强烈的视觉冲击力,在CI设计中,标志是最具有企业视觉认知、识别和信息传达功能的设计要素。 ㈡标志设计(logo设计)的领导性 企业标志(logo设计)是企业视觉传达要素的核心,也是企业开展信息传达的主导力量。标志(logo)的领导地位是企业经营理念和经营活动的集中表现,贯穿和应用于企业的所有相关的活动中,不仅具有权威性,而且还体现在视觉要素的一体化和多样性上,其它视觉要素都以标志构成整体为中心而展开。 ㈢标志设计(logo设计)的同一性 标志(logo)代表着企业的经营理念、企业的文化特色、企业的规模、经营的内容和特点,因而是企业精神的具体象征。因此,可以说社会大众对于企业标志(logo)的认同等

于对企业的认同。企业标志绝不仅仅是企业的脸面,更不能将其作为一种表面的装饰以飨大众。一旦消费大众对标志的认同不能和企业的实际情况相联系,不仅企业标志(logo)失去应有的意义,甚至会损害企业的概念根本利益。因此,只有企业的经营内容或企业的实态与外部象征——企业标志(logo)相一致时,才有可能获得社会大众的一致认同。 ㈣标志设计(logo设计)的造型性 企业标志设计(logo设计)表现的题材和形式丰富多彩,如中外文字体、具象图案、抽象符号、几何图形形等,因此标志(logo)造型变化就显得格外活泼生动。标志(logo)图形的优劣,不仅决定了标志(logo)传达企业情况的效力,而且会影响到消费者对商品品质的信心与企业形象的认同。 ㈤标志设计的延展性 企业标志是应用最为广泛,出现频率最高的视觉传达要素,必须在各种传播媒体上广泛应用。标志图形要针对印刷方式,制作工艺技术,材料质地和应用项目的不同,采用多种对应性和延展性的变体设计,以产生切合、适宜的效果与表现。 ㈥标志设计的系统性 企业标志一旦确定,随之就应展开标志的精致化作业,其中包括标志与其他基本设计要素的组合规定。目的是对未来标志的应用进行规划,达到系统化、规范化、标准化的科学管理,从而提高设计作业的效率,保持一定的设计水平。此外,当企业视觉结构走向多样化的时候,可以用强有力的标志来统一各关系企业,采用统一标志不同色彩、同一外形不同图案或同一标志图案不同结构方式,来强化关系企业的系统化精神。 ㈦标志设计(logo设计)的时代性 因为标志(logo)是企业识别系统的核心,亦是企业同一化的象征。现代企业面对发展迅速的社会,日新月异的生活和意识形态,不断变化的市场竞争形势,其标志(logo)形态必须具有鲜明的时代特征。特别是许多老企业,有必要对现有标志(logo)形象进行检讨和改进,在保留旧有形象的基础上,采取清新简洁,明晰易记的设计形式,这样不仅使企业的标志(logo),具有鲜明的时代特征。通常,标志(logo)形象的更新约以10年为1期。它代表着企业求新求变、勇于创造、追求卓越的精神,避免企业的日益僵化,陈腐过时的形象。 第三节标志设计(logo设计) 一、标志设计(logo设计)艺术与商业性 在CI视觉识别系统中,标志设计(logo设计)不仅仅是一个图案设计、而是要创造

家具厂管理软件界面设计与实现

家具厂管理软件界面设计与实现 目录 摘要............................................... - 1 - 一、引言........................................... - 2 - 二、项目需求分析................................... - 2 - 三、项目设计....................................... - 2 - 3.1开发工具介绍 ..................................... - 2 - 3.2运用的相关技术.................................. - 4 - 3.3设计详情........................................ - 4 - 四、项目实现...................................... - 17 - 4.1实现思路....................................... - 17 - 4.2具体实现....................................... - 18 - 4.3模块效果....................................... - 25 - 五、总结.......................................... - 25 - 摘要 家具厂管理软件ios移动端应用是家具企业管理工厂必备的软件,该软件能够极大提高工作效率,实现了管理效益最大化,市场营销数据化,生产管理数据化等优势。该软件的商品查询及购买模块的界面设计与实现部分,可以根据需 - 1 -

政府机关公文格式要求及排版(最新)

政府机关公文格式要求及排版(最新) 政府机关公文格式要求及排版(最新)一、设置页面(“页面布局”—“页面设置”) (一)“页边距” 1.页边距:上3厘米、下2.5厘米、左2.6厘米、右2.5厘米。 2.纸张方向:纵向。 (二)“纸张” 纸张大小:A4。 确保“每面排22行,每行排28个字,并撑满版心”。 二、设置标题 (一)“字体” 1.主标题:先设置字体为华文小标宋简体(或华文中宋、宋体),再设置字体为Times New Roman;字形,加粗;字号,二号。 2.副标题:字体,与主标题一致;字形,不加粗;字号,三号。 (二)“段落” 1.对齐方式:居中。 2.左侧右侧缩进均为0字符。 3.特殊格式:无。 4.段前段后间距均为0行。 5.行距:固定值,28磅。 (三)内容要求 1.标题可分一行或多行居中排布,回行时应排列对称、长短适宜、间距恰当;多行标题排列时应当采用梯形或菱形布局,不应采用上下长短一样的长方形或上下长中间短的沙漏形。2.正式公文标题应要素完整,一般格式为“发文机关+关于××(事由)的+文种”。 3.标题回行时应词意完整,不能将词组拆开;发文机关名称应在第一行居中排布;最后一行不能将“的”与文种单独排列成行。 4.标题中除法规、规章名称可加书名号外,一般不用标点符号。 (四)标题与正文间隔 空一行,字号为五号,行距为最小值12磅。 三、设置正文 (一)“字体” 1.一级标题:字体,黑体;字形,不加粗;字号,三号。 2.二级标题:字体,楷体_GB2312(或楷体);字形,不加粗;字号,三号。 3.三级标题、四级标题和五级标题:字体,仿宋_GB2312(或仿宋);字形,加粗;字号,三号。4.其余正文(包括附件、落款、附注):字体,仿宋_GB2312(或仿宋);字形,不加粗;字号,三号。 5.正文各级各类字体设定完后,应再次选定全文,设置字体为Times New Roman。 (二)“段落” 1.对齐方式:两端对齐。 2.左侧右侧缩进均为0字符。 3.特殊格式:首行缩进,2字符。 4.段前段后间距均为0行。 5.行距:固定值,30磅。 (三)内容要求 1.主送机关(俗称“抬头”)居正文第一行单独成行,顶格不缩进。

前端架构体系技术

前端架构体系技术 一、框架与组件bootstrap等UI框架设计与实现 伸缩布局:grid网格布局 基础UI样式:元素reset、按钮、图片、菜单、表单 组件UI样式:按钮组、字体图标、下拉菜单、输入框组、导航组、面包屑、分页、标签、轮播、弹出框、列表、多媒体、警告 响应式布局:布局、结构、样式、媒体、javascript响应式 第三方插件:插件管理 jQuery、zepto使用原理以及插件开发 支持amd、cmd、全局变量的模块化封装

$.fn.method = function(){} mvc/mvvm框架原理设计 directive设计:html、text、class、html、attr、repeat、ref,可扩展 filter设计:bool、upperCase、lowerCase,可扩展 表达式设计:if-else等实现 viewmodel结构设计:例如数据,元素,方法的挂载与作用域 数据更变检测:函数触发,脏数据检测、对象hijacking polymer/angular2思想与设计思路

import技术 template和script引入方式css样式命名空间隔离 简单复用第三方库reactjs原理与使用 virtual dom单向数据绑定js执行语法方式 UI由状态控制commonJS/AMD/CMD

模块引入 模块定义 模块标识 UMD解决不同规范兼容性的问题,例如webpack封装模块懒执行(CMD)与与预执行(AMD) loadJs模块化加载原理与实现 创建script标签,需要id映射到资源url onload加载模块队列判断 全部加载完成后触发 加载失败问题优化

ionic自定义字体图标

ionic自定义图标 概述 Ionic 框架中内置了很多图标,我们只需要引用ionic icons 中的样式即可 Ionic tabs 示例工程中的tab 图标 但是有时我们需要自己的图标,因此我们需要定义自己的图标比如 原理 Ionic 中内置的所有图标,都是通过字体文件以css 样式的方式引入

@font-face { font-family: "Ionicons"; src: url("../fonts/ionicons.eot?v=1.5.2"); src: url("../fonts/ionicons.eot?v=1.5.2#iefix") format("embedded-opentype"), url("../fonts/ionicons.ttf?v=1.5.2") format("truetype"), url("../fonts/ionicons.woff?v=1.5.2") format("woff"), url("../fonts/ionicons.svg?v=1.5.2#Ionicons") format("svg"); font-weight: normal; font-style: normal; } 修改起来太麻烦 因此我们想要自己的图标,可以参照这种方式,定义自己的图标,自定义图标实际上就成 了自定义字体,归纳起来可分为三步 1这里我们需要自己准备svg格式的矢量图 2 生成字体文件 3 在CSS中引用字体文件 自定义图标操作步骤 A将要生成的图标做成svg格式详情可参见 https://www.360docs.net/doc/b57213565.html,/help/platform.html

最新党政机关公文格式要素

最新党政机关公文格式要素 作者:朱传春 新公文格式要素部分要素 版头 份号、密级和保密期限、紧急程度、发文机关标志、发文字号、签 发人 主体 标题、主送机关、正文、附件说明、发文机关署名、成文日期、印 章、附注、附件、 版记抄送机关、印发机关和印发日期 其他页码等 公文格式要素要素简述 份号份数序号,是将同一公文印制若干份时每份地顺序编号. 涉密公文才需标注份号. 一般用位号阿拉伯数字,顶格编排在版心左上角第一行. 密级和保密 期限 需标注密级(秘密、机密、绝密)和保密期限,一般用号黑体字,顶格编排在版心左上角第二行.保密期限中地数字用阿拉伯数字标注.(如“绝密★年”)“绝密”是最重要地国家秘密,泄露会使国家地安全和利益遭受特别严重地损害;(年上限,核心涉密人员管理) “机密”是重要地国家秘密,泄露会使国家地安全和利益遭受严重地损害;(年上限,重要涉密人员管理) “秘密”是一般地国家秘密,泄露会使国家地安全和利益遭受损害.(年上限,一般涉密人员管理) 紧急程度 紧急公文应当分别标注“特急”“加急”,电报应当分别标注“特提”“特急”“加急”“平急”.一般用号黑体字,顶格编排在版心左上角. 如需同时标注份号、密级(和保密期限)、紧急程度,按照份号、密级和保密期限、紧急程度地顺序自上而下分行排列. 发文机关标志 )由发文机关全称或者规范化简称加“文件”二字组成;)发文机关全称或者规范化简称. 联合行文:)同时标注发文机关名称,若加“文件”二字,则居右编排;)单独标注注办机关名称. 发文字号 由发文机关代字、年份、发文顺序号组成.联合行文时,使用主办机关地发文字号.如“沪府发〔〕号”. 有版头地标注在发文机关标志下,没有版头地标注在公文标题下; 上行文需要在发文字号同一行标注“签发人”,此时,发文字号左空一字编排,签发人有空一字编排. 签发人 上行文应当标注签发人姓名,由“签发人”三字加全角冒号和签发人姓名组成,居右空一字. 上行文标注签发人主要为了方便上级机关了解下级机关由谁对上报公文事项负责. 联合行文多个签发人时,第一个为主办机关签发人,一行两个,回行时与上一行对齐. 标题 完整地标题由发文机关名称、事由和文种组成,此三要素中“文种”必不可省略. 公文地标题除法规、规章名称加书名号外,一般不用标点符号.规章包括:规则、制度、章程、条例、办法、细则、规定、公约、守则等.

120款高效率推广运营策划常用工具(最新版)(1)(2)

120 款高效率推广、运营、策划常用工具 (不断更新中) 一、脑图工具 (2) 二、流程工具 (2) 三、数据统计 (2) 四、趋势指数 (2) 五、数据中心 (2) 六、产品文档 (2) 七、原型工具 (2) 八、短网址 (3) 九、在线云写作 (3) 十、创意设计网站 (3) 十一、图标 (3) 十二、字体 (3) 十三、工具汇总 (3) 十四、推送服务 (3) 十五、视频剪辑 (4) 十六、公关活动素材网站 (4) 十七、各大媒体平台 (4) 十八、图文排版编辑器 (4) 十九、微场景编辑器 (4) 二十、二维码生成器 (5) 二十一、高清图库平台 (5) 二十二、付费渠道 (5) 二十三、行业数据来源 (5) 二十四、场地选址网站 (5) 二十五、海报设计网站 (5) 二十六、在线问卷调查 (6) 二十七、数据查询网站 (6) 二十八、PPT 模板 (6) 二十九、活动发布平台 (6) 三十、广告投放 (6) 三十一、物料设计 (6) 三十二、行业视野 (6)

一、脑图工具 1)Mindjet:https://www.360docs.net/doc/b57213565.html,/ 2)百度脑图:https://www.360docs.net/doc/b57213565.html,/ 3)MindPin:https://www.360docs.net/doc/b57213565.html,/ 二、流程工具 1)isio:需下载 2)ProcessOn:实时在线免费使用 3)OmniGraffle:需下载 4)亿图edraw:https://www.360docs.net/doc/b57213565.html,/ 三、数据统计 1)百度统计:https://https://www.360docs.net/doc/b57213565.html,/ 2)友盟:https://https://www.360docs.net/doc/b57213565.html,/ 3)CNZZ:https://www.360docs.net/doc/b57213565.html,/ 4)腾讯罗盘:https://www.360docs.net/doc/b57213565.html,/ 四、趋势指数 1)百度指数:https://www.360docs.net/doc/b57213565.html,/ 2)淘宝指数:https://https://www.360docs.net/doc/b57213565.html,/ 3)友盟指数:https://https://www.360docs.net/doc/b57213565.html,/ 4)好搜指数:https://https://www.360docs.net/doc/b57213565.html,/ 五、数据中心 1)艾瑞咨询:https://www.360docs.net/doc/b57213565.html,/ 2)百度风云榜:https://www.360docs.net/doc/b57213565.html,/ 3)流量研究院:https://https://www.360docs.net/doc/b57213565.html,/ 4)百度指数:https://www.360docs.net/doc/b57213565.html,/ 5)易观数据:https://https://www.360docs.net/doc/b57213565.html,/ 6)优酷指数:https://www.360docs.net/doc/b57213565.html,/ 7)微数据:https://www.360docs.net/doc/b57213565.html,/ 9)数据魔方:https://www.360docs.net/doc/b57213565.html,/ 六、产品文档 1)原型里写产品文档 2)原型里写prd 原件下载 3)word 版prd 文档 4)word 版prd 原件下载 七、原型工具 1)Axure:需下载 2)墨刀:https://www.360docs.net/doc/b57213565.html,

LOGO的设计理念与方法

LOGO的设计理念与方法 标志创意设计的全过程,可以从五个环节(含意、图形、文字、形式、色彩)出发,疏而不漏、掐骨掐点。好比一只手的五个手指,各有各的妙用。它们相辅相成、自成体系,名为“创意五行”。创意五行,使标志设计明朗化、系统化,帮助你成为一个高效出色的设计师。 创意五行图 含义出发 图形出发 文字出发 形式出发 色彩出发 含义出发 在构思的时候,根据企业的行为特征和核心竞争力,我们需要为企业寻找一个恰当的视觉图形符号。根据各的历史文化信仰环境,采用象征性、比喻性、故事性,我们能使企业抽象的精神与理念,通过一个视觉载体表现出来。好的标志设计,能承载企业所力图传达的信息,并使抽象的理念精神形象化、具体化、大众化。 象征性 象征就是采用视觉图形符号,唤起人们对于某一抽象意义、观念或情绪的记忆。象征性标志,是建立在一个民族特定的文化和宗教基础上的、具有相同的生活环境的人,才能正确传达与理解其象征的意义。

象征符号具有约定性。好比做游戏,需要游戏规则。规则相同,才能使象征意义正确地发出和接受,使整个传达过程成立,而规则就是我们不同的历史文化宗教环境。东方文化和西方文化对于同一图形的象征意义有所不同,不同宗教对于同一图形的象征意义也有所不同。 在西方世界中,狮子象征权威与力量,狗象征忠诚与勇敢、牛象征勇猛与股市中的“牛市”。在中国仙鹤与松树象征长寿、蝙蝠象征福气、鱼象征富裕有余、牡丹象征荣华富贵。 比喻性 比喻就是采用一个或一组视觉符号,表达相平行的另一层相关含义。比喻建立在两者之间在性质或关系上的共性。 比喻性标志,借A说B,从侧面讲述问题,需要读者参与联想来完成整个设计的构思过程。这种图形表达方式,赋有趣味性与深刻性,并留有文化艺术的想象空间,传达效果出奇制胜。 故事性 故事性就是采用故事中的角色或符号,作为标志设计的无素,借用故事的广泛流传程度,传达企业的理念或行业特征,顺水推舟,顺势而动。基于大众对故事的认知程度,故事性的方法具有很好的传达效果。 图形出发 标志从图形分类出发,可以分为具象标志、象形标志和抽象标志。 具象标志 具象标志在选择题材时,要尽量采用那些人们熟悉的元素,并在此基础上创造个性成分。熟悉的元素能牵扯动人们视觉神经,引起人们共鸣,产生深刻记忆的基础。在我们周围有很多是现成标志,把原有的通俗元素引入进来,可以塑商品的亲切感,增加商品的个性与差异,这里有很多成功的先例。比如,壳牌石油、苹果电脑、骆驼牌香烟、番茄银行……这些国际品牌采用了世界上最为通俗的符号,使人们牢记它们的名字。 也许你会想,扇贝和石油有什么关系?苹果和电脑有什么关系?骆驼和香烟有什么关系?番茄和银行有什么关系?其实你大可一笑了之,最单纯的想法可能是最成功的创意。当时设计师的想法可能是最成功的创意。当时的设计师意图,只不过是寻找一个符号来区分商品。

React-Native文章react-native-scrollable-tab-view(进阶篇)

React Native系列文章(十 一)react-native-scrollable-tab-view(进阶篇) 很多情况下,官方的样式并不能满足我们的需求(备注:官方的样式是文字+下划线的风格),那么此时就需要我们自己来实现特定的样式。 本文要实现这样的效果: 一、准备工作 1.新建一个项目 react-native init Demo7 2.添加react-native-scrollable-tab-view npm install react-native-scrollable-tab-view --save

3.添加react-native-vector-icons > npm install react-native-vector-icons --save > rnpm link rnpm是一个React Native包管理器,我们也可以通过编辑 android/app/build.gradle 添加下面的行达到同样的目的: apply from: "../../node_modules/react-native-vector-icons/fonts.gradle" react-native-vector-icons介绍: 一个“图标”库,官方描述为‘3000 Customizable Icons for React Native with support for NavBar/TabBar/ToolbarAndroid, image source and full stying.’可见,这个库为我们提供了很多图标,如果你不想花费时间去设计一些图标,不妨使用这个库来替代。 有趣的是,这个库的图标来源有很多,下面大概列举了一些: Entypo by Daniel Bruce (411icons) EvilIcons by Alexander Madyankin & Roman Shamin (v1.8.0,70icons) FontAwesome by Dave Gandy (v4.6.3,634icons) Foundation by ZURB, Inc. (v3.0,283icons) Ionicons by Ben Sperry (v3.0.0,859icons) MaterialIcons by Google, Inc. (v2.2.3,932icons) Octicons by Github, Inc. (v3.5.0,166icons) Zocial by Sam Collins (v1.0,100icons) 其中用的最多的是Ionicons ,所以本篇文章的图标来源也就选择它了。 另外,react-native-vector-icons的用法非常的多,我们今天只会用到3个基本属性:

政府机关公文格式要求及排版(最新)

政府机关公文格式要求及排版(最新) 一、设置页面(“页面布局”—页“面设置”) (一)“页边距” 1.页边距:上3 厘米、下2.5 厘米、左2.6 厘米、右2.5 厘米。2.纸张方向:纵向。 (二)“纸张” 纸张大小:A4。 确保“每面排22 行,每行排28 个字,并撑满版心”。 二、设置标题 (一)“字体” 1.主标题:先设置字体为华文小标宋简体(或华文中宋、宋体),再设置字体为Times New Roma n;字形,加粗;字号,二号。 2.副标题:字体,与主标题一致;字形,不加粗;字号,三号。 (二)“段落” 1.对齐方式:居中。 2.左侧右侧缩进均为0 字符。 3.特殊格式:无。 4.段前段后间距均为0 行。 5.行距:固定值,28 磅。 (三)内容要求1.标题可分一行或多行居中排布,回行时应排列对称、长短适宜、间距恰当;多行标题排列时应当采用梯形或菱形布局,不应采用上下长短一样的长方形或上下长中间短的沙漏形。 2 ?正式公文标题应要素完整,一般格式为发文机关+关于XX(事由)的+文种” 3.标题回行时应词意完整,不能将词组拆开;发文机关名称应在第一行居中排布;最后一行不能将“的”与文种单独排列成行。 4 ?标题中除法规、规章名称可加书名号外,一般不用标点符号。 (四)标题与正文间隔空一行,字号为五号,行距为最小值12 磅。 三、设置正文 (一)“字体” 1?一级标题:字体,黑体;字形,不加粗;字号,三号。 2 ?二级标题:字体,楷体_GB2312 (或楷体);字形,不加粗;字号,三号。 3.三级标题、四级标题和五级标题:字体,仿宋_GB2312 (或仿宋);字形,加粗;字号, 三号。 4 ?其余正文(包括附件、落款、附注):字体,仿宋_GB2312 (或仿宋);字形,不加粗; 字号,三号。 5 ?正文各级各类字体设定完后,应再次选定全文,设置字体为Times New Roman。 (二)“段落” 1 ?对齐方式:两端对齐。 2 .左侧右侧缩进均为0字符。 3 ?特殊格式:首行缩进,2字符。 4 ?段前段后间距均为0行。 5 .行距:固定值,30磅。 (三)内容要求

网页常见图标用自定义字体实现

网页常见图标用自定义字体实现 Font Awesome 官网(fontawesome-webfont的字体):http://fortawesome.github.io/Font-Awesome/ 简介:让你可以即时定制的可伸缩矢量图标; 公有302种图标任你选择; 图标的风格,如:大小、颜色、阴影可以通过css样式修改; 支持ie6、7; 图例: demo: XML/HTML Code复制内容到剪贴板 <!DOCTYPE html> <html > <head> <meta charset="UTF-8" />

<meta name="author" content="@my_coder"> <title></title> <!-- 方法一:引入字体、图标样式 优点:直接引入css,在html里直接写入对应的css 样式名即可,不用查找css样式名对应的值 缺点:引入了没有用到的样式,代码冗余 <link rel="stylesheet" href="css/font-awesome.min.css" /> <link rel="stylesheet" href="css/font-awesome-ie7.min.css" /> 兼容ie6、7 --> <style type="text/css"> /* 方法二:自定义样式 优点:样式文件较小,只写自己需要的样式 缺点:需要查找每个样式对应的值,比较繁琐*/ @font-face { font-family: 'FontAwesome'; src: url('font/fontawesome-webfont.eot');

ionic2.0教程

Ionic既是一个CSS框架也是一个Javascript UI库。许多组件需要Javascript才能产生神奇的效果,尽管通常组件不需要编码,通过框架扩展可以很容易地使用,比如我们的AngularIonic扩展。 Ionic遵循视图控制模式,通俗的理解和Cocoa 触摸框架相似。在视图控制模式中,我们将界面的不同部分分为子视图或包含其他视图的子视图控制器。然后视图控制器“驱动”内部视图来提供交互和UI功能。一个很好的例子就是标签栏(Tab Bar)视图控制器处理点击标签栏在一系列可视化面板间切换。 浏览我们的API文档来了解视图控制器和Ionic中可用的Javascript实用工具。 Ionic 是目前最有潜力的一款HTML5 手机应用开发框架。通过SASS 构建应用程序,它提供了很多UI 组件来帮助开发者开发强大的应用。它使用JavaScript MVVM 框架和AngularJS 来增强应用。提供数据的双向绑定,使用它成为Web 和移动开发者的共同选择。 快速学习ionic也可以观看ionic免费视频教程Ionic教程 Ionic主要特点: 1.Ionic为性能而生-追求性能运行速度快 2.轻量级框架 3.Ionic完美的融合下一代移动框架AngularJS 基于Angularjs,支持Angularjs的特性,MVC ,代码易维护 4.漂亮的设计让你立马爱上它,通过SASS 构建应用程序,它提供了很多UI 组件来帮助开发者开发强大的应用。 5.Ionic让你看不出混合应用和原生的区别-专注原生 6.强大的命令行工具 7.基于angular语法简单易学

Ionic+Angularjs课程目录(更新中): 1.phonegap 结合crosswall 性能优化以及phonegap + Angularjs +ionic 介绍 2.第二讲ionic项目简介以及Angularjs 基础-html5 框架+Crosswalk 打包app以及angular基础介绍(1) 3.第二讲ionic项目简介以及Angularjs 基础-angularjs 指令表达式模块介绍(2) 4.第二讲ionic以及Angularjs 基础-angularjs $http请求数据以及angularjs filter简介(3) 5.第三讲Angularjs MVC 以及$scope作用域Angularjs模块的run方法以及依赖注入中代码压缩问题 6.第四讲Angularjs $scope里面的$apply方法和$watch方法 7.第五讲Angularjs 工具方法以及angularjs中使用jquery 8.第六讲Angularjs 事件指令input相关指令和样式指令DOM操作指令详解(1) 9.第六讲Angularjs 事件指令input相关指令和样式指令DOM操作指令详解(2) 10.第六讲Angularjs include指令详解(3)11.第七讲Angularjs filter过滤器以及自定义filter过滤器详解 12.第八讲Angularjs自定义服务provide里provider方法以及factory、service方法(1) 13.第八讲Angularjs自定义服务provide 供应商详解(2)

国家行政机关公文格式及模板

国家行政机关公文格式及模板 国家行政机关公文格式及模板 1范围 本标准规定了国家行政机关公文通用的纸张要求、印刷要求、公文中各要素排列顺序和标识规则. 本标准适用于国家各级行政机关制发的公文.其他机关可参照执行. 使用少数民族文字印制的公文,其格式可参照本标准按有关规定执行. 2引用标准 下列标准所包含的条文,通过在本标准中引用面成为本标准的条文.本标准出版时,所标版本均为有效.所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性. gb/t148-1997印制、书写和绘图纸幅面尺寸. 3定义 本标准采用下列定义 3.1字word 标识公文中横向距离的长度单位.一个字指一个汉字所占空间. 3.2行line 标识公文中纵向距离的长度单位.本标准以3号字高度加3号字高度7/8倍的距离为一基准行. 4公文用纸主要技术指标

公文用纸一般使用的纸张定量为60g/m2~80g/m2的胶版印刷纸或复印纸.纸张白度为85%~90%,横向折度≥15次,不透明度 ≥85%,ph值为7.5~9.5. 5公文用纸幅面及版面尺寸 5.1公文用纸幅面尺寸 公文用纸采用gb/t148中规定的a4型纸,其成品幅面尺寸为 210mm×297mm,尺寸允许偏差见gb/t148. 5.2公文页边与版心尺寸 公文用纸天头(上白边)为:37mm±1mm 公文用纸订口(左白边)为:28mm±1mm 版心尺寸为:156mm×225mm(不含页码) 6文中图文的颜色 未作特殊说明公文中图文颜色均为黑色. 7排版规格与印刷装订要求 7.1排版规格 正文用3号仿宋体字,一般每面排22行,每行28个字. 7.2制版要求 版面干净无底灰,字迹清楚无断划,尺寸标准,版心不斜,误差不超过1mm. 7.3印制要求 双面印刷;页码套正,两面误差不得超过2mm.黑色油墨应达到色谱所标bl100%,红色油墨应达到色谱所标y80%,m80%.印品着墨实,均匀;字面不花、不白、无断划. 7.4装订要求

相关文档
最新文档