第四讲 先进过程控制技术

第四讲  先进过程控制技术
第四讲  先进过程控制技术

第四讲先进过程控制技术

1工业生产过程的先进控制

1.1先进控制的概念

现代控制理论和人工智能几十年的发展已为先进控制奠定了应用理论基础,而DCS的普及与提高,则为先进控制的应用提供了强有力的硬件和软件平台。企业的需要、控制理论和计算机技术的发展是先进控制(Advanced Process Control)发展强有力的推动力。

先进控制是对那些不同于常规单回路PID控制,并具有比常规PID控制更好控制效果的控制策略的统称。先进控制的任务是用来处理那些采用常规控制效果不好,甚至无法控制的复杂工业过程控制的问题。其主要特点如下:

①与传统的PID控制不同,先进控制是一种基于模型的控制策略,如模型预测控制和推断控制等。目前,

基于知识的控制,如智能控制和模糊控制,正成为先进控制的一个重要发展方向。

②先进控制通常用于处理复杂的多变量过程控制问题。如大时滞、多变量耦合、被控变量与控制变量存

在着各种约束等。

③先进控制的实现需要足够的计算能力作为支持平台。随着DCS功能的不断增强,更多的先进控制策

略可以与基本控制回路一起在DCS上实现,有效地增强先进控制的可靠性、可操作性和可维护性。

从全厂综合自动化的角度看,先进控制恰好处在承上启下的重要地位。性能良好的先进控制是在线优化得以有效实施的前提,进而可将企业领导者的经营决策、生产管理和调度的有关信息及时落实至全厂生产装置的实际运行中,并可真正实现全厂综合优化控制。

1.2先进控制的核心内容

作为一个整体,先进控制系统应包括从数据采集处理、数学模型建立、先进控制策略到工程实施的全部内容。

1.2.1数据的采集、处理和软测量技术

利用大量的实测信息是先进控制的优势所在。由于来自工业生产现场的过程信息通常带有噪声,数据采集时应作滤波处理,采集到的数据还应进行过失误差的检测与识别和过程数据的有效性检验及数据调理工作,这是先进控制应用的重要保障。

基于可测信息和模型,实时计算不可测量的变量,即软测量技术,是先进控制中不可缺少的内容。

1.2.2多变量动态过程模型辨识技术

获取对象的动态数学模型是实施先进控制的基础。实际工业过程模型化是一项专门的技术,它涉及到过程动态学、系统辨识、统计学以及人工智能等多种知识。目前类似模型预测控制这样的先进控制策略均采用工业试验的方法来获取控制模型,而机理模型和智能模型建立也有望成为有效的控制模型。

1.2.3先进控制策略

先进控制采用了合理的控制目标和控制结构,可更好地适应工业生产过程的需要。先进控制主要解决:

①个别重要过程变量控制性能的改善,主要采用单变量模型预测控制与原控制回路构成所谓的“透明控

制”的方式

②解决约束多变量过程的协调控制问题,主要采用带协调层的多变量预测控制策略

③推断质量控制,利用软测量的结果实现闭环的质量卡边控制。涉及到的主要控制策略有模型预测控制、

推断控制、协调控制、质量卡边控制、统计过程控制,以及模糊控制、神经控制等。

1.2.4先进控制的实施

先进控制在实施时需要解决许多具体的工程问题:

①合理地选择被控的区域

②正确整定基本PID控制回路和先进控制系统

③合理限制控制变量的变化量和变化率,保证控制系统的平稳性和对不确定因素的鲁棒性

④建立良好的先进控制人机界面,确保在最常用的流程图画面上看到先进控制的信息,便于投用、维护

和操作

1.3先进控制工程化方法

要使先进控制达到预期的经济效益,必须严格地按一定的程序完成先进控制的工程化工作,而且与所选用的工作平台无关。其工程化主要步骤如下:

1.3.1定义目标

首先应将整个企业的目标细化为装置的目标、过程单元的目标以及最终主要过程装置的目标。

1.3.2分解目标至最底层

在一个装置内,应对各主要设备建立控制目标,从而将过程装置的目标分解至最底层的各个设备。

1.3.3识别先进控制的适用性

先进控制的适用性是指通过采用先进控制能否达到减少主要过程变量变化的预期目标。

1.3.4先进控制的效益/成本分析

效益/成本分析可以给出是否采用先进控制策略或应当采用哪种先进控制策略。

1.3.5制订功能标准

对每个要实施的先进控制算法必须规定其功能标准。

1.3.6先进控制的实现

在先进控制方案确定后,首先进行详细的工程设计,这些工程设计包括控制回路连接图、系统仪表配置一览表、先进控制操作界面等,最终生成可实现的控制软件。

1.3.7调试

调试是检验先进控制方案和生成的控制软件是否正确。

1.4先进控制的经济效益

关键的复杂的工业生产过程,通过实施先进控制,可以大大提高工业生产过程操作和控制的稳定性,改善工业生产过程动态性能,减少关键变量的操作波动幅度,使其更接近于优化目标值,从而将工业生产过程推向更接近装置约束边界条件下运行,最终达到增强工业生产过程的稳定性和安全性,保证产品质量的均匀性,提高目标产品的收率,提高生产装置的处理能力,降低生产过程运行成本以及减少环境污染等目的。

据国外统计,先进控制策略所取得的经济效益占整体效益的30%,原因是可以减少开工过渡时间,合理减少产品质量的裕度,提高了产品收率,延长开工周期,减少能耗等。

1.5先进控制面临的挑战

先进控制的广泛应用,为企业带来了显著的经济效益。另一方面,在实施先进控制的过程中,也会碰到许多富有挑战性的问题,反过来又促进先进控制向更高层次发展。目前在实现先进控制策略中面临如下几个主要问题:

1.5.1模型辨识的新工具

目前,为了完成象反应器这样的主要工业生产过程动态性能的测试,需要耗费数周的时间,给工程技术人员带来很大的工作量,迫切需要更好和更有效的过程动态响应测试和能更充分利用统计信息辨识出动态模型的方法。

1.5.2自适应模型预测控制

针对那些变增益的工业过程,如油品调合和PH控制等过程,需要应用自适应控制的思想来改进多变量模型预测控制器性能,例如模型参数预测等方法的研究和开发。

1.5.3非线性模型预测控制

普遍应用的模型预测控制软件包采用的是线性模型,在碰到内在非线性问题时,必须将其参数整定得以确保在整定操作区域内的稳定性,其后果是对许多操作区域的控制作用过于迟缓。为了根本解决这一问题,迫切需要非线性模型预测控制工程化软件。

1.5.4多元统计监控

随着计算机集成控制的广泛应用,大量信号和控制回路的集中管理监督和性能的评判,已成为工艺操作者的主要责任,如何加强计算机监控是当今现代工厂企业的重要内容。传统的统计过程控制在处理含有耦合变量的连续过程单元时,通常会导致错误。然而,随着主元分析(PCA)和部分最小二乘(PLS)技术的工程化应用研究开发,并进入到在线应用阶段,含PCA和PLS的多元统计监控的应用将会日益增多。

2智能控制系统

2.1智能控制概述

2.1.1控制理论的产生及其发展

自动控制理论作为一门学科,它产生于18世纪中叶英国的第一次技术革命。1765年,瓦特(Jams Wate,1736~1819)发明了蒸汽机,应用了离心式飞锤调速器原理控制蒸汽机,标志着人类以蒸汽为动力的机械化时代的开始。

美国著名的控制论创造人维纳(N. Wiener,1894~1964)于1948年发表了《控制论——或关于在动物和机器中控制和通讯的科学》著作,论述了控制理论的一般方法,为控制理论学科的产生奠定了基础。

随着生产的发展,控制技术也在不断地发展,尤其是计算机的更新换代,更加推动了控制理论不断地向前发展。控制理论的发展过程一般可分为三个阶段:

第一阶段:经典控制理论。20世纪40~60年代,经典控制理论主要是解决单输入单输出稳态,主要采用传递函数、频率特性、根轨迹为基础的频域分析方法。所研究的系统多是线性定常系统,对非线性系统,分析时采用的相平面法一般也不超过两个变量,经典控制理论能够较好地解决生产过程中的单输入单输出问题。

控制理论首先是从电子通讯工程中发展起来的。在四十年代,工业生产得到很大的发展,对自动控制和经典的控制理论都有很大的推动。在这期间自动控制技术和理论发展很快,达到了能够对单变量控制系统进行分析和设计的程度,并且开始逐步推广到其他工程技术领域中去。

第二阶段:现代控制理论。20世纪60~70年代,由于计算机的飞速发展,增强了计算和信息处理的能力,促进了控制理论向更复杂更严密的方向发展,推动了空间技术的发展。更由于航天及制导等的需要,逐渐向多变量及复杂控制系统理论推进,到六十年代开始形成现代控制理论。经典控制理论中的高阶常微分方程可转化为一阶微分方程组,用以描述系统的动态过程,即所谓状态空间法。这种方法可以解决多输入多输出问题,系统既可以是线性的、定常的,也可以是非线性的、时变的。

第三阶段:智能控制理论。20世纪70年代末至今,70年代末,控制理论向着“大系统系统”和“智能控制”方向发展,前者是控制理论在广度上的开拓,后者是控制理论在深度上的挖掘。“大系统系统”是用控制和信息的观点,研究各种大系统的结构方案、总体设计中的分解方法和协调等问题的技术基础理论;而“智能控制”是研究与模拟人类智能活动及其控制与信息传递过程的规律,研制具有某些仿人智能的工程控制与信息处理系统。

回顾控制理论的发展历程可以看出,它的发展过程反映了人类由机械化时代进入电气化时代,并走向自动化、信息化、智能自动化时代。

2.1.2智能控制理论的产生及其发展

1965年,美国著名控制论专家Zadeh创立了模糊集合论,为解决复杂系统的控制问题提供了强有力的数学工具;同年,美国著名科学家Feigenbaum着手研制世界上第一个专家系统;就在同年,傅京孙首先提出把人工智能中的直觉推理方法用于学习控制系统。1966年,Mendel进一步在空间飞行器的学习控制系统中应用了人工智能技术,并提出了“人工智能控制”概念。

70年代初,正式提出了智能控制就是人工智能技术与控制理论的交叉。

70年代中期,模糊控制形成。

80年代,随着计算机的迅速发展以及人工智能的重要领域——专家系统技术的逐渐成熟,使智能控制和决策的研究及应用领域逐步扩大,并取得了一批应用成果。1987年4月,美国Foxboro公司公布了新一代的IA系列智能自动控制系统,它体现了传感器技术、自动控制技术、计算机技术和过程知识在生产自动化应用方面的综合先进水平,它能够为用户提供安全可靠的最合适的过程控制系统,标志着智能控制系统由研制、

开发阶段转向应用阶段。

80年代中后期,神经网络的研究获得了重要进展,神经网络理论和应用研究为智能控制的研究起到了重要的促进作用。

90年代,智能控制的研究势头异常迅猛,1993年5月美国IEEE控制系统学会智能控制专业委员会成立专家小组,专门探讨“智能控制”的含义;1994年6月在美国召开了全球计算智能大会,将模糊系统、神经网络、进化计算三方面内容综合在一起召开,引起国际学术界的广泛关注。

我国今年来也十分重视智能控制理论和应用的研究。1993年在北京召开了“全球华人智能控制与智能自动化大会”,1994年召开了智能控制学术会议,1995年成立了中国智能自动化专业委员会。

2.1.3传统控制与智能控制

传统控制是经典控制和现代控制理论的统称,它们的主要特征是基于模型的控制,称为“模型论”。传统控制为了控制必须建模,而利用不精确的模型又采用某个固定控制算法,使整个控制系统置于模型框架下,缺乏灵活性、应变性,因此很难胜任对复杂系统的控制。

而智能控制的核心是控制决策,采用灵活机动的决策方式迫使控制朝着期望的目标逼近。智能控制的产生来源于被控系统的高度复杂性、高度不确定性及人们要求越来越高的控制性能,即概括为“三高三性”的产物,它的创立和发展需要对当代多种前沿学科、多种先进技术和多种科学方法,加以高度综合和利用。因此,智能控制是控制理论发展的高级阶段。

2.1.4智能控制论

维纳的控制论有三个最为基本而重要的概念:信息、反馈和控制,称为控制论的三要素。

智能控制就是具有智能信息处理、智能反馈和智能控制决策的控制方式,把这种以智能为核心的控制论称为智能控制论。

从智能控制论的观点去解决复杂不确定性系统的控制问题而设计的系统,就称为智能控制系统。或者这样定义:一个系统具有从周围环境自学习的能力,自动进行信息处理以减少其不确定性,能规划、产生并能安全、可靠地执行控制作用,这样的系统称为智能控制系统。

2.1.5智能控制系统的主要功能特点

①学习功能:能够对过程或环境的未知特征所固有的信息进行学习,并将得到的经验用于进一步的估计、分类、决策或控制。

②适应功能:智能控制系统可看成是不依赖模型的自适应估计,当系统的输入不是已经学习过的例子时,由于它具有插补功能,从而可以给出合适的输出,甚至当系统某些部分出现故障时,系统也能正常工作。

③组织功能:智能控制系统对于复杂的任务和分散的传感信息具有自行组织和协调的功能,即智能控制系统可以在任务要求的范围内自行决策、主动地采取行动。

2.2模糊控制

2.2.1模糊控制的概念

模糊自动控制是以模糊集合论、模糊语言变量及模糊逻辑推理为基础的一种计算机数字控制。它是基于专家经验和领域知识总结出若干条模糊控制规则,构成描述具有不确定性复杂对象的模糊关系,通过被控仙台输出误差及误差变化和模糊关系的推理合成获得控制量,从而对系统进行控制。

经典控制理论和现代控制理论设计一个控制系统,都需要事先知道被控对象精确的数学模型,然后根据数学模型以及给定的性能指标,选择适当的控制规律,进行控制系统设计。然而,在许多情况下被控对象的精确数学模型很难建立,尤其是对于非线性时变系统。

对于这些系统,若是有经验的操作人员进行手动控制,却可以收到令人满意的效果。因此人们又重新研究和考虑人的控制行为特点,让计算机模拟人的思维方式来进行决策控制。人的手动控制决策可以用语言加以描述,总结成一系列条件语句,即控制规则。运用计算机的程序来实现这些控制规则,计算机就起到了控制器的作用。于是,利用计算机取代人可以对被控对象进行自动控制。

2.2.2模糊控制的组成

模糊控制系统一般可以分为四个组成部分:

①模糊控制器

②输入/输出接口装置

③广义对象

④传感器

2.2.3模糊控制的应用

①蒸汽发动机系统:是一个双输入-双输出系统(发动机速度和锅炉压力)

②地铁自动驾驶系统:如1987年投用的日本仙台市地铁,停车精度达到了3.57 cm

③机器人:

2.3神经网络控制

2.3.1神经网络系统的概念

所谓神经网络系统是指利用工程技术手段模拟人脑神经网络的结构和功能的一种技术系统,它是一种大规模并行的非线性动力学系统。

2.3.2神经网络的特点

①分布式存贮信息的特点

②对信息的处理及推理的过程具有并行的特点

③对信息的处理具有自组织、自学习的特点

2.3.3神经网络控制的概念

所谓神经网络控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,以及同时兼有上述某些功能的适当组合,将这样的系统统称为基于神经网络的控制系统,称这种控制方式为神经网络控制。

神经网络不善于显式表达知识,但具有很强的逼近非线性函数的能力,即非线性映射能力。通过神经网络的学习算法,可实现神经网络的直接控制。

2.3.4神经网络在控制中的主要作用

①在基于精确模型的各种控制结构中充当对象的模型;

②在反馈控制系统中直接充当控制器的作用;

③在传统控制系统中起优化计算的作用;

④在与其他智能控制方法和优化算法,如模糊控制、专家控制及遗传算法等相融合中,为其提供非参数化对象模型、优化参数、推理模型及故障诊断等。

2.4专家控制

2.4.1专家控制的概念

所谓专家控制是指将专家系统的理论和技术同控制理论方法与技术相结合,在未知环境下,仿效专家的智能,实现对系统的控制。

专家系统是指相当于专家处理知识和解决问题能力的计算机智能软件系统,它不仅是独立的决策者,而且是具有获得反馈信息并能实时在线控制的系统。

2.4.2专家控制系统的组成

①数据库②规则库③推理机④人-机接口⑤规划环节

2.4.3专家控制系统的特点

①高可靠性及长期运行连续性②在线控制的实时性③优良的控制性能及抗干扰性

④使用的灵活性及维护的方便性

2.4.4专家控制的应用

专家控制在流程工业中已有许多成功的应用,在解决一些传统控制方法难以解决的问题方面,专家控制往往能较好地完成复杂的控制任务。

如循环流化床锅炉的实时专家控制系统,实现了控制床温稳定和维持主蒸汽压力稳定两个主要目标,并杜绝了结焦事故的发生,极大地减轻了操作人员的劳动强度,燃烧平稳,煤耗降低,取得了较好的经济效益和社会效益。

自主访问控制综述

自主访问控制综述 摘要:访问控制是安全操作系统必备的功能之一,它的作用主要是决定谁能够访问系统,能访问系统的何种资源以及如何使用这些资源。而自主访问控制(Discretionary Access Control, DAC)则是最早的访问控制策略之一,至今已发展出多种改进的访问控制策略。本文首先从一般访问控制技术入手,介绍访问控制的基本要素和模型,以及自主访问控制的主要过程;然后介绍了包括传统DAC 策略在内的多种自主访问控制策略;接下来列举了四种自主访问控制的实现技术和他们的优劣之处;最后对自主访问控制的现状进行总结并简略介绍其发展趋势。 1自主访问控制基本概念 访问控制是指控制系统中主体(例如进程)对客体(例如文件目录等)的访问(例如读、写和执行等)。自主访问控制中主体对客体的访问权限是由客体的属主决定的,也就是说系统允许主体(客体的拥有者)可以按照自己的意愿去制定谁以何种访问模式去访问该客体。 1.1访问控制基本要素 访问控制由最基本的三要素组成: ●主体(Subject):可以对其他实体施加动作的主动实体,如用户、进程、 I/O设备等。 ●客体(Object):接受其他实体访问的被动实体,如文件、共享内存、管 道等。 ●控制策略(Control Strategy):主体对客体的操作行为集和约束条件集, 如访问矩阵、访问控制表等。 1.2访问控制基本模型 自从1969年,B. W. Lampson通过形式化表示方法运用主体、客体和访问矩阵(Access Matrix)的思想第一次对访问控制问题进行了抽象,经过多年的扩充和改造,现在已有多种访问控制模型及其变种。本文介绍的是访问控制研究中的两个基本理论模型:一是引用监控器,这是安全操作系统的基本模型,进而介绍了访问控制在安全操作系统中的地位及其与其他安全技术的关系;二是访问矩阵,这是访问控制技术最基本的抽象模型。

DCS中的先进控制技术

DCS中的先进控制技术 dcs在控制上的最大特点是依靠各种控制、运算模块的灵活组态,可实现多样化的控制策略以满足不同情况下的需要,使得在单元组合仪表实现起来相当繁琐与复杂的命题变得简单。随着企业提出的高柔性、高效益的要求,以经典控制理论为基础的控制方案已经不能适应,以多变量预测控制为代表的先进控制策略的提出和成功应用之后,先进过程控制受到了过程工业界的普遍关注。需要强调的是,广泛应用各种先进控制与优化技术是挖掘并提升DCS综合性能最有效、最直接、也是最具价值的发展方向。 在实际过程控制系统中,基于PID控制技术的系统占80%以上,PID回路运用优劣在实现装置平稳、高效、优质运行中起到举足轻重的作用,各DCS厂商都以此作为抢占市场的有力竞争砝码,开发出各自的PID自整定软件。另外,根据DCS的控制功能,在基本的PID算法基础上,可以开发各种改进算法,以满足实际工业控制现场的各种需要,诸如带死区的PID控制、积分分离的PID控制、微分先行的PID控制、不完全微分的PID控制、具有逻辑选择功能的PID 控制等等。 与传统的PID控制不同,基于非参数模型的预测控制算

法是通过预测模型预估系统的未来输出的状态,采用滚动优化策略计算当前控制器的输出。根据实施方案的不同,有各种算法,例如,内模控制、模型算法控制、动态矩阵控制等。目前,实用预测控制算法已引入DCS,例如IDCOM控制算法软件包已广泛应用于加氢裂化、催化裂化、常压蒸馏、石脑油催化重整等实际工业过程。此外,还有霍尼韦尔公司的HPC,横河公司的PREDICTROL,山武霍尼韦尔公司在TDC-3000LCN系统中开发的基于卡尔曼滤波器的预测控制器等等。这类预测控制器不是单纯把卡尔曼滤波器置于以往预测控制之前进行噪声滤波,而是把卡尔曼滤波器作为最优状态推测器,同时进行最优状态推测和噪声滤波。 先进控制算法还有很多。目前,国内、外许多控制软件公司和DCS厂商都在竞相开发先进控制和优化控制的工程软件包,希望在组态软件中嵌入先进控制和优化控制策略。

网络攻击机制和技术发展综述

网络攻击机制和技术发展综述 一、概述 在这个世界上,人类不断研究和发展新的信息安全机制和工程实践,为战胜计算机网络安全威胁付出了艰巨的努力。似乎如果计算机攻击手法不再翻新,关于信息安全的战争将很快结束。虽然,大多数地下组织研究的攻击手法都是惊人的相似,无非就是:蠕虫、后门、rootkits、DoS和sniffer等。但这些手段都体现了它们惊人的威力。到今年,情况愈演愈烈。这几类攻击手段的新变种,与去年前年出现的相比,更加智能化,攻击目标直指互联网基础协议和操作系统层次。从web程序的控制程序到内核级rootkits,黑客的攻击手法不断升级翻新,向用户的信息安全防范能力不断发起挑战。 (注:rootkits, 是一种攻击脚本、经修改的系统程序,或者成套攻击脚本和工具,用于在一个目标系统中非法获取系统的最高控制权限。) 在长期与信息安全专家的较量中,黑客对开发隐蔽的计算机网络攻击技术更加得心应手。同时,这些工具应用起来也越来越简单。以前很多命令行的攻击工具被人写成了GUI(图形界面)的内核级rootkit,将这些高度诡异的攻击武器武装到了那些热中于”玩脚本的菜鸟”手中,这些杀伤力很强的黑客工具,使”脚本菜鸟”们变得象令人敬畏的黑客。 当然,工具本身是不会危及系统安全的-坏事都是人干的。信息安全专业人员也使用和入侵者同样使用的扫描和监听工具,对系统安全做例行公事般地审计。在恶意用户使用前,那些能非法控制web程序的新的渗透测试工具,也被安全人员用来测试系统的漏洞。但是,还有很多的工具有它完全黑暗的一面,比如,蠕虫程序不断发展和传播,它只用来干坏事;反入侵检测工具和很多rootkits专门用来破坏系统的安全性。 本文将探讨一些黑客工具的独创性,以及它们令普通人惊讶的功能。这对帮助用户考虑采用新技术和传统措施来防范这些威胁有很重要的意义:在攻击者攻击来临之前,先检测和修补系统和软件漏洞。 二、Web应用程序:首选目标 日益增长的网络业务应用为脆弱的web应用提供了漏洞滋生的土壤。如银行、政府机构和在线商务企业都使用了web技术提供服务。这些机构往往自己开发整套的web应用程序(ASP、JSP和CGI等),而这些开发者由于没有获得过专业训练,导致这些自产软件漏洞百出。Web程序的开发者没有意识到,任何传递给浏览器的信息都可能被用户利用和操纵。不管用不用SSL(安全套接层),恶意用户可以查看、修改或者插入敏感信息(包括价格、会话跟踪信息甚至是脚本执行代码)。攻击者可以通过状态操纵攻击或者SQL代码嵌入等技术危及电子商务网站的安全。 所谓状态操纵攻击(state manipulation), 是指攻击者通过在URL中修改传递给浏览器的敏感信息,隐藏表格元素和cookies,达到非法访问的目的。如果一个安全意识松懈的web开发者,他把数据存储在会话ID中,而没有考虑到价格和余额等关键数据的完整性保护,则攻击者完全可以修改这些数据。再加上如果web程序相信由浏览器传递过来的数据,那么攻击者完全可以窃取用户帐号、修改价格或者修改帐户余额。 所谓SQL代码嵌入(SQL injection),是指攻击者在普通用户输入中插入数据库查询指令。这些问题相当多情况下是因为输入检验不严格和在错误的代码层中编码引起的,如对逗号”,”和分号”;”等。在这种情况下,攻击者可以对数据库进行查询、修改和删除等操作,在特定情况下,还可以执行系统指令。一般情况下,web网页上的用户名表单往往是这类攻击的入口。如果攻击者使用Proxy server执行这类操作,管理员将很难查到入侵者的来源。而要防止这类攻击,必须在自研软件开发程序上下手整治,形成良好的编程规范和代码检测机制,仅仅靠勤打补丁和安装防火墙是不够的。关于SQL Injection更多的详细信息,请参考:https://www.360docs.net/doc/b87662579.html,/article/db/2412.htm

先进过程控制及其应用期末课程总结论文

先进控制技术及其应用 随着工业生产过程控制系统日趋复杂化和大型化,以及对生产过程的产品质量、生产效率、安全性等的控制要求越来越严格,常规的PID控制已经很难解决这些具有多变量、强非线性、高耦合性、时变和大时滞等特性的复杂生产过程的控制问题[]。 自上世纪50年代逐渐发展起来的先进控制技术解决了常规PID控制效果不佳或无法控制的复杂工业过程的控制问题。它的设计思想是以多变量预估为核心,采用过程模型预测未来时刻的输出,用实际对象输出与模型预测输出的差值来修正过程模型,从而把若干个控制变量控制在期望的工控点上,使系统达到最佳运行状态。目前先进控制技术不但在理论上不断创新,在实际生产中也取得了令人瞩目的成就。下面就软测量技术、内模控制和预测控制做简要阐述。 1.软测量技术 在生产过程中,为了确保生产装置安全、高效的运行,需要对与系统的稳定及产品质量密切相关的重要过程变量进行实时控制。然而在许多生产过程中,出于技术或经济上的原因,存在着很多无法通过传感器测量的变量,如石油产品中的组分、聚合反应中分子量和熔融指数、化学反应器反应物浓度以及结晶过程中晶体粒直径等。 在实际生产过程中,为了对这类变了进行实施监控,通常运用两种方法: 1).质量指标控制方法:对与质量变量相关的其他可测的变量进行控制,以达到间接控制质量的目的,但是控制精度很难保证。 2).直接测量法:利用在线分析仪表直接测量所需要的参数并对其进行控制。缺点是在线仪表价格昂贵,维护成本高,测量延迟大,从而使得调节品质不理想。 软测量的提出正是为了解决上述矛盾。 软测量技术的理论根源是20世纪70年代Brosilow提出的推断控制,其基本思想是采集过程中比较容易测量的辅助变量(也称二次变量),通过构造推断器来估计并克服扰动和测量噪声对主导过程主导变量的影响。因此,推断估计器的设计是设计整个控制系统的关键。 软测量器的设计主要包括以下几个方面: 1)机理分析和辅助变量的选择。 首先是明确软测量的任务,确定主导变量。在此基础上深入了解和熟悉软测量对象及有关装置的工艺流程,通过分析确定辅助变量。 2)数据采集和预处理 采集被估计变量和原始辅助变量的历史数据包含了工业对象的大量相关信息,因此数据采集越多越好。但是为了保证软测量精度和数据的正确性以及可靠性,采集的数据必须进行处理,包括显著误差检测和数据协调,及时剔除无效的数据。 3)软测量建模 软测量模型是建立是软测量技术的核心。软测量建模的方法多种多样,一般可分为:机理建模、回归分析、状态估计、模式识别、人工神经网络、模糊数学和现代非线性系统信息处理技术等。 此外还有混合模型,如图1所示的软测量模型就是结合了BP网络、RBF网络和部分最小二乘法建立的混合模型[5]。 4)软测量模型的在线校正 图1 软测量模型

自动化在日常生活中的应用与展望

自动化在日常生活中的应用与展望 一、摘要:本文简要介绍自动化技术的基本概念、发展、应用和未来展望。随着信息技术的发展,特别是网络技术的发展,正在改变着人类若干世纪以来形成的信息传递及生活方式,是现代人们的生活得到了很大的便利。而且我相信,随着我们勤劳智慧的地球人的不断努力和奋斗,自动化控制技术在不久的将来将会得到更加广泛的应用。 二、关键词:自动化控制技术概念现代应用未来发展 三、内容: 1、概念:所谓自动化(Automation),是指机器或装置在无人干预的情况下,按规定的程序或指令自动的进行操作或运行。广义地讲,自动化还包括模拟或在现人的智力活动。自动化主要是人造系统的问题,如工厂中的机床、飞行器的飞行姿态控制等。而相比之下自动控制的概念就要广泛一些,它不仅设计人造系统问题,还涉及社会的方方面面,如环境的控制、人口的控制、经济的控制。以上是对自动化及自动化控制技术的简单认识。 2、应用:自动化技术的发展历史,大致可以划分为自动化技术的形成、局部自动化和综合自动化三个时期。 1788年英国机械师J.瓦特发明离心式调速器(又称飞球调速器),代表着自动化技术的形成时期。第二次世界大战时期的经典控制理论对战后发展局部自动化起了重要的促进作用。而20世纪50年代末空间技术迅速发展,迫切需要解决多变量系统的最优控制问题,于是综合自动化技术应运而生。 现在自动化技术应用于很多方面,例如,机械加工、采矿冶炼、交通系统、军事技术、航空航天、农业生产、环境保护、科学研究、办公服务等领域。其中汽车工业的工厂自动化控制,采用一贯作业的生产方式,借着整条生产线的分工装配,没几分钟即可生产一部汽车。纺织工业的工厂自动化控制,亦采用一贯作业的生产方,没几分钟即可高速生产一批布料。塑料工业的工厂自动化控制,亦采用一贯作业的生产方式,产出塑料原料后,在经过射出成型机器,产出各种所料模型。机械制造的工厂自动化控制,通过柔性制造系统,是一台机器能生产符合要求的不同的零件,由数控机床、材料和工具自动运输设备产品,自动检测等实验设备真正实现“无人工厂”。 不仅在机械生产中,自动控制系统还大量出现在飞行器和交通设备的控制上,如导弹、航天飞机、火车等。由于技术的发展,如今飞行器的速度已远远不能靠人类的大脑反应来控制,这就需要自动控制系统。 在工业上,计算机集成制造系统使自动化无人工厂成为现实。 自动化正在与其它学科相互交融,朝着更多的应用领域延伸,例如:经济控制论的形成直接推动了国民经济的发展;人口控制论的研究,为计划生育工作决策起到很大作用;环境系统工程已经成为世界性的大课题,人类为了生存与发展,必须采取各种措施来改变环境,自动化理论与技术在这方面大有作为;另外在国际关系领域、军事领域以及社会治安综合治理等领域,均离不开自动化学科的介入及其研究成果的应用。 3、展望:自动化技术发展日新月异,特别是随着现代计算机技术的发展,自动化及自动化控制技术有了更广阔的前景。例如,在交通方面,现在汽车的普及速度之快,已经接近了平民化,它不再是一种奢侈的享受,但是由此而引发的

通用运动控制技术现状、发展及其应用

作者:蒋仕龙吴宏吕恕龚小云(固高科技(深圳)有限公司深圳518057 )摘要:运动控制技术的发展是制造自动化前进的旋律,是推动新的产业革命的关键技术。运动控制器已经从以单片机或微处理器作为核心的运动控制器和以专用芯片(ASIC)作为核心处理器的运动控制器,发展到了基于PC 总线的以DSP 和FPGA 作为核心处理器的开放式运动控制器。运动控制技术也由面向传统的数控加工行业专用运动控制技术而发展为具有开放结构、能结合具体应用要求而快速重组的先进运动控制技术。基于网络的开放式结构和嵌入式结构的通用运动控制器逐步成为自动化控制领域里的主导产品之一。高速、高精度始终是运动控制技术追求的目标。充分利用DSP 的计算能力,进行复杂的运动规划、高速实时多轴插补、误差补偿和更复杂的运动学、动力学计算,使得运动控制精度更高、速度更快、运动更加平稳;充分利用DSP 和FPGA 技术,使系统的结构更加开放,根据用户的应用要求进行客制化的重组,设计出个性化的运动控制器将成为市场应用的两大方向。关键词:运动控制技术,运动控制器,点位控制,连续轨迹控制,同步控制 1 通用运动控制技术的发展现状运动控制起源于早期的伺服控制(Servomechanism)。简单地说,运动控制就是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动。早期的运动控制技术主要是伴随着数控(CNC)技术、机器人技术(Robotics)和工厂自动化技术的发展而发展的。早期的运动控制器实际上是可以独立运行的专用的控制器,往往无需另外的处理器和操作系统支持,可以独立完成运动控制功能、工艺技术要求的其他功能和人机交互功能。这类控制器可以成为独立运行(Stand-alone)的运动控制器。这类控制器主要针对专门的数控机械和其他自动化设备而设计,往往已根据应用行业的工艺要求设计了相关的功能,用户只需要按照其协议要求编写应用加工代码文件,利用RS232或者DNC 方式传输到控制器,控制器即可完成相关的动作。这类控制器往往不能离开其特定的工艺要求而跨行业应用,控制器的开放性仅仅依赖于控制器的加工代码协议,用户不能根据应用要求而重组自己的运动控制系统。通用运动控制器的发展成为市场的必然需求。由国家组织的开放式运动控制系统的研究始于1987 年,美国空军在美国政府资助下发表了著名的“NGC(下一代控制器)研究计划”,该计划首先提出了开放体系结构控制器的概念,这个计划的重要内容之一便是提出了“开放系统体系结构标准规格(OSACA)”。自1996年开始,美国几个大的科研机构对NGC 计划分别发表了相应的研究内容[3],如在美国海军支持下,美国国际标准研究院提出了“EMC(增强型机床控制器)”;由美国通用、福特和克莱斯勒三大汽车公司提出和研制了“O MAC(开放式、模块化体系结构控制器)”,其目的是用更开放、更加模块化的控制结构使制造系统更加具有柔性、更加敏捷。该计划启动后不久便公布了一个名为“OMAC APT”的规范,并促成了一系列相关研究项目的运行。通用运动控制技术作为自动化技术的一个重要分支,在20 世纪90 年代,国际上发达国家,例如美国进入快速发展的阶段。由于有强劲市场需求的推动,通用运动控制技术发展迅速,应用广泛。近年来,随着通用运动控制技术的不断进步和完善,通用运动控制器作为一个独立的工业自动化控制类产品,已经被越来越多的产业领域接受,并且它已经达到一个引人瞩目的市场规模。根据ARC 近期的一份研究,世界通用运动控制(General MotionControl GMC)市场已超过40 亿美元,并且有望在未来5 年内综合增长率达到6.3%。目前,通用运动控制器从结构上主要分为如下三大类:⑴基于计算机标准总线的运动控制器,它是把具有开放体系结构,独立于计算机的运动控制器与计算机相结合构成。这种运动控制器大都采用DSP 或微机芯片作为CPU,可完成运动规划、高速实时插补、伺服滤波控制和伺服驱动、外部I/O 之间的标准化通用接口功能,它开放的函数库可供用户根据不同的需求,在DOS 或WINDOWS 等平台下自行开发应用软件,组成各种控制系统。如美国Deltatau 公司的PMAC 多轴运动控制器和固高科技(深圳)有限公司的GT 系列运动控制器产品等。目前这种运动控制器是市场上的主流产品。⑵Soft 型开放式运动控制器,它提供给用户最大的灵活性,它的运动控制软件全部装在计算机中,而硬件部分仅是计算机与伺服驱动和外部I/O 之间的标准化通用接口。就像计算机中可以安装各种品牌的声

智能控制技术现状与发展

摘要:在此我综述智能控制技术的现状及发展,首先简述智能控制的性能特点及主要方法;然后介绍智能控制在各行各业中的应用现状;接着论述智能控制的发展。智能控制技术的主要方法,介绍了智能控制在各行各业中的应用。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 关键词:智能控制应用自动化 浅谈智能控制技术现状及发展 在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 一、智能控制的性能特点及主要方法 1.1根据智能控制的基本控制对象的开放性,复杂性,不确定性的特点,一个理想的智能控制系统具有如下性能: (1)系统对一个未知环境提供的信息进行识别、记忆、学习,并利用 积累的经验进一步改善自身性能的能力,即在经历某种变化后,变化后的

先进控制技术在DCS系统中的应用

先进控制技术在DCS系统中的应用 发表时间:2018-05-28T10:09:34.313Z 来源:《电力设备》2018年第1期作者:邵才俊 [导读] 摘要:DCS在其性质上属于一种分布式控制系统,在具体的使用过程中可以发挥出一定的集散控制作用,在系统当中主要是集合了计算机技术、控制技术、通讯技术以及网络技术等。 (江苏国信协联能源有限公司江苏无锡 214203) 摘要:DCS在其性质上属于一种分布式控制系统,在具体的使用过程中可以发挥出一定的集散控制作用,在系统当中主要是集合了计算机技术、控制技术、通讯技术以及网络技术等。技术人员在对层面进行控制的过程中需要采取分散控制的方式来进行,另外,在对生产装置进行管理的过程中需要进行集中管理。在DCS系统中,要想使系统可以实现一定的数字控制功能,技术人员需要对系统的规模进行不断扩大,同时在使用功能方面也需要不断增加,这样才能使DCS系统在实际的使用过程中可以发挥出更有意义的使用价值。 关键词:先进控制技术;DCS系统;应用 1先进控制技术的意义 目前,我国加强了对DCS系统的管理工作,并为DCS系统在未来的发展提供了良好的发展前景。通过对先进控制技术的不断优化和完善,可以使企业在生产的过程中获得更多的经济效益,从而使企业在激烈的市场竞争中实现更加长远的发展。随着现代控制理论的发展以及人工智能的广泛应用,为先进控制技术的发展起到了良好的促进作用。先进控制技术在使用的过程中,主要是应用了数学原理,然后在计算机技术运行的基础上实现相应的控制工作。先进控制技术与一般的PID技术相比存在着一定的差异,先进控制技术在使用的过程中可以获得比较大的经济效益,同时具备非常完善的控制措施,可以为最终参数的准确性提供良的保障。而其他技术在应用的过程中可能会面临一些突发性的事件,因为工业系统在整体上不具备稳定性,很多问题没有办法进行准确的预测。因此,一般的控制技术在使用的过程中还无法实现对工业系统问题的有效处理,而采用先进控制技术就可以对整个工业系统实现合理有效的控制。 2先进控制技术的发展现状 当一个施工单位或者是生产企业采用PID控制技术对系统进行处理的过程中,主要是融合了经典理论的前提条件下来进行的。PID控制技术目前在很多行业中有着非常广泛的使用和推广,而在现代化的工业生产过程中DCS系统有着非常广泛的使用,大部分工业系统的稳定运行以及合理性的操作可以采用PID技术进行控制和维护,这种方式在操作的过程中比较简单,并且也很容易被行业认可和接收。随着我国科学技术的不断发展,控制技术在其机构以及作用上有了很大的改进和完善,并在应用规模上也在逐渐的扩大。在我国的工业系统进行生产的过程中,一般情况下会出现很多化学以及生物反应,在反应的过程中可以对物质以及能量进行有效的传递和转换,工业生产在整体上呈现了一定的复杂性,其中会涉及到很多方面的内容和知识,并且其中还存在着很多不确定性因素,信息的不完善以及非线性特征等,正是因为存在这些问题导致先进控制技术在工业化发展中受到了非常严重的阻碍,同时这也是目前工业生产所面临的核心问题,这会对产品的质量以及生产效率造成非常严重的影响。面对这种现象,工业生产应该逐渐面向大型或者是连续性的方向不断发展,通过对技术方面的有效完善,可以对生产过程中存在的整体性问题以及实时性问题进行合理有效的解决。也就是说,为了使DCS系统的协调性可以实现有效的提升,同时对工业生产过程中进行不断的优化,这就需要采用先进控制技术,从而才能对生产过程中出现的复杂性问题进行有效的解决。 3先进控制技术在DCS控制系统中的应用 3.1自适应控制 就自适应控制技术而言,它在DCS控制系统中的应用主要包含以下几种形式。第一,自校正调节器控制系统。该系统的组成要素主要包含可调控制器、对象参数估计器、控制器参数计算系统以及控制对象。在实际控制过程中,该系统可以借助对象参数估计器,将处于运行状态的控制对象当前参数估计出来,并将其传输至控制器参数计算模块中。该模块得出计算结果之后,会根据结果调整控制对象的参数。当控制对象运行一段时间后,如果调整参数并不适用,整个参数计算流程将再次循环,从而得出新的参数计算结果,然后由可调控制器记录并用于控制对象中。该系统的自动校正功能有效保证了最终控制决策的有效性。第二,模型参考自适应控制系统。该系统由反馈控制器、参考模型以及调整控制器等部分组成。其中,参考模型是影响该系统控制质量的主要因素。 3.2智能控制 典型的智能控制主要包含神经网络和专家系统等。就神经网络而言,它的应用优势主要包含鲁棒性强、可以自动学习、可实现大规模并行处理等。为了优化DCS控制系统的性能,可以将CMAC神经网络应用在DCS控制系统中,以优化DCS控制系统的主蒸汽温度控制功能。具体原理:协调器利用预先设定值及企业中控制对象(主蒸汽温度)的实际输出参数,计算符合企业生产需求的控制对象最佳期望输出参数;得出具体计算结果后,由CMAC网络响应进行检测,若产生响应反应,则表明该数值合理,此时可以利用这一参数对控制对象的当前参数进行调节。事实上,CMAC神经网络在DCS控制系统中的应用也有可能产生错误的控制决策。但是,这种先进控制技术可以利用自身的自主学习功能检测控制决策的合理性。当发现参数不符合要求后,会再次将参数带入循环重新计算,最终获得符合企业生产需求的参数处理结果。 就专家系统而言,它的推理控制决策功能是通过各个领域的专家经验产生的。专家系统的控制决策原理:数据库负责储存事实和相应的推理结果;而知识库通过知识获取操作从相关领域的专家身上获得相应的知识和经验(获取环节具有实时性,因此知识库与领域专家在知识维度上的一致性相对较好)。用户提出问题后,专家系统中的推理机会从知识库、数据库中调取相应信息,判断该问题是否已经存在。如果知识库和数据库中都不存在该问题,则推理机会借助相关经验和推理结果,对该问题的可能结果进行推理,并将最终推理结果反馈给用户。对于DCS控制系统而言,专家系统的应用可以显著改善问题解决能力。运行状态下,DCS控制系统识别出企业的某个部分或生产环节出现异常问题时,专家系统能够快速发挥作用,为DCS控制系统提供相应的推断结果,以此保证DCS控制系统的正常运行。 3.3预测控制 预测控制对DCS控制系统性能的优化可以通过多变量系统的动态矩阵控制来实现。作用原理:根据企业中的控制对象,构建出相应的动态矩阵;当控制对象出现变化时,具体的变动信息会被反应在动态矩阵中,由动态矩阵进行校正。除了检测功能之外,动态矩阵还可以结合预测模型对控制对象可能出现的变化作出预测,进而保证控制决策与控制对象之间的契合性。对于DCS控制系统而言,预测控制的应

先进控制技术及应用

先进控制技术及应用 1.前言 工业生产的过程是复杂的,建立起来的模型也是不完善的。即使是理论非常复杂的现代控制理论,其效果也往往不尽人意,甚至在一些方面还不及传统的PID控制。20世纪70年代,人们除了加强对生产过程的建模、系统辨识、自适应控制等方面的研究外,开始打破传统的控制思想,试图面向工业开发出一种对各种模型要求低、在线计算方便、控制综合效果好的新型算法。在这样的背景下,预测控制的一种,也就是动态矩阵控制(DMC)首先在法国的工业控制中得到应用。因此预测控制不是某种统一理论的产物,而是在工业实践中逐渐发展起来的。预测控制中比较常见的三种算法是模型算法控制(MAC),动态矩阵控制(DMC)以及广义预测控制。本篇分别采用动态矩阵控制(DMC)、模型算法控制(MAC)进行仿真,算法稳定在消除稳态余差方面非常有效。 2、控制系统设计方案 2.1 动态矩阵控制(DMC)方案设计图 动态矩阵控制是基于系统阶跃响应模型的算法,隶属于预测控制的范畴。它的原理结构图如下图2-1所示: 图2-1 动态矩阵控制原理结构图 2.2 模型算法控制(MAC)方案设计图 模型算法控制(MAC)由称模型预测启发控制(MPHC),与MAC相同也适用于渐进

稳定的线性对象,但其设计前提不是对象的阶跃响应而是其脉冲响应。它的原理结构图如下图2-2所示: 图2-2 模型算法控制原理结构图 3、模型建立 3.1被控对象模型及其稳定性分析 被控对象模型为 (1) 化成s 域,g (s )=0.2713/(s+0.9),很显然,这个系统是渐进稳定的系统。因此该对象 适用于DMC 算法和MAC 算法。 3.2 MAC 算法仿真 3.2.1 预测模型 该被控对象是一个渐近稳定的对象,预测模型表示为: )()1()(?)(?1j k j k u z g j k y m ++-+=+-ε, j=1, 2, 3,……,P . (2) 这一模型可用来预测对象在未来时刻的输出值,其中y 的下标m 表示模型,也称为内 部模型。(2)式也可写成矩阵形式为: )1()()1(?-+=+k FU k GU k Y m 4 1 11 8351.012713.0)(-----=z z z z G

PWM控制技术实现方法综述

PWM控制技术实现方法综述 引言 采样控制理论采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲脉冲加在具有惯性的环节上时,其效果基本相同。PWMPWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 PWM控制PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM 控制技术获得了空前的发展。到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法。 1 相电压控制PWM 1.1 等脉宽PWM法[1] VVVF(Variable Voltage Variable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种。它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量。 1.2 随机PWM 在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注。为求得改善,随机PWM方法应运而生。其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱。正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM技术正是提供了一个分析、解决这种问题的全新思路。 1.3 SPWM法 SPWM(Sinusoidal PWM)法是一种比较成熟的、目前使用较广泛的PWM法。前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。该方法的实现有以下几种方案。 1.3.1 等面积法 该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生

访问控制模型综述

访问控制模型研究综述 沈海波1,2,洪帆1 (1.华中科技大学计算机学院,湖北武汉430074; 2.湖北教育学院计算机科学系,湖北武汉430205) 摘要:访问控制是一种重要的信息安全技术。为了提高效益和增强竞争力,许多现代企业采用了此技术来保障其信息管理系统的安全。对传统的访问控制模型、基于角色的访问控制模型、基于任务和工作流的访问控制模型、基于任务和角色的访问控制模型等几种主流模型进行了比较详尽地论述和比较,并简介了有望成为下一代访问控制模型的UCON模型。 关键词:角色;任务;访问控制;工作流 中图法分类号:TP309 文献标识码: A 文章编号:1001-3695(2005)06-0009-03 Su rvey of Resea rch on Access Con tr ol M odel S HE N Hai-bo1,2,HONG Fa n1 (1.C ollege of Computer,H uazhong Univer sity of Science&Technology,W uhan H ubei430074,China;2.Dept.of C omputer Science,H ubei College of Education,Wuhan H ubei430205,China) Abst ract:Access control is an im port ant inform a tion s ecurity t echnolog y.T o enha nce benefit s and increa se com petitive pow er,m a ny m odern enterprises hav e used this t echnology t o secure their inform ation m ana ge s yst em s.In t his paper,s ev eral m a in acces s cont rol m odels,such as tra dit iona l access control m odels,role-bas ed acces s cont rol m odels,ta sk-ba sed acces s control m odels,t as k-role-based access cont rol m odels,a nd s o on,are discus sed a nd com pa red in deta il.In addit ion,we introduce a new m odel called U CON,w hich m ay be a prom ising m odel for the nex t generation of a ccess control. Key words:Role;Ta sk;Access Cont rol;Workflow 访问控制是通过某种途径显式地准许或限制主体对客体访问能力及范围的一种方法。它是针对越权使用系统资源的防御措施,通过限制对关键资源的访问,防止非法用户的侵入或因为合法用户的不慎操作而造成的破坏,从而保证系统资源受控地、合法地使用。访问控制的目的在于限制系统内用户的行为和操作,包括用户能做什么和系统程序根据用户的行为应该做什么两个方面。 访问控制的核心是授权策略。授权策略是用于确定一个主体是否能对客体拥有访问能力的一套规则。在统一的授权策略下,得到授权的用户就是合法用户,否则就是非法用户。访问控制模型定义了主体、客体、访问是如何表示和操作的,它决定了授权策略的表达能力和灵活性。 若以授权策略来划分,访问控制模型可分为:传统的访问控制模型、基于角色的访问控制(RBAC)模型、基于任务和工作流的访问控制(TBAC)模型、基于任务和角色的访问控制(T-RBAC)模型等。 1 传统的访问控制模型 传统的访问控制一般被分为两类[1]:自主访问控制DAC (Discret iona ry Acces s Control)和强制访问控制MAC(Mandat ory Acces s C ontrol)。 自主访问控制DAC是在确认主体身份以及它们所属组的基础上对访问进行限制的一种方法。自主访问的含义是指访问许可的主体能够向其他主体转让访问权。在基于DAC的系统中,主体的拥有者负责设置访问权限。而作为许多操作系统的副作用,一个或多个特权用户也可以改变主体的控制权限。自主访问控制的一个最大问题是主体的权限太大,无意间就可能泄露信息,而且不能防备特洛伊木马的攻击。访问控制表(ACL)是DAC中常用的一种安全机制,系统安全管理员通过维护AC L来控制用户访问有关数据。ACL的优点在于它的表述直观、易于理解,而且比较容易查出对某一特定资源拥有访问权限的所有用户,有效地实施授权管理。但当用户数量多、管理数据量大时,AC L就会很庞大。当组织内的人员发生变化、工作职能发生变化时,AC L的维护就变得非常困难。另外,对分布式网络系统,DAC不利于实现统一的全局访问控制。 强制访问控制MAC是一种强加给访问主体(即系统强制主体服从访问控制策略)的一种访问方式,它利用上读/下写来保证数据的完整性,利用下读/上写来保证数据的保密性。MAC主要用于多层次安全级别的军事系统中,它通过梯度安全标签实现信息的单向流通,可以有效地阻止特洛伊木马的泄露;其缺陷主要在于实现工作量较大,管理不便,不够灵活,而且它过重强调保密性,对系统连续工作能力、授权的可管理性方面考虑不足。 2基于角色的访问控制模型RBAC 为了克服标准矩阵模型中将访问权直接分配给主体,引起管理困难的缺陷,在访问控制中引进了聚合体(Agg rega tion)概念,如组、角色等。在RBAC(Role-Ba sed Access C ontrol)模型[2]中,就引进了“角色”概念。所谓角色,就是一个或一群用户在组织内可执行的操作的集合。角色意味着用户在组织内的责 ? 9 ? 第6期沈海波等:访问控制模型研究综述 收稿日期:2004-04-17;修返日期:2004-06-28

自动控制技术现状及发展趋势

自动控制技术现状及发展趋势 发表时间:2017-11-03T16:38:49.533Z 来源:《电力设备》2017年第18期作者:孔德磊[导读] 摘要:自动控制技术是一项综合性技术,目前被广泛地应用于企业生产及人们的日常生活中,极大地提高了企业的生产效率及人们的生活质量。本文通过对目前我国自动控制技术的现状及其发展进行了详细的分析,从而指出自动控制技术正在向智能化、网络化、微型化以及集成化等方面发展,自动控制技术是现代化生产的基础,是提高生产效率的关键。 (河南理工大学河南焦作 454000)摘要:自动控制技术是一项综合性技术,目前被广泛地应用于企业生产及人们的日常生活中,极大地提高了企业的生产效率及人们的生活质量。本文通过对目前我国自动控制技术的现状及其发展进行了详细的分析,从而指出自动控制技术正在向智能化、网络化、微型化以及集成化等方面发展,自动控制技术是现代化生产的基础,是提高生产效率的关键。关键词:自动控制技术;现状;发展趋势一、目前我国自动控制技术的现状分析就目前我国在自动控制领域的实际情况来看,虽然自动控制技术得到了长足的发展以及比较广泛地实际应用,但是这与国外发达国家的自动控制技术水平及应用程度还有很大的差距。我国想要提高自动控制技术的水平,就必须加大投资与科研的力度,对新型的生产线要科学合理地对其进行自动化的设计及未来发展的预设,要特别注重自动化信息流的作用,从而提升我国自动控制水平及应用,进而提高我国企业的国际竞争力。从目前我国自动控制技术在应用领域中的作用来看,主要是为提高设备的运行效率。根据我国发展的具体情况,研制开发自动控制技术,从而避免研制自动控制技术的盲目性。但是,还是存在自动控制技术在研发过程中缺乏宏观层面上的明确指导,在投入实际生产中所获得的经济效益比较低的现象,在我国自主研发的自动化设备上还存在精确度比较差、可靠性比较低以及实用性比较差的现象。随着手工制造业在国家经济建设中逐渐丧失了优势地位,自动化生产在社会生产中日益显示出其生产操作简单、产品质量高及生产效率高等特点,成为企业生产中的主要模式。在我国自动控制技术的发展也是非常不平衡的,大部分生产领域的自动化程度还非常低,例如,玩具、服装等。 我国想要提高自动控制水平并不是很容易,这即需要对新的自动控制技术的研发,也要对原有企业的生产设备进行自动化改造,这样不但能够提高生产效率而且还能起到降低成本的作用。可以通过数控技术等自动控制技术改造原有机械设备,提高传统机械设备的自动化程度,从而提高设备的使用率和生产率。在机床上通过控制技术的改造,充分发挥计算计技术的优势,实现设备及生产线的自动化的改造,从而提高生产效率。 二、我国自动控制技术的发展趋势分析(一)智能化自动控制技术的发展自动控制技术水平的发展是现代化生产不断推进的动力和基础力量,在自动化生产的开始阶段,控制系统比较简单,控制规律也很简单,因此,采用常规的控制方法就可以完成作业。智能化是自动化控制技术发展的更高水平,智能化主要表现在控制的功能多样化和用途多样化,智能化是未来制造业发展的方向。随着科学技术的不断进步,现代化生产的发展方向逐步向人工智能与自动控制技术相结合应用的趋势。人工智能理论向自动控制技术领域的渗透,不但理论上而且在实践上都是新的发展途径,为智能化的自动控制技术,提供了新的思想和方法。人工智能与自动控制技术相结合,能够根据生产过程中的变化情况,对系统采取更为有效的控制。在目前许多生产领域都采用了智能化控制技术应用于生产系统中,智能化控制技术的水平和应用程度关系到企业现代化生产自动化水平及程度的高低。(二)网络化、微型化自动控制技术的发展从自动控制技术的发展历程来看,在比较长的时期内,自动控制技术都是在工业生产领域内进行的。自动控制技术为工业生产所需的各种机械设备,提供了可靠性及性能都非常高的控制设备。在科学技术快速发展的当下,各领域之间都不是独立发展进行的,而是相互借鉴促进甚至结合发展成为新的发展领域。自动控制技术的发展当然也离不开对其他领域的借鉴与冲击,其中来自工业PC的影响最为严重。网络化及微型化是将来自动控制技术发展的必然趋势,在自动控制技术系统发展的初期,其形态非常的大而且价格又非常的高。自动控制技术未来发展的方向必然也离不开网络化,网络技术在现代化生产中具有重要的作用。尤其是对生产过程中信息数据的传递以及分析起到了关键作用,对自动控制系统发现安全问题采取合理的处理措施,预防故障的发生等都起到行之有效的作用。随科学技术的不断进步,发展到现在它与以前相比已经改变了很多,正在向微型化发展而且在价格上也在逐步的下降。随着自动控制系统的控制软件的进一步的完善和发展,未来能够安装控制系统软件的市场份额将会逐步呈上涨趋势。(三)综合化自动控制技术的发展在现代化自动控制技术领域中已经建立模糊控制、智能控制及专家系统等控制技术的发展方向,这些方向自动控制技术的主要特点就是综合性。这些特殊方向性的控制系统都是以自动控制技术理论为基础,从而对整个设备或流程进行综合控制。其中涉及的理论知识比较多,不在是单一的自动控制技术知识,还包括电子技术、计算机技术、机械技术等等。自动控制技术要想得到快速的发展,从而适应并促进社会的进步,就必须把自动控制技术与相关技术相结合进而发展成为一个新的方向,这样才能够给自动控制技术领域注入新鲜养分与活力,才能提高自动控制技术的可靠性、精确性与高效性。不断发展各项自动控制技术,例如,各种控制系统、专用计算机等自动控制技术的基础技术,不断引进多个领域的新知识、新理论及新技术。对原有的自动控制技术进行不断地改进与发展,这就需要大量的新理论、新方法以及新技术对其进行补充,更需要高水平的专业人才对其进行研究与开发。随着自动控制技术的不断发展,对普通工人以及经验与技能的要求会越来越低,而对知识的要求会越来越高,相关工作人员必须具备较高的知识层次才能更好地完成自动控制技术的相关工作。当自动控制设备发展到非常高的水平后,会因为技术及管理上的原因,使得产品的废品率比较高。造成这种现象的主要原因不是设备的问题而是工作人员素质的问题,所以要大力培养适合自动控制设备工作的新型技术人才,这需要相关人员必须掌握各种与自动控制设备的新方法、新原料以及操作方法等。在自动控制技术领域只有拥有了大量的专业技术人才或相关技术的综合型人才,才能够实现对自动控制技术的有力推广,从而提高我国自动控制技术的水平。参考文献:

相关文档
最新文档