多元时间序列理论之面板数据案例

多元时间序列理论之面板数据案例
多元时间序列理论之面板数据案例

多元时间序列理论之面板数据案例

一、问题的提出

在进行经济分析时经常会遇到时间序列和横截面两者相结合的数据。例如,在企业投资需求分析中,我们会遇到多个企业的若干指标的阅读或极度时间序列;在城镇居民消费分析中,我们会遇到不同省市地区的反映居民消费和居民收入的年度时间序列。这种具有三维(个体、时间、指标)信息的数据结构称为时间序列/截面数据。

时间序列/截面数据中,往往横截面中观测值个数相对较少,而依时期序列的观测值较多。例如1999-2001年25个主要城市每日天气情况(包括降水量、湿度、平均气温)的数据;西方七国1960-1990年各月经济总量指标等。这些数据时间跨度往往很长,因此可以在随机过程的背景中研究扰动项,侧重于时间序列分析。

另一种截面时间序列数据则具有相反的数据,即横截面包含很多的观测值,但依时间序列的观测值相对很少。典型的例子是对全国数十万家庭进行为期10年的年收入调查。此类数据被称为面板(panel)数据。它们通常是宽而短的,更适用于横截面分析。

二、方法选择

研究面板数据的第一步是确定模型的形式(变截距或变斜率),广泛使用的检验是协方差分析检验。

如果是变截距模型,则使用SAS软件的Hausman检验是采用随机影响模型还是固定影响模型。

模型的估计采用SAS软件的FGLS方法。

三、统计指标和数据收集

本案例的样本数据来自中国统计出版社出版的《中国统计年鉴》,数据年限为1991—2005年。第一个表格是城镇每年居民可支配收入,第二个表格是城镇居民每年消费性支出。

表6-1 1991-2005城镇居民可支配收入

表6-2 1991-2005城镇居民消费性支出

资料来源:中国统计年鉴1991—2006

四、学习目的和要求

(一)教学目的

1、通过本案例的教学,使学生掌握对利用面板数据进行建模的方法和思路;

2、通过本案例的教学,使学生了解面板数据的在SAS软件下的运用;

3、比较不同软件在利用面板数据建模的异同

(二)要求

1、学生必须具备基本的经济理论和中级时间序列分析的知识;

2、熟悉面板数据在EVIEWS软件下的输入、;

3、熟悉SAS的基本操作。

五、讨论的问题

1、使用SAS软件与EVIEWS计算面板数据的优势在哪里?

2、根据不同的经济理论对消费汗水进行调整,比较结果的合理性。

3、如何根据研究目的选择模型形式?

六、撰写分析报告

学生做完案例后,应提交一份报告,以便在讨论课中进行交流分析和研讨。分析报告的具体要求:

1、研究的目的;

2、所依据的数据以及特征说明;

3、采用的统计分析方法及原因说明

4、写出上机操作的运算过程和运算结果(包括数据和图表结果)

5、写出结论,并对结论进行分析和评论,提出改进的建议或新思路。

多元时间序列建模分析

应用时间序列分析实验报告

单位根检验输出结果如下:序列x的单位根检验结果:

1967 58.8 53.4 1968 57.6 50.9 1969 59.8 47.2 1970 56.8 56.1 1971 68.5 52.4 1972 82.9 64.0 1973 116.9 103.6 1974 139.4 152.8 1975 143.0 147.4 1976 134.8 129.3 1977 139.7 132.8 1978 167.6 187.4 1979 211.7 242.9 1980 271.2 298.8 1981 367.6 367.7 1982 413.8 357.5 1983 438.3 421.8 1984 580.5 620.5 1985 808.9 1257.8 1986 1082.1 1498.3 1987 1470.0 1614.2 1988 1766.7 2055.1 1989 1956.0 2199.9 1990 2985.8 2574.3 1991 3827.1 3398.7 1992 4676.3 4443.3 1993 5284.8 5986.2 1994 10421.8 9960.1 1995 12451.8 11048.1 1996 12576.4 11557.4 1997 15160.7 11806.5 1998 15223.6 11626.1 1999 16159.8 13736.5 2000 20634.4 18638.8 2001 22024.4 20159.2 2002 26947.9 24430.3 2003 36287.9 34195.6 2004 49103.3 46435.8 2005 62648.1 54273.7 2006 77594.6 63376.9 2007 93455.6 73284.6 2008 100394.9 79526.5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2); run;

第章时间序列预测习题答案

第10章时间序列预测

从时间序列图可以看出,国家财政用于农业的支出额大体上呈指数上升趋势。(2)年平均增长率为: 。 (3)。 下表是1981年—2000年我国油彩油菜籽单位面积产量数据(单位:kg / hm2)年份单位面积产量年份单位面积产量 1981 1451 1991 1215 1982 1372 1992 1281 1983 1168 1993 1309 1984 1232 1994 1296 1985 1245 1995 1416 1986 1200 1996 1367 1987 1260 1997 1479 1988 1020 1998 1272 1989 1095 1999 1469

1990 1260 2000 1519 (1)绘制时间序列图描述其形态。 (2)用5期移动平均法预测2001年的单位面积产量。 (3)采用指数平滑法,分别用平滑系数a=和a=预测2001年的单位面积产量,分析预测误差,说明用哪一个平滑系数预测更合适? 详细答案: (1)时间序列图如下: (2)2001年的预测值为: | (3)由Excel输出的指数平滑预测值如下表: 年份单位面积产量 指数平滑预测 a=误差平方 指数平滑预测 a= 误差平方 19811451 19821372

19831168 19841232 19851245 19861200 19871260 19881020 19891095 19901260 19911215 19921281 19931309 19941296 19951416 19961367 19971479 19981272 19991469 20001519 合计———2001年a=时的预测值为: a=时的预测值为:

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

【SPSS看统计学】之时间序列预测Word版

时间序列预测技术 下面看看如何采用SPSS软件进行时间序列的预测 我们通过案例来说明: 假设我们拿到一个时间序列数据集:某男装生产线销售额。一个产品分类销售公司会根据过去 10 年的销售数据来预测其男装生产线的月销售情况。 现在我们得到了10年120个历史销售数据,理论上讲,历史数据越多预测越稳定,一般也要24个历史数据才行! 大家看到,原则上讲数据中没有时间变量,实际上也不需要时间变量,但你必须知道时间的起点和时间间隔。

当我们现在预测方法创建模型时,记住:一定要先定义数据的时间序列和标记! 这时候你要决定你的时间序列数据的开始时间,时间间隔,周期!在我们这个案例中,你要决定季度是否是你考虑周期性或季节性的影响因素,软件能够侦测到你的数据的季节性变化因子。

定义了时间序列的时间标记后,数据集自动生成四个新的变量:YEAR、QUARTER、MONTH和DATE(时间标签)。 接下来:为了帮我们找到适当的模型,最好先绘制时间序列。时间序列的可视化检查通常可以很好地指导并帮助我们进行选择。另外,我们需要弄清以下几点: ?此序列是否存在整体趋势?如果是,趋势是显示持续存在还是显示将随时间而消逝? ?此序列是否显示季节变化?如果是,那么这种季节的波动是随时间而加剧还是持续稳定存在?

这时候我们就可以看到时间序列图了! 我们看到:此序列显示整体上升趋势,即序列值随时间而增加。上升趋势似乎将持续,即为线性趋势。此序列还有一个明显的季节特征,即年度高点在十二月。季节变化显示随上升序列而增长的趋势,表明是乘法季节模型而不是加法季节模型。 此时,我们对时间序列的特征有了大致的了解,便可以开始尝试构建预测模型。时间序列预测模型的建立是一个不断尝试和选择的过程。 了三大类预测方法:1-专家建模器,2-指数平滑法,3-ARIMA

《时间序列分析》案例

《时间序列分析》案例案例名 称:时间序列分析在经济预测中的应用内容要 求:确定性与随机性时间序列之比较设计作 者:许启发,王艳明 设计时 间:2003年8月

案例四:时间序列分析在经济预测中的应用 一、案例简介 为了配合《统计学》课程时间序列分析部分的课堂教学,提高学生运用统计分析方法解决实际问题的能力,我们组织了一次案例教学,其内容是:对烟台市的未来经济发展状况作一预测分析,数据取烟台市1949—1998年国内生产总值(GDP)的年度数据,并以此为依据建立预测模型,对1999年和2000年的国内生产总值作出预测并检验其预测效果。国内生产总值是指一个国家或地区所有常住单位在一定时期内生产活动的最终成果,是反映国民经济活动最重要的经济指标之一,科学地预测该指标,对制定经济发展目标以及与之相配套的方针政策具有重要的理论与实际意义。在组织实施时,我们首先将数据资料印发给学生,并讲清本案例的教学目的与要求,明确案例所涉及的教学内容;然后给学生一段时间,由学生根据资料,运用不同的方法进行预测分析,并确定具体的讨论日期;在课堂讨论时让学生自由发言,阐述自己的观点;最后,由主持教师作点评发言,取得了良好的教学效果。 经济预测是研究客观经济过程未来一定时期的发展变化趋势,其目的在于通过对客观经济现象历史规律的探讨和现状的研究,求得对未来经济活动的了解,以确定社会经济活动的发展水平,为决策提供依据。 时间序列分析预测法,首先将预测目标的历史数据按照时间的先后顺序排列,然后分析它随时间的变化趋势及自身的统计规律,外推得到预测目标的未来取值。它与回归分析预测法的最大区别在于:该方法可以根据单个变量的取值对其自身的变动进行预测,无须添加任何的辅助信息。 本案例的最大特色在于:它汇集了统计学原理中的时间序列分析这一章节的所有知识点,通过本案例的教学,可以把不同的时间序列分析方法进行综合的比较,便于学生更好地掌握本章的内容。 二、案例的目的与要求 (一)教学目的 1.通过本案例的教学,使学生认识到时间序列分析方法在实际工作中应用的必要性和可能性; 2.本案例将时间序列分析中的水平指标、速度指标、长期趋势的测定等内容有机的结合在一起,以巩固学生所学的课本知识,深化学生对课本知识的理解; 3.本案例是对烟台市的国内生产总值数据进行预测,通过对实证结果的比较和分析,使学生认识到对同一问题的解决,可以采取不同的方法,根据约束条件,从中选择一种合适的预测方法; 4.通过本案例的教学,让学生掌握EXCEL软件在时间序列分析中的应用,对统计、计量分析软件SPSS或Eviews等有一个初步的了解; 5.通过本案例的教学,有助于提高学生运用所学知识和方法分析解决问题的能力、合作共事的能力和沟通交流的能力。 (二)教学要求 1.学生必须具备相应的时间序列分析的基本理论知识; 2.学生必须熟悉相应的预测方法和具备一定的数据处理能力; 3.学生以主角身份积极地参与到案例分析中来,主动地分析和解决案例中的问题; 4.在提出解决问题的方案之前,学生可以根据提供的样本数据,自己选择不同的统计分析方法,对这一案例进行预测,比较不同预测方法的异同,提出若干可供选择的方案; 5.学生必须提交完整的分析报告。分析报告的内容应包括:选题的目的及意义、使用数据的特征及其说明、采用的预测方法及其优劣、预测结果及其评价、有待于进一步改进的思路或需要进一步研究的问题。 三、数据搜集与处理 时间序列数据按照不同的分类标准可以划分为不同的类型,最常见的有:年度数据、季度数据、月度数据。本案例主要讨论对年度数据如何进行预测分析。考虑到案例设计时的侧重点,本案例只是对烟

Eviews时间序列分析实例

Eviews 时间序列分析实例 时间序列是市场预测中经常涉及的一类数据形式, 绍。通过第七章的学习,读者了解了什么是时间序列, 、指数平滑法实例 所谓指数平滑实际就是对历史数据的加权平均。它可以用于任何一种没有明显函数规 律,但确实存在某种前后关联的时间序列的短期预测。 由于其他很多分析方法都不具有这种 特点,指数平滑法在时间序列预测中仍然占据着相当重要的位置。 (―)一次指数平滑 一次指数平滑又称单指数平滑。它最突出的优点是方法非常简单, 甚至只要样本末期的 平滑值,就可以得到预测结果。 一次指数平滑的特点是: 能够跟踪数据变化。 这一特点所有指数都具有。 预测过程中添 加最新的样本数据后, 新数据应取代老数据的地位, 老数据会逐渐居于次要的地位, 直至被 淘汰。这样,预测值总是反映最新的数据结构。 一次指数平滑有局限性。第一,预测值不能反映趋势变动、季节波动等有规律的变动; 第二,这种方法多适用于短期预测, 而不适合作中长期的预测;第三, 由于预测值是历史数 据的均值,因此与实际序列的变化相比有滞后现象。 指数平滑预测是否理想,很大程度上取决于平滑系数。 Eviews 提供两种确定指数平滑 系数的方法:自动给定和人工确定。 选择自动给定,系统将按照预测误差平方和最小原则自 动确定系数。如果系数接近 1,说明该序列近似纯随机序列,这时最新的观测值就是最理想 的预测值。 出于预测的考虑,有时系统给定的系数不是很理想, 用户需要自己指定平滑系数值。平 滑系数取什么值比较合适呢? 一般来说,如果序列变化比较平缓,平滑系数值应该比较小, 比如小于0.1; 如果序列变化比较剧烈, 平滑系数值可以取得大一些, 如0.3?0.5。若平滑系 数值大于0.5才能跟上序列的变化,表明序列有很强的趋势,不能采用一次指数平滑进行预 测。 [例1]某企业食盐销售量预测。现在拥有最近连续 30个月份的历史资料(见表 I ), 试预测下一月份销售量。 表 某企业食盐销售量 单位:吨 解:使用对数据进行分析,第一步是建立工作文件和录入数据。有关操作在本 理和一些分析实例。本节的主要内容是说明如何使用 Eviews 软件进行分析。 本书第七章对它进行了比较详细的介 并接触到有关时间序列分析方法的原

Eviews时间序列分析实例.

Eviews时间序列分析实例 时间序列是市场预测中经常涉及的一类数据形式,本书第七章对它进行了比较详细的介绍。通过第七章的学习,读者了解了什么是时间序列,并接触到有关时间序列分析方法的原理和一些分析实例。本节的主要内容是说明如何使用Eviews软件进行分析。 一、指数平滑法实例 所谓指数平滑实际就是对历史数据的加权平均。它可以用于任何一种没有明显函数规律,但确实存在某种前后关联的时间序列的短期预测。由于其他很多分析方法都不具有这种特点,指数平滑法在时间序列预测中仍然占据着相当重要的位置。 (-)一次指数平滑 一次指数平滑又称单指数平滑。它最突出的优点是方法非常简单,甚至只要样本末期的平滑值,就可以得到预测结果。 一次指数平滑的特点是:能够跟踪数据变化。这一特点所有指数都具有。预测过程中添加最新的样本数据后,新数据应取代老数据的地位,老数据会逐渐居于次要的地位,直至被淘汰。这样,预测值总是反映最新的数据结构。 一次指数平滑有局限性。第一,预测值不能反映趋势变动、季节波动等有规律的变动;第二,这种方法多适用于短期预测,而不适合作中长期的预测;第三,由于预测值是历史数据的均值,因此与实际序列的变化相比有滞后现象。 指数平滑预测是否理想,很大程度上取决于平滑系数。Eviews提供两种确定指数平滑系数的方法:自动给定和人工确定。选择自动给定,系统将按照预测误差平方和最小原则自动确定系数。如果系数接近1,说明该序列近似纯随机序列,这时最新的观测值就是最理想的预测值。 出于预测的考虑,有时系统给定的系数不是很理想,用户需要自己指定平滑系数值。平滑系数取什么值比较合适呢?一般来说,如果序列变化比较平缓,平滑系数值应该比较小,比如小于0.l;如果序列变化比较剧烈,平滑系数值可以取得大一些,如0.3~0.5。若平滑系数值大于0.5才能跟上序列的变化,表明序列有很强的趋势,不能采用一次指数平滑进行预测。 [例1]某企业食盐销售量预测。现在拥有最近连续30个月份的历史资料(见表l),试预测下一月份销售量。 表1 某企业食盐销售量单位:吨 解:使用Eviews对数据进行分析,第一步是建立工作文件和录入数据。有关操作在本

时间序列预测部分

二、基本概念 宽平稳:序列的统计性质不随时间发生改变,只与时间间隔有关。 AR 模型:AR 模型也称为自回归模型。它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测, 自回归模型的数学公式为: 1122t t t p t p t y y y y φφφε---=++++L 式中: p 为自回归模型的阶数i φ(i=1,2, K ,p )为模型的待定系数,t ε为误差, t y 为一个平稳时间序列。 MA 模型:MA 模型也称为滑动平均模型。它的预测方式是通过 过去的干扰值和现在的干扰值的线性组合预测。滑动平均模型的数学公式为: 1122t t t t q t q y εθεθεθε---=----L 式中: q 为模型的阶数; j θ(j=1,2,K ,q )为模型的待定系数;t ε为误差; t y 为平稳时间序列。 ARMA 模型:自回归模型和滑动平均模型的组合, 便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA , 数学公式为: 11221122t t t p t p t t t q t q y y y y φφφεθεθεθε------=++++----L L 三、实验内容及要求 1、实验内容: (1)根据时序图判断序列的平稳性; (2)观察相关图,初步确定移动平均阶数q 和自回归阶数p ; (3)运用经典B-J 方法对某企业201个连续生产数据建立合适的ARMA (,p q )模型,并能够利用此模型进行短期预测。 PA :1、序列时序图 2、序列相关图

图2-5 从相关图看出,自相关系数迅速衰减为0,说明序列平稳,但最后一列白噪声检验的Q统计量和相应的伴随概率表明序列存在相关性,因此序列为平稳非白噪声序列。我们可以对序列采用B-J方法建模研究。 3、ADF检验序列的平稳性 通过时序图和相关图判断序列是平稳的,我们通过统计检验来进一步证实这个结论,我们对序列本身进行检验,序列不存在明显的趋势,所以选择对常数项,不带趋势的模型进行检验,出现图2-7的检验结果,表明拒绝存在一个 单位根的原假设,序列平稳。 4、模型定阶 由图2-5看出,偏自相关系数在k=5后很快趋于0即9阶截尾,尝试拟合AR(5);自相关系数在k=6处显著不为0,当k=7时在2倍标准差的置信带边缘,可以考虑拟合MA(6)或MA(7);同时可以考虑ARMA(9,6)模型等。

时间序列案例分析作业

案例4 某专卖店销售额数量规律研究 资料 某专卖店为加强管理的科学化,采集了过去五年的销售量资料如下: 讨论大纲 1. 用哪些简单的描述性指标,可大致找到该专卖店销售额的一般规律? 答:在不考虑不规则变化的情况下,用长期趋势、季节变动和周期波动这些描述性指标可以找到专卖店销售额的一般规律。 2. 能否以一个近似的函数式描述出销售额的长期趋势?能否进行预测? 答:可以用一个近似的函数式描述销售额的长期趋势,计算过程如下表所示 函数式为24.870.298Y X Λ =+,可以进行预测,如预测2009年冬季的销售额,即将序号21作为自变量X 的值代入上述函数式中求解相应的预测值。

3.该数列是否存在明显的季节性变化,如何测定? 4.该数列是否存在周期波动,如何测定? 答:将3、4步合并进行分析,过程如下: 第一步:计算上述时间序列的季节指数,利用移动平均比率法,计算过程如下表所示

从季节指数的计算过程可以看出数列存在明显的季节性变化,用季节指数测定,春夏秋冬季节的季节指数分别为119.64%,75.99%,108.13%,96.23% 第二步:根据季节指数,可以得到消除季节影响的序列,然后根据这一无季节影响的时间序列拟合趋势线,计算过程如下表

所得趋势线为24.800.31Y X Λ =+ 第三步:测定周期波动,将1-20这20个时间的序号分别代入第二步求解出的趋势线24.800.31Y X Λ=+中,得到下表中的(3)列,然后用消除的季节影响的序列除以(3)列即可得到周期波动的成分,计算过程如下表所示:

5.上述规律如何帮助该专卖店的经营决策? 答:利用上述规律可以帮助专卖店预测下一年四个季度的销售额情况,如下表: 其中趋势值是将21,22,23,24分别作为X 值代入24.800.31Y X Λ =+中得到。 预测值为趋势值与季节指数相乘得到 通过预测值及前面求解出的季节指数,商家可以更好的掌握季节的影响,趋势的影响及周期的波动,可以更好的做出经营决策。

(整理)Excel时间序列预测操作.

时间序列分析预测EXCEL操作 一、长期趋势(T)的测定预测方法 线性趋势→:: 用回归法 非线性趋势中的“指数曲线”:用指数函数LOGEST、增长函数GROWTH(针对指数曲线) 多阶曲线(多项式):用回归法 (一)回归模型法-------长期趋势(线性或非线性)模型法: 具体操作过程:在EXCEL中点击“工具”→“数据分析”→“回归”→分别在“Y值输入区域”和“X值输入区域”输人数据和列序号的单元格区域一选择需要的输出项目,如“线性拟合图”。回归分析工具的输出解释: 计算结果共分为三个模块: 1)回归统计表: Multiple R(复相关系数R):R2的平方根,又称为相关系数,它用来衡量变量xy之间相关程度的大小。R Square(复测定系数R2 ):用来说明用自变量解释因变量变差的程度,以测量同因变量y的拟合效果。Adjusted R Square (调整复测定系数R2):仅用于多元回归才有意义,它用于衡量加入独立变量后模型的拟合程度。当有新的独立变量加入后,即使这一变量同因变量之间不相关,未经修正的R2也要增大,修正的R2仅用于比较含有同一个因变量的各种模型。 标准误差:又称为标准回归误差或叫估计标准误差,它用来衡量拟合程度的大小,也用于计算与回归有

关的其他统计量,此值越小,说明拟合程度越好。 2)方差分析表:方差分析表的主要作用是通过F检验来判断回归模型的回归效果。 3)回归参数:回归参数表是表中最后一个部分: ?Intercept:截距a ?第二、三行:a (截距) 和b (斜率)的各项指标。 ?第二列:回归系数a (截距)和b (斜率)的值。 ?第三列:回归系数的标准误差 ?第四列:根据原假设Ho:a=b=0计算的样本统计量t的值。 第五列:各个回归系数的p值(双侧) 第六列:a和b 95%的置信区间的上下限。 (二)使用指数函数LOGEST和增长函数GROWTH进行非线性预测 在Excel中,有一个专用于指数曲线回归分析的LOGEST函数,其线性化的全部计算过程都是自动完成的。如果因变量随自变量的增加而相应增加,且增加的幅度逐渐加大;或者因变量随自变量的增加而相应减少,且减少的幅度逐渐缩小,就可以断定其为指数曲线类型。 具体操作过程: 1.使用LOGEST函数计算回归统计量 ①打开“第3章时间数列分析与预测.xls”工作簿,选择“增长曲线”工作表如下图所示。 ②选择E2:F6区域,单击工具栏中的“粘贴函数”快捷键,弹出“粘贴函数”对话框,在“函数分类”中选择 “统计”,在“函数名”中选择“LOGEST”函数,则打开LOGEST对话框,如下图11.20所示。

数据分析-时间序列的趋势分析

数据分析-时间序列的趋势分析 无论是网站分析工具、BI报表或者数据的报告,我们很难看到数据以孤立的点单独地出现,通常数据是以序列、分组等形式存在,理由其实很简单,我们没法从单一的数据中发现什么,用于分析的数据必须包含上下文(Context)。数据的上下文就像为每个指标设定了一个或者一些参考系,通过这些参照和比较的过程来分析数据的优劣,就像中学物理上的例子,如果我们不以地面作为参照物,我们无法区分火车是静止的还是行进的,朝北开还是朝南开。 在实际看数据中,我们可能已经在不经意间使用数据的上下文了,趋势分析、比例分析、细分与分布等都是我们在为数据设置合适的参照环境。所以这边通过一个专题——数据的上下文,来总结和整理我们在日常的数据分析中可以使用的数据参考系,前面几篇主要是基于内部基准线(Internal Benchmark)的制定的,后面会涉及外部基准线(External Benchmark)的制定。今天这篇是第一篇,主要介绍基于时间序列的趋势分析,重提下同比和环比,之前在网站新老用户分析这篇文章,已经使用同比和环比举过简单应用的例子。 同比和环比的定义 定义这个东西在这里还是再唠叨几句,因为不了解定义就无法应用,熟悉的朋友可以跳过。 同比:为了消除数据周期性波动的影响,将本周期内的数据与之前周期中相同时间点的数据进行比较。早期的应用是销售业等受季节等影响较严重,为了消除趋势分析中季节性的影响,引入了同比的概念,所以较多地就是当年的季度数据或者月数据与上一年度同期的比较,计算同比增长率。 环比:反应的是数据连续变化的趋势,将本期的数据与上一周期的数据进行对比。最常见的是这个月的数据与上个月数据的比较,计算环比增长率,因为数据都是与之前最近一个周期的数据比较,所以是用于观察数据持续变化的情况。 买二送一,再赠送一个概念——定基比(其实是百度百科里附带的):将所有的数据都与某个基准线的数据进行对比。通常这个基准线是公司或者产品发展的一个里程碑或者重要数据点,将之后的数据与这个基准线进行比较,从而反映公司在跨越这个重要的是基点后的发展状况。 同比和环比的应用环境

时间序列分析试题

第九章 时间序列分析 一、单项选择题 1、乘法模型是分析时间序列最常用的理论模型。这种模型将时间序列按构成分解为( ) 等四种成分,各种成分之间( ),要测定某种成分的变动,只须从原时间序列中( )。 A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动 B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动 C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动 D.长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动 答案:C 2、加法模型是分析时间序列的一种理论模型。这种模型将时间序列按构成分解为( )等四种成分,各种成分之间( ),要测定某种成分的变动,只须从原时间序列中( )。 A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动 B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动 C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动 D.. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动 答案:B 3、利用最小二乘法求解趋势方程最基本的数学要求是( )。 A. ∑=-任意值2)?(t Y Y B. ∑=-min )?(2t Y Y C. ∑=-max )?(2t Y Y D. 0)?(2∑=-t Y Y 答案:B 4、从下列趋势方程t Y t 86.0125?-=可以得出( )。 A. 时间每增加一个单位,Y 增加0.86个单位 B. 时间每增加一个单位,Y 减少0.86个单位 C. 时间每增加一个单位,Y 平均增加0.86个单位 D. 时间每增加一个单位,Y 平均减少0.86个单位 答案:D. 5、时间序列中的发展水平( )。 A. 只能是绝对数 B. 只能是相对数 C.只能是平均数 D.上述三种指标均可以 答案:D.

《时间序列分析》案例04

《时间序列分析》案例 案例名称:时间序列分析在经济预测中应用内容要求:确定性与随机性时间序列之比较设计作者:许启发,王艳明 设计时间:2003年8月

案例四:时间序列分析在经济预测中应用 一、案例简介 为了配合《统计学》课程时间序列分析部分课堂教学,提高学生运用统计分析方法解决实际问题能力,我们组织了一次案例教学,其内容是:对烟台市未来经济发展状况作一预测分析,数据取烟台市1949—1998年国内生产总值(GDP)年度数据,并以此为依据建立预测模型,对1999年和2000年国内生产总值作出预测并检验其预测效果。国内生产总值是指一个国家或地区所有常住单位在一定时期内生产活动最终成果,是反映国民经济活动最重要经济指标之一,科学地预测该指标,对制定经济发展目标以及与之相配套方针政策具有重要理论与实际意义。在组织实施时,我们首先将数据资料印发给学生,并讲清本案例教学目与要求,明确案例所涉及教学内容;然后给学生一段时间,由学生根据资料,运用不同方法进行预测分析,并确定具体讨论日期;在课堂讨论时让学生自由发言,阐述自己观点;最后,由主持教师作点评发言,取得了良好教学效果。 经济预测是研究客观经济过程未来一定时期发展变化趋势,其目在于通过对客观经济现象历史规律探讨和现状研究,求得对未来经济活动了解,以确定社会经济活动发展水平,为决策提供依据。 时间序列分析预测法,首先将预测目标历史数据按照时间先后顺序排列,然后分析它随时间变化趋势及自身统计规律,外推得到预测目标未来取值。它与回归分析预测法最大区别在于:该方法可以根据单个变量取值对其自身变动进行预测,无须添加任何辅助信息。 本案例最大特色在于:它汇集了统计学原理中时间序列分析这一章节所有知识点,通过本案例教学,可以把不同时间序列分析方法进行综合比较,便于学生更好地掌握本章内容。 二、案例目与要求 (一)教学目 1.通过本案例教学,使学生认识到时间序列分析方法在实际工作中应用必要性和可能性; 2.本案例将时间序列分析中水平指标、速度指标、长期趋势测定等内容有机结合在一起,以巩固学生所学课本知识,深化学生对课本知识理解; 3.本案例是对烟台市国内生产总值数据进行预测,通过对实证结果比较和分析,使学生认识到对同一问题解决,可以采取不同方法,根据约束条件,从中选择一种合适预测方法; 4.通过本案例教学,让学生掌握EXCEL软件在时间序列分析中应用,对统计、计量分析软件SPSS或Eviews等有一个初步了解; 5.通过本案例教学,有助于提高学生运用所学知识和方法分析解决问题能力、合作共事能力和沟通交流能力。 (二)教学要求 1.学生必须具备相应时间序列分析基本理论知识; 2.学生必须熟悉相应预测方法和具备一定数据处理能力; 3.学生以主角身份积极地参与到案例分析中来,主动地分析和解决案例中问题; 4.在提出解决问题方案之前,学生可以根据提供样本数据,自己选择不同统计分析方法,对这一案例进行预测,比较不同预测方法异同,提出若干可供选择方案; 5.学生必须提交完整分析报告。分析报告内容应包括:选题目及意义、使用数据特征及其说明、采用预测方法及其优劣、预测结果及其评价、有待于进一步改进思路或需要进一步研究问题。 三、数据搜集与处理 时间序列数据按照不同分类标准可以划分为不同类型,最常见有:年度数据、季度数据、月度

基于时间序列模型与线性回归模型的历史数据预测

基于时间序列模型与线性回归模型的历史数据预测 摘要:本文通过具体案例,简要说明根据时间序列数据建立和相应经济理论建立线性回归模型的简要步骤及基本原则,并着重介绍了在模型建立和模型有效性检验过程中需要注意的三个主要问题,最后简单介绍了进行模型修正的相应方法。 一、引言 多元线性回归模型的一般形式为: Y=β0+β1X1+β2X2+…+βkXk+μi(k,i=1,2,…,n) 其中k为解释变量的数目,βk(k=1,2,…,n)称为回归系数,上式也被称为总体回归函数的随机表达式。 从统计意义上说,所谓时间序列模型就是将某一个指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。这种数列由于受到各种偶然因素的影响,往往表现出某种随机性,彼此之间存在着统计上的依赖关系。从数学意义上说,如果我们对某一过程中的某一个变量或一组变量X(t)进行观察测量,在一系列时刻t1,t2,…,tn(t为自变量,且t1

案例分析(时间序列)

案例1 某地区啤酒生产量预测 啤酒的生产除了原材料、能源等因素外,很大程度上取决于市场销售,需要“以销定产”。而啤酒的市场销售有很强的季节性,因此对啤酒生产量的预测必须考虑季节因素,这也给啤酒销售的预测带来了一定的困难。 某地2013年1月—2016年6月啤酒生产量的月度数据见附表表1。 讨论题: 为了安排2016年下半年的原材料采购计划、人力资源计划和市场销售工作,预测2016年下半年各月份的啤酒市场销售和生产数量是十分必要的。但是从表中数据可以看出,该地区的啤酒生产量有波动性,而且波动幅度很大,其发展趋势不甚明显。能否根据表中数据对该地区的啤酒生产量作出尽可能符合实际的预测呢? 案例2 中国国内消费需求发展分析 改革开放以来,随着中国社会经济的快速发展,城乡居民和社会集团的消费水平不断提高,加之社会主义市场经济体制的建立,国内消费需求对经济增长所发挥的作用更趋明显。为了深入分析改革开放以来中国城乡居民和社会集团消费需求的发展态势,预测未来中国城乡居民和社会集团消费需求的基本走势,需要对中国国内消费需求的发展变化作具体的数量分析。在各类与消费有关的统计数据中,社会消费品零售总额是表现国内消费需求最直接的数据。社会消费品零售总额是国民经济各行业直接出售给城乡居民和社会集团供应的生活消费品总量,是研究国内零售市场变动情况、反映经济景气程度的重要指标。为此,从国家统计局的《中国景气月报》取得了中国社会消费品零售总额的月度数据(见附表表2)讨论题: (1)分析改革开放以来中国社会消费品零售总额发展变化的基本趋势,并对各种方法的分析结果加以对比。 (2)研究中国社会消费品零售总额是否存在季节变动和周期性变动规律,比较各种方法分析的结果,并分析其原因。 (3)预测2005年中国社会消费品零售总额的可能水平。 针对以上问题拟定一个研究的方案,选择分析的具体方法,并根据分析研究的结果写出研究报告。

实验三 SPSS 多元时间序列分析方法

实验三多元时间序列分析方法 1.实验目的 了解协整理论及协整检验方法;掌握协整的两种检验方法:E-G两步法与Johansen方法;熟悉向量自回归模型VAR的应用;掌握误差修正模型ECM的含义及检验方法;掌握Granger因果关系检验方法。 2.实验仪器 装有EViews7.0软件的微机一台。 3.实验内容 【例6-2】 时间与M2之间的关系首先用单位根检验是否为平稳序列。原假设为H0:非平稳序列H1:平稳序列。用Eviews软件解决该问题,得到如下结果:Null Hypothesis: M2 has a unit root Exogenous: None Lag Length: 3 (Automatic - based on SIC, maxlag=13) t-Statistic Prob.* Augmented Dickey-Fuller test statistic 5.681169 1.0000 Test critical values: 1% level -2.579052 5% level -1.942768 10% level -1.615423

*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(M2) Method: Least Squares Date: 04/16/13 Time: 10:36 Sample (adjusted): 1991M05 2005M01 Included observations: 165 after adjustments Variable Coefficien t Std. Error t-Statistic Prob. M2(-1) 0.013514 0.002379 5.681169 0.0000 D(M2(-1)) -0.490280 0.074458 -6.584611 0.0000 D(M2(-2)) 0.070618 0.083790 0.842797 0.4006 D(M2(-3)) 0.387086 0.073788 5.245935 0.0000 R-squared 0.480147 Mean dependent var 1440.03 7 Adjusted R-squared 0.470461 S.D. dependent var 1509.48 9 S.E. of regression 1098.447 Akaike info criterion 16.8651 3

计量经济学--时间序列数据分析

时间序列数据的计量分析方法 1.时间序列平稳性问题及处理方案 1.1序列平稳性的定义 从平稳时间序列中任取一个随机变量集,并把这个序列向前移动h 个时期,那么其联合概率分布仍然保持不变。 平稳时间序列要求所有序列间任何相邻两项之间的相关关系有相同的性质。 1.2不平稳序列的后果 可能两个变量本身不存在关系而仅仅因为有相似的时间趋势而得出它有关系,也就是出现伪回归;破坏回归分析的假设条件,使得回归结果和各种检验结果不可信。 1.3平稳性检验方法:ADF 检验 1.3.1ADF 检验的假设: 辅助回归方程:11t t i t i t i Y Y t Y ραργβμ--==+++?+∑(是否有截距和时间趋势项 在做检验时要做选择) 原假设:H 0:p=0,存在单位根 备择假设:H 1:P<0,不存在单位根 结果识别方法:ADF Test Statistic 值小于显著性水平的临界值,或者P 值小于显著性水平则拒绝原假设并得出结论:所检测序列不存在单位根,即序列是平稳序列。 1.3.2实例 对1978年2008年的中国GDP 数据进行ADF 检验,结果如表一。 表一 ADF 检验结果 Augmented Dickey-Fuller test statistic t-Statistic Prob.* 3.063621 1 Test critical values: 1% level -3.699871 5% level -2.976263 10% level -2.62742 从结果可以看出,ADF 的t 统计量值大于10%显著性水平上的临界值,P 值为1,接受原假设,说明所检测的GDP 数据是不平稳序列。 1.4不平稳序列的处理方法 1.4.1方法 如果所要分析的数据是不平稳序列,可以对序列进行差分使其变成平稳序列,但是这样做的后果是使新得出的数据丧失了许多原序列的特征,我们能从数据中得到的信息会变少,通常差分的次数不能超过两次。 经验表明,存量数据是二阶单整,做二次差分可以使其平稳,流量数据是一阶单整,做一次差分可以使其平稳,增量数据通常就是平稳序列。 1.4.2实例

多元时间序列建模分析

多元时间序列建模分析 应用时间序列分析实验报告

实验过程记录(含程序、数据记录及分析与实验结果等): 时序图如下: 单位根检验输出结果如下: 序列x的单位根检验结果: 序列y的单位根检验结果: 序列y与序列x之间的相关图如下:

1968 57、6 50、9 1969 59、8 47、2 1970 56、8 56、1 1971 68、5 52、4 1972 82、9 64、0 1973 116、9 103、6 1974 139、4 152、8 1975 143、0 147、4 1976 134、8 129、3 1977 139、7 132、8 1978 167、6 187、4 1979 211、7 242、9 1980 271、2 298、8 1981 367、6 367、7 1982 413、8 357、5 1983 438、3 421、8 1984 580、5 620、5 1985 808、9 1257、8 1986 1082、1 1498、3 1987 1470、0 1614、2 1988 1766、7 2055、1 1989 1956、0 2199、9 1990 2985、8 2574、3 1991 3827、1 3398、7 1992 4676、3 4443、3 1993 5284、8 5986、2 1994 10421、8 9960、1 1995 12451、8 11048、1 1996 12576、4 11557、4 1997 15160、7 11806、5 1998 15223、6 11626、1 1999 16159、8 13736、5 2000 20634、4 18638、8 2001 22024、4 20159、2 2002 26947、9 24430、3 2003 36287、9 34195、6 2004 49103、3 46435、8 2005 62648、1 54273、7 2006 77594、6 63376、9 2007 93455、6 73284、6 2008 100394、9 79526、5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2);

相关文档
最新文档