遥感影像去除云的方法

遥感影像去除云的方法
遥感影像去除云的方法

遥感影像去除云的方法

【摘要】:随着遥感技术的迅速发展,高分辨率遥感影像的应用越来越广泛,但它也极易受到气候因素的影响,云层遮挡就是影响之一。去云不仅是遥感影像进行准确解译的基础,也是增强遥感数据有效性、可用性的重要途径,故遥感影像去云具有十分重要的实际意义。本文在总结常用去云方法基础上,对遥感影像薄云去除方法从图像处理角度进行了深入研究,对遥感影像厚云处理方法亦进行了探讨并改进。论文主要研究内容及结论如下: 1、总结常用去云方法,得到去除薄云的基本思路,为后续研究奠定基础。2、对常用遥感影像去薄云的方法分区域处理,并探讨直方图匹配的改进,实验证明改进方法去云效果更为理想。3、利用数学形态学中闭开运算的滤波性质,将数学形态学引入遥感影像薄云处理中。将多结构元素数学形态学应用到去薄云中,深入的探讨了不同结构元素在去云中的作用;在传统的分通道处理和基于HIS变换处理的基础上,引入数学形态学处理彩色遥感影像的薄云。研究表明,数学形态学方法去除影像薄云可行有效,在合理选取结构元素的条件下,处理效果优于传统方法。4、在现有影像厚云去除方法基础上,探讨并实现了基于影像匹配的厚云去除方法。采用同一地区的航片IKONOS影像上的厚云遮挡区域进行替换修补实验,实验证明该算法可以实现高分辨率遥感影像厚云区域的影像

修复,直方图匹配及接缝处理后可以达到理想的修补视觉效果。5、引入平均灰度、标准差、熵值、峰值信噪比和平均绝对偏差等指标对薄云去除后的影像进行统计分析评价。比较各项指标可知,广义多结构元素方法能够较好地保持影像细节信息,去薄云处理效果最好;处理彩色遥感影像薄云时,分通道处理方法优于HIS变换方法。,

关键字:遥感影像去云图像处理同态滤波

一.实习内容

去除遥感影像lainer.img中的云层

二.实习目的

遥感成像过程极易受云雾的影响,遥感图像中被云雾遮盖的区域

直接影响了图像的图像信息的判读,分析和使用,使得图像的有效利用率降低,因此,研究如何有效地减少或消除云雾的影响,对于提高遥感图像的利用率具有重要的现实意义和经济意义。

三.去除云层的方法

同态滤波法,小波变换,非监督分类

四.遥感影像去除云的具体实施方案

1. 显示原图像lainer.img

2. 对lainer.img进行同态滤波得到lainer-homomorphic影像

同态滤波是运用照度和反射率模型对遥感图像进行滤波处理,常常应用于揭示阴影区域的细节特征。该方法的基本原理是:减少低频,增加高频,从而锐化图像边缘或细节特征的图像增强方法,一幅影像f(x,y)能被表达成照度分量和反射分量两部分的乘积:f(x,y)=i(x,y)*r(x,y)式中i(x,y) 为照度分量,r(x,y) 为反射分量。

3. 对图像lanier.img进行傅立叶变换

傅里叶变换图像就是把输入的空间域彩色图像转换成频率域,把RGB彩色图像转换成一系列不同频率的二维正弦波傅里叶图像(*.fft)。

4. 低通滤波:消弱图像的高频组分,而让低频组分通过,是图像更加平滑,柔和。操作如下所示:

5.对lainer-homomorphic影像进行非监督分类

非监督分类的过程及结果如下所示:

6.去除云层处理

一幅图像的照度分量通常表现为空间域的慢变化为特征,而反射分量往往引起突变,特别是在不同物体的连接部分,这些特征导致图像对数的傅里叶变换的低频部分与照射分量相联系,而高频部分与反射分量相联系在一起。在图像处理过程中我们可以将云雾信息作为照射分量来处理,通过使用同态滤波器减少低频的贡献,而增加高频的贡献来达到云雾去除的效果,其处理流程如下图所示:

F(x,y)→LN→FFT→H(x,y)→∮FFT→exp→u(x,y)

经过同态滤波的方法去除lainer-homomorphic影像的云层遮盖的结果如下所示:

五.结果评价及分析

ERDAS MAGNE遥感图像处理系统,在遥感图像处理上,提供了傅里叶变换,傅里叶逆变换以及傅里叶变换编译器等功能,为实现较

好的去云效果,利用同态滤波云雾去除的模型对图像进行处理。经处理,有云雾的遥感图像得到了不同程度的去除,图像模糊程度轻,噪声滤除的效果较好。

六.结论

本文从云雾的空域,频域特征进行分析,利用同态滤波处理图像的基本原理和ERDAS MAGNE强大的图像处理建模功

能,对遥感图像中云雾的覆盖进行去除,因此该方法具有一定

的普适性。

从去云的效果来看,薄云去除有时会导致一些信息的丢失,只是由于在高通滤波中,滤去低频成分时,也同时滤掉了一些

有用的信息,为此应该将截止频率取小一些;另外该方法对于

大范围存在薄云的去除效果较好,但对厚云的去除效果不佳,

需要进一步探讨研究。

参考文献:

(1)K enneth R Castkm an数字图像处理【M】北京:电子工业出版社.1998

(2)郭德方遥感图像的计算机处理和模式识别【M】北京:电子工业出版社.

(3)冯春,马建文,戴秦等,一种改进的遥感处理薄云快速去除方法【J】国土资源遥感.2004

遥感图像几种分类方法的比较

摘要 遥感图像分类一直是遥感研究领域的重要内容,如何解决多类别的图像的分类识别并满足一定的精度,是遥感图像研究中的一个关键问题,具有十分重要的意义。 遥感图像的计算机分类是通过计算机对遥感图像像素进行数值处理,达到自动分类识别地物的目的。遥感图像分类主要有两类分类方法:一种是非监督分类方法,另一种是监督分类方法。非监督分类方法是一个聚类过程,而监督分类则是一个学习和训练的过程,需要一定的先验知识。非监督分类由十不能确定类别属性,因此直接利用的价值很小,研究应用也越来越少。而且监督分类随着新技术新方法的不断发展,分类方法也是层出不穷。从传统的基十贝叶斯的最大似然分类方法到现在普遍研究使用的决策树分类和人工神经网络分类方法,虽然这些方法很大程度改善了分类效果,提高了分类精度,增加了遥感的应用能力。但是不同的方法有其不同优缺点,分类效果也受很多因素的影响。 本文在对国内外遥感图像分类方法研究的进展进行充分分析的基础上,应用最大似然分类法、决策树分类法对TM影像遥感图像进行了分类处理。在对分类实现中,首先对分类过程中必不可少的并影响分类效果的步骤也进行了详细地研究,分别是分类样本和分类特征;然后详细介绍两种方法的分类实验;最后分别分析分类结果图,采用混淆矩阵和kappa系数对两种方法的分类结果进行精度评价。 关键词:TM遥感影像,图像分类,最大似然法,决策树 题目:遥感图像几种分类方法的比较...................................... 错误!未定义书签。摘要.. (1) 第一章绪论 (3)

1.1遥感图像分类的实际应用及其意义 (4) 1.2我国遥感图像分类技术现状 (5) 1.3遥感图像应用于测量中的优势及存在的问题 (6) 1.3.1遥感影像在信息更新方面的优越性 (6) 1.3.2遥感影像在提取信息精度方面存在的问题 (6) 1.4研究内容及研究方法 (8) 1.4.1研究内容 (8) 1.4.2 研究方法 (8) 1.5 论文结构 (9) 第二章遥感图像的分类 (9) 2.1 监督分类 (9) 2.1.1 监督分类的步骤 (9) 2.1.2 最大似然法 (11) 2.1.3 平行多面体分类方法 (12) 2.1.4 最小距离分类方法 (13) 2.1.5监督分类的特点 (13) 2.2 非监督分类 (14) 2.2.1 K-means算法 (14) K-均值分类法也称为 (14) 2.2.2 ISODATA分类方法 (15) 2.2.3非监督分类的特点 (17) 2.4遥感图像分类新方法 (17) 2.4.1基于决策树的分类方法 (17) 2.4.2 人工神经网络方法 (19) 2.4.3 支撑向量机 (20) 2.4.4 专家系统知识 (21) 2.5 精度评估 (22) 第三章研究区典型地物类型样本的确定 (24) 3.1 样本确定的原则和方法 (24) 3.2 研究区地物类型的确定 (24) 3.3样本区提取方案 (25) 3.4 各个地物类型的样本的选取方法 (25) 3.4.1 建立目视解译标志 (25) 3.4.2 地面实地调查采集 (26) 3.4.3 利用ENVI遥感图像处理软件选取样本点 (26) 第四章遥感图像分类实验研究 (26) 4.1遥感影像适用性的判定 (26) 4.2分类前的预处理 (28) 4.2.1空间滤波的处理 (28) 4.2.2 频域滤波处理 (28) 4.3利用ENVI软件对影像按照不同的分类方法进行监督分类 (30) 4.3.1监督分类 (30) 4.3.2 决策树 (33) 4.4分类后的处理 (35)

【CN110032965A】基于遥感图像的视觉定位方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910283770.4 (22)申请日 2019.04.10 (71)申请人 南京理工大学 地址 210094 江苏省南京市孝陵卫200号 (72)发明人 朱明清 陆建峰  (74)专利代理机构 南京理工大学专利中心 32203 代理人 陈鹏 (51)Int.Cl. G06K 9/00(2006.01) G06T 7/73(2017.01) G01C 21/20(2006.01) G01C 21/32(2006.01) (54)发明名称 基于遥感图像的视觉定位方法 (57)摘要 本发明公开了一种基于遥感图像的视觉定 位方法,包括以下步骤:根据遥感数据提取场景 道路网络和地物语义特征;从视觉传感器获取观 测值,对传感器数据进行特征提取和特征匹配, 实现定位和地图构建;根据定位地图优化定位与 地图;定位地图路网模块优化定位,实时估计当 前位姿在路网中的绝对位置,辅助于定位。本发 明在遥感卫星地图上提取道路网络以及语义信 息辅助视觉定位,可在未知环境下实现高精度视 觉定位。权利要求书2页 说明书5页 附图5页CN 110032965 A 2019.07.19 C N 110032965 A

1.一种基于遥感图像的视觉定位方法,其特征在于,包括以下步骤: 步骤1,根据遥感数据提取场景道路网络和地物语义特征; 步骤2,从视觉传感器获取观测值,对传感器数据进行特征提取和特征匹配; 步骤3,根据定位地图优化定位与地图; 步骤4,通过定位地图路网模块优化定位,实时估计当前位姿在路网中的绝对位置。 2.根据权利要求1所述的基于遥感图像的视觉定位方法,其特征在于,步骤1具体为:步骤1-1,构建端到端神经网络: (1)获取遥感图像,并标记道路,对训练集做数据增强操作; (2)根据上一步提供的数据对网络模型进行训练; (3)将定位场景遥感图输入网络,得到道路网提取结果; 步骤1-2,根据神经网络所提取道路像素值,建立道路网模型; 步骤1-3,根据路网图、结构拓扑图以及地物语义信息生成所需的定位地图。 3.根据权利要求1所述的基于遥感图像的视觉定位方法,其特征在于,步骤2具体为:步骤2-1,定位初始化,恢复相机的旋转矩阵R和平移向量t,F cr 表示基本矩阵,X r 、X c 表示两个像素点归一化平面上的坐标; 步骤2-2,提取ORB特征,计算帧之间的位姿变化,具体步骤如下: 首先利用运动模式预测当前状态,通过匹配投影验证,如若匹配少于25%的特征,进入关键帧模式,与最近关键帧匹配,得到初始位姿估计; 再通过局部地图跟踪优化相机位姿 x=[ε1,…,εm ,P 1,…,P n ]; 式中,ε表示单个位姿,P表示单个路标点,e表示观测误差;E、F是整体目标函数对路标点的偏导数和整体变量的导数,xc表示相机位姿变量,xp表示空间点变量; 步骤2-3,选择性插入关键帧,然后检查当前地图点云,剔除冗余点,三角化新地图点,s 1x 1=s 2Rx 2+t;x 1,x 2为两个特征点归一化坐标,s 1,s 2为两个特征点的深度,R旋转举证,t表示位移。 4.根据权利要求1所述的基于遥感图像的视觉定位方法,其特征在于,步骤3具体为:步骤3-1,变化点检测,根据定位地图中的变化点图模块,当当前状态与其所在路径变化点位置theta3范围之内触发变化点检测,在固定滑动窗口内计算其每个位置平面内偏航角变化(-theta,theta),计算窗口变化均值,根据下一个点变化点特征,在theta范围内,则认为当前位置变化点为候选点,记录下来,当到达极大值时, 则认为该点为变化点; |xi -pt|<θ;|i|<μ;f表示偏航角θy , pt表示距离变化点,θ预设置的检测范围,μ表示预设置F的计算范围; R表示旋转矩阵; θx =tan -1(R32,R33);θz =tan -1(R21,R11),θx 、θy 、θz 分别表示欧拉角的各个方向; 权 利 要 求 书1/2页2CN 110032965 A

工程测绘中遥感影像定位测绘技术的应用

工程测绘中遥感影像定位测绘技术的应用 发表时间:2019-08-15T10:31:38.173Z 来源:《建筑模拟》2019年第27期作者:周宗祥 [导读] 地质测绘是工程建设中一项非常重要的工作,主要为工程建设施工服务,测绘结果会直接影响工程项目开发的最终效果。 周宗祥 身份证号:4525231978****0054 摘要:地质测绘是工程建设中一项非常重要的工作,主要为工程建设施工服务,测绘结果会直接影响工程项目开发的最终效果。最近几年,测绘项目在不断地增加,各种新技术和新方法已被广泛应用于工程地质测绘,这在很大程度上提升了测绘质量。本文主要分析了遥感影像定位测绘技术在工程测绘中的应用。 关键词:工程测绘;遥感影像定位;测绘技术;应用 1.遥感影像定位测绘技术概述分析 遥感影像定位测绘技术是一种探测技术,遥感探测方法一般是远距离非接触的。根据被探测物体的电磁波反射特点及辐射,通过传感器或遥感器进行发射、接收信号,分析了物体形态、特性的原理以及应用方法。现阶段,遥感影像定位测绘技术被广泛应用于多个领域(如:水文、建筑、矿业、军事、农业、气象、环保等),可通过对全球范围多个领域、视角、层次的观测,获取特定环境的资源信息。 遥感影像是利用遥感技术获得地物电磁波胶片。它可以实现大面积同时观测、实效性比较强、数据具有可比性,同时还可以提高社会、经济效益。例如:使用影像定位技术时,不会存在空间制约,假如所获得的卫星图像和航拍图像可以覆盖30,000平方公里的区域,它们可以包含大量信息和不同方法的特征,针对不同的任务,通过调整遥感设备、波段获取所需信息。目前的主要探测技术包含:微波探测、紫外线探测、红外线探测以及可见光物体探测。 1.1遥感影像定位测绘技术的应用 遥感技术是利用安装在遥感平台上的传感器在距离较远,并不与探测物体接触的前提下,接收目标反射线或发射的各种波段电磁波传输的信息,并对所获取的信息进行处理、诠释,以探测、识别远距离目标。通过所获取的信息资料,可以清楚了解工程的实时动态以及综合信息,监测工程实际环境。 1.2遥感影像特征 首先,遥感影像中的像素值会随着传感器的变化而发生变化,传感器不同,最终获得的波段数就会不一样,并且该值由不同波段的对应位置点的值共同显现;其次,所获取的遥感影像通常是不可以进行有损压缩的,若进行有损压缩,可能会造成图像信息损坏或者丢失,而针对常规图像,则会进行有损压缩,以节省空间;最后,使用不同类型的传感器,最终产生的文件组织方法也会不同。目前,市场上有许多遥感软件制造商,不同制造商生产的遥感软件最终组织的影响数据的格式也是不同的,很难通过一种方法读取和诠释所获取的影响信息。 1.3遥感图像三维可视化及影像动态在工程测绘中的应用 在工程测绘过程中,使用遥感图像三维可视化及影响动态分析方法,可以在短时间内获得完整、准确的测绘信息,节省测绘时间的同时,还节省了大量的人力、物力、财力。基于图像遥感技术开发了三维可视化技术,三维可视化技术可以选择、设置测绘路线,可以全面掌控工程项目区域内的地质条件分布和相应的构造空间,并清楚区分工程项目区域内的地质条件及其地貌特征,并进一步分析地质条件、地貌特征,以促使工程测绘的可视化得到全面提高。与此同时,借助三维技术,可准确的将地质条件较好的区域及岩石集中区域区分开,以全面了解、掌握该工程施工区域的地质条件。使用三维可视化技术时,必须确保地质观测路线及其探测物区域内的施工线之间相互垂直,同时将垂直方向的穿越丝作为主线,根据该主线设置对应的测绘点位。 2.影像定位技术在工程测绘中的应用分析 目前,影像定位技术在各个领域已得到了广泛应用,对人们的生活、生产有很大的影响,不管是煤矿、医院还是建筑、汽车等多个行业都会使用该技术。 影像定位技术是工程测绘过程中经常会使用的基础技术,使用影像定位技术可以探测、分析、研究工程施工区域的地质情况,以了解该区域的地质结构及其岩石等的具体分布位置,以了解、掌握施工区域的地质特征,确保工程施工质量和测绘工作的顺利开展。 通常情况下,工程测绘过程中使用最多的是遥感影像定位测绘技术,使用该技术可以获得全面、准确的测绘信息,具体包括对施工区域的地质条件,地形、地貌特征以及地形空间结构分布规则等进行初步探测,同时,将建立一个完整的探测控制区域,用于探测施工现场的地形,以分析工程施工区域的地质结构和地形构造以及地质体的性质及其地势的高低程度,通过所获取的图像施工人员可以进一步了解施工现场的具体特征,以方便后期施工。 在工程测绘过程中使用遥感影像定位技术,不论在勘探路线、还是探测方向以及所获得的图像上,传统的探测方法跟其没有可比性,使用遥感影像定位技术所获得的图像不仅分辨率高,同时,获得的信息也比较全面、准确,保证了测绘质量。 3.遥感影像在水文地质勘查中的应用 可以使用影像定位技术进行水文地质学探测,通过卫星遥感图像、遥感航空照片和其他信息反馈通道,清楚地了解水文地质条件。在特定的水文地质测绘过程中,影像技术可用于获取水文地质规则反馈的信息,以确保所获取的水文地质测绘结果准确无误。此外,在地下水调查过程中使用影响定位技术时,可以通过图片清楚掌握地下水含水层的具体分布情况,并且相应的含水层结构边界也会清晰地反映在图像中,这样人们可以清楚掌握地下水量的多少及其分布规律。 3.1水文地质测绘工作 水文地质测绘是一种较为复杂的工作,通过遥感影像定位技术可以清楚掌控工程施工区域的地形、地貌、水体以及含水的岩体的特征,相关工作人员通过这些信息可以快速概括该区域的水文地质特征。 3.2地下水资源的调查工作 通过使用遥感影像定位技术搜寻地下水和评估地下水资源,使用遥感图像获得的含水层和含水层之间的界限准确度比较高,通过遥感技术搜寻地下水资源将会有很大收获。

试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。

遥感原理与应用 1.试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。答:监督分类:1、最大似然法;2、平行多面体分类法:这种方法比较简单,计算速度比较快。主要问题 是按照各个波段的均值为标准差划分的平行多面体与实际地物类别数据点分布的点群形态不一致,也就造成俩类的互相重叠,混淆不清的情况;3、最小距离分类法:原理简单,分类精度不高,但计算速度快,它可以在快速浏览分类概况中使用。通常使用马氏距离、欧氏距离、计程距离这三种判别函数。主要优点:可充分利用分类地区的先验知识,预先确定分类的类别;可控制训练样本的选择,并可通过反复检验训练样本,以提高分类精度(避免分类中的严重错误);可避免非监督分类中对光谱集群组的重新归类。主要缺点:人为主观因素较强;训练样本的选取和评估需花费较多的人力、时间;只能识别训练样本中所定义的类别,对于因训练者不知或因数量太少未被定义的类别,监督分类不能识别,从而影响分结果(对土地覆盖类型复杂的地区需特别注意)。 非监督分类:1、ISODATA; 2、K-Mean:这种方法的结果受到所选聚类中心的数目和其初始位置以及模式分布的几何性质和读入次序等因素的影响,并且在迭代的过程中又没有调整类别数的措施,因此不同的初始分类可能会得到不同的分类结果,这种分类方法的缺点。可以通过其它的简单的聚类中心试探方法来找出初始中心,提高分类结果;主要优点:无需对分类区域有广泛地了解,仅需一定的知识来解释分类出的集群组;人为误差的机会减少,需输入的初始参数较少(往往仅需给出所要分出的集群数量、计算迭代次数、分类误差的阈值等);可以形成范围很小但具有独特光谱特征的集群,所分的类别比监督分类的类别更均质;独特的、覆盖量小的类别均能够被识别。主要缺点:对其结果需进行大量分析及后处理,才能得到可靠分类结果;分类出的集群与地类间,或对应、或不对应,加上普遍存在的“同物异谱”及“异物同谱”现象,使集群组与类别的匹配难度大;因各类别光谱特征随时间、地形等变化,则不同图像间的光谱集群组无法保持其连续性,难以对比。

遥感影像处理步骤

一.预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。 消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。 (2)除坏线和条带 去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。

2.薄云处理 由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。 3.阴影处理 由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。二.几何纠正

通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。 1.图像配准 为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。 (1)影像对栅格图像的配准 将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。 (2)影像对矢量图形的配准 将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。2.几何粗纠正

遥感地学解译

一、遥感地质学的主要研究内容是什么? 答:遥感地质学主要是指研究地球上各种地质体和各种地质现象,根据和利用地质体的电磁波谱特征,借助先进的遥感科学技术。从各种载着地物电磁辐射特征的遥感资料中提取地质信息,以达到宏观,准确,快速的研究地质体和地质现象的目的,在地质与成矿理论指导下,研究如何应用遥感技术进行地质与矿产资源调查研究的学科.是遥感技术与地球科学结合的一门边缘学科。 它的主要研究内容大致包括如下: 1、各类地质体的电磁辐射特性及其测试、分析与应用; 2、遥感图像的地质解译与编图; 3、遥感数字资料的地学信息提取原理与方法; 4、遥感技术在地质各个领域的具体应用和实效评价。 二、遥感图像地学信息解译主要内容有哪些? 答:地学解译是从遥感图像上获取目标地物信息的过程具体是指解读人员通过应用各种解译技术和方法在遥感图像上识别出地质体、地质现象的物性和运动特点测算出某种数量指标的过程。其原则应采用由已知到未知、从区域到局部、先易后难、由宏观到微观、从总体到个别、从定性到定量、循序渐进的方法。其解译的主要内容如下: 1、遥感地质岩性解译 通过已知相关资料中的波谱与空间信息特征判断地表的岩石产出特点和物性。主要包括三大岩类:岩浆岩、沉积岩、变质岩。解译标志有以下:色调、亮度、形态。 主要的解译方法: 1)利用增强变换处理提取岩性信息 2)采用增强处理方法提取色调信息,可以扩大不同岩性的灰度差别,突出目标信息和改善图像效果,提高解译标志的判别能力。常用的遥感图像增强方法有反差扩展、去相关拉伸、彩色融合、运算增强、变换增强等 3)利用纹理信息提取岩性信息 4)每个岩性单元的灰度值具有各自不同的空间变化特征是运用纹理进行岩性分类的基础。常用的纹理信息提取方法有灰度共生矩阵法、小波变换和傅立叶变换等。通常将纹理图像作为新的波段参与岩性分类,许多学者的研究表

遥感影像的分类处理

摘要 在面向对象的影像分类方法中,首先需要将遥感影像分割成有意义的影像对象集合,进而在影像对象的基础上进行特征提取和分类。本文针对面向对象影像分类思想的关键环节展开讨论和研究,(1) 采用基于改进分水岭变换的多尺度分割算法对高分辨率遥感影像进行分割。构建了基于高斯尺度金字塔的多尺度视觉单词,并且通过实验证明其表达能力优于经典的词包表示。最后,在词包表示的基础上,利用概率潜在语义分析方法对同义词和多义词较强的鉴别能力对影像对象进行分析,找出其最可能属于的主题或类别,进而完成影像的分类。 近些年来,随着航空航天平台与传感器技术的高速发展,获取的遥感影像的分辨率越来越高。高分辨率遥感影像在各行业部门的应用也越来越广泛,除了传统的国土资源、地质调查和测绘测量等部门,还涉及到城市规划、交通旅游和环境生态等领域,极大地拓展了遥感影像的应用范围。因此,对高分辨率遥感影像的处理分析成为备受关注的领域之一。高分辨率遥感影像包括以下三种形式:高空间分辨率(获取影像的空间分辨率从以前的几十米提高到1 至5 米,甚至更高);高光谱分辨率(电磁波谱被不断细分,获取遥感数据的波段数从几十个到数百个);高时间分辨率(遥感卫星的回访周期不断缩短,在部分区域甚至可以连续观测)。本文所要研究的高分辨率遥感影像均是指“高空间分辨率”影像。 相对于中低分辨率的遥感数据,高空间分辨率遥感影像具有更加丰富的空间结构、几何纹理及拓扑关系等信息,对认知地物目标的属性特征更加方便,如光谱、形状、纹理、结构和层次等。另外,高分辨率遥感影像有效减弱了混合像元的影响,并且能够在较小的空间尺度下反映地物特征的细节变化,为实现更高精度的地物识别和分类提供了可能。 然而,传统的遥感影像分析方法主要基于“像元”进行,它处于图像工程中的“图像处理”阶段(见图1-1),已然不能满足当今遥感数据发展的需求。基于“像元”的高分辨率遥感影像分类更多地依赖光谱特征,而忽视影像的纹理、形状、上下文和结构等重要的空间特征,因此,分类结果会产生很严重的“椒盐(salt and pepper)现象”,从而影响到分类的精度。虽然国内外的很多研究人员针对以上缺陷提出了很多新的方法,如支持向量机(Support Vector Machine,SVM) 、纹理聚类、分层聚类(Hierarchical Clustering) 、神经网络(Neural Network, NN)等,但仅依靠光谱特征的基于像元的方法很难取得更好的分类结果。基于“像元”的传统分类方法还有着另一个局限:无法很好的描述和应用地物目标的尺度特征,而多尺度特征正是遥感信息的基本属性之一。由于在不同的空间尺度上,同样的地表空间格局与过程会表现出明显的差异,因此,在单一尺度下对遥感影像进行分析和识别是不全面的。为了得到更好的分类结果,需要充分考虑多尺度特征。 针对以上问题,面向对象的处理方法应运而生,并且逐渐成为高空间分辨率遥感影像分析和识别的新途径。所谓“面向对象”,即影像分析的最小单元不再是传统的单个像元,而是由特定像元组成的有意义的同质区域,也即“对象”;因此,在对影像分析和识别的过程

遥感图像地形分析方法应用研究

遥感图像地形分析方法应用研究 二、实验目的 了解遥感图像地形分析的一般方法:坡度分析、坡向分析、高程分带、地形阴影、彩色地势、地形较正处理、栅格等高线及三维浮雕等。它们大多是基于DEM进行分析的。重点了解坡度分析、坡向分析。 三、实验原理 坡度(Slope)和坡向(Aspect)作为描述地形特征信息的两个重要指标,不但能够间接表示地形的起伏形态和结构,而且是水文模型、滑坡监测与分析、地表物质运动、土壤侵蚀、土地利用规划等地学分析模型的基础数据。在地理信息系统(Geo-graphical InformationSystem, GIS)中,坡度和坡向一般在数字高程模型(Digital Elevation Model ,DEM)上通过一定的计算模型计算得到。 地形特征是人们用于描述空间过程变化的重要指标,地形特征的提取是进行测绘、资源调查、环境保护、城市规划、灾害防治及地学调查等地理空间相关研究的基础,快速准确的获取地学特征是进行地理空间相关研究的前提。应用遥感技术结合DEM数据对现象的垂直分布进行研究,直观、快速、精确、可视化效果好。DEM是数字高程模型,是地球表层信息的三维可视化模拟,能直观的反映信息的垂直分布规律及影响因子,是进行三维分析不可缺少的数据地形因素是影响环境变迁水文过程生物分布地貌特征等的重要因素。

某地区无洼地的1:5 万DEM数据 五、实验步骤及结果分析 1、DEM的建立 1.1用航天、航空遥感影像立体像对提取DEM;(以SPOT5影像为例) 利用ENVI的DEM提取模块,提取DEM信息。这是一个流程化的操作模块,根据标题提示设置参数后点击下一步,即可完成整个DEM提取的操作。(ENVI可以从ALOS PRISM, ASTER, CARTOSAT-1, FORMOSAT-2, GeoEye-1, IKONOS, KOMPSAT-2, OrbView-3, QuickBird, WorldView-1, SPOT 1-5以及航空影像立体像对中提取DEM。)主要流程如下 第一步:输入立体像对 (1)单击主菜单->File->Open External File->SPOT->DIMAP,打开266282-20030123HRS1\SCENE01\METADATA.DIM和266282-20030123HRS2\SCENE01\METADATA.DIM数据。打开的数据在波段列表中显示,如图2. 图2数据列表 (2)单击主菜单->Topographic->DEM Extraction-> DEM

遥感解译方法及应用

遥感解译方法及应用 一、遥感的概念 近年来,一方面,由于空间科学、信息科学、计算机科学、物理学等科学技术的进步与发展,为遥感技术奠定了必要的技术基础,另一方面,由于人类生产活动不断地向深度和广度进军,遥感技术得到较为广泛的应用,因而使得遥感技术获得了飞跃的发展,已经成为发达国家和一些发展中国家十分重视的一项科学技术. 随着我国工农业生产的高速发展,人类对自然资源,特别是对矿产资源的需求量与日俱增. 因而,调查与管理资源则成为迫切需要解决的问题.其次,人类的生活环境正在不断地遭受到人为和自然的污染.例如:工业排污对水体和大气的污染造成人为的环境污染.而诸如洪水、泥石流、滑坡、森林火灾、火山爆发等自然灾害,则形成灾害性环境,它们都对生命财产造成极大的威胁. 在这种情况下,只有实时监测人为环境污染和自然灾害环境的发生,才能更有效地采取防护和治理措施,以减少对人类的危害程度.欲解决上述问题,完全依赖现场观察已感不足, 于是,由于航空遥感和航天遥感的相继问世便能获得大范围的地面遥感图像和实时动态信息,所以,这两种遥感方式则成为自然资源的调查与管理,环境的监测与灾害预报的一种新的探测手段. (一)遥感的概念 遥感顾名思义就是遥远的感知.即借助于专门的探测仪器,把遥远的物

体所辐射(或反射)的电磁波信号接收纪录下来,再经过加工处理,变成人眼可以直接识别的图像,从而揭示出所探测物体的性质及其变化规律.属于空间科学的范畴.是物理、计算数学、电子、光学、航空(天)、地学等密切结合的新兴学科,对工农业、国防、自然科学研究具有重大的意义. 1各类地质体的电磁辐射(反射、吸收、发射等)特性及其测试、分析与应用; 2、遥感数据资料的地学信息提取原理与方法; 3、遥感图像的地质解译与编图; 4、遥感技术在地质各个领域的具体应用和实效评估. (二)遥感平台(分类) 指放置遥感器的运载工具.按高度可分为航空和航天平台.在不同高度进行多平台遥感,可获得不同比例尺、分辨率和地面覆盖面积的遥感图像. 1、航空平台:是指在大气层内飞行的飞行器,高度为100m—30km,主要有飞机、直升机、飞艇、气球等. 2、航天平台:是指在大气层之外飞行的飞行器,高度为几百—几万公里;如人造地球卫星、探控火箭、宇宙飞船、航天飞机、太空站等. (三)遥感的发展简况 1839年第一张黑白航片问世到20世纪30年代,主要应用于军事侦察,1941年出版了《航空照片应用与判读》为各方面应用提供了理论基础进入20世纪50年代,苏美广泛应用,黑白、彩色航片进行军事、

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的研究现状与发展趋势 摘要:遥感在中国已经取得了世界级的成果和发展,被广泛应用于国民经济发展的各个方面,如土地资源调查和管理、农作物估产、地质勘查、海洋环境监测、灾害监测、全球变化研究等,形成了适合中国国情的技术发展和应用推广模式。随着遥感数据获取手段的加强,需要处理的遥感信息量急剧增加。在这种情况下,如何满足应用人员对于大区域遥感资料进行快速处理与分析的要求,正成为遥感信息处理面临的一大难题。这里涉及二个方面,一是遥感图像处理本身技术的开发,二是遥感与地理信息系统的结合,归结起来,最迫切需要解决的问题是如何提高遥感图像分类精度,这是解决大区域资源环境遥感快速调查与制图的关键。 关键词:遥感图像、发展、分类、计算机 一、遥感技术的发展现状 遥感技术正在进入一个能够快速准确地提供多种对地观测海量数据及应用研究的新阶段,它在近一二十年内得到了飞速发展,目前又将达到一个新的高潮。这种发展主要表现在以下4个方面: 1. 多分辨率多遥感平台并存。空间分辨率、时间分辨率及光谱分辨率普遍提高目前,国际上已拥有十几种不同用途的地球观测卫星系统,并拥有全色0.8~5m、多光谱3.3~30m的多种空间分辨率。遥感平台和传感器已从过去的单一型向多样化发展,并能在不同平台

上获得不同空间分辨率、时间分辨率和光谱分辨率的遥感影像。民用遥感影像的空间分辨率达到米级,光谱分辨率达到纳米级,波段数已增加到数十甚至数百个,重复周期达到几天甚至十几个小时。例如,美国的商业卫星ORBVIEW可获取lm空间分辨率的图像,通过任意方向旋转可获得同轨和异轨的高分辨率立体图像;美国EOS卫星上的MOiDIS-N传感器具有35个波段;美国NOAA的一颗卫星每天可对地面同一地区进行两次观测。随着遥感应用领域对高分辨率遥感数据需求的增加及高新技术自身不断的发展,各类遥感分辨率的提高成为普遍发展趋势。 2. 微波遥感、高光谱遥感迅速发展微波遥感技术是近十几年发展起来的具有良好应用前景的主动式探测方法。微波具有穿透性强、不受天气影响的特性,可全天时、全天候工作。微波遥感采用多极化、多波段及多工作模式,形成多级分辨率影像序列,以提供从粗到细的对地观测数据源。成像雷达、激光雷达等的发展,越来越引起人们的关注。例如,美国实施的航天飞机雷达地形测绘计划即采用雷达干涉测量技术,在一架航天飞机上安装了两个雷达天线,对同一地区一次获取两幅图像,然后通过影像精匹配、相位差解算、高程计算等步骤得到被观测地区的高程数据。高光谱遥感的出现和发展是遥感技术的一场革命。它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。高光谱遥感的发展,从研制第一代航空成像光谱仪算起已有二十多年的历史,并受到世界各国遥感科学家的普遍关注。但长期以来,高光谱遥感一直处在以航空为基础的研究发展阶段,且主要

遥感图像分类方法综述

遥感图像分类方法综述 刘佳馨 摘要:伴随着科学技术在我们的生活中不断发展,遥感技术便应运而生,而遥感图像因成为遥感技术分析中的不可缺少的依据,变得备受关注。在本文中,以遥感图像分类方法为研究中心,从传统分类方法、近代分类方法两个方面对分类方法进行了介绍,并以此为基础对分类思想及后续处理进行说明,进而展望了遥感图像分类的研究趋势和发展前景。 关键词:遥感图像;图像分类;分类方法 1 引言 遥感,作为采集地球数据及其变化信息的重要技术手段,在世界范围内的各个国家以及我国的许多部门、科研单位和公司等,例如地质、水体、植被、土壤等多个方面,得到广泛的应用,尤其在监视观测天气状况、探测自然灾害、环境污染甚至军事目标等方面有着广泛的应用前景。伴随研究的深入,获取遥感数据的方式逐渐具有可利用方法多、探测范围广、获取速度快、周期短、使用时受限条件少、获取信息量大等特点。遥感图像的分类就是对遥感图像上关于地球表面及其环境的信息进行识别后分类,来识别图像信息中所对应的实际地物,从而进一步达到提取所需地物信息的目的。 2 遥感图像分类基本原理 遥感是一种应用探测仪器,在不与探测目标接触的情况下,从远处把目标的电磁波特性记录下来,并且通过各种方法的分析,揭示出物体的特征性质及其变化的综合性探测技术。图像分类的目的在于将图像中每个像元根据其不同波段的光谱亮度、空间结构特征或其他信息,按照某种规则或算法划分为不同的类别。而遥感图像分类则是利用计算机技术来模拟人类的识别功能,对地球表面及其环境在遥感图像上的信息进行属性的自动判别和分类,以达到提取所需地物信息的目的。 3 遥感图像传统分类方法 遥感图像传统分类方法是目前应用较多,并且发展较为成熟的分类方法。从分类前是否需要获得训练样区类别这一角度进行划分,可将遥感图像传统分类方法分为两大类,即监督分类(supervised classification)和非监督分类(Unsupervised

遥感卫星影像的数据处理方法

遥感卫星影像数据处理方法和步骤 北京揽宇方圆信息技术有限公司 一、遥感图像几何畸变来源 遥感图像的变形误差总的可分为内部误差和外部误差两类。内部误差主要是由于传感器自身的性能、结构等因素造成;外部误差指的传感器以外的各因素所造成的,例如地球曲率、地形起伏、地球旋转等因素所引起的变形误差等 准备工作 1. 地形图的准备 原则上要求所用地形图的比例尺应大于遥感影像制图的比例尺。对分辨率小于5m的影像制图,应采用1∶5万的地形图纠正;对于分辨率大于5m的影像制图,应采用1∶1万的地形图纠正 2.校正图像的准备 根据影像数据分析与预处理的结果,首先需确定是否为多景数据处理。多景数据处理的原则为:时间相近的图像,可先镶嵌后再进行几何处理;获取时间差别较大的图像,应分别进行几何处理再镶嵌。 其次生成供选取控制点的图像。可以对图像进行增强以改善目视效果,有利于地物点的确定。也可以选择某一时相的TM彩色合成(743、543、741等)图像,作为供选取控制点的影像。 3纠正变换函数的建立 用以建立影像坐标和地面坐标(或地图)间的数学关系,即输入图像与输出图像间的坐标变换关系。这种坐标变换关系,通常有两种互逆的表达式法 1.直接法方案从原始图像阵列出发,按行列的顺序依次对每个原始像素点位求其在地面坐标系(也是输出图像坐标系)中的正确位置: X=Fx(x,y) Y=Fy(x,y) 式中Fx、Fy为直接纠正变换函数。 按照原始图像的阵列,依次对每个象元(x,y)进行变换纠正,求得图像的位置(X,Y),同时把原图像(x,y)的灰度值送到新图像(X,Y)的位置上。 2.间接法方案从空白的输出图像阵列出发,亦按行列的顺序依次对每个输出象元点位反求其在原始图像坐标的位置。 x=Gx(X,Y)

遥感影像分类实验报告

面向对象分类实验报告 姓名: 学号: 指导老师: 地球科学与环境工程学院

一、实验目的 面向对象法模拟人类大脑认知过程,将图像分割为不同均质的对象,充分利用对象所包含的信息,将知识库转换为规则特征,从而提取影像信息。因为分析的是对象而不是像元,因此我们可以利用对象丰富的语义信息,结合各种地学概念,如面积、距离、光谱、尺度、纹理等进行分析。 面向对象的遥感影像分析方法与传统的面向像元的影像分析方法不同。首先我们要用一定方法对遥感影像进行分割,在提取分割单元(图像分割后所得到的内部属性相对一致或均质程度较高的图像区域)的各种特征后,在特征空间中进行对象识别和标识,从而最终完成信息的分类与提取。 二、实验意义 1、使用eCognition进行面向对象的影像分类的流程; 2、体会面向对象思想的内涵,学会将大脑认知过程转变为机器语言; 三、实验内容 3.1、影像的预处理 利用ERDAS软件将所给的全色影像和多光谱遥感影像进行融合,达到既满足高空间分辨率,又保留光谱信息。Image interperter-> spatial enhancement-> resolution merge.输入融合前的两幅影像,完成影像的预处理过程。 图 1 图像融合步骤

图 2 融合后的图像 3.2、使用eCongition 创建工程 a、使用规则集模式创建工程 图 3 模式选择 b、file->new projection ,打开Create Project和Import Image Layers两个

对话框,将上面的实验数据导入。(注意,数据以及工程文件保存路径不要有中文) 图 4 导入数据 c、选择数据修改波段名称,并设置Nodata选项。

遥感影像分类提取城市用地的方法及过程

摘要 城市是人口、资源、环境和社会经济等要素高度密集的综合体,因此城市的发展变化是人地关系的焦点。工业化的进程正蒸蒸日上,经济快速发展,城市中人口剧增以及非城市人口大量涌入,而且人们生活水平不断提高,并同时追求着物质文明与精神文明的东西,这一切都促使城市逐渐增大,并向外不断扩张。 伴随着城市的扩张,各种资源被急剧消耗,土地作为一种基本的自然资源,受城市扩张的直接影响,特别是在城市边缘地带的各种土地利用类型都随着城市的扩大以各种方式逐渐转化为城市用地。为了探讨这种转化过程及其内在驱动力因素,本文以郑州市为研究对象,选取该市1988年、2001年和2003年三个时相的Landsat TM/ETM+遥感影像作为主要的数据源,以遥感分类提取为主要的获取信息的手段,通过对土地利用分类结果图像进行叠加统计分析,分析郑州市从1988年—2003年间土地利用的变化及土地利用类型转换情况。运用三期遥感影像分类的结果图像提取郑州市城市用地的图斑,进而统计出城市用地面积,分析统计得到1988年—2001年、2001年—2003年两个年份段间郑州市城市用地扩展数量和速率。最后结合郑州市的经济、交通、规划和政策,分析了该区域在1988年一2003年间城市扩展的驱动力因素。 本文着重探讨了遥感影像分类提取城市用地的方法及过程,采用了ENVI 软件对遥感图像进行影像校正、裁剪和增强,利用马氏距离分类法(Mahalanobis Distance)进行监督分类,并统计分析城市用地的扩展面积,计算城市用地的扩展速率,并分析了1988年—2001年、2001年—2003年间郑州市城市扩展过程中建成区侵占其它用地类型的情况。 关键词:遥感城市扩展土地利用变化监督分类郑州

遥感影像分类方法实验报告

实验报告

目录 1 实验目的 (4) 2 实验数据 (4) 3 实验内容 (4) 4 实验步骤 (5) 4.1 对人口矢量数据(shapefile)进行投影转换 (5) 4.1.1 Census.shp文件投影坐标的检查 (5) 4.1.2 将投影坐标转换为WGS_1984_UTM_Zone_16N (6) 4.2 对遥感影像进行几何精校正(以经过投影变换的人口矢量数据为基准) (6) 4.2.1 Census.shp在ENVI软件的加载 (6) 4.2.2 对遥感影像进行几何精校正(以矢量数据为基准) (7) 4.2.3 用矢量图层对遥感影像进行裁剪 (10) 4.3 将Pan波段和多光谱波段进行融合,并对融合效果进行定性和定量评价 (11) 4.3.1 两种融合方法的原理 (11) 4.3.2 进行 Gram-Schmidt Spectral Sharpening融合 (11) 4.3.4 融合效果进行定性评价 (14) 4.3.5 融合效果进行定量评价(软件提供的计算方法) (15) 4.3.6 融合效果进行定量评价(Matlab编程计算) (16) 4.3.7 遥感影像融合定量分析代码 (20) 4.4 生成住房密度栅格影像 (23) 4.4.1 两表的连接 (23) 4.4.2 计算房屋密度 (24) 4.4.3 直接栅格化 (25) 4.4.4 IDW插值 (25) 4.4.5 对房屋密度图进行重分类 (26) 4.5 将住房密度栅格影像作为额外的通道与ETM+多光谱波段进行叠加 (26) 4.6 监督分类(融合方法为HSV,波段为5,4,3) (27) 4.6.1 打开Google Earth影像作为监督分类的参照 (27) 4.6.2 建立兴趣区 (29) 4.6.3 训练样区的选择 (30) 4.6.4 训练样区的评价 (31) 4.6.5 执行监督分类 (33) 4.6.6 分类后处理 (35) 4.6.7 评价结果分析 (37) 4.6.8 分类结果面积统计 (38) 4.6.9 分类结果 (41) 4.7 分类结果评价与分析 (41) 4.7.1 未加入房屋密度图层的分类结果评价与分析 (41) 4.7.2 加入IDW插值房屋密度图层的分类结果评价与分析 (42) 4.7.3 加入直接栅格化房屋密度图层的分类结果评价与分析 (43) 4.7.4 加入重分类后IDW插值房屋密度图层的分类结果评价与分析 (44) 4.7.5 从总精度与Kappa系数对分类结果进行评价 (45)

遥感卫星影像地质灾害遥感解译方法和流程

Planet 遥感卫星影像地质灾害遥感解译方法和流程数据产品 1.地质灾害遥感解译方法 本次地质灾害遥感解译主要采取机助目视解译方法。该方法系指解译人员利用计算机鼠标,直接在计算机荧光屏上对遥感图像进行地质灾害遥感解译工作,并将解译成果集成在相应的图层上。由于遥感图像在计算机荧光屏上显示的信息和信息层次较遥感图片中相应信息和信息层次丰富,所以机助目视解译方法的解译效果较传统的目视解译好。另外,因为是在计算机上直接成图,从而减少了编成图程序,这是本次工作的主要解译方法。 2.遥感解译流程 2.1建立遥感解译标志 地质灾害遥感解译标志是指能帮助识别地质灾害及其性质和相互关系的影像特征,如地貌特征、地质灾害要素(如滑坡体、滑坡壁、滑坡台阶、封闭洼地、滑坡鼓丘等,泥石流堆积扇、泥石流物源,崩塌堆积体等)、形状、大小、色调、阴影、纹理等。在充分收集和熟悉工作区地质背景、地质灾害资料的基础上,通过野外实地踏勘统计,根据地质灾害波谱特征和空间特征,分别建立相应的地貌类型、地质构造、岩(土)体类型、水文地质现象和森林植被类型等区域环境地质条件以及各类地质灾害的遥感解译标志。 2.2室内解译工作 室内解译应以遥感影像为依据。室内解译主要采用以目视解译为主,人机交互式解译为辅,初步解译与详细解译相结合、室内解译与野外调查验证相结合的工作方法。解译时应采用从已知到未知、从区域到局部、从总体到个别、从定性到定量,按先易后难、循序渐进、不断反馈和逐步深化的方法进行工作。 2.3野外调查和验证

在室内解译的基础上,通过对初步解译资料进行野外调查和验证,再进行详细解译,来补充和修正初步解译成果,最终形成遥感解译成果图,以此确保遥感解译成果的质量和置信度。 2.4解译成果图件的编制 在室内解译的基础上,通过野外调查和验证,补充和修改后,将解译成果草图分图层进行数字化成图,提交最终的遥感解译成果系列图。

遥感图像目视解译

嘉应学院地科院 《遥感导论》课程 实验报告 班级:1603 学号:161080142 姓名:郑秋彦 指导教师:朱长柏 成绩:

****** 遥感图像目视解译 一、实验目的 1. 学习影像判读的基本原理和方法 2. 掌握影像判读中判读标志的建立方法 3. 解译判读各土地覆盖类型在图像上的影像特征 4. 了解和认识影像对地物的表现 5. 掌握GIS软件的数字化功能、基本统计功能、空间分析功能。 二、实验数据和软件 1、实验数据:栅格数据(aaa1.tif、嘉应学院.jpg)、地图文档(无标题.mxd) 2、软件:ArcGis10.2 三、实验过程及结果 1、打开并显示图像 1)打开arcgis的arcmap点击文件,新建地图文档文档 (2)点击工具栏的【窗口】,选择【目录】,在目录连接到数据所在文件加,添加

3)再将aaa1.tif图拉进空白窗口,(如果内容列表出现红色感叹号,点击感叹号,选择放置aaa1.tif栅格数据路径,点击添加) 得到下图:

2、创建面要素 1)在目录连接到的文件夹上右键新建【个人地理数据库】,在这个数据库右键新建【要素数据集】 2)在【下一步】,点击【添加坐标系】导入

4)添加aaa.tif,后面两步默认选择,点击【完成】 5)在创建好的【要素数据集】上右键新建【要素类】,然后填写名称,要素类型选择【面要素】 6)下一步,在【新建要素类】对话框添加TYPE,NAME字段名,数据类型都选择文本,在【字段属性】的长度都填上10,点击完成

7)在内容列表的面要素上右键【编辑要素】,点击【开始编辑】,在编辑工具栏,点击【编辑器】的编辑窗口,选择【创建要素】,然后出现【创建要素】对话框,点击你的面要素,在【构造工具】下选择【矩形】,在编辑窗口鼠标光标变成一个十字右下角带矩形的光标

相关文档
最新文档