实例 5 框架结构模态分析

实例 5 框架结构模态分析
实例 5 框架结构模态分析

实例5 框架结构模态分析

1)问题描述:

本例仍采用实例4的框架结构,为了方便对比,改采用弹性截面。结构荷载情况与实例4相同(侧向力荷载不需要施加)。计算其各振型周期与模态。(重力荷载代表值组合为1.0×DEAD+0.5×LIVE)。

注意:本题主要介绍振型(模态)计算在OPENSEES的实现过程,模态分析对于结构动力分析中非常重要,往后章节的动力弹性分析,动力弹塑性分析(又称弹塑性时程分析),振型分解反应谱分析等都有着重要意义。模态分析也是检查模型是否建模正确的指标之一。

2)ETABS模型建模

(1) 建立ETABS模型,建立梁柱混凝土截面及建立几何模型,如下图所示。梁柱截面定义时,名字的首字母应为“E”,本实例采用弹性梁柱单元模拟(方便对比)。

图 ETABS建立框架的几何模型

图 ETABS截面定义窗口

(2) 定义混凝土楼板,材料采用C40,120mm厚,采用膜单元,即【Membrane】单元。

该单元可以将楼板上的均布荷载转化为梁上的线荷载,原理如下图所示,采用双向板塑性铰线导荷,将楼板的均布荷载转化了三角形荷载或梯形荷载施加梁构件,因此,在OPENSEES模型中,可以不建立楼板单元。

注意:OPENSEES只支持输入均布荷载,对于三角形荷载或梯形荷载可以通过等效合力(剪力)计算转化为均布荷载,如下图所示。

梯形荷载转化为均布荷载

(3) 选取全部楼板单元,点击菜单【Assign】→【Shell/Area Loads】→【Uniform】,混凝土楼板自重:

2

g kN m

=×=

250.123/

施加荷载p为:

2

=×++×=

1.0(1.5)0.5

2.07.5/

p g kN m

荷载工况选DEAD。由于考虑自重,将DEAD工况的自重系数改为1。

注意:荷载工况DEAD不代表是恒荷载,而是1.0D+0.5L的组合,是重力荷载代表值。

图 ETABS荷载定义

(4) 不需要施加侧向力分布模式。重力方向的荷载可以用于生成质量源。

(5) 定义质量源:

模态分析一定需要两大矩阵:质量矩阵与刚度矩阵,所以需要定义质量源,质量源的定义:

根据中国规范,结构的质量源一般由恒载与活载组成,即重力荷载代表值转化为质量,假如活载系数为0.5,那么质量源m=(1.0D+0.5L)/g,g为重力加速度。质量源定义点击:【Define】→【Mass Source】,窗口如下图所示。按图中参数设置。

质量源定义窗口

(6) 完成上述步骤后建立完ETABS模型。

注意:实例的ETABS模型存放在光盘“/EXAM05/ETABS/”目录。

3)ETABS模态分析结果

(1) 完成ETABS模型后,运行分析。分析完成后,点击按钮,可显示结构的周期与振型,如下图所示。可知结构第一周期为0.4345s。。

图第一振型 0.4345 s

(2) 提取ETABS数据,采用【Display】→【Show Tables】,如下窗口所示。输出【Analysis Result】→【Building Modes】。各阶周期如下表所示。

Mode Period SumUX SumUY SumRZ

1 0.434 0.0 90.1 3.3

2 0.390 90.6 90.1 3.3

3 0.337 90.6 93.2 92.2

4 0.177 90.6 95.0 92.9

5 0.161 90.

6 95.0 93.6

6 0.142 90.6 98.1 93.7

7 0.122 97.3 98.1 93.7

8 0.111 97.3 98.4 97.5

9 0.100 97.3 98.5 97.5

10 0.085 97.3 99.4 97.8

11 0.080 97.3 99.6 98.7

12 0.074 99.4 99.6 98.7

结构周期表

4)OPENSEES建模

(1) 打开ETABS模型,导出S2K文件。打开ETO程序,导入S2K文件,得到转化的OPENSEES模型,如下图所示。再打开转化TCL按扭,将模型转化成OPENSEES 代码,如下图所示。将代码另存为“Exam05.tcl”。

ETO导入ETABS模型

(2) 在ETO程序中,点击按钮,可以设置结构分析工况。本实例选择OPENSEES 的分析类型为【Modal Analysis】,即模态分析。

【Analysis Type】设为:Modal Analysis。

【Modal Number】设为: 12,则输出12个振型。

模态分析设置窗口

(3) 点击按钮,可设置OPENSEES的输出命令(Recorder),勾选如下图所示。由于不是静力或动力分析,不需要输出位移结果,只需要输出周期与振型结果就可以了,所以只需要勾选:Modal Shape。

ETO结果输出定义窗口

(4) 点击按钮生成OPENSEES命令流。

(5) 以下将对OPENSEES命令流进行解释并修改,最后提交运算。

5)OPENSEES命令流解读

(1) 从ETO程序中生成的OPENSEES的命令流如下所示。

wipe

puts "System"

model basic -ndm 3 -ndf 6

puts "restraint"

node 1 4.500E+003 5.000E+003 1.050E+004

node 2 4.500E+003 5.000E+003 1.350E+004

……………

node 28 9.000E+003 5.000E+003 0.000E+000

puts "rigidDiaphragm"

puts "mass"

mass 1 8.604E+000 8.604E+000 8.604E+000 0.000E+000 0.000E+000 0.000E+000 mass 2 4.302E+000 4.302E+000 4.302E+000 0.000E+000 0.000E+000 0.000E+000 ……………

mass 21 4.302E+000 4.302E+000 4.302E+000 0.000E+000 0.000E+000 0.000E+000 mass 22 4.302E+000 4.302E+000 4.302E+000 0.000E+000 0.000E+000 0.000E+000 puts "node"

fix 23 1 1 1 1 1 1;

……………

fix 28 1 1 1 1 1 1;

puts "material"

uniaxialMaterial Elastic 1 1.999E+005

uniaxialMaterial Elastic 2 2.680E+004

uniaxialMaterial Elastic 3 1.999E+005

puts "transformation"

geomTransf Linear 1 1.000 0.000 0.000

……………

geomTransf Linear 47 0.000 0.000 1.000

puts "element"

element elasticBeamColumn 1 1 2 1.600E+005 2.680E+004 1.117E+004 3.605E+009 2.133E+009 2.133E+009 1

……………

element elasticBeamColumn 47 19 20 1.800E+005 2.680E+004 1.117E+004 3.708E+009 5.400E+009 1.350E+009 47

puts "recorder"

recorder Node -file eigen1_node0.out -time -nodeRange 1 28 -dof 1 2 3 "eigen 1"

recorder Node -file eigen2_node0.out -time -nodeRange 1 28 -dof 1 2 3 "eigen 2"

recorder Node -file eigen3_node0.out -time -nodeRange 1 28 -dof 1 2 3 "eigen 3"

recorder Node -file eigen4_node0.out -time -nodeRange 1 28 -dof 1 2 3 "eigen 4"

recorder Node -file eigen5_node0.out -time -nodeRange 1 28 -dof 1 2 3 "eigen 5"

recorder Node -file eigen6_node0.out -time -nodeRange 1 28 -dof 1 2 3 "eigen 6"

recorder Node -file eigen7_node0.out -time -nodeRange 1 28 -dof 1 2 3 "eigen 7"

recorder Node -file eigen8_node0.out -time -nodeRange 1 28 -dof 1 2 3 "eigen 8"

recorder Node -file eigen9_node0.out -time -nodeRange 1 28 -dof 1 2 3 "eigen 9"

recorder Node -file eigen10_node0.out -time -nodeRange 1 28 -dof 1 2 3 "eigen 10"

recorder Node -file eigen11_node0.out -time -nodeRange 1 28 -dof 1 2 3 "eigen 11"

recorder Node -file eigen12_node0.out -time -nodeRange 1 28 -dof 1 2 3 "eigen 12"

set numModes 12

set lambda [eigen $numModes]

set period "Periods.txt"

set Periods [open $period "w"]

puts $Periods " $lambda"

close $Periods

record

模型结点及单元编号

(2) 实例5与实例4的结构模型基本上一样,只是采用了弹性模型,大部分命令流一样,其它方面的命令流看上述的实例。修改非线性材料模型的定义,原来的命令流为:

(3) OPENSEES质量源,OPENSEES基本上采用结点质量源的形式,与大部分有限元程序一样,也就是每个结点有6个自由度,6个自由度上都有广义质量,平动方向UX,UY,UZ称为质量,而转动方向RX,RY,RZ称为转动惯量(除了刚体,基本上结点没有转动惯量)。普通结点只有UX,UY,UZ的平动质量,且三个值是相等的。

puts "mass"

mass $NUM $MUX $MUY $MUZ $MRX $MRY $MRZ

其中,$NUM为结点编号,$MUX $MUY $MUZ $MRX $MRY $MRZ代表各个自由度的质量,以单位制(N,mm)的规定,质量的单位应该为ton(吨)。普通结点的质量定义如下:

mass $NUM $M $M $M 0 0 0

(4) 模态分析的命令流与普通静力分析的命令流最大的区别在于记录与分析设置。记录命令如下:

puts "recorder"

recorder Node -file eigen1_node0.out -time -nodeRange 1 28 -dof 1 2 3 "eigen 1"

该命令流用于输出振型位移,即振型形状。

其中,eigen1_node0.out为输出振型位移的文件名,-dof 1 2 3代输出的自由度;"eigen

1"代表输出的为“第1振型”。

(5) 模态分析设置的命令流如下:

set numModes 12

set lambda [eigen $numModes] set period "Periods.txt"

set Periods [open $period "w"] puts $Periods " $lambda" close $Periods record

其中,set lambda [eigen $numModes],代表计算n 阶振型,将特征值计算结果存为lambda 数组;

set period "Periods.txt",定义输出文本文件的名字为“Periods.txt ”;用于存计算的特征值。

set Periods [open $period "w"],代表打开文本文件进行记录。 puts $Periods " $lambda",代表记录特征值数据至文本当中。 close $Periods ,代表记录完成,关闭文本文件。 record 代表记录命令。

(6) 综上所述,完成命令流修改后,可以提交进行分析,修改后的文件可查看

“Exam05\OpenSEES\Exam05.tcl ”。

6) OPENSEES 分析及分析结果

(1) 打开OpenSEES 程序,输入命令:

source Exam05.tcl

(2) 打开Periods.txt 文件,即记录结构振型特征值的文件,打开后整理计算结构的周期

秒数,特征值与周期秒数(结构动力学基本内容)的关系如下:

2T π

ω

=,其中2

λω=

那么变换后得:T =

与ETABS 的计算结果对比如下表所示:

OpenSEES

ETABS

Mode λ

ω

T os

T et

T os / T et

1 215.7 14.7 0.428 0.434 98.5%

2 269.0 16.4 0.38

3 0.390 98.2% 3 359.1 18.9 0.331 0.337 98.3%

4 1280.7 35.8 0.17

5 0.177 99.1% 5 1540.9 39.3 0.160 0.161 99.4% 6

2017.5 44.9 0.140 0.142 98.5%

7 2744.0 52.4 0.120 0.122 98.3%

8 3313.9 57.6 0.109 0.111 98.3%

9 4044.9 63.6 0.099 0.100 98.7%

10 5679.0 75.4 0.083 0.085 98.0%

11 6313.2 79.5 0.079 0.080 98.8%

12 7613.1 87.3 0.072 0.074 97.3% (3) 点击按钮,显示结构变形。弹出窗口如下图所示

点击【Load Modal Shape】,选取Exam05.tcl文件,窗口显示结构变形。

【Scaling Factor】需要调整合适,可以显示出比较合理的振型形状如下图所示。

【Mode Num】为显示的振型号

第1振型, T=0.428 s ,Y方向平动

第2振型, T=0.381 s,X方向平动

第1振型, T=0.383 s,扭转7)知识点回顾:

(1) ETABS中质量源的定义及振型的输出

(2) OPENSEES中质量源(结点质量)的定义

(3) OPENSEES中振型的记录(Recorder)设置

(4) OPENSEES中振型分析设置及命令流

(5) ETO程序的振型形状图形后处理实现

模态分析实验报告

篇一:模态分析实验报告 模态分析实验报告 姓名:学号:任课教师:实验时间:指导老师:实验地点: 实验1传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1) 掌握锤击激振法测量传递函数的方法; 2) 测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3) 分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4) 比较原点传递函数和跨点传递函数的特征; 5) 考察激励点和响应点互换对传递函数的影响; 6) 比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,lms lms-scadas ⅲ测试系统,具体型号和参数见表1-1。 仪器名称 型号 序列号 3164 灵敏度 2.25 mv/n 100 mv/g 备注比利时 丹麦 b&k 数据采集和分析系统 lms-scadas ⅲ 2302-10 力锤 加速度传感器 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字 信号处理技术获得频率响应函数(frequency response function, frf),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时lms公司scadas采集前端及modal impact测量分析软件组成。力锤及加速度传感器通过信号线与scadas采集前端相连,振动传感器及力锤为icp型传感器,需要scadas采集前端对其供电。scadas采集相应的信号和进行信号处理(如抗混滤波,a/d转换等),所测信号通过电缆与电脑完成数据通讯。图1-1 测试分析系统框图 四、实验数据采集 1、振动测试实验台架 实验测量的是一段轴,在轴上安装了3个加速度传感器,如图1-2所示,轴由四根弹簧悬挂起来,使得整个测试统的频率很低,基本上不会影响到最终的测试结果。整个测试系统如下图所示:a1 a 测点2测点3测点4 图1-2 测试系统图

模态分析和频率响应分析的目的

有限元分析类型 一、nastran中的分析种类 (1)静力分析 静力分析是工程结构设计人员使用最为频繁的分析手段,主要用来求解结构在与时间无关或时间作用效果可忽略的静力载荷(如集中载荷、分布载荷、温度载荷、强制位移、惯性载荷等)作用下的响应、得出所需的节点位移、节点力、约束反力、单元内力、单元应力、应变能等。该分析同时还提供结构的重量和重心数据。 (2)屈曲分析 屈曲分析主要用于研究结构在特定载荷下的稳定性以及确定结构失稳的临界载荷,NX Nastran中的屈曲分析包括两类:线性屈曲分析和非线性屈曲分析。 (3)动力学分析 NX Nastran在结构动力学分析中有非常多的技术特点,具有其他有限元分析软件所无法比拟的强大分析功能。结构动力分析不同于静力分析,常用来确定时变载荷对整个结构或部件的影响,同时还要考虑阻尼及惯性效应的作用。 NX Nastran的主要动力学分析功能:如特征模态分析、直接复特征值分析、直接瞬态响应分析、模态瞬态响应分析、响应谱分析、模态复特征值分析、直接频率响应分析、模态频率响应分析、非线性瞬态分析、模态综合、动力灵敏度分析等可简述如下: ?正则模态分析 正则模态分析用于求解结构的固有频率和相应的振动模态,计算广义质量,正则化模态节点位移,约束力和正则化的单元力及应力,并可同时考虑刚体模态。 ?复特征值分析 复特征值分析主要用于求解具有阻尼效应的结构特征值和振型,分析过程与实特征值分析类似。此外

Nastran的复特征值计算还可考虑阻尼、质量及刚度矩阵的非对称性。 ?瞬态响应分析(时间-历程分析) 瞬态响应分析在时域内计算结构在随时间变化的载荷作用下的动力响应,分为直接瞬态响应分析和模态瞬态响应分析。两种方法均可考虑刚体位移作用。 直接瞬态响应分析 该分析给出一个结构随时间变化的载荷的响应。结构可以同时具有粘性阻尼和结构阻尼。该分析在节点自由度上直接形成耦合的微分方程并对这些方程进行数值积分,直接瞬态响应分析求出随时间变化的位移、速度、加速度和约束力以及单元应力。 模态瞬态响应分析 在此分析中,直接瞬态响应问题用上面所述的模态分析进行相同的变换,对问题的规模进行压缩,再对压缩了的方程进行数值积分,从而得出与用直接瞬态响应分析类型相同的输出结果。 ?随机振动分析 该分析考虑结构在某种统计规律分布的载荷作用下的随机响应。例如地震波,海洋波,飞机超过建筑物的气压波动,以及火箭和喷气发动机的噪音激励,通常人们只能得到按概率分布的函数,如功率谱密度(PSD)函数,激励的大小在任何时刻都不能明确给出,在这种载荷作用下结构的响应就需要用随机振动分析来计算结构的响应。NX Nastran中的PSD可输入自身或交叉谱密度,分别表示单个或多个时间历程的交叉作用的频谱特性。计算出响应功率谱密度、自相关函数及响应的RMS值等。计算过程中,NX Nastran不仅可以像其他有限元分析那样利用已知谱,而且还可自行生成用户所需的谱。 ?响应谱分析 响应谱分析(有时称为冲击谱分析)提供了一个有别于瞬态响应的分析功能,在分析中结构的激励用各个小的分量来表示,结构对于这些分量的响应则是这个结构每个模态的最大响应的组合。 ?频率响应分析 频率响应分析主要用于计算结构在周期振荡载荷作用下对每一个计算频率的动响应。计算结果分实部和虚部两部分。实部代表响应的幅度,虚部代表响应的相角。 直接频率响应分析 直接频率响应通过求解整个模型的阻尼耦合方程,得出各频率对于外载荷的响应。该类分析在频域中主要求解两类问题。第一类是求结构在一个稳定的周期性正弦外力谱的作用下的响应。结构可以具有粘性阻尼和结构阻尼,分析得到复位移、速度、加速度、约束力、单元力和单元应力。这些量可以进行正则化以获得传递函数。 第二类是求解结构在一个稳态随机载荷作用下的响应。此载荷由它的互功率谱密度定义。而结构载荷由上面所提到的传递函数来表征。分析得出位移、加速度、约束力或单元应力的自相关系数。该分析也对自功率谱进行积分而获得响应的均方根值。 模态频率响应 模态频率响应分析和随机响应分析在频域中解决的两类问题与直接频率响应分析解决相同的问题。

结构模态分析方法

模态分析技术的发展现状综述 摘要:本文首先系统的介绍了模态分析的定义,并以模态分析技术的理论为基础,查阅了大量的文献和资料后,介绍了三种模态分析技术在各领域的应用,以及国内外对于结构模态分析技术研究的发展现状,分析并总结三种模态分析技术的特点与发展前景。 关键词:模态分析技术发展现状 Modality Analysis Technology Development Present Situation Summary Abstract:This article first systematic introduction the definition of modality analysis,and based on modal analysis theory,after has consulted the massive literature and the material.Introduced application about three kind of modality analysis technology in various domains. At home and abroad, the structural modal analysis technology research and development status quo.Analyzes and summarizes three kind of modality analysis technology characteristic and the prospects for development. Key words:Modality analysis Technology Development status 0 引言 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。模态分析的过程如果是由有限元计算的方法完成的,则称为计算模态分析;如果是通过试验将采集的系统输入与输出信号经过参数识别来获得模态参数的,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 1 数值模态分析的发展现状 数值模态分析主要采用有限元法,它是将弹性结构离散化为有限数量的具体质量、弹性特性单元后,在计算机上作数学运算的理论计算方法。它的优点是可以在结构设计之初,根据有限元分析结果,便预知产品的动态性能,可以在产品试制出来之前预估振动、噪声的强度和其他动态问题,并可改变结构形状以消除或抑制这些问题。只要能够正确显示出包含边界条件在内的机械振动模型,就可以通过计算机改变机械尺寸的形状细节。有限元法的不足是计算繁杂,耗资费时。这种方法,除要求计算者有熟练的技巧与经验外,有些参数(如阻尼、结合面特征等)目前尚无法定值,并且利用有限元法计算得到的结果,只能是一个近似值。 正因如此,大多数数学模拟的结构,在试制阶段常应做全尺寸样机的动态试验,以验证计算的可靠程度并补充理论计算的不足,特别对一些重要的或涉及人身安全的结构,就更是如此。 70 年代以来,由于数字计算机的广泛应用、数字信号处理技术以及系统辨识方法的发展 , 使结构模态试验技术和模态参数辨识方法有了较大进展,所获得的数据将促进产品性能的改进、更新[1] 。在硬件上,国外许多厂家研制成功各种类型的以FFT和

曲轴强度模态分析报告

柴油机曲轴ANSYS计算报告 蔡川东:20114541

目录 1摘要3 2workbench高级应用基础3 2.1接触设置 (3) 2.2多点约束MPC (4) 3模型介绍5 3.1模型简化 (5) 3.1.1轴瓦建立 (6) 3.1.2质量块建立 (6) 3.2材料性能和参数 (7) 3.3有限元模型构建 (7) 4强度分析9 4.1理论简介 (9) 4.2载荷工况 (9) 4.3计算分析 (11) 5模态分析12 5.1理论简介 (12) 5.2约束条件 (12) 5.3计算分析 (12) 6结果与讨论13

1摘要 曲轴是柴油机中最重要的部件之一,也是受力情况最复杂的部件,他的参数尺寸以及设计方法在很大程度上影响着柴油机的性能和可靠性。随着柴油机技术的不断完善和改进,曲轴的工作条件也越来越复杂。曲轴设计是否可靠,对柴油机使用寿命有很大影响,因此在研制过程中需要给予高度重视。因此,对曲轴的结构进行强度分析在柴油机的设计和改进过程中占有极为重要的地位。此外,在周期性变化的载荷作用下,曲轴系统可能在柴油机转速范围内发生共振,产生附加的动应力,使曲轴过早的出现弯曲疲劳破坏和扭转疲劳破坏,因此有必要对曲轴进行动态特性分析以获取其固有频率避免共振带来不良影响。本文以六缸柴油机的曲轴为对象,计算分析了曲轴在一种载荷工况下的强度分析,找出其最大应力所在位置,以及讨论起是否在参考安全范围内,为曲轴设计中的强度计算提供一种可行性方案。同时对曲轴进行模态分析,找出其各阶固有频率,并观察其各阶模态形状,为柴油机避免共振提供数据参考。 实验采用有限元法对曲轴进行分析,有限元法是根据变分原理求解数学物理问题的一种数值计算方法,是分析各种结构问题的强有力的工具,使用有限元法可方便地进行分析并为设计提供理论依据。本文利用曲轴的三维模型IGES文件,导入Workbench中进行工况设计。比较准确地得到应力、变形的大小及分布和曲轴的固有频率及振型。 2workbench高级应用基础 2.1接触设置 (1)接触问题属于不定边界问题,即使是弹性接触问题也具有表面非线性,其中既有由接触面 积变化而产生的非线性及由接触压力分布变化而产生的非线性,也有由摩擦作用产生的非线性。由于这种表面非线性和边界不定性,所以,一般来说,接触问题的求解是一个反复迭代过程。 当接触内力只和受力状态有关而和加载路径无关时,即使载荷和接触压力之间的关系是非线性的,仍然属于简单加载过程或可逆加载过程。通常无摩擦的接触属于可逆加载。当存在摩擦时,在一定条件下可能出现不可逆加载过程或称复杂加载过程,这时一般要用载荷增量方法求解。 (2)接触面的连接条件。在接触问题中,除了各相互接触物体内部变形的协调性以外,必须保 证各接触物体之间在接触边界上变形的协调性,不可相互侵入。同时还包括摩擦条件—称为接触面的连接条件。采用有限元法分析接触问题时,需要分别对接触物体进行有限元网格剖分,并规定在初始接触面上,两个物体对应节点的坐标位置相同,形成接触对。 (3)workbench中有5中接触类型分别是: ?Bonded无相对位移。就像共用节点一样。 ?No seperation法向不分离,切向可以有小位移。 ?Frictionless法向可分离,但不渗透,切向自由滑动 ?Rough法向可分离,不渗透,切向不滑动

MSC_Nastran模块介绍_2012

MSC Nastran 模块功能介绍 1.MSC Nastran Basic 1003 (License文件中的授权特征名:NA_NASTRAN) MSC Nastran基本模块,功能包括线性静力分析、模态分析及屈曲分析。MSC Nastran 基本模块求解规模无节点限制,可对多种单元、材料、载荷工况进行评估,实现线性静力分析(包括屈曲分析)和模态分析(包含流固偶合即虚质量方法和水弹性方法)。线性静力分析,预测结构在静力条件下的线性响应(位移、应变、应力),即小变形和不考虑非线性因素的情况,包括屈曲分析(稳定性分析)。模态分析能了解结构的固有频率(振动模态)特征,帮助评估结构的动力特性。 2. MSC Nastran Dynamics 1025 (License文件中的授权特征名:NA_Dynamics) 结构动力学分析是MSC Nastran的主要强项之一,它具有其它有限元分析软件所无法比拟的强大分析功能。MSC Nastran动力学分析功能包括: 正则模态,复特征值分析,频率及瞬态响应分析,随机响应分析,冲击谱分析等。 3. MSC Nastran Connectors 10002 (License文件中的授权特征名: NA_Connectots) MSC Nastran连接单元,可以模拟点焊,铆接,螺栓连接等。允许创建点-点,点-面,面-面连接。可以用焊接单元将任意的两个部件的网格连接在一起,并自动处理与任意类型单元之间的连接。 4. MSC Nastran ADAMS Integration 10233 (License文件中的授权特征名: NA_ADAMS_Integration) MSC Nastran 与ADAMS的接口,使用ADAMS进行柔性体分析时,需导入MSC Nastran计算所生成的模态中性文件,MSC Nastran ADAMS Integration可使MSC Nastran 计算生成ADAMS所需要的柔性体模态中性文件。 5. MSC Nastran DMAP 1024 (License文件中的授权特征名:NA_DMAP) 作为开放式体系结构,MSC Nastran的开发工具DMAP语言 (Direct Matrix Abstraction Program)有着40多年的应用历史。一个DMAP模块可由成千上万个FORTRAN子程序组成,并采用高效的方法来处理矩阵。实际上MSC Nastran是由一系列DMAP子程序顺序执行来完成求解任务的。用户可利用DMAP编写客户化的程序,形成自己的求解序列来操作数据库与数据流。 6. MSC Nastran Heat Transfer 1023 (License文件中的授权特征名:NA_Thermal) MSC Nastran热分析模块。热分析通常用来校验结构零件在热边界条件或热环境下的产品特性,利用MSC Nastran可以计算出结构内的热分布状况,并直观地看到结构内潜热、热点位置及分布。用户可通过改变发热元件的位置、提高散热手段、绝热处理或用其它方法优化产品的热性能。 7. MSC Nastran SMP 1030 (License文件中的授权特征名:NA_SMP) MSC Nastran共享内存并行计算,通过单机多CPU并行计算技术,用来实现大模型的求解,缩短计算时间,提高分析效率。

有限元模态分析报告实例

ANSYS模态分析实例 5.2ANSYS建模 该课题研究的弹性联轴器造型如下图5.2: 在ANSYS中建立模型,先通过建立如5.2所式二分之一的剖面图,通过绕中轴线旋转建立模拟模型如下图5.3

5.3单元选择和网格划分 由于模型是三给实体模型,故考虑选择三维单元,模型中没有圆弧结构,用六面体单元划分网格不会产生不规则或者畸变的单元,使分析不能进行下去,所以采用六面体单元。经比较分析,决定采用六面体八结点单元SOLID185,用自由划分的方式划分模型实体。课题主要研究对象是联轴器中橡胶元件,在自由划分的时候,中间件2网格选择最小的网格,smart size设置为1,两端铁圈的smart size设置为6,网格划分后模型如图5.4。 5.4边界约束 建立柱坐标系R-θ-Z,如5-5所示,R为径间,Z为轴向

选择联轴器两个铁圈的端面,对其面上的节点进行坐标变换,变换到如图5.5所示的柱坐标系,约束节点R,Z方向的自由度,即节点只能绕Z轴线转 5.5联轴器模态分析 模态分析用于确定设计中的结构或者机器部件振动特性(固有频率和振型),也是瞬态变动力学分析和谐响应分析和谱分析的起点。 在模态分析中要注意:ANSYS模态分析是线性分析,任何非线性因素都会被忽略。因此在设置中间件2的材料属性时,选用elastic材料。 5.5.1联轴器材料的设置 材料参数设置如下表5-1: 表5.1材料参数设置 表5.1材料参数设置 铁圈1 中间件2 铁圈3 泊松比0.3 0.4997 0.3 弹性模量Mpa 2E5 1.274E3 2E5 密度kg/m 7900 1000 7900 5.5.2联轴器振动特性的有限元计算结果及说明 求解方法选择Damped方法,频率计算结果如表5-2,振型结果为图5.6: 表5.2固有频率 SET TEME/FREQ LOAO STEP SUBSTEP CUMULATIVE 1 40.199 1 1 1 1 73.63 2 1 2 2 3 132.42 1 3 3 4 197.34 1 4 4

ANSYS模态分析实例

高速旋转轮盘模态分析 在进行高速旋转机械的转子系统动力设计时,需要对转动部件进行模态分析,求解出其固有频率和相应的模态振型。通过合理的设计使其工作转速尽量远离转子系统的固有频率。而对于高速部件,工作时由于受到离心力的影响,其固有频率跟静止时相比会有一定的变化。为此,在进行模态分析时需要考虑离心力的影响。通过该实验掌握如何用ANSYS进行有预应力的结构的模态分析。 一.问题描述 本实验是对某高速旋转轮盘进行考虑离心载荷引起的预应力的模态分析,求解出该轮盘的前5阶固有频率及其对应的模态振型。轮盘截面形状如图所示,该轮盘安装在某转轴上以12000转/分的速度高速旋转。相关参数为:弹性模量EX=2.1E5Mpa,泊松比PRXY=0.3, 密度DENS=7.8E-9Tn/mm 3。 1-5关键点坐标: 1(-10, 150, 0) 2(-10, 140, 0) 3(-3, 140, 0) 4(-4, 55, 0) 5(-15, 40, 0) L=10+(学号×0.1) RS=5 二.分析具体步骤 1.定义工作名、工作标题、过滤参数 ①定义工作名:Utility menu > File > Jobname ②工作标题:Utility menu > File > Change Title(个人学号) 2.选择单元类型 本实验将选用六面体结构实体单元来分析,但在建模过程中需要使用四边形平面单元,所有需要定义两种单元类型:PLANE42和SOLID45,具体操作如下: Main Menu >Preprocessor > Element Type > Add/Edit/Delete

①“ Structural Solid”→“ Quad 4node 42” →Apply(添加PLANE42为1号单元) ②“ Structural Solid”→“ Quad 8node 45” →ok(添加六面体单元SOLID45为2号单元) 在Element Types (单元类型定义)对话框的列表框中将会列出刚定义的两种单元类型:PLANE42、SOLID45,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。 3.设置材料属性 由于要进行的是考虑离心力引起的预应力作用下的轮盘的模态分析,材料的弹性模量EX 和密度DENS必须定义。 ①定义材料的弹性模量EX Main Menu >Preprocessor > Material Props > Material Models> Structural > Linear > Elastic >Isotropic 弹性模量EX=2.1E5 泊松比PRXY=0.3 ②定义材料的密度DENS Main Menu >Preprocessor > Material Props > Material Models>density DENS =7.8E-9 4.实体建模 对于本实例的有限元模型,首先需要建立轮盘的截面几何模型,然后对其进行网格划分,最后通过截面的有限元网格扫描出整个轮盘的有限元模型。具体的操作过程如下。 ①创建关键点操作:Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS 列出各点坐标值Utility menu >List > Keypoints >Coordinate only

Hyper-Nastran接口视频教程之模态分析与瞬态分析

hypermesh-nastran接口应用实例视 频教程 模态分析与瞬态动力学分析 提供专业水平的有限元咨询和培训服务 email:Simxpert@https://www.360docs.net/doc/b38180693.html,

提供专业水平的有限元咨询和培训服务email:Simxpert@https://www.360docs.net/doc/b38180693.html, 1.问题描述 问题1:计算其振动模态,为下一步计算瞬态做准备. 问题2:在悬臂梁端部施加两个动态载荷。第一个是垂直方向的按照给定的曲线变化的动态载荷。第二个是扭矩,其变化规律为幅值A=200, 角频率w=80的简谐波.对于如图所示的板(悬臂梁):

提供专业水平的有限元咨询和培训服务email:Simxpert@https://www.360docs.net/doc/b38180693.html, 2.模态分析 1.板的尺寸为250x25x8.(Unit: mm) 2.材料属性:弹性模量E=2.0e4MPa,泊松比系数v=0.28,密度d=7.8e -8. 3.集中质量:质量大小m=1.0e -4,转动惯量Ixx =0.4,其余为0. 实体单元表层蒙了一层壳单元,其厚度为1.0e -4mm. 约束条件:一端固定,一端自由. 已知条件:

提供专业水平的有限元咨询和培训服务email:Simxpert@https://www.360docs.net/doc/b38180693.html, 分析流程 1.分析流程中有很多截图,截图仅仅用于说明分析过程,图片中的部分数据和视频中的内容不一致,一切以视频中的数据为准. 重要提醒:

提供专业水平的有限元咨询和培训服务email:Simxpert@https://www.360docs.net/doc/b38180693.html, 2.1.定义材料 定义各向同性材料.(操作步骤见视频)

提供专业水平的有限元咨询和培训服务email:Simxpert@https://www.360docs.net/doc/b38180693.html, 2.2创建实体单元 1. 创建component ,然后先创建面单元,20x4. 2. 创建实体单元属性prop_solid . 3.创建component 来保存实体单元. 4.拉伸面单元得到实体单元,删除面单元. 因为本模型比较简单,不必使用CAD 软件创建几何模型然后倒入,这里在hm 中创建面单元,然后拉伸得到实体单元。

模态分析实验报告

模态分析实验报告 姓名: 学号: 任课教师: 实验时间: 指导老师: 实验地点:

实验1 传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1)掌握锤击激振法测量传递函数的方法; 2)测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3)分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4)比较原点传递函数和跨点传递函数的特征; 5)考察激励点和响应点互换对传递函数的影响; 6)比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,LMS LMS-SCADAS Ⅲ测试系统,具体型号和参数见表1-1。 仪器名称型号序列号灵敏度备注 数据采集和分析系统LMS-SCADAS Ⅲ比利时力锤2302-10 3164 2.25 mV/N 加速度传感器100 mV/g 丹麦B&K 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字信号处理技术获得频率响应函数(Frequency Response Function, FRF),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时LMS公司SCADAS采集前端及Modal Impact测量分析软件组成。力锤及加速度传感器通过信号线与SCADAS采集前端相连,振动传感器及力锤为ICP

模态分析实验报告

研究生学院 机械工程专业硕士结课作业 课程题目:机械结构模态分析实验 指导老师: 姓名: 学号: 2015年08月23日

一、概述 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。 振动模态是弹性结构固有的、整体的特性。通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动模态各不相同。模态分析提供了研究各类振动特性的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。 模态分析的经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。模态分析的最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为以下几个方面: 1) 评价现有结构系统的动态特性; 2) 在新产品设计中进行结构动态特性的预估和优化设计; 3) 诊断及预报结构系统的故障; 4) 控制结构的辐射噪声; 5) 识别结构系统的载荷 二、实验的基本过程 1、动态数据的采集及频响函数或脉冲响应函数分析 (1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。 (2)数据采集。SISO方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO及MIMO的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。 (3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。

第10章 周期对称结构的模态分析

第十章周期对称结构的模态分析 ANSYS的周期对称分析支持静力(Static)分析和模态(Modal)分析。静力分析支持线性和大变形非线性;模态分析支持带有预应力的模态分析和不带有预应力的两种,关于带有预应力的模态分析本书第九章有专门讲述。本章只讲述不带有预应力的模态分析。在静力分析和模态分析这两种分析类型中,关于模型建立部分的要求是一致的,不同的是在进行模态分析时需要指定求解的节径数以及指定对于每个节径数的求解的模态阶数。对于每个节径,ANSYS均将其作为一个载荷步。ANSYS将周期对称边界条件施加于每一载荷步,并且每求解一个载荷步(即节径)后,都将构成周期对称边界条件的约束方程删除(保留任何用户自定义的约束方程)。在静力分析中ANSYS只求解零节径,而在模态分析中默认将求解全部节径。 本章中介绍的实例依然是第7章的轮盘,包括模型和边界条件。 10.1 问题描述 某型压气机盘,见7.1节的对其描述。要求查看其低阶频率结构和振动模态。 10.2 建立模型 在周期对称分析中,在建立模型后,划分网格之前,需要指定周期对称选项。 10.2.1 设定分析作业名和标题 在进行一个新的有限元分析时,通常需要修改数据库文件名(原因见第二章),并在图形输出窗口中定义一个标题用来说明当前进行的工作内容。另外,对于不同的分析范畴(结构分析、热分析、流体分析、电磁场分析等)ANSYS6.1所用的主菜单的内容不尽相同,为此我们需要在分析开始时选定分析内容的范畴,以便ANSYS6.1显示出跟其相对应的菜单选项。 (1)选取菜单路径Utility Menu >File >Change Jobname,将弹出修改文件名(Change Jobname)对话框,如图10.1所示。

DASP模态分析的步骤

在学习模态分析之前,了解一下一些基本知识: 1 模态分析:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。模态分析实质上是一种坐标变换,其目的在于把原物理坐标系统中描述的相应向量,转换到"模态坐标系统"中来描述,模态试验就是通过对结构或部件的试验数据的处理和分析,寻求其"模态参数"。 2 模态参数:模态参数有:模态频率、模态质量、模态向量、模态刚度和模态阻尼等。 3实模态和复模态:按照模态参数(主要指模态频率及模态向量)是实数还是复数,模态可以分为实模态和复模态。对于无阻尼或比例阻尼振动系统,其各点的振动相位差为零或180度,其模态系数是实数,此时为实模态;对于非比例阻尼振动系统,各点除了振幅不同外相位差也不一定为零或180度,这样模态系数就是复数,即形成复模态。 4最佳激励点的选取:视待测试的振型而定,若单阶,则应选择最大振幅点,若多阶,则激励点处各阶的振幅都不小于某一值。如果是需要许多能量才能激励的结构,可以考虑多选择几个激励点。 5模态分析目的:模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 6原点导纳位置的选择:当一点激励多点响应时(SIMO方法),激励点即原点导纳的位置;当用多点激励一点响应时(MISO方法),响应点即为原点导纳的位置。原点导纳应避开感兴趣模态的结点,以免丢失模态。 7测点的命名:响应点用数字来命名,激励点用一字母加数字来命名。应避免重名,重名会导致频响函数错误。 在掌握了了上述基本知识后,开始进行模态试验及分析,主要过程如下: <1>新建:新建一个模态文件,输入或修改试验名、试验号和数据路径,然后进行参数设置,包括传感器类型、总测点数和原点导纳的位置。需要注意的问题:(1)总测点数的选取:响应点总数(SIMO时),输入激励点总数(MISO时)(2)原点导纳的位置:对应激励点位置的频响函数测点号(SIMO时)对应响应点位置的频响函数测点号(MISO时) <2>采样: 得到模态分析各测点的数据。如果是用多次激励的方法(如敲击法),应选择变时基采样,其它激励应选择随机采样。变时基采样适用于锤击法,为模态分析的频响函数分析准备数据。采样前应首先设置采样参数,然后用示波命令检查各测点是否工作正常,放大器档位是否合适,放大器档位确定后,再返回采样参数设置设定采样频率、程控放大倍数,各通道测点号、标定值、工程单位等,在随机采样中可以边采边显,并且按‘F9’键,可以找极值或时域统计,在应用中有监测车速、开DDE和显示转速的特殊功能。需要注意的问题:(1)采样通道数乘以采样频率,不可超过A/D卡的最高采样率(2)采样的频率可通过分析频率设置或直接设置,采样频率为分析频率的2.56倍。

Hypermesh与Nastran模态分析详细教程

Hypermesh & Nastran 模态分析教程 摘要: 本文将采用一个简单外伸梁的例子来讲述Hypemesh 与Nastran 联合仿真进行模态分析的全过程。 教程内容: 1.打开”Hypermesh 14.0”进入操作界面,在弹出的对话框上勾选 ‘nastran’模块,点‘ok’,如图1.1 所示。 图1.1-hypermesh 主界面 2.梁结构网格模型的创建 在主界面左侧模型树空白处右击选择‘Creat’ –‘Component’,重命名为‘BEAM’,然后创建尺寸为100*10*5mm3的梁结构网格模型。(一开始选择了Nastran后,单位制默认为N, ton, MPa, mm.)。本例子网格尺寸大小为2.5*2.5*2.5mm3,如图2.1 所示:

图2.1-梁结构网格模型 3.定义网格模型材料属性 ●在主界面左侧模型树空白处右击选择‘Creat’–‘Material’,如图3.1 所示: 图3.1-材料创建 ●在模型树内Material下将出现新建的材料‘Material 1’,将其重命名 为’BEAM’。点击‘BEAM’,将会出现材料参数设置对话框。本例子采用铁作为梁结构材料,对于模态分析,我们只需要设定材料弹性模量,泊松比,

密度即可。故在参数设置对话框内填入一下数据: 完整的材料参数设置如图3.2所示: 图3.2-Material材料参数设置 同理,按同样方式在主界面左侧模型树空白处右击选择‘Creat’ –‘Pro perty’,模型树上Property下将出现新建的‘Property1’,同样将其重命名为‘BEAM’,点击Property下的‘BEAM’出现如图所示属性参数设置对话框。由于本例子使用的单元为三维体单元,因此点击对话框的‘card image’选择‘PSOLID’,点击对话框内的Material选项,选择上一步我们设置好的材料‘BEAM’,完整的设置如图3.3所示:

各种模态分析报告方法总结材料与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率围各阶主要模态的特性,就可能预言结构在此频段在外部或部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带围,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2 ω λωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成置选项。然而随着计算机的发展,存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

nastran模态讲解

1.1 为什么要计算固有频率和模态 1) 评估结构的动力学特性。如安装在结构上的旋转设备,为避免其过大的振动,必须 看转动部件的频率是否接近结构的任何一阶固有频率。 2) 评估载荷的可能放大因子。 3) 使用固有频率和正交模态,可以指导后续动态分析(如瞬态分析、响应谱分析、瞬 态分析中时间步长t ?的选取等) 4) 使用固有频率和正交模态,在结构瞬态分析时,可以用模态扩张法 5) 指导实验分析,如加速度传感器的布置位置。 6) 评估设计 1.2 模态分析理论 考虑 假设其解为 代入得到特征方程 或 其中,2 ωλ= 1) 对N 自由度系统,有N 个固有频率(j ω,j=1,2,…,N ),特征频率,基本频率或共 振频率。 2) 与固有频率j ω对应的特征向量称为自然模态或模态形状,模态形状对应于结构扰度图 3) 当结构振动时,在任意时刻,结构的形状为它的模态的线性组合 例子:

1.3 自然模态与固有频率性质 (1)正交性 ω的单位 (2) j ω单位为rad/s, 也可以表示为Hz (cycles/seconds),二者换算关系为j (3)刚体模态 图为一未约束结构,有刚体模态

如果结构完全未约束,有刚体模态存在(应力-自由模态)或机构运动,至少有一固有频率为0。 (4)自然模态的倍数依然为自然模态 如: 代表相同的振动模态 (5)模态的标准化 1.4 模态能量 (1)应变-位移关系 (2)应力-应变关系 (3)静力-位移关系 (4)单元应变能 因此,对给定的模态位移

模态应变为 模态应力为 模态力为 模态应变能为 1.5 特征值解法 对于方程 MSC/NASTRAN提供三类解法 a)跟踪法(Tracking method) b)变换法(Tromsformation method) c)兰索士法(Lamczos method) 1.5.1 跟踪法 跟踪法解特征值问题,实质是迭代法。 对仅求几个特征值(或固有频率)的问题是一种方便方法。 MSC/NASTRAN中,提供两种迭代解法,即为逆幂法(INV)和移位逆幂法(SINV) 前者存在丢根现象;后者采用STRUM系列,避免丢根,改善收敛性。 逆幂法和移位逆幂法均用模型数据卡EIGR来定义,并用情况控制指令METHOD来选取。 1.5.2 变换法 特征方程变换为: λ = [φ φ { } A } ]{ 式中矩阵[A]是用Givens法或Householder法变换得到的三角矩阵,一次求解可得全部特征值。

ANSYS模态分析报告实例和详细过程

均匀直杆的子空间法模态分析 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

相关文档
最新文档